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Abstract

In this paper we study a model of rational consumption and quitting in the context of harmful

addictive goods. We assume that a person has imperfect information about his ability to resist and

terminate the addiction. We first characterize the optimal consumption path of a non-addicted per-

son, along which his stock of the addictive substance is either always increasing (and thus addiction

occurs stochastically), always decreasing, or always unchanged. We then characterize the optimal

consumption path of an addicted person, along which he may attempt to quit the addiction for a

period of time, and then resume his consumption if the attempt is unsuccessful. Finally, we remark

on the issues of regret, multiple attempts to quit, and quitting programs.
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There have been a series of attempts to analyze the behavior of smokers and other consumers

of addictive goods. Harmful addictive goods such as alcohol, cocaine, and cigarettes, and harmful

habits such as overeating and gambling receive most of the attention. Papers on rational addiction

characterize an addicted consumer’s consistent and rational use of the addictive substance.1 Papers

on habit formation and habit persistence relate the short-run utility functions to the long-term

utility functions.2 All of these papers assume that consumers know perfectly their short-run or

long-run utilities of consuming the addictive good. The initial consumption is usually caused by

some stressful event (marital breakup, peer pressure, job loss, etc.). A positive initial consumption

would lead to addiction, since a larger past consumption increases the marginal utility of current

consumption.

Four important aspects of addiction are difficult to explain with the above-mentioned models.

First, since consumers can perfectly foresee their future, these models imply that addiction is a

planned and desirable event. While consumers may plan their consumption of the addictive goods,

in practice they never plan or enjoy getting addicted. Second, since everyone maximizes utility,

no one ever has regrets in these models. In reality, many people do regret their consumption once

they discover that they are addicted to the good. Third, since addiction is a planned event, no

one wants to quit once they become addicted in these models. This is contradicted by the fact

that most people try very hard to terminate the addiction later in life. Fourth, according to these

models, if for whatever reasons people decide to quit (either “cold turkey” or by other less abrupt

methods), they succeed. The fact that many people try to quit, but fail, is then difficult to explain.3

These stylized facts highlight the seemingly intertemporal time inconsistency in the behaviors of

these consumers. In a forward-looking, perfect information, rational expectation model, consumers

know exactly what to expect, and a change of course in the middle of the consumption path is

inconsistent with the assumption of utility maximization.

We argue that, to some extent, the difficulties in explaining these key behaviors of addicts are

a result of the lack of uncertainty in the models. To most people, addictions do not occur with
1See Stigler and Becker (1977), Becker and Murphy (1988), Becker, Grossman and Murphy (1991), Michaels

(1988), and Barthold and Hochman (1988). Chaloupka’s (1991) estimates imply that smokers are rational. Viscusi’s

(1990) study shows surprisingly that smokers in general overestimate the risk of health consequences of smoking.

Consumers in this paper are assumed to be rational and forward looking.
2See Pollak (1970, 1976), Spinnewyn 1981, Iannaccone (1984, 1986) and Bordley (1986).
3Becker and Murphy (1988) try to explain the phenomenon of failed quitting attempts by going outside their

model. Dockner and Gustav (1993) explain this kind of cyclical consumption pattern by using two interacting states,

one of which is addictive and the other is satiating.
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certainty. As Brown (1986, p.636) put it, “[a]ctions like smoking a cigarette, having a drink, eating

a candy bar, and working overtime to ‘catch up’ all lead to immediate and certain gratification,

whereas their bad consequences are remote in time, only probabilistic, and still avoidable now.”

This uncertain aspect of addiction has been recognized by Orphanides and Zervos (1995), who

studied the behavior of drug experimentation in a discrete-time model. In their model, consumers

did not know whether they were potentially addicted to a good, but could find out (with some

positive probability) by consuming a positive amount of it. As a result, learning and regret are

explained within a rational expectation framework.

This paper incorporates uncertainty in a continuous-time rational expectation model. This

uncertainty aspect is similar to that in the discrete-time model in Orphanides and Zervos (1995).

Therefore, both explain regrets and the randomness of addiction. In their model, a person is

uncertain whether or not the good is harmful and addictive to him, and can find out (with some

probability) by experimenting with a small amount of that good. If the good is harmful, a Becker-

Murphy type model follows and addiction is defined accordingly. In our model, the good is harmful

to a person if he accumulates a stock of the addictive substance exceeding a previously unknown

threshold level. Therefore, addiction occurs stochastically, and regrets can happen in both models.

There are many important distinctions between the two models, however. Because of the differences

in uncertainty, a person never quits in the Orphanides-Zervos model but he sometimes quits in our

model. Consequently, a person’s quitting behavior is part of the focus of this study but not in

their paper. We assume that an addicted person can terminate his addiction by reducing his stock

of the addictive substance below another previously unknown threshold level. Therefore, a person

may fail in his attempt to quit because of the uncertainty. In all Becker-Murphy type models,

however, once a person decides to quit, he succeeds. In addition, the Orphanides-Zervos approach

cannot be generalized directly to a continuous-time setting, since a person would continuously

experiment with a very small amount of the good and determine his tendency towards addiction

almost immediately; this does not happen in our model. Finally, everyone in our model is an addict

if he consumes sufficient amount of the addictive good, while in the Orphanides-Zervos model some

are addicts (but not others) independent of how much they consume.

The major assumption we make in the analysis is that a person obtains uniformly less utility

when he is addicted than when he is not. Therefore, we treat addiction as a state of harm, instead

of something measured by how much a person consumes around the steady state (as in Becker

and Murphy (1988) and Orphanides and Zervos (1995)). Once the person enters this state, his

utility drops suddenly (given the same consumption and the same stock of the addictive good),

until he is no longer addicted. The uncertainty regarding the two above-mentioned threshold levels

is a recognition of the fact that different people have different abilities to resist the influence of
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addictive substances and different experiences in quitting. Some people are able to consume large

quantities of an addictive good without becoming addicted while others are not. Likewise, some

addicted people can quit easily, but others cannot.

This paper employs techniques for analyzing optimization problems under state-dependent un-

certainty. Similar techniques have been used in investigating the optimal depletion of extractable

resource of unknown quantity (see Dasgupta and Heal (1974)), the optimal investment decision in

the presence of uncertain future changes (see Nickell (1978, pp. 93-105)), and the optimal con-

sumption and life insurance when a consumer has an uncertain lifetime (see Yaari (1965)). These

techniques can also be applied to other problems such as machine maintenance and government

spending (deficits and credit ratings), where discrete jumps in value occur stochastically and are

dependent on the current state of the system.

The analysis will proceed as follows. In Section I, the model is introduced, the overall optimiza-

tion problem is partly analyzed, and the optimal consumption path of a non-addicted person is

developed. In Section II, the techniques are applied to the optimal quitting of an addicted person,

with a subsection devoted to a comparison between the consumption in the consumption model and

in the quitting model. In Section III, remarks are given on the relationship with other preference

switching models in the literature, the issue of regret, the phenomenon of multiple attempts to

quit, and the consequences of easier quitting. In Section IV, the conclusions are summarized.

I. The Consumption of Harmful Addictive Goods
Consider a rational person who lives forever. His utility from consuming an addictive good

depends on both his accumulation of the addictive substance and whether he is addicted to the

good at the time of consumption. Let c(t) be his consumption of the addictive good at time t

and S(t) be the stock of the addictive substance he accumulates by t. It is assumed that the

accumulated stock depreciates at rate δ. Thus the change in his stock is given by

Ṡ(t) = c(t)− δS(t), (1)

where c(t) ≥ 0, ∀t ≥ 0.

The person’s utility function is separable and additive. Suppose that he consumes c when his

stock is S. If he is not addicted at the time of consumption, his utility is U(c, S). If he is addicted,

however, his utility is U(c, S), where

U(c, S) > U(c, S), ∀c,∀S.

Hence, addiction is harmful to the person. Throughout this paper, we restrict c to be a piecewise

continuous function, and assume that U(·, ·) and U(·, ·) are both strictly concave and continuously
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three times differentiable.

In general, a person’s utility also depends on his consumption of other goods. If a person has

a fixed income and takes the prices of the addictive good and other goods as given, the above

described utility functions can be regarded as reduced-form utility functions. This is similar to

equation (7) in Becker and Murphy (1988), where the person optimizes other consumption given

the consumption of the addictive good. The above utility functions can also be justified in a manner

similar to Orphanides and Zervos (1995), where they assume that the budget constraint is binding

every period; if one consumes c units of the addictive good, then the rest of his income is spent

on normal goods. Therefore, a person’s utility can be expressed solely by his consumption on the

addictive good. As an important implication, Uc > 0 and Uc > 0 are not always guaranteed in this

paper. (However, we do impose some conditions on U and U later.)

Notice that the person’s utility depends not only on how much he consumes, but also on his

stock of the addictive substance at the time of consumption. Therefore, it characterizes the effect

of past consumption on the utility of current consumption.

There are two threshold levels of the stock of this addictive substance, S̄ and S, that are

important to our analysis. S̄ is the threshold level above which a non-addicted person becomes an

addict, and S is the threshold level below which an addict can terminate his addiction and become

a non-addicted person once more. It is logical to assume that S̄ > S. A situation where S̄ ≤ S

would indicate that sometimes a person is both an addict and a non-addict, thereby implying an

inconsistency over the state of addiction in our formulation.

A person does not have perfect information about S̄ and S. The exact value of S̄ is unknown

until the moment the person (being non-addicted) increases his stock S to S̄ and immediately

becomes addicted. Similarly, the exact value of S is unknown until the addicted person actually

decreases his stock S to S and becomes a non-addicted person again. A priori, S̄ follows the

distribution characterized by c.d.f. G(·) and p.d.f. g(·), with support [0,∞). The unconditional a

priori distribution regarding S is given by F (·), with support [0,∞). Given that a person becomes

addicted at S̄, however, the belief about S must be adjusted, since a person’s S is always lower

than his S̄. Given that S̄ is known, the distribution of S is given by c.d.f. F (·)/F (S̄) and p.d.f.

f(·)/F (S̄), with support [0, S̄]. The process of quitting is characterized by Ṡ < 0. Given that the

person is still addicted, his probability assessment on S with current stock S ≤ S̄ is conditional on

S < S and given by c.d.f. F (·)/F (S), with support [0, S]. Throughout this paper, we assume that

f and g are continuous and strictly positive on their respective supports.

Note that in this paper, everyone is an addict when his stock of the addictive substance exceeds

his limit. This limit, however, is different from person to person. Therefore, one non-addicted

person could consume more than some other addicted person. A specific person could also consume
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more when he is not addicted than when he is, even though it might not be optimal. Under the

assumptions in this paper, however, he always consumes more (in the long run) when he is addicted

than when he is not, along the optimal path. Subsection (D) in Section II analyzes this situation.

Suppose that a stressful event occurs at the beginning of a person’s life. The consumption of

the addictive good gives the person temporary relief, but also drives up his initial stock of the

addictive substance to S0. This stock, S0, is zero if there is no stressful event or if he decides not to

consume the addictive good even if there is a stressful event. In this section, we consider the case

where the person is not addicted given this initial stock (i.e., S0 < S̄). (If he is initially addicted,

he has to decide whether or not to quit the addiction. This case is analyzed in Section II.)

A person’s history is important in maximizing his expected utility. At each moment, a person

knows whether or not he is addicted and how much he consumes. He does not forget what he

knew in the past and thus can calculate his current stock of the addicted substance according

to (1). Let I be the indicator function that equals zero if he is not addicted and 1 if he is. I

is right-continuous, and it is similar to the hazard or cumulative-risk function in the stochastic

process literature (see, for example, Rogers and Williams (1994, pp. 167-169; 1987, pp. 352-354)).

The cumulative risk function has many economic applications, including the pricing of defaultable

bonds (see, for example, Duffie and Singleton (1998)).

Let I−(t) = limx→t− I(x), ∀t > 0. This limit always exists.4 The transition of the addiction

indicator I can be written as, ∀t > 0,

I(t) =


0, if S(t) = S and I−(t) = 1;

1, if S(t) = S̄ and I−(t) = 0;

I−(t), otherwise.

Given this indicator function, a person’s utility at t can be written as

u(c(t), S(t), I(t)) = (1− I(t))U(c(t), S(t)) + I(t) U(c(t), S(t)).

Two moments are important in a person’s information updating. Consider a specific path of

consumption. Let ta = inf{τ : I(τ) = 1} and tq = inf{τ > ta : I(τ) = 0}. ta is the first time

the person became addicted and tq is the first time he terminated the addiction. Note that these

values may not exist (treat them as ∞ if so), and if they do, they are uniquely determined. Also, a

person may become addicted and quit many times in his life. Nonetheless, after tq, all information

regarding his addiction and quitting tendencies becomes perfect information, and it may not be

optimal to become addicted again.
4This is because S is always continuous and Ṡ is bounded from below by −δS. Therefore, within a given amount

of time, S could cross S̄ and then S for at most finitely many times. This implies that I is piecewise continuous and

I− always exists.
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Define ~S(t) = sup{S(τ) : τ ≤ t} as the maximal stock of the addictive substance in a person’s

history up to time t.5 Define also S̆(t) = inf{S(τ) : ta ≤ τ ≤ t} as the lowest stock up to time t

since his first addiction. Using these two stocks, the person can update his posterior belief on S̄

and S accordingly.

If t < ta, then the person has never been addicted and thus S̄ > ~S(t). Therefore, the conditional

probability for S̄ < S becomes G(S)−G(~S(t))
1−G(~S(t))

, where S ∈ (~S(t),∞). Conditional upon S̄, the c.d.f. for

S remains unchanged. If t ∈ [ta, tq), then the person has been addicted but has not yet terminated

his initial addiction. Therefore, he knows S̄ perfectly and S imperfectly; that is, Pr{S̄ = S(ta)} = 1

and S < S̆(t). In this case, the conditional probability for S < S is given by F (S)
F (S̆(t))

, where S ≤ S̆(t).

At t = tq, the person quits his addiction successfully after having been addicted in the past.

Therefore, S̄ and S are now known perfectly and Pr{S̄ = S(ta)} = Pr{S = S(tq)} = 1. What a

person does after quitting could be quite different from his earlier behavior, since now he has perfect

information about both S̄ and S. Denote W(S) as the present value of the person’s maximized

utility if he quits the addiction exactly at S (which is equal to his S). Of course, thisW(S) depends

on the value of S̄, which is omitted here to save notation. In this paper, we shall not investigate

W(S), except to assume that quitting successfully is better than still being addicted in the second

part of our analysis.

Given S̄ and S, we can calculate ta and tq along any consumption path c and the corresponding

state path S. Given ta and tq, we can express the consumer’s utility as∫ ∞
0

u(c(t), S(t), I(t))e−ρtdt

=
∫ ta

0
U(c(t), S(t))e−ρtdt+

∫ tq

ta
U(c(t), S(t))e−ρtdt+

∫ ∞
tq

u(c(t), S(t), I(t))e−ρtdt

Using the principle of dynamic optimization and the above defined W(·), this person’s opti-

mization problem can be written as follows:

max E0

[∫ ta

0
U(c(t), S(t))e−ρtdt+

∫ tq

ta
U(c(t), S(t))e−ρtdt+W(S(tq))e−ρtq

]

s.t. Ṡ = c− δS, S(0) = S0, I(0) = 0,

where the expectation is taken with respect to S and S̄ at time t = 0, and ta and tq are dependent

on S, S̄, and the consumption path.

The above formulation can be used to investigate some aspects of the addiction problem, but

not others. For example, we assumed that the person lives forever. This simplifying assumption
5Note that S is always continuous and the supremum is equal to the maximum.
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is obviously not a very realistic one. It would be more realistic to allow death in the model. If

death occurs exogeneously and stochastically, and follows a Poisson process, we can easily take

it into account by adding the death rate to the economically motivated discount rate. However,

since addiction is harmful, it may alter a person’s life span endogeneously. A person who consumes

a large amount of this addictive good may have a significantly shorter life. Unfortunately, the

relatively simple analysis in this paper is not general enough to address this issue.

The assumption that addiction is harmful, U(c, S) < U(c, S), ∀c, ∀S, implies that a person

does not like being addicted. However, the consumption of the addictive good produces temporary

satisfaction. Moreover, consuming a small amount of the good does not always lead to addiction,

since the person’s threshold level S̄ may be quite high. Therefore, a non-addicted person may

rationally consume the addictive good and risk the possibility of becoming addicted. On the other

hand, because addiction lowers utility, there is still a limit to the addictive stock a non-addicted

person would like to optimally accumulate, even if the person is risk neutral.

Along any feasible consumption path, a person may sometimes consume more and sometimes

consume less. Sometimes a person faces the risk of addiction and sometimes not. It is not easy to

compare these paths and select the optimal one. Fortunately, we find that given the information

structure in our model, the optimal path can be qualitatively characterized by considering the

person’s behavior before and after his first addiction separately. We have the following lemma:

Lemma 1 The optimal consumption path must fall into one (and only one) of the following

cases:

1. Ṡ(t) ≤ 0, for t ≥ 0;

2. There exists a T̃ < ta, such that Ṡ(t) > 0 for T̃ > t ≥ 0, and Ṡ(t) ≤ 0 for t ≥ T̃ .

3. Ṡ(t) > 0, for 0 ≤ t < ta, and there exists a T ∈ [ta,∞) ∪ {∞}, such that

a) if tq ≤ T , then Ṡ(t) < 0 for ta < t < tq;

b) if tq > T , then Ṡ(t) < 0 for t < T and Ṡ(t) > 0 for t > T .

Proof First, we consider the person’s consumption path after he becomes addicted for the first

time, but before he quits successfully, that is, when ta < t < tq. Pick any such t. When S(t) = S̆(t)

and c(t) < δS(t), Ṡ(t) is negative, and the information on S is updated. Otherwise, the information

is unchanged. Suppose that at some t ∈ (ta, tq), the person is still addicted, and c(t) > δS(t) is

optimal. Then at the first t̃ > t with the property S(t̃) = S(t), c(t̃) > δS(t̃) is still optimal, since

the information on S (and anything else) is the same as before. Apply this principle to all τ ∈ (t, t̃)

and we can conclude that there should not exist a τ with Ṡ(τ) < 0. This implies that if S starts

to increase, it should not decrease afterwards. It leads to three possibilities for the consumption
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path between first addiction and its first successful termination: S is always increasing, S is always

decreasing, or S is first decreasing and then increasing. Define T = inf{t : c(t) > δS(t), t ≥ ta}, and

set its value to ∞ if such t does not exist. The person’s optimal behavior after ta is thus proved.

Now we consider the person’s optimal consumption path before his first addiction. His infor-

mation at t regarding S̄ is given by S̄≥~S(t). When S(t) = ~S(t) and c(t) > δS(t), Ṡ(t) is positive,

and the information on S̄ is updated. Otherwise, the information is unchanged. Suppose that

at some t < ta, c(t) < δS(t) is optimal. Then at the first t̃ > t with the property S(t̃) = S(t),

c(t̃) < δS(t̃) is still optimal, since the information on S̄ (and anything else) is the same as before.

Apply this principle to all τ ∈ (t, t̃) and we can conclude that there should not exist a τ ∈ (t, t̃)

with Ṡ(τ) > 0. This implies that if S starts to decrease, it should not increase afterwards. It leads

to three possibilities for the optimal path before his first addiction: S is always increasing, S is

always decreasing, or S is increasing first and then decreasing later (denote the dividing moment

as T̃ in this case).

The lemma is proved by combining the possibilities in the two segments of the consumption

path. 2

Note that Lemma 1, we characterize the optimal consumption path up to tq (if it exists).

We simply assume that quitting successfully is better than still being addicted. Case 2 in this

lemma never occurs in our model because addiction is harmful: a person would not risk becoming

addicted by consuming a lot, find out that he is not yet addicted, and then consume less. (This

will become clear later in the analysis.) Furthermore, a person’s stock of the addictive substance

will not be switching back and forth between any two values along the optimal consumption path.

Such cyclical behavior occurs only in models with more than one state variable (c.f. Dockner and

Feichinger (1993)); in our model, the stock of the addictive substance is the only state variable.

We shall analyze the person’s optimal consumption problem in two sections. In this section,

we investigate the person’s optimal consumption before his first addiction, leaving the optimal

consumption problem after his first addiction to the next section.

The following two assumptions are made throughout this paper.

Assumption 1 (δ + ρ)Uc(0, 0) + US(0, 0) ≥ 0.

Assumption 2 δUcc(c, S) + UcS(c, S) < 0, ∀c ≥ 0, ∀S ≥ 0.

Assumption 1 ensures that the person would prefer to consume some amount of the addictive

good given that there is no risk of addiction. The person may not consume anything at all if there
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is some risk that his utility will be reduced to U . Assumption 2 together with the concavity of

U(·, ·) implies that (δ + ρ)Uc(δS, S) + US(δS, S) is a decreasing function of S. This is because

d

dS
[(δ + ρ)Uc(δS, S) + US(δS, S)]

= (δ + ρ)[δUcc(δS, S) + UcS(δS, S)] + δUcS(δS, S) + USS(δS, S)

= ρ[δUcc(δS, S) + UcS(δS, S)] + [δ2Ucc(δS, S) + 2δUcS(δS, S) + USS(δS, S)] < 0. (2)

The last inequality holds because of the following. From Assumption 2, the terms in the first pair of

square brackets are negative. From the assumption of concavity of U(·, ·), the terms in the second

pair of brackets are negative.

As we shall see later, these Assumptions 1 and 2 guarantee that the steady state of the non-

addiction part of the system here has a unique saddle point (c∗, S∗), with c∗ ≥ 0 and S∗ ≥ 0.

Therefore, our system here is quite different from the unstable system in Becker and Murphy

(1988).6

Let us first look at the case when c ≤ δS is imposed. In this case, S is decreasing along any

feasible path. Obviously, there is no risk of addiction along this path, as the person is not addicted

at t = 0 which has the highest S along the path. Therefore, the only relevant utility function is U .

The person chooses c to maximize the present value of his expected utility:

V (S0) = max
∫ ∞

0
U(c(t), S(t))e−ρtdt.

s.t. Ṡ = c− δS, 0 ≤ c ≤ δS, S(0) = S0.

We first ignore the constraint on c. Let H = U(c, S)+λ(c−δS) be the current value Hamiltonian

for this maximization. We have the optimality condition Hc = 0, and the co-state equation HS =

ρλ− λ̇. Solving Hc = 0 and HS = ρλ− λ̇, the co-state equation can be rewritten as

ċ =
1
Ucc

[(δ + ρ)Uc + US − UcS(c− δS)]. (3)

Let the steady-state stock of the addictive substance be S∗. Then ∀t, S(t) = S∗ and c(t) = δS∗

must satisfy ċ = 0 and Ṡ = 0. This implies

(δ + ρ)Uc(δS∗, S∗) + US(δS∗, S∗) = 0. (4)
6Becker and Murphy (1988) have multiple (stable and unstable) steady states.

9



From Assumption 1 and inequality (2), the solution to the above equation is unique and non-

negative. Using Taylor expansion on the right-hand side of (3) around the steady state (δS∗, S∗),

and noting that the state equation is linear in c and S, this dynamic system can be approximated

around its steady state as c− δS∗

S − S∗

′ =
 1

Ucc
(δ + ρ)Ucc 1

Ucc
[(2δ + ρ)UcS + USS ]

1 −δ

 c− δS∗

S − S∗


From (2), the determinant of the coefficient matrix of this system is negative, implying that

the steady state is a saddle point in the phase diagram in (c, S). Therefore, a continuous saddle

path for the original system (before approximation) exists, and given our assumptions, it is the

solution to the infinite horizon autonomous problem (without the constraint on c). (See Seierstad

and Sydsæter (Thm. 19, pp. 256-260, 1987) and Leonard and Van Long (Section 9.5 pp. 294–297,

1992) for details.) Let this optimal path be c(t) = c∗(S(t)), ∀t, where c∗(·) is continuous. Since c(·)
and S(·) are the solutions to the simultaneous differential equations, they must be differentiable as

well. Since S′ 6= 0 except at the steady state (i.e., when t goes to infinity), we can also conclude

that c∗ is differentiable.

Because S converges to S∗ along this path as t goes to infinity, it must be that when S > S∗,

Ṡ < 0, and when S < S∗, Ṡ > 0. Stated equivalently, when S > S∗, c < δS, and when S < S∗,

c > δS. Note that the path never crosses c = δS except at S∗ because the solution to (4) is unique.

We argue that the part of S(t) that satisfies S(t) ≥ S∗, ∀t, must be the optimal path for S0 ≤ S∗

when c ≤ δS is imposed. This is because it satisfies the constraint on c and it is better than any

other path using utility U(·, ·). Obviously, it must be better than any path that sometimes obtains

the lower utility U(·, ·).
If S0 < S∗, then c(t) = c∗(S(t)), ∀t, is not feasible anymore when c ≤ δS is imposed. In this

case, we argue that the optimal path is given by c ≡ δS0. From c ≡ δS0, we have S(t) ≡ S0.

Note that the constant function λ = US(δS0, S0)/(ρ + δ) is a solution to the co-state equation

HS = Us − δλ = ρλ − λ′. Given this λ, Hc = Uc + λ = Uc(δS0, S0) + US(δS0, S0)/(ρ + δ) > 0 for

S0 < S∗ from (2) and (4). Therefore, the constraint c(t) ≤ δS(t) = δS0 is binding for every t. With

c(t) ≤ δS(t) imposed, S is bounded along any feasible path. This implies that the optimal path

must be the corner solution c = δS0. (c.f. Leonard and Van Long, Section 9.5 pp. 294–297, 1992)

We summarize the above results in the following lemma:

Lemma 2 Suppose that c ≤ δS is imposed in the optimization problem. Then the optimal

consumption path is given by the saddle path c(t) = c∗(S(t)) (where c∗(·) is differentiable), ∀t, if

S0 ≥ S∗, and by c(t) = δS0, ∀t, if S0 < S∗.
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Next we consider the general case where the person can choose to consume any amount he

desires. If a person reaches his S̄ at ta, his utility can be divided into two parts:∫ ∞
0

u(c(t), S(t), I(t))e−ρtdt =
∫ ta

0
U(c(t), S(t))e−ρtdt+

∫ ∞
ta

u(c(t), S(t), I(t))e−ρtdt,

where S(t0) = S0 and I(ta) = 1. Let Ṽ (S0) be the maximized value of the above expression. It is

the person’s optimal expected utility when he is not addicted at the initial S(t0) = S0. Similarly,

let W (S) be the optimal current values of the person’s discounted utility from the moment he

becomes addicted (at stock S).

Because addiction is harmful, it is easy to see that

Ṽ (S) > W (S), ∀S ≥ 0; (5)

that is, facing the risk of addiction is definitely worse than actually being addicted. If the above

inequality is reversed, it is called a healthy addiction; this situation is not considered in this paper.

Using the newly defined functions, we can restate the person’s optimization problem using the

principle of dynamic optimization:

Ṽ (S0) = max
{∫ ta

0
U(c(t), S(t))e−ρtdt+W (S(ta))e−ρta

}
.
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To characterize the optimal consumption path, we use the method of dynamic programming.

Suppose that the person consumes at a rate equal to c from t to t + dt and the change in S is

given by dS = (c− δS)dt. First consider dS > 0. Given that the person is not yet addicted at S,

which happens with probability 1−G(S), the probability that he reaches his S̄ by S + dS is given

by G(S+dS)−G(S)
1−G(S) = g(S)dS

1−G(S) . If dS ≤ 0, then there is no risk of addiction. According to Lemma 1,

the optimal path will preserve this property dS ≤ 0 from then on. The Hamilton-Jacobi-Bellman

optimality equation can be written as:

Ṽ (S) = max
c

 U(c, S)dt+ e−ρdt
[
Ṽ (S + dS)

(
1− g(S)dS

1−G(S)

)
+W (S + dS) g(S)dS

1−G(S)

]
, if c ≥ δS;

U(c, S)dt+ e−ρdtV (S + dS), if c ≤ δS.

(6)

In (6), if c − δS ≥ 0, then dS ≥ 0. Note that g(S)dS
1−G(S) is the probability that a person would

first become addicted between t and t+ dt when his stock increases from S to S + dS, given that

he is not yet addicted at S. If that event occurs, the person gets W (S + dS). Otherwise, he gets

Ṽ (S + dS) again. Therefore, a person risks the danger of being addicted after consumption. If

c− δS ≤ 0, then dS ≤ 0. According to Lemma 1, this property will be preserved along the optimal

path. Because there is no risk of addiction in this case, the present value of the person’s utility is

given by V (S). Note that when c = δS is the optimal consumption, the two expressions in (6) are

in fact the same.

Since the right-hand side of (6) represents the expected utility of consuming c for a very short

period of time (dt), the optimal c is given by the solution to the maximization in (6). There are

two cases, depending on the optimal consumption c. If the optimal c ≤ δS, then Ṽ (S) = V (S).

Otherwise, Ṽ (S) > V (S).

Suppose that c > δS. So Ṽ (S) > V (S). From Stokey and Lucas (Theorem 9.8, p. 265, and

Theorem 9.10, p. 266, 1989), Ṽ is concave and continuously differentiable. Rearranging (6), ignoring

all higher-order terms, and making use of dSdt = c−δS, e−ρdt = 1−ρdt, Ṽ (S+dS) = Ṽ (S)+Ṽ ′(S)dS

and W (S + dS) = W (S) +W ′(S)dS, we have

ρṼ (S) = max
c≥δS

{
U(c, S) +

[
Ṽ ′(S)− (Ṽ (S)−W (S))

g(S)
1−G(S)

]
(c− δS)

}
. (7)

The right-hand side of (7) captures the instantaneous effect of consumption. U(c, S) is the

instantaneous utility of consuming c. Ṽ ′(S)(c− δS) is the change in future value due to an increase

in S, while (Ṽ (S)−W (S)) g(S)
1−G(S)(c−δS) measures the potential loss in utility because of the slight

chance of becoming addicted. The total effect must be maximized along the optimal path, which
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yields the following first-order condition for any interior solution:

Uc(c, S) + Ṽ ′(S)− (Ṽ (S)−W (S))
g(S)

1−G(S)
= 0. (8)

It is easy to see that the sufficient second-order condition is always satisfied because Ucc < 0.

Combining (7) and (8), we have the necessary condition which the interior part of the optimal

consumption must satisfy:

ρṼ (S) = U(c, S)− Uc(c, S)(c− δS). (9)

Even though this condition contains the unsolved value function, it has useful implications which

are important to the characterization of the optimal consumption path. Consider an S ≥ S∗. We

claim that c = δS must be the optimal consumption. This is because at c = δS, Ṽ (S) = U(δS, S)/ρ

(according to (9)). Therefore, the left-hand side of (8) becomes

Uc(δS, S) +
1
ρ

[δUc(δS, S) + US(δS, S)]− (Ṽ (S)−W (S))
g(S)

1−G(S)
.

From Assumptions 1 and 2, the first two terms together are negative for S ≥ S∗. The last term

is negative due to the assumption of harmful addiction. Therefore, the left-hand side of (8) must

also be negative for S ≥ S∗. This implies that the corner solution c = δS is indeed optimal.

This result is quite intuitive. When S ≥ S∗, the optimal consumption calls for c ≤ δS even if

there is no risk of addiction. Now with the risk of addiction, the person must consume even less.

Bounded by the restriction of c ≥ δS, the corner solution c = δS is obviously optimal.

Note that c = δS may still be optimal under the constraint c ≥ δS even when S < S∗, as

long as the left-hand side of (8) is still negative. Let S̃∗ be the value that divides the two different

types of consumption patterns with the following properties. For S < S̃∗, (8) is satisfied and an

interior solution exists. Denote this solution as c(t) = c̃(S(t)), ∀t. From (8), it is easy to see that

c̃(·) is continuous. For S > S̃∗, (8) does not hold and the corner solution c = δS is the optimal

consumption. We call this S̃∗ the person’s target stock of the addictive substance. That is, if the

person is not yet addicted and S < S̃∗, then c > δS and his stock will get nearer S̃∗ as long as he

is not yet addicted. (This stock is not the person’s steady state since along the path he becomes

addicted with some probability and the consumption pattern thereafter is completely different.)

From the earlier analysis, the following lemma is apparent:

Lemma 3 S̃∗ ≤ S∗.

13



Finally, we shall determine the optimal consumption by comparing the above two value func-

tions. There are three cases.

Case 1: S ∈ [0, S̃∗).

In this case, V is calculated using c(t) = δS(t), ∀t, while Ṽ is determined by c(t) = c̃(S(t)), ∀t.
Since the former consumption path is only one of the feasible paths in the latter case, Ṽ (S) must

be at least as great as V (S). Therefore, following c(t) = c̃(S(t)), ∀t ≥ 0, is optimal.

Case 2: S ∈ [S̃∗, S∗].

In this case, V (S) = Ṽ (S), since c = δS is used in both calculations. Therefore, c = δS is the

optimal consumption path.

Case 3: S > S∗.

Similarly to Case 1, Ṽ is calculated using c = δS while V (S) is calculated using c(t) = c∗(S(t)),

∀t. Since the former is one of the feasible paths in the latter situation, which value function is

maximized at c(t) = c∗(S(t)), ∀t, the latter must be at least as good as the former. Therefore,

c(t) = c∗(S(t)), ∀t, is the optimal path.
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These results are summarized in the following theorem. An illustrative sketch of the optimal

consumption path is given by Figure 3.

Theorem 1 Suppose that a person is not initially addicted at S0. Then the optimal con-

sumption path (given that he is not yet addicted) satisfies the following properties: if S0 < S̃∗,

c(t) = c̃(S(t)), ∀t, and S is increasing and getting closer and closer to S̃∗; if S0 > S∗, c(t) = c∗(S(t)),

∀t, and S is decreasing and converging to S∗; and if S0 ∈ [S̃∗, S∗], c = δS0 and S is constant.

The intuition behind Theorem 1 is as follows. If a person has an initial stock higher than S∗,

he should reduce his stock along the optimal path. This is because his stock is higher than both

S̃∗ and S∗, and he should reduce his stock with or without the risk of addiction. If his initial stock

is lower than S̃∗, he should increase his stock. This is because the stock is lower than both S̃∗

and S∗ and he should increase his stock with or without the risk of addiction. The intermediate

case occurs if his initial stock, S0, is between S̃∗ and S∗. The target stock in the presence of risk

of addiction, S̃∗, is lower than S0, which indicates that he should not increase his stock with the

risk of addiction. On the other hand, the steady-state stock in the absence of risk of addiction S∗

is higher than S0, which indicates that he should not reduce his stock even if there is no risk of
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addiction. Therefore, his optimal consumption is the exact amount as the depreciation, δS0; and

S remains constant at all times.

The following implications can be deduced from the above analysis. A person who starts with

zero or little stock of the addictive substance would experiment with the addictive good and increase

his stock to S̃∗. As long as he has not yet reached his threshold value S̄, he is not addicted to

the good and could quit the consumption easily. Of course, if he unfortunately reaches his S̄, he

is hooked and suffers a substantial drop in his utility. Note that S̃∗ is less than S∗, which is the

steady state stock the person would accumulate if there is no risk of addiction. As suggested by

a referee, the difference between the two represents a solution to an optimization problem under

uncertainty: “I like to rock-climb and hike along canyons and cliffs because of the utility I derive,

while realizing that some danger exists; the potential for danger increases if I get too close to the

edge . . . I do not know with certainty exactly where the ‘too close’ threshold is so I leave a healthy

margin for error.” This healthy margin is given by the difference between S̃∗ and S∗.

For a non-addicted person who starts with a medium stock, he would consume the good at a

constant rate, keeping his stock of the addictive substance unchanged. For this type of consumer,

consuming more leads to an unwanted addiction with some probability, while consuming less is

not utility maximizing. (In the above rock-climbing example, this person is currently in no danger

and enjoys the view very much. But moving closer to the edge becomes too dangerous. Therefore,

he stays where he is.) This type of consumer is not addicted either, and his consumption of the

addicted good could be easily stopped. A person who is not addicted despite a large initial stock

would reduce his stock to S∗. This is not a process of quitting as the person is not addicted to the

good. (This climber does not enjoy the view, even though he is not in any danger.)

To conclude, a person who is not initially addicted could become addicted as he experiments

with the good. If S̄ < S̃∗, this person will become addicted some time along the consumption path.

When this occurs, the analysis of the next section applies.

II. The Quitting Behavior
From the analysis in Section I, we know that if S0 < S̃∗, a non-addicted person will consume

more than the depreciation, thus S increases over time. The probability of becoming addicted is

given by c.d.f. G(·). Suppose that a person is addicted for the very first time at ta with a stock

S0 = S̄ of the addictive substance. He knows perfectly his threshold level of addiction. (If the

person becomes addicted at the very beginning, he does not know his S̄. The analysis for this case

is parallel.) His threshold level of quitting, S, is lower than S0. He will then have to decide whether

or not to initiate an attempt to quit the addiction by consuming less than the internal depreciation

of the addictive substance, thus reducing his stock.
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The person’s optimization problem is to find the optimal consumption path until the addiction

is terminated.7 Hence,

W (S̄) ≡ max Ea

∫ ∞
ta

u(c(t), S(t), I(t))e−ρ(t−ta)dt

= max Ea

{∫ tq

ta
U(c(t), S(t))e−ρ(t−ta)dt+

∫ ∞
tq

u(c(t), S(t), I(t))e−ρ(t−ta)dt

}

= max Ea

{∫ tq

ta
U(c(t), S(t))e−ρ(t−ta)dt+ e−ρ(tq−ta)W(S)

}
where the expectation is taken at ta conditional upon S(ta) = S̄ and I(ta) = 1.

According to Lemma 1, there are three possibilities between the person’s first addiction and his

first successful quitting, depending on the switching time T :

i) S is always decreasing until the addiction is terminated, so T =∞ in this case;

ii) S is always increasing, so T = ta in this case; or

iii) there exists a finite T ∈ (ta,∞), such that S is decreasing for ta ≤ t ≤ T until the addiction

is terminated, and increasing for t > T when quitting is not yet successful by T .

Define Ŝ ≡ S(T ) as the person’s switching stock. (Note that Ŝ = 0 in case i), and Ŝ = ∞ in

case ii).) With positive probability, the person reaches his threshold level S and quits successfully

by the switching time. Before that, he would consume less than the depreciation until T , at which

time he abandons his quitting effort and consumes more than the depreciation. Note that if we

start with any stock (other than S̄) which is on the quitting path S, the switching stock is still Ŝ.

This is because the information the person has at S is exactly the same: his quitting threshold S

is lower than S, no matter if he arrived at that stock by trying to quit or he just became addicted

at that stock.

To summarize, given that the person is addicted at S0, the person’s stock S is decreasing until

it reaches Ŝ (which could depend on the initial S0), at which point his S starts to increase (given

that he is still addicted at that time).

This property of the optimal consumption path simplifies the analysis and allows us to adopt

the following approach. For each S0, we first look for the optimal path among all feasible paths

corresponding to a particular Ŝ. Then we choose the best one among these optimal paths for each

S0. From Lemma 1, this must be the overall optimal path for this S0. We shall do this in three

subsections. In Subsection A, we analyze the case where Ŝ = ∞ (for any given S0). In this case,
7Once he terminates his addiction, he knows S̄ and S perfectly. The optimal consumption path is relatively easy to

solve in this case and it is again important in the quitting analysis. Nevertheless, it is not the focus of this paper, and

is therefore omitted. What we need are inequalities in the values functions which are guaranteed by the assumption

of harmful addiction.
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the person abandons his quitting effort right at the beginning. In Subsection B, we study the case

where Ŝ = 0 (for any given S0). In this case, the person is always trying to quit. Finally, in

Subsection C, we look for the optimal path for each S0 by varying Ŝ. We find that each of these

optimal paths combines parts of the constrained optimal paths in Subsections A and B. The optimal

path corresponding to the optimal Ŝ must be the optimal path for that S0, following directly from

Lemma 1. In what follows, we shall use script letters to distinguish functions and values in this

analysis from those in the previous analysis.

(A) The Optimal Path Corresponding to Ŝ =∞

We first consider the case where Ŝ = ∞ for all S0. In this case, S is increasing all the time.

The person is not allowed to quit his addiction and must consume c ≥ δS at any time. Therefore,

U becomes the only relevant utility function. We should characterize the optimal path under this

constraint. Let

V(S0) = max
∫ ∞
t0
U(c, S)e−ρ(t−t0)dt. (10)

s.t. Ṡ = c− δS, c ≥ δS, S(t0) = S0

be the present value of the person’s maximized utility with a stock of S0 at a particular t0 ≥ ta.

We first ignore the inequality constraint of the above problem and let H = U(c, S) + µ(c− δS) be

the current value Hamiltonian for the unconstrained maximization problem. We have first-order

conditions Hc = 0, HS = ρµ − µ̇. The trajectories for the possible optimal consumption path in

the c− S phase diagram are characterized by the state equation Ṡ = c− δS and

ċ =
1
Ucc

[(δ + ρ)Uc + US − UcS(c− δS)], (11)

where (11) is obtained by solving the above mentioned first-order conditions. The steady-state

stock S∗ is given by the solution to ċ = 0 and Ṡ = 0; that is,

(δ + ρ)Uc(δS∗,S∗) + US(δS∗,S∗) = 0. (12)

Similar to the last section, we need the following two assumptions to guarantee that the solution

to the above equation is unique with S∗ ≥ 0, and that the system’s steady state is a saddle point,

therefore, that the optimal path is characterized by the saddle path.
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Assumption 3 (δ + ρ)Uc(0, 0) + US(0, 0) ≥ 0.

Assumption 4 δUcc(c, S) + UcS(c, S) < 0, ∀c ≥ 0, ∀S ≥ 0.

Again, Assumption 3 ensures that the person would prefer to consume some amount of the

addictive good given that there is no chance of quitting. The person may not consume anything

at all if there is some chance that he is able to quit and his utility could be increased to U(·, ·).
Assumption 4 implies that Uc(δS, S) is a decreasing function of S. Together with the concavity

of U , it also implies that (δ + ρ)Uc(δS, S) + US(δS, S) is a decreasing function of S. (See (2) for

a parallel derivation.) Together with Assumption 3, they guarantee that the solution to (12), the

candidate for a steady state, is unique and non-negative. Similar to the previous section, we can

argue that for the unconstrained problem, the saddle path defined as c(t) = C∗(S(t)), ∀t, exists and

is indeed the optimal solution. Similarly to Lemma 2, we can argue that C∗(·) is continuous and

differentiable. Furthermore, along this path, c > δS (and thus Ṡ > 0) when S < S∗, and c < δS

(and thus Ṡ < 0) when S > S∗.

We argue that the part of c(t) = C∗(S(t)) that satisfies c(t) > δS(t) (i.e., when S(t) < S∗),
∀t, is still optimal when the constraint on c is imposed. This is clear because the constraint is

automatically satisfied along the unconstrained optimal path.

Recall the value function defined by (10). From Stokey and Lucas (Theorem 4.8, p. 81, and

Theorem 4.10, p. 84, 1989), V is strictly concave and differentiable.

When S > S∗, the constraint is no longer satisfied along the unconstrained optimal path. Similar

to the model in the previous section, we can show that the constrained optimal consumption is

given by c = δS. Along this path, the person’s stock remains unchanged.

We summarize the above results in the following lemma:

Lemma 4 Suppose that c ≥ δS is imposed. Then the optimal consumption path is given by

the saddle path c(t) = C∗(S(t)) (where C∗(·) is continuous), ∀t, if S0 < S∗, and by c(t) = δS0 if

S0 ≥ S∗.

(B) The Optimal Path Corresponding to Ŝ = 0

When Ŝ = 0 for a given S0, S declines along all feasible paths and the person is continuously

trying to quit. In this case, c ≤ δS holds along the consumption path, as long as the person is still
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addicted. Along the way the addiction is terminated stochastically. (Note that the optimal path

we shall find is optimal for every S0, since if a person is still addicted at a particular stock, say S,

then the information is that S is still lower than S, regardless of how the person had reduced his

stock to S.)

Recall that V(S) is the present value of an addicted person’s maximized utility with a current

stock of the addictive substance S when c ≥ δS is imposed. When c ≤ δS is imposed, let Ṽ(S)

be the corresponding present value of the person’s maximized utility with a current stock of the

addictive substance S (given a known S̄).8

Recall thatW(S) is the present value of the person’s maximized utility if he quits the addiction

exactly at S. In this paper, we shall not analyze and calculate W(S), except assuming that it is

differentiable and strictly concave. What we need to describe the optimal path (qualitatively) is

the following condition, which is guaranteed by our assumption of harmful addiction:

W(S) > Ṽ(S), ∀S ≥ 0;

that is, quitting successfully is always strictly better than being presently addicted and still trying

to quit. For a healthy addiction, a person will never quit and thus the analysis here is not applicable.

Suppose that, along the quitting path, the person is still addicted at t = t0 > ta. Using the

above newly defined functions and the principle of optimality, the person’s optimization problem

under the constraint of c ≤ δS can be written as:

Ṽ(S) = max
c≤δS

E0

∫ ∞
t0

u(c(t), S(t), I(t))e−ρ(t−t0)dt

= max
c≤δS

E0

{∫ tq

t0
U(c(t), S(t))e−ρ(t−t0)dt+ e−ρ(tq−t0)W(S)

}
,

where the expectation is taken conditional upon S(t0) = S, t0 ≥ ta, and I(t0) = 1. From Stokey

and Lucas (Theorem 9.8, p. 265, and Theorem 9.10, p. 266, 1989), Ṽ is strictly concave and

continuously differentiable.

Suppose that the person has not yet reached S by t. The probability that he will reach S

by t + dt is F (S(t))−F (S(t+dt))
F (S(t)) . Similar to (6), the solution to this person’s dynamic optimization

problem is given by the following Hamilton-Jacobi-Bellman equation:

Ṽ(S(t))e−ρt = max
c(t)≤δS(t)

{
U(c(t), S(t))e−ρtdt+

(
1 +

f(S(t))
F (S(t))

dS(t)
)
Ṽ(S(t+ dt))e−ρ(t+dt)

− f(S(t))
F (S(t))

dS(t)W(S(t+ dt))e−ρ(t+dt)
}
, (13)

8We omit the argument S̄ in this and other value functions since it does not cause any confusion. Note that

Ṽ(S̄) = W (S̄).
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where − f(S(t))
F (S(t))dS(t) is the conditional probability that the person quits the addiction between t and

t + dt (and gets W(S(t + dt))).9 Otherwise, the person gets Ṽ(S(t + dt)) again (with probability

1 + f(S(t))
F (S(t))dS(t)). Therefore, the right-hand side of the above equation represents the utility of

consuming c(t) for a very short period of time (from t to t+ dt).

Rearranging (13), ignoring higher-order terms, and making use of dS
dt = c− δS, e−ρdt = 1− ρdt,

Ṽ(S(t+ dt)) = Ṽ(S(t)) + Ṽ ′(S(t))S′(t)dt and W(S(t+ dt)) =W(S(t)) +W ′(S(t))S′(t)dt, we have

ρṼ(S) = max
c≤δS

{
U(c, S) + Ṽ ′(S)(c− δS)− f(S)

F (S)
[W(S)− Ṽ(S)](c− δS)

}
. (14)

The first-order condition for the optimal c(t) obtained from the maximization in (14) is given

by:

Uc(c, S) + Ṽ ′(S)− f(S)
F (S)

[W(S)− Ṽ(S)] = 0. (15)

The sufficient second-order condition is always satisfied, because U(·, ·) is strictly concave. Note

that the consumption function derived from the above equation, denoted by c(t) = C̃(S(t)), ∀t, is

valid if and only if the person is currently addicted. Note that each term in (15) is continuous, and

that Uc is differentiable. It is easy to see that C̃(·) is continuous.

Let S̃∗ be the target stock along this quitting path; that is, S will get nearer to S̃∗ along

c(t) = C̃(S(t)) if the person attempts to quit but not yet terminate the addiction. To find this

target stock, we differentiate (14) with respect to S along the optimal path c, and evaluate it at

c = δS. We have

ρṼ ′(S) = US(δS, S)− δṼ ′(S) + δ
f(S)
F (S)

[W(S)− Ṽ(S)]. (16)

Combining (15) and (16) and evaluating at the target stock S̃∗ yields

Uc(δS̃∗, S̃∗) +
1

δ + ρ
US(δS̃∗, S̃∗) =

ρ

δ + ρ

f(S̃∗)
F (S̃∗)

[W(S̃∗)− Ṽ(S̃∗)]. (17)

The right-hand side of (17) is positive because of the assumption of harmful addiction. Similarly

to (2), we can show that the left-hand side of (17) is strictly decreasing in S because of Assumption 4

and the concavity of U(·, ·). Comparing (17) with (12), and noting that the right-hand side of (17) is

strictly positive, we can conclude immediately that S̃∗ < S∗, which is stated in the following lemma:

Lemma 5 S̃∗ < S∗.

9Note that this probability is positive, since dS is negative here.
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As the level of utility after quitting the addiction is higher, the person has more incentive to

reduce his stock than in the case where he always gets the lower level utility, hoping to quit the

addiction successfully. Therefore, it is not surprising that the target stock in the case of quitting

must be less than S∗, which is the steady state when there is no hope of quitting.

The path determined by (15) is indeed an optimal path under the constraint c ≤ δS if the path

indeed satisfies this constraint, which is true when S ≥ S̃∗. When S < S̃∗, (15) implies that c > δS.

We argue that in this case, the corner solution c = δS is the constrained optimal path. This is

because U is strictly concave in c. Therefore, Uc is decreasing in c. If the left-hand side of (15) is

zero at c > δS, then it is positive for all c ≤ δS, which implies that c = δS is indeed optimal under

the constraint c ≤ δS.

We summarize the above results in the following lemma:

Lemma 6 Suppose that Ŝ = 0. Then c ≤ δS must be satisfied along all feasible paths. The

optimal path is given by c(t) = C̃(S(t)) (where C̃ is continuous), ∀t, if S0 ≥ S̃∗, and by c(t) = δS0

if S0 < S̃∗.

(C) The Unconstrained Optimal Path For a Particular S0

With the analysis in Subsections A and B, we can now characterize the unconstrained optimal

consumption path for any particular S0 by varying Ŝ. The optimal path we find must be the

optimal path for the particular S0, since the optimal path must be represented by some Ŝ. In the

process, we are able to find an Ŝ that is the common switching stock for all S0 > Ŝ.

Given S0 and Ŝ, a feasible path must satisfy the following condition: if S0 < Ŝ, c(t) ≥ δS(t),

∀t; if S0 ≥ Ŝ, then c(t) ≤ δS(t) (if the person is still addicted at the time) until S(t) reaches Ŝ for

the first time, and then c(t) ≥ δS(t) for the rest of the path. We divide S0 into three cases:

Case 1: S0 < S̃∗.
If we set Ŝ ≥ S0, it is equivalent to setting Ŝ = ∞, since S will decrease to Ŝ monotonically.

Therefore, S must be monotonically increasing all the time (c.f. Lemma 1) and c(t) = C∗(S(t)), ∀t,
is optimal.

If we set Ŝ < S0, then S is decreased to Ŝ at first and, if the person is still addicted by the time

S reaches Ŝ, S will be increased. Note that S̃∗ is the target stock for quitting. Below that level

of stock, the person prefers c = δS (and keeping a constant stock) to quitting (which is evident
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from the fact that the left-hand side of (15) is positive for c = δS given S < S̃∗). Furthermore,

c(t) = C∗(S(t)), ∀t, dominates c(t) = δS(t), ∀t (obtained in the case where the person is not allowed

to quit). Hence, c(t) = C∗(S(t)), ∀t, (corresponding to Ŝ = ∞) must be a better path than any

path corresponding Ŝ < S0.

To summarize, c(t) = C∗(S(t)), ∀t, is optimal path when S0 < S̃∗.

Case 2: S0 > S∗.
There is no doubt that following the quitting path c(t) = C̃(S(t)), ∀t, is optimal. This is because

c = δS is optimal if we impose c ≥ δS. But it is dominated by the quitting path (obtained in the

case where we impose c ≤ δS). The selection of the optimal Ŝ is discussed in the next case, as we

have a problem identical to the one with S0 = S∗ when S reaches S∗.

Case 3: S0 ∈ [S̃∗,S∗].
We have established in Case 1 that V(S) > Ṽ(S) (the non-quitting path is better) when S < S̃∗,

and in Case 2 that the opposite is true when S > S∗. By the continuity and concavity of V(·) and

Ṽ(·), we know that there exists a unique S such that V(S) = Ṽ(S). Denote this crossing point

of the two curves (c.f. Figure 4) as the optimal Ŝ, since it is the optimal switching stock for all

S0 > Ŝ.

For S0 < Ŝ, V(S(t)) > Ṽ(S(t)), ∀t. Therefore, following the non-quitting path is better. S

increases and eventually converges to S∗. Note that in this case at S > Ŝ, it is not optimal for

the person to switch to the quitting path, because the information he has on S (i.e., S < S0) is

different than the assumption in calculating Ṽ(S) (i.e., S < S).

For S0 > Ŝ, V(S(t)) < Ṽ(S(t)), ∀t. Therefore, following the quitting path is better. As S

decreases to Ŝ, the person is indifferent between following the quitting path and following the

non-quitting path. But for any S < Ŝ, the non-quitting path is certainly better.10 Therefore, the

optimal strategy is to abandon his quitting effort and switch from the quitting path to the non-

quitting path at exactly Ŝ (given that he is still addicted at that time) and S gradually converges

to S∗.
We summarize the above results in the following theorem:

10As a technical note, even though Ṽ is calculated based on the assumption that the person follows the quitting

path from the beginning to the end, it makes no difference to the value function for S > Ŝ if he switches to the

non-quitting path at Ŝ, as Ṽ(Ŝ) = V(Ŝ). However, if the person continues to follow the quitting path when S < Ŝ
and discovers that he is still addicted, then following the non-quitting path is optimal. There is no contradiction here

because with some probability the person may terminate the addiction successfully along the path.
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Theorem 2 a) V(S) > Ṽ(S) for S < Ŝ and V(S) < Ṽ(S) for S > Ŝ.

b) For S0 ≤ Ŝ, the optimal consumption path is given by c(t) = C∗(S(t)), ∀t, and S converges

to S∗; for S0 > Ŝ, the optimal consumption path is given by c(t) = C̃(S(t)), ∀t, until S reaches Ŝ
(given that he is still addicted) and then switch to c(t) = C∗(S(t)), ∀t.

This theorem shows that no one would follow the quitting path from the beginning to the end.

In the quitting process, a person reduces his consumption of the addictive good because of the

benefit of successful quitting. The probability of attaining this benefit diminishes as the stock

reaches its target. At some point, it becomes not worthwhile to sacrifice the distortion in current

utility in continuing the process and the quitting effort is abolished.

The saddle paths in Figure 5 illustrate the optimal consumption paths. When S < Ŝ, Ṽ(S) <

V(S), and the upper saddle path is followed. When S > Ŝ, Ṽ(S) > V(S), and the lower saddle path

is followed (as long as he is still addicted) up to Ŝ; after that, the person abandons his quitting

effort and switches to the upper saddle path. A person may have the same stock when he follows the

upper saddle path as when he follows the lower saddle path, but the information on S is different.

When he follows the upper saddle path after he abandons his quitting effort, he knows that S < Ŝ,

while when he follows the lower saddle path he knows only that S < S.
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(D) Comparing the Steady States in the Quitting and the Consumption Models11

In the previous sections, the consumption and the quitting of the addictive good were, for the

most part, examined separately. These analyses can be done mainly due to the assumption that

addiction is a state of harm or sickness; once a person gets into addiction, his utility level drops

immediately. We never compare how much of the addictive good a person would optimally con-

sume in the states of addiction and non-addiction. While the results obtained so far are intuitive,

the interpretation of addiction is not complete unless an addicted person consumes more than a

non-addicted person in the steady state. This property is not obtained from our analysis, and in

fact it should not always be true given our assumptions so far, since these assumptions do not

actually compare the marginal utility of consumption in the two different states. To capture the

fact that an addicted person always craves for more of the addictive good, we make the following

two additional assumptions.

11I am indebted to a referee for his/her insights on this issue, which resulted in this subsection.
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Assumption 5 (δ + ρ)Uc(0, 0) + US(0, 0) > (δ + ρ)Uc(0, 0) + US(0, 0).

Assumption 6 ∀S ≥ 0,

UcS(δS, S) +
1

2δ + ρ
[(δ + ρ)δUcc(δS, S) + USS(δS, S)]

≥ UcS(δS, S) +
1

2δ + ρ
[(δ + ρ)δUcc(δS, S) + USS(δS, S)].

Assumption 5 states loosely that an addicted person enjoys more of the addicted good than a

non-addicted person at S = 0. Assumption 6 states that the marginal utility of consumption with

a higher stock of the addictive substance is higher for an addicted person (after some normaliza-

tions of the utility function). These two assumptions together guarantee that the steady state of

the addictive substance for a non-addicted person is lower than an addicted person. We have the

following lemma:

Lemma 7 S∗ < S∗.

Proof Assumption 5 implies that (δ+ρ)Uc(δS, S) +US(δS, S) is higher than (δ+ρ)Uc(δS, S) +

US(δS, S) at S = 0. (They are both positive, from Assumptions 1 and 3.) Meanwhile, Assumption

6 implies that the former decreases more slowly than the latter. Therefore, the latter reaches zero

faster than the former. Recall (4) and (12). We conclude that S∗ < S∗. 2

In a steady state the person consumes the depreciation amount; that is, c = δS∗ or c = δS∗.
The above lemma implies that in the long run, an addicted person consumes more than a non-

addicted person. This does not warrant, however, that an addicted person always consumes more

than a non-addicted person. This is because an addicted person may try to quit his addiction at

first. During this quitting period, an addicted person obviously consumes less. Of course, when

this person abandons his quitting effort, his consumption eventually exceeds a non-addicted person.

III. Further Remarks
In our model, a person switches his preference (i.e. utility function) when he becomes addicted

or terminates the addiction. These utility changes are expected by the person from the very

beginning. Other researchers have investigated the situation where these changes are unexpected,

e.g. where an individual has conflicting preferences which are in temporary control from time to
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time. These include Winston (1980), Elster (1984), Schelling (1984), and Glazer and Weiss (1991).

The implications of these models are somewhat different than ours. For example, it is often observed

that people may try to quit smoking by making it more difficult to obtain a cigarette. This kind of

voluntary restriction can be utility improving in their models, but is never optimal in any rational

expectation model (including ours).12

Sometimes people addicted to alcohol attend Alcoholics Anonymous or other health clinics to

obtain help in quitting. Unfortunately, these quitting programs provide a mixed signal to the

public. Easy quitting certainly helps the addicted consumers, but it also provides incentives for

other people to start consuming the good and for existing consumers to increase their consumption.

As a result, the effects of these programs on the total number of consumers and on the amount of

addictive goods consumed are ambiguous.

In the previous section, a person attempted to quit only once. It is often observed, however,

that many people attempt to quit several times in their lives, with some eventually succeeding and

others failing. This can be explained by our model, provided that new information arrives from time

to time. Some possible reasons why many people try to quit again could be, for example, cancer

killing a close relative, or publication of new medical research results. New information changes

the person’s utility function and the perceived risk or the consequences of consuming the addictive

good. If we treat U(·, ·) as the expected utility, then a piece of bad news reduces U(·, ·). Therefore,

the difference between V(·) and W(·) becomes larger. As the benefit of quitting increases, the

person who stopped trying to quit may try again. As a result, a person may try to quit several

times in his life. The timing, according to our model, must coincide with the arrival of bad news.

Of course, if the person is in the process of quitting and some good news arrives and the

addictive good is not as harmful as he thought, the person may stop the quitting attempt and

resume the consumption of the good. Or if the person faces a second shock after he quits, he may

go back to the addictive good as well.

In both the addiction stage and the quitting stage, a person may have regret, as more informa-

tion is obtained along the optimal consumption path. For example, a person may regret his initial

consumption of the addictive good if he learns that he has a low S̄. This can only occur in a model

with imperfect information. A person who is trying to quit may also regret doing so because he

finds out that his S is very low and quitting is too difficult. A person who does not succeed in

quitting may regret it if he later finds out that a little more effort would have produced success.

Therefore, the criticism that addicts are happy13 does not apply here. In our model, if a person
12There is a similar implication in Geanakoplos (1990) where an individual may forget what he has learned.
13Winston’s (1980) criticism on Stigler and Becker’s (1977) and thus also on Becker and Murphy’s (1988) models

is one example.
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becomes addicted after the initial consumption, he is unhappy about it and regrets having done so.

Of course, ex ante, the person may still be better off by consuming the addictive good.

IV. Conclusions
In this paper we have presented a model of rational addiction and quitting. As a person

experiments with the addictive good, he may find himself addicted. Trying to quit may then

become part of utility maximizing behavior. As new information about a person’s utility (most

likely, the health consequences of addiction) arrives, a person who has stopped trying to quit may

attempt to quit again. As people are generally imperfectly informed about their ability to resist an

addictive good or the difficulty of quitting, regret can occur along the optimal path of consumption,

as more information is obtained. We also argue that the effects of quitting programs are ambiguous.

Because a person’s consumption directly affects his stock of the addictive substance he accu-

mulates and thus the information about S̄ and S, the analysis would have been very complicated.

Fortunately, we are able to prove that there is some monotonicity in the person’s consumption

patterns along the optimal path. Therefore, in both parts of the analysis, we can investigate the

problem by studying the case of a monotone increasing S and the case of a monotone decreasing

S separately, since those are the only candidates for the optimal path. The optimal consumption

path can then be easily found by comparing the relative value functions at each S. Without the

monotonicity property, the above approach would have been impossible to adopt.

The theory of rational addiction and rational quitting can also be used to explain the persistence

of harmful habits and their termination. Habits and hobbies such as overeating, overworking,

television watching, stamp collecting, or nail biting can be regarded as addictions. The origin of

these types of behaviors may be exogenous and their stock accumulates and depreciates. Some

people argue that smokers are not addicted to the nicotine in the cigarettes but to the habit of

smoking. (See Viscusi (1990) for a related discussion.) The model in this paper applies here. Some

existing research on habit formation (e.g., Pollak (1970, 1976), von Weisacker (1971) and Phlips

(1974)) assumes that consumers are myopic. Our model shows how addiction and the persistence of

harmful habits can be analyzed in rational utility-maximization models with imperfect information.

We used the concept of cumulative risk in the analysis. In addition to its use in defaultable

bonds, that concept can be applied to the case of machine maintenance. The probability of a

machine breaking down and generating a lower profit depends on the machine’s current state,

which can be improved by regular maintenance. It can also be applied to a government’s credit

rating. An unknown deficit level will cause an upgrade or a downgrade of the country’s credit

rating. The government can increase or reduce its deficit by adjusting its spending. Of course,

future research must be undertaken to explore these applications.
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