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Abstract

The Ellsberg paradox demonstrates that people�s belief over uncertain events
might not be representable by subjective probability. We argue that Un-
certainty Aversion may be viewed as a case of �Rule Rationality�. This
paradigm claims that people�s decision making has evolved to simple rules
that perform well in most regular environments. Such an environment con-
sists of replicas of some basic singular circumstance. When the rule is applied
to a singular environment, the behavior may seem paradoxical. We claim
that the regular environment in which decisions under uncertainty take place,
is described by one decision that spans multiple ambiguous risks, which are
positively correlated. We show that when a risk averse individual has a
Bayesian prior and uses a rule, which is optimal for the regular ambiguous
environment, to evaluate a singular vague circumstance - his behavior will
exhibit uncertainty aversion. Thus, the behavior predicted by Ellsberg may
be explained within the Bayesian expected utility paradigm.

JEL classiÞcation: D81
Keywords: Ellsberg paradox, rule rationality, ambiguity aversion, risk aver-
sion, subjective probability.



1 Introduction

Daniel Ellsberg�s (1963, [4]) experiments demonstrate that for many indi-
viduals risk (known probabilities) and uncertainty (or ambiguity - unknown
probabilities) are two different notions. The economic importance of Ells-
berg�s examples is far beyond the distinction between risk and uncertainty,
which was Þrst suggested by Knight [10] and Keynes [9] in 1921. It is a
direct criticism of Savage�s [13] normative conception that uncertainty may
be treated similarly to risk, when subjective probability, which is derived
from preferences, replaces the objective probability in the von Neumann-
Morgenstern theory of expected utility. In fact, the Ellsberg �paradox� is
inconsistent with Mark Machina and David Schmeidler�s �probabilistically
sophisticated� preferences [11] that generalizes the idea of deriving subjec-
tive probability from preferences. This assumption is critical in Economics,
where the usage of subjective probability is pervasive. In many cases, not
only the results depend on the existence of subjective probability, but with-
out it deÞning the relevant problem would become much more difficult (if
not impossible).
We argue that Ellsberg�s ambiguity aversion may be viewed as a case of

�Rule Rationality� (Aumann [2]). This paradigm claims that people�s deci-
sion making has evolved to simple rules that perform well in most regular
(common) environments. Such an environment consists of replicas of some
basic singular circumstance. The rule has been determined in an evolution-
ary or learning process. These processes reward a behavior that utilizes a
rule which works well in most environments, i.e. it is optimal for a regular en-
vironment. When applying the decision rule to a singular environment1, the
behavior may seem to be hard to rationalize. The environments in which peo-
ple make decisions under uncertainty are frequently composed from bundled
risks that are positively correlated. Examples of such cases are a purchase
of a car, a house, and even marriage. In the case of a car, the state of each
component is uncertain, and given its state there is a risk the component will
malfunction before a certain mileage. The states of different components are
positively correlated (e.g., may depend on previous owners). The decision is
whether to buy the �car� (including all its ingredients) or not. Similar logic
applies to the purchase of a house. The happiness derived from a marriage

1Either because the individual applies a decision rule which is already �hard wired�
into his decision making for similar (regular) environments, or he does not understand the
singularity of the basic environment.
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is composed of many (risky) dimensions that are positively correlated. The
individual takes a decision while having some belief over the extent of these
risks. We argue that the regular environment in which decisions under un-
certainty take place, is described by one decision that spans multiple risks,
which are positively correlated. In the car example, the buyer can not buy
the transmission of one car, the engine of a second car and the body of a third
car. She has to decide whether to buy a speciÞc car, including all its com-
ponents. The individual�s heuristic decision making under uncertainty has
adapted to this �bundling� of risks by developing a �rule� that performs well
in the regular environment. The outcome is that people�s heuristic decision
making is consistent with the regular environment where positively corre-
lated risks are bundled in one decision. When confronted with a situation
in which she has to make a decision under uncertainty, the decision maker
applies that rule. Implicitly, she assigns some small probability that the en-
vironment she is confronted with is regular. We prove that if the regular
environment consists of replicas of an Ellsberg type decision that are bun-
dled together, the optimal decision rule for a risk averse individual, who has
some Bayesian prior belief over states of the world, will exhibit uncertainty
(ambiguity) aversion. If the decision maker does not know with certainty
the structure of the environment, any small probability of multi-dimensional
environment will lead to a decision that looks to an outside observer as �ir-
rational�. Hence, an arbitrarily small perturbation of the alleged Ellsberg
paradox may be fully rationalized within a Bayesian framework. In this case,
uncertainty aversion reduces to risk aversion, and justiÞes the usual response
that a lottery where probabilities are unknown is �riskier� than a lottery
with known probabilities. The explanation is conservative2 with respect to
ambiguity, and we can bound the premium the individual is willing to pay
in order to discard uncertainty in favor of risk.
In the following, we present the Ellsberg paradoxes, and our resolution

of them. Next, we generalize the example and establish formally the rela-
tion between behavioral rules and uncertainty aversion, viz., almost every
uncertainty averse behavior may be rationalized as a Bayesian optimal rule
in an environment consisting of bundled risks. The paper concludes with

2Conservatism is used here and elsewhere in the paper in the ordinary sense of the
word: the individual will favor traditional or current strategies over innovations with
ambiguous consequences. In the case of risk and uncertainty, he will prefer known risky
strategies over uncertain (unknown probabilities) ones. Pessimism represents the extreme
form conservatism.
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a discussion of the results, a comparison to the current literature on am-
biguity aversion, a conjecture concerning the relation between uncertainty
aversion and other behavioral anomalies, an alternative interpretation of the
analytical results and suggestions for further research.

2 A Bayesian Resolution of Ellsberg�s Para-

doxes

This section demonstrates how the concept of �rule rationality� could be
applied to the famous Ellsberg paradoxes, which motivates most of the liter-
ature on ambiguity aversion. Note that we use some simplifying assumptions
that are not necessary (the more general case is analyzed in Section 3).

2.1 Ellsberg�s �Two Urn� Paradox

Consider Ellsberg�s Þrst paradox: there are two urns, each containing 100
balls, which can be either red or black. It is known that the Þrst urn holds
50 red and 50 black balls. The number of red (black) balls in the second urn
is unknown. Two balls are drawn at random, one from each urn. The subject
- Alice - is asked to bet on the color of one of the balls. A correct bet wins her
$100, an incorrect guess loses nothing (and pays nothing). If Alice exhibits
uncertainty aversion she will prefer a bet on red or black drawn from the
Þrst urn to a bet on red or black drawn from the second urn, but she will be
indifferent between betting on red or black in each urn separately (the formal
deÞnition of uncertainty aversion is deferred until section 3). This pattern of
behavior not only violates Savage�s Sure Thing Principle (P2), but there does
not exist any subjective probability (i.e., frequency of reds or blacks in the
second urn) which supports these preferences. In the Machina-Schmeidler
[11] terminology, Alice is not �probabilistically sophisticated�. As suggested
by Ellsberg [4], and axiomatized by Gilboa & Schmeidler [7], this behavior
can be supported by a pessimistic evaluation (i.e. maximin): Alice has a
set of priors and for each bet she calculates her expected utility according
to the worst prior belief supported in this set. In this example, if p is the
proportion of red balls in the second urn, then p ∈ [0, 1] . Therefore, Alice�s
maximin expected utility from betting on red (black) from the second urn
is zero. According to this pessimistic explanation, Alice would prefer to bet
on red (black) from the Þrst urn, even if she knew that there is (are) one

3



(99) red ball(s) in it, rather than bet on red (black) from the second urn.
The unsatisfying predictions of this extreme pessimism3, led Ellsberg (in his
original paper [4]) to look for a less conservative model. As will be clear from
the following, our explanation has this feature.
Alice has learned from experience (maybe not consciously) that most

circumstances are not isolated (singular), but frequently similar risks are
bundled. Hence, the regular environment in which she evaluates uncertain
prospects consist of bundled risks. When asked which bet she prefers, she
applies the rule that has evolved in this regular-bundled environment. Our
goal here is to characterize the regular environment and Þnd the optimal
rule for it. The Ellsberg experiment described above constitute the singular
environment in the rule rationality paradigm. For simplicity of the initial
exposition we assume the regular environment consist of two Ellsberg singu-
lar experiments, which are perfectly correlated. There are two type I urns
(risky), and two type II urns (ambiguous). Alice�s choice set consists of bet-
ting on one color from the (two) risky urns, or on one color from the (two)
uncertain urns. Alice�s payoff is the sum of her payoff in each draw.
The distribution of the monetary prize if Alice bets on red (or black) from

the urns with a known probability of 1
2
(urns of type I) is:

IR(2) = IB(2) =

 $0 1/4
$100 1/2
$200 1/4

(1)

When considering the ambiguous urns, Alice might4 apply the statistical
principle of insufficient reason5. Therefore, she has a prior belief over the
number of red balls contained in them, which assigns a probability of 1

101
to

3The Maximin decision rule for the Ellsberg experiment could be adjusted to conform
better with observed behavior, by changing the support of belief. However, it remains
true that this decision rule, as a normative result, ignores the distribution of belief over
the support. Hence pessimism is this context means: ignoring all the support except its
lower bound.

4None of the results depend on this assumption. As will be clear from section 3, all
that is required is that Alice will be indifferent between betting on red or black from the
type II urns. This is guaranteed by any symmetric prior.

5The principle of insufficient reason states that if one does not have a reason to suspect
that one state is more likely than the other, then by symmetry the states are equally likely,
and equal probabilities should be assigned to them. The reader is referred to Savage [13]
Chapter 4 section 5 for a discussion of the principle in relation to subjective probability.
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every frequency between 0 and 100 (thus p, the proportion of red balls in the
ambiguous urns, is between 0 and 1). The assumption of perfect correlation is
that the two urns have the same color composition (this is an exchangeability
condition). Conditional on p, the probability that two red balls would be
drawn from the ambiguous urns (i.e. winning $200 if betting on red) is p2,
the probability of two black balls (i.e. winning $0 if betting on red) is (1−p)2,
and the probability of one red ball and one black ball (i.e. a total prize of
$100 if betting on red) is 2p(1 − p). According to the Bayesian paradigm,
Alice should average these values over the different p in the support of her
prior belief. Hence the probability of winning $200 and $0 is:

100X
i=0

1

101

µ
i

100

¶2
=

100X
i=0

1

101

µ
1− i

100

¶2
∼=
Z 1

0

p2dp =
1

3
(2)

Therefore, the expected (according to the uniform prior) distribution of the
monetary payoff from betting on the ambiguous urns is:

IIR(2) = IIB(2) =

 $0 1/3
$100 1/3
$200 1/3

(3)

IR(2) and IB(2) second order stochastically dominate IIR(2) and IIB(2)
(i.e. the latter two are mean preserving spreads of the former)6. If Alice
is averse to mean preserving spreads, she will prefer to bet on the risky
urns. Furthermore, if her preferences are represented by an expected utility
functional (with respect to an additive probability measure), then aversion
to mean preserving spreads is a consequence of risk aversion. Therefore, if
Alice is risk averse she will prefer the objective urns to the ambiguous ones,
and will exhibit uncertainty (ambiguity) aversion, as observed in the Ellsberg
experiment. If she is a risk lover, she will prefer the latter to the former, and
exhibit uncertainty love (also predicted behavior by Ellsberg); while if she is
risk neutral, she will be indifferent between the four bets.
The above explanation is conservative. In the case of two draws and a

uniform prior, but without dependence on her risk aversion, Alice will prefer

6For formal deÞnitions of Þrst and second order stochastic dominance see [12] and
Appendix A.
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to bet on the ambiguous urns, rather than bet on red from type I urns that
contain anything less than 43 red balls. The distribution of a bet on red from
the type I urns that contain only 42 red balls is:

IR(2)

µ
p =

42

100

¶
= ($0, 0.3364; $100, 0.4872; $200, 0.1764) (4)

Hence, a bet on the uncertain urns would Þrst order stochastically dominate a
bet on red from these risky urns. Thus the uncertainty premium (in terms of
probabilities) is bounded from above by 8%. In monetary terms, this upper
bound is equivalent to $16:

E

µ
IB(2)

µ
p =

1

2

¶¶
− E

µ
IB(2)

µ
p =

42

100

¶¶
= $100− $84 = $16 (5)

The only assumption relied upon in this explanation is monotonicity of
the preference relation with respect to second order stochastic dominance.
Therefore, this explanation is consistent with any theory of choice under risk
that exhibits aversion to mean preserving spreads, including expected utility
with diminishing marginal utility of wealth, as well as most non-expected
utility theories of choice under risk.

The logic developed above extends to regular environments composed
from any number of bundled risks. Assume Alice compares the distribution
of betting on r concurrent IR (IB) to r concurrent IIR (IIB) as in the
Ellsberg experiment. The money gained is distributed 100X where X has a
binomial distribution with parameters (0.5, r) and (p, r) , respectively. If p,
The proportion of red balls in the ambiguous urns, is distributed uniformly
on [0, 1] , then for every 0 ≤ k ≤ r : 7

7The Beta Integral is deÞned by:

Beta (m+ 1, n+ 1) =
R 1
0 p

m(1− p)ndp = Γ(m+1)Γ(n+1)
Γ(m+n+2)

Where Γ(α) =
R∞
0 pα−1e−pdp for α > 0, and it is a well known result that when k is a

natural number: Γ(k) = (k − 1)!

6



Pr {X = k} =

µ
r

k

¶
1

101

100X
s=0

³ s

100

´k ³
1− s

100

´r−k ∼= (6)

∼=
µ
r

k

¶Z 1

0

pk (1− p)r−k dp =
µ
r

k

¶
Beta (k + 1, r − k + 1) =

=
r!

k!(r − k)!
k!(r − k)!
(r + 1)!

=
1

r + 1

That is, the expected distribution of IIR(r) and IIB(r) is uniform, and is
second order stochastically dominated by the binomial IR(r) and IB(r).

The only relation between the two ambiguous risks needed to justify un-
certainty aversion is a positive correlation. Let p1 and p2 be the relative
frequencies of red balls in the Þrst and second ambiguous urns, respec-
tively. It is immediate to verify that if Corr (p1, p2) > 0 then E (p1p2) =
E ((1− p1) (1− p2)) > 1

4
, and therefore a bet on the ambiguous urns is a

mean preserving spread of a bet on the risky (known probabilities of 0.5)
urns.

Note that Alice does not need to assign probability one to the regular
(bundled) experiment in order to prefer a bet on the risky urns. In most
cases we don�t know (understand) with certainty the environment in which
we have to make decisions. Alice might have learned from her experience
that some risks are bundled, but some are isolated. Even if the probability
of a correlated risk is very small, she would prefer a bet on the risky (type
I) urns. This is a consequence of a �Sure Thing Principle� argument: if
there is only a singular risk, she is indifferent between betting on urn I or
urn II, and in the case of bundling, she strictly prefers the former. Hence
the conclusion that she prefers risk over ambiguity, even when she faces the
slightest possibility of a regular environment. Thus, in the case of environ-
mental uncertainties, ambiguity aversion is fully rational. In other words:
the slightest perturbation of the singular environment gives rise to the ratio-
nalizable behavior.

2.2 Ellsberg�s �One Urn� Paradox

As will be clear from the generalization in section 3, Ellsberg�s [4] second
paradox (the �one urn� example) could be rationalized similarly. For the
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sake of completeness we cover this example too. An urn contains 90 balls: 30
red and 60 black or yellow (with unknown proportions). A ball is drawn at
random and Bob is asked to bet on the color of the ball. A correct guess wins
$100, an incorrect guess wins $0. Bob prefers a bet that the ball is red over
a bet that the ball is black, and prefers a bet that the ball is either black or
yellow over a bet that the ball is either red or yellow. Bob�s preferences seem
to be inconsistent with any frequency of black (yellow) balls. We claim, how-
ever, that Bob�s rationality abides by �rule�, when his regular environment
bundles risks. In this environment, uncertainty averse behavior would be the
result of Bayesian prior. Assume (again, for simplicity only) that the regular
environment consists of two bundled bets. Bob�s payoff if he bets on red balls
from two urns is: R(2) =

¡
$0, 4

9
; $100, 4

9
; $200, 1

9

¢
. The probability distribu-

tion of a bet on black is: B(2) (p) =
¡
$0, (1− p)2 ; $100, 2p(1− p); $200, p2¢

where p is the relative frequency of black balls in the urns. Assume Bob�s
prior belief over p is (approximately) uniform (neglecting the Þnite sup-
port), i.e.: p ∼ U

£
0, 2

3

¤
. Averaging the distribution of B(2) over p results

in: B(2) =
¡
$0, 13

27
; $100, 10

27
; $200, 4

27

¢
. It is easily veriÞed that E

¡
R(2)

¢
=

E
¡
B(2)

¢
= 331

3
, and that B(2) is a mean preserving spread of R(2). A sym-

metric analysis applies to the second pattern of preferences Bob exhibits.

3 The General Framework

The natural framework to generalize Ellsberg�s examples is the Anscombe-
Aumann [1] horse bets over roulette lotteries, in which objective and sub-
jective probabilities coexist. In this section we show that almost all cases of
observed �uncertainty aversion� (Schmeidler [14] and Gilboa & Schmeidler
[7]) may be explained if agents apply a rule, which is optimal for a regular
environment, to a singular environment. In the following we formulate the
general framework, while relating each element directly to Ellsberg�s �two
urns� example.

3.1 Uncertainty Aversion

Let X be a set of monetary outcomes. In Ellsberg�s setting X = {$0, $100} .
R is the set of Þnitely supported (roulette) lotteries over X , i.e. ρ inR deÞnes
an objective mechanism of mixing among the elements of X . In Ellsberg�s
settingR = {($100, p; $0, 1− p) : 0 ≤ p ≤ 1} i.e., all lotteries between $0 and
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$100. Assume a preference ordering over R that satisÞes the usual expected
utility assumptions. Therefore, there exists a von Neumann-Morgenstern
utility function u(·), such that lottery ρ1 is preferred to lottery ρ2 if and
only if

P
x∈X ρ1(x)u(x) >

P
x∈X ρ2(x)u(x). In Ellsberg�s example, if u is

monotonically increasing then the decision maker simply prefers a bet with
higher probability of winning $100. Let S be a Þnite8 (non-empty) set of
states of the world. In Ellsberg�s example states of the world are denoted by
the number of red balls in the second urn: S = {0, ..., 100} . An act (horse
lottery) is a function from S to R. That is, it is a compound lottery, in which
the prizes are roulette lotteries. In Ellsberg�s two urns example the act IIR
deÞnes for every state s the objective lottery:

IIR(s) =
³
$100,

s

100
; $0, 1− s

100

´
(7)

The act IIB deÞnes for every state s the lottery:

IIB(s) =
³
$100, 1− s

100
; $0,

s

100

´
(8)

Let H denote the set of acts. Consider the set of roulette lotteries over H,
denoted by R∗. Note that every act is a degenerate element of R∗. An exam-
ple of an element of R∗ is the lottery: (f,α; g, 1− α) for f and g in H and
0 ≤ α ≤ 1. The holder of this lottery will receive in every state s ∈ S the
compound lottery (f(s),α; g(s), 1− α) . An example of such statewise mix-
ture in the �two urns� example is the compound lottery

¡
IIR, 1

2
; IIB, 1

2

¢
.

Assuming the decision maker knows to calculate probabilities9, it is easy to
verify that this compound lottery is equal to betting on IR (winning $100
with probability of 50%). Anscombe and Aumann assumed that preferences
over R∗ satisfy the independence axiom. As a result, if f and g are two
acts between which the individual is indifferent (as Alice is indifferent be-
tween IIR and IIB), then she is indifferent between the two and the lottery
(f,α; g, 1− α). Alice�s preferences in the Ellsberg�s example violate this as-
sumption since IR is preferred to IIR. The independence over R∗, plus an

8The assumption of Þniteness is not necessary, but makes the economic interpretation
of the results clearer.

9This is the Reduction of Compound Lotteries assumption. It is a necessary part of
expected utility theory. However, in theories of non-expected utility this assumption may
be relaxed (see Segal [15]).
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assumption on the reversal of order in compound lotteries, yield a represen-
tation of preferences over acts as an expected utility with respect to a derived
subjective probability [1].
The literature on uncertainty aversion in the Anscombe-Aumann frame-

work follows Schmeidler [14], in focusing on how individual�s preferences
among lotteries, which are assigned by an act to different states, change.
Formally:

DeÞnition 1 (Schmeidler) Two acts f and g are comonotonic if for every
two states s, s0 ∈ S: f(s) % f(s0) if and only if g(s) % g(s0).

In Ellsberg�s two urns example, IIR and IIB are not comonotonic since the
higher the number of red balls in the second urn IIR becomes more favorable
and IIB becomes less favorable. Following this logic, it seems natural to
generalize and deÞne uncertainty aversion in terms of comonotonic acts:

DeÞnition 2 (Schmeidler [14], Gilboa-Schmeidler [7]) A decision maker
is strictly Uncertainty Averse if she prefers any convex combination of every
two non-comonotonic acts f and g, between which she is indifferent, to f and
g.

Previous generalizations of expected utility built on these deÞnitions. In
his axiomatization of expected utility with respect to a non-additive proba-
bility, Schmeidler [14] constrained independence to hold only for comonotonic
acts. Gilboa and Schmeidler [7] assumed weak uncertainty aversion as one
of their axioms in deriving the Maximin representation.

3.2 The Regular Environment

Uncertainty averse behavior is explained intuitively as the agent �hedging�
between the two acts. However, this generalization ignores the unique sym-
metry in the Ellsberg examples. In these experiments, the lotteries assigned
by IIR and IIB are ranked according to First Order Stochastic Dominance
criterion in every state in which they differ. That is, every agent with mono-
tone preferences would prefer IIR(s) over IIB(s) if 51 ≤ s ≤ 100 and
IIB(s) over IIR(s) if 0 ≤ s ≤ 49. Hence, we can compare the agent�s utility
from different acts at a speciÞc state. Therefore, the hedging behavior could
be interpreted as more fundamental, and independent of the agent�s utility

10



function. This distinction is critical in the framework of �rule rationality�,
in which we adopt all Ancombe-Aumann assumptions.
Let X be a Þnite set of monetary outcomes. R is the set of Þnitely

supported (roulette) lotteries over X . Let S be a Þnite (non-empty) set of
states of the world. For every state s ∈ S let q(s) be the subjective probability
of state s. An Act is a function from states to lotteries over outcomes.

DeÞnition 3 Acts f and g are Statewise Ranked by First Order Stochastic
Dominance if f 6= g and at every state s in which they differ f(s) First
Order Stochastically Dominates (FOSD) g(s) or vice versa.

We prove that if preferences are deÞned over rules in the regular environ-
ment, with more than a single lottery at every state, a seemingly uncertainty
averse behavior emerges.

DeÞnition 4 A Rule f(r) is a function from S to the sum (convolution) of
r > 1 exchangeable10 lotteries over outcomes. The set of all rules is the
Regular Environment and is denoted by H(r).

Note, that according to DeÞnition 4, the set of acts constitute the Singular
Environment in this setting. In the regular environment, every state (s)
is assigned a �bundle� of lotteries, which are positively correlated. In the
formal deÞnition we assume exchangeability, i.e. the bundle consists of r
independent draws from one lottery (denoted by f (s)). To relate DeÞnition 4
to our resolution of the Ellsberg experiment presented above, note that a rule
(in the regular environment) bundles a bet on all the type II or type I urns.
We assume here that the lotteries at every state are exchangeable, which is
a generalization of the �same color composition� in the type II urns above.
For example, the rule IIR(2) assigns to every state (frequency of red balls in
the type II urns), the sum of two independent draws from the ambiguous
urns. Relating to the car example presented in the introduction, the regular
environment captures the idea that for a given car condition (state) the risk
associated with the state of the transmission is positively correlated with
the risk associated with the state of the engine. The dimensionality of the
regular environment is indexed by r. Consider the agent�s preferences over
the regular environment. She is indifferent between the rules f(r) and g(r) if:

10Exchangeable means here that conditional on the state the lotteries over outcomes are
independent and identical.
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U
¡
f(r)
¢
= U

¡
g(r)
¢

(9)

Or, explicitly:

X
s∈S

q(s)E
£
u
¡
f(r) (s)

¢¤
=
X
s∈S

q(s)E
£
u
¡
g(r)(s)

¢¤
(10)

where E
£
u
¡
f(r) (s)

¢¤
is the agent�s expected utility from the sum of r (ob-

jective) lotteries that f assigns to state s. In what follows we take r = 2 (it
will be sufficient to produce uncertainty averse behavior). Then:

E
£
u
¡
f(2) (s)

¢¤
=
X
x∈X

X
y∈X

f (s) (x) f (s) (y) u(x+ y) (11)

where f (s) (x) and f (s) (y) are the probabilities of outcomes x and y respec-
tively, according to the objective lottery f (s).
The following Theorem gives a generalization of our main result. If the

acts satisfy DeÞnition 3, as the Ellsberg examples do, and preferences are
deÞned over the regular environment (i.e. rules), �uncertainty aversion� is a
consequence of a Bayesian prior and risk aversion.

Theorem 5 If f and g are Statewise Ranked by FOSD and the agent is
indifferent between the rule f(2) and the rule g(2), then if she is averse to
mean preserving spreads and her preferences are representable by an expected
utility functional, she will prefer the rule of (f,α; g, 1− α)(2) over the rule
f(2) for every 0 < α < 1.

Proof. See Appendix.

The implication of Theorem 5 is that almost all seemingly uncertainty
averse behavior may be rationalized if the agent�s perception is that a decision
will span multiple ambiguous risks. Confronted with this environment, if she
is risk averse her observed behavior would exhibit uncertainty aversion.
Uncertainty averse behavior may be fully rationalized if the individual

assigns a small probability that the environment he is facing is regular. The
source of this belief is the agent�s experience that some environments are
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regular and some are singular. Confronted with a new situation, if the in-
dividual�s heuristic belief assigns some (possibly small) probability to the
possibility she faces a regular environment, then her optimal behavior would
exhibit uncertainty aversion. In this case uncertainty averse behavior is fully
rationalized, within the expected utility framework.

Corollary 6 Assume f and g as in Theorem 5, and suppose the individual
is indifferent between the acts f and g too. Then, for every β > 0 probability
of a regular environment, she will prefer a lottery between the two acts (or
rules - with probability β) over each act (or rule - with probability β).

Proof. Since (f,α; g, 1− α)(2) Â f(2) and (f,α; g, 1− α) ∼ f, it follows
from the independence axiom that:

h
(f,α; g, 1− α)(2) , β; (f,α; g, 1− α) , 1− β

i
Â £f(2), β; f, 1− β¤

4 Discussion and Conclusion

Increasing the dimensionality of the environments a decision maker considers,
places the Ellsberg �paradox� as most singular. Arbitrary small perturba-
tion of the environment leads to uncertainty averse behavior which is fully
consistent with expected utility theory and Bayesian rationality. We argue
that if one uses �rule rationality� then human behavior will exhibits �iner-
tia� (cannot adjust to this singularity in the environment), and ambiguity
aversion becomes a very plausible prediction.

4.1 Comparison with the literature

The Ellsberg paradox motivated a big literature that tried to explain this
predicted behavior. In this short section we shall discuss only two alterna-
tive resolutions. The Maximin model, which was suggested (and rejected)
by Ellsberg, and later axiomatized by Itzhak Gilboa and David Schmeidler
[7], assumes the decision maker behaves pessimistically, choosing the act that
maximizes her expected utility if the worst scenario occurs (maximin over a
convex set of priors). Schmeidler [14] and Gilboa [6] derived the Choquet
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expected utility representation, which is - if the capacity is convex - a special
case of the maximin. Uncertainty Aversion was Þrst deÞned in this context.
Although in this paper we show that almost every empirically observed un-
certainty averse behavior may be rationalized as rule rationality, we point
out that these are two distinct representations, and are not equivalent. We
shall prove it by a short example. Let the utility function be:

u (x) =

 x+ 5 x ≤ −5
x+5
2

−5 < x ≤ −3
1 −3 < x

(12)

and assume two states of the world s, t with equal subjective probability.
The two acts f, g are:

f (s) = g (t) =

½ −3 0.5
−2 0.5

f (t) = g (s) =

½ −4 0.5
−1 0.5

(13)

The two acts are non-comonotonic and the individual is indifferent between
them, therefore uncertainty aversion would claim he prefers the mixture of
the two over each act separately. However, a short calculation shows that our
explanation of preference over rules does not support uncertainty aversion in
this case. Formally, these acts are not statewise ranked by FOSD.
In a second attempt, Uzi Segal [15] showed that if expected utility to-

gether with the axiom of reduction of compound lotteries are relaxed, the
Ellsberg type behavior may be rationalized. The solution he obtains is con-
servative and ties uncertainty aversion to risk aversion - two features that
are common with our work. The difference is that his explanation depends
crucially on the non-expected utility structure of preferences.

4.2 Uncertainty Aversion

The Anscombe-Aumann framework has some complications due to its two-
stage setup. However, as long as we remain within the expected utility
framework, we bypass those difficulties. A one-stage axiomatization of ex-
pected utility was suggested by Rakesh Sarin and Peter Wakker [17], but
the deÞnition of uncertainty aversion in their framework is not transparent
and will be different [16] of Schmeidler�s. A deÞnition of uncertainty aver-
sion within a Savage domain of acts was suggested recently by Larry Epstein
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[5]. His deÞnition, deÞnes uncertainty aversion relative to probabilistically
sophisticated preferences. Generalization of the results presented in the pre-
vious section within Epstein�s deÞnition, may shed light on the degree of
singularity of Ellsberg experiments and our generalization, and remains for
future work.
Another extension of our work is to study more carefully the �uncertainty

premium� presented in Section 2. We believe this concept has important ap-
plications in information economics, Þnance, and other economic Þelds, which
could not have been analyzed until now due to the pessimistic characteriza-
tion of the maximin.

4.3 �Rule Rationality� and other experimental anoma-
lies

Two other prominent experimental anomalies, that initially seem unrelated
to uncertainty aversion, are the one-shot �Prisoners� Dilemma� and the �Ulti-
matum Game�. In the Þrst example, almost all normative notions of equilib-
rium (except when agents have unobserved utility from cooperation) predict
that individuals will not cooperate. Yet, in practice, many subjects do in-
deed cooperate. In the Ultimatum Game, the normative backward induction
argument predicts that the individual who makes the offer will leave a min-
imal share to his opponent, and the latter will accept any positive offer. In
practice, most offers are �fair�, and most respondents reject �unfair� (albeit
positive) splits. Explanations for these phenomena vary, but the one expla-
nation we Þnd most compelling (and may be viewed as a strategic basis for
other explanations), claims that people do not �understand� that these are
one-shot games. Individuals play a strategy which is perfectly reasonable
(according to some equilibrium notion) for a repeated game. Thus, people
are, in some sense, not �programmed� for, and therefore Þnd it hard to eval-
uate singular situations. Aumann [2] contrasted this �Rule Rationality� with
�Act Rationality�. Hoffman, MacCabe and Smith [8] have suggested that in
the Ultimatum Game, the rule to �reject anything less than thirty percent�
may be rationalized as building up a reputation in an environment where
the interaction is repeated. This rule does not apply to the one-shot Ultima-
tum Game because in that situation the player does not build up reputation.
But since the rule has been unconsciously chosen, it will not be consciously
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abandoned11.
The (speculative) relation between the decision theoretic problem stud-

ied in this paper, and other anomalies in interactive game theory, leads us to
hypothesize that rule rationality is a form of bounded rationality that should
be studied carefully. SpeciÞcally, experiments could determine whether cer-
tain individuals rely (more than others) on this sort of rationality. If this
sort of �bounded rationality� is common, it may call for reconsidering the
structure of experiments in Economics and Psychology. Currently most of
the experimental literature identiÞes a singular environment as a good exper-
imental design, since it enables to concentrate on a speciÞc issue. However,
if individuals use in this environment their experience from more regular
environments, the designer should consider whether the behavior in the ex-
periment is robust to small perturbation of the environment.
Note that the repetitive structure of the other �game theoretic� cases

could be imported into our framework, but at a cost. The formal model is
silent whether the risks are bundled or repetitive. Then, the results could
be interpreted as a �policy� for a sequence of ambiguous risks12. However,
this interpretation is vulnerable to considerable limitations on the rules con-
sidered: the decision maker can not learn from one risk to the next, and can
not alternate (hedge) between different ambiguous risks. Hence, the decision
maker is not rational even in the repeated environment.
An interesting experiment would be to compare preferences between an

ambiguous Ellsberg bet and the reduced risky bet on r simultaneous urns (as
in (3)), for uncertainty averse individuals. Indifference between the two would
support the hypothesis presented in this work. Finally, an evolutionary model
in which �rule rationality� emerges may illuminate the set of procedures for
which this notion of bounded rationality is viable.
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A Preliminaries

Let ψ and τ be Þnite measures on X . DeÞne13:

Fψ(x) =
X
t≤x
ψ(t) and Fτ (x) =

X
t≤x
τ(t) (14)

Assume ψ and τ are such that:

Fψ(+∞) = Fτ (+∞) (15)

Assumption (15) would hold true if, for example, ψ and τ are probability
measures (then (15) is equal to one), or when each is a difference of two
probability measures (then (15) is equal to zero).

DeÞnition 7 Let ψ and τ be two Þnite measures deÞned over X , and let
Fψ and Fτ be deÞned as in (14) and satisfy (15). The measure ψ First
Order Stochastic Dominates (FOSD) the measure τ if for every x ∈ X :
Fψ(x) ≤ Fτ (x) with strict inequality for at least one x.
13Since all the measures we shall deal with have Þnite variation, all the integrals converge.
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DeÞnition 7 is a generalization of the standard deÞnition of Þrst order
stochastic dominance, and of course it includes the probability measure as
a special case. It is well known that every decision maker with monotone
preferences, choosing between two distributions ordered by FOSD, will prefer
the dominant one.
Assume:

Z +∞

−∞
Fψ(x)dx =

Z +∞

−∞
Fτ (x)dx (16)

That is, the mean measure of ψ is equal to the mean measure of τ . For
example, if ψ is the difference of two probability measures and τ ≡ 0 then
it implies that the two probability distributions from which ψ was derived
have the same expected value.

DeÞnition 8 ψ Second Order Stochastically Dominates (SOSD) τ if (16)
holds and:

Z x

−∞
Fψ(t)dt ≤

Z x

−∞
Fτ (t)dt ∀ x ∈ X

with strict inequality for at least one x.

Claim 9 If ψ SOSD τ then:

U(ψ) =

Z +∞

−∞
u(x)ψ(x)dx >

Z +∞

−∞
u(x)τ(x)dx = U (τ )

for all strictly monotone and strictly concave u.

Proof. The proof is similar to Rothschild and Stiglitz�s [12]: using (15)
instead of assuming probability measures, and (16) instead of assuming equal
expectations.
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B Proof of Theorem 5

Let f and g be statewise ranked by FOSD, and:

U
¡
f(2)
¢
= U

¡
g(2)
¢

(9�)

Therefore, there exist at least two states in which f and g differ. DeÞne for
every s ∈ S :

h(s) (x) = αf(s) (x) + (1− α) g(s) (x) (17)

Then we need to show that:

U(h(2)) > U
¡
f(2)
¢

(18)

Consider the function θ deÞned as:

θ(s) (x) = f (s) (x)− g (s) (x) (19)

for every x and s.
Let h(2) be the convolution (denoted by �∗�) of h with h at every state.
U
¡
h(2)
¢
is the expected utility from this convolution, averaged over all states.

U
¡
h(2)

¢
=

X
s

q(s)U [h (s) ∗ h (s)] =

=
X
s

q(s)
X
x

X
y

·
αf(s) (x)+

(1− α) g (s) (x)
¸ ·

αf(s) (y)+
(1− α) g (s) (y)

¸
u(x+ y) =

=
X
s

q(s)
X
x

X
y

 α2 (f(s)(x)) (f(s)(y))+

+ (1− α)2 (g (s) (x))(g (s) (y))+
+2α(1− α)(f(s)(x))(g(s)(y))

u(x+ y) (20)

Let θ(2) be the convolution of θ with θ at every state. We can view U
¡
θ(2)
¢

as the �expected utility� from this convolution (note that it is additive in
the states):
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U
¡
θ(2)
¢
=

X
s

q(s)U [θ(s) ∗ θ(s)] = (21)

=
X
s

q(s)
X
x

X
y

θ (s) (x) θ (s) (y)u(x+ y) =

=
X
s

q(s)
X
x

X
y

[f(s)(x)− g (s) (x)] [f(s)(y)− g (s) (y)] u(x+ y) =

=
X
s

q(s)
X
x

X
y

 (f(s)(x))(f(s)(y))+
+(g(s)(x))(g(s)(y))−
−2(f (s) (x))(g (s) (y))

u(x+ y) (22)

By substitution of (20) and (22) and utilizing (9�) it follows that:

U(h(2))− U
¡
f(2)
¢
= −α (1− α)U ¡θ(2)¢

Thus, (18) holds if and only if U
¡
θ(2)
¢
< 0.

Claim 10 In every state in which f and g differ: θ(s) FOSD 0 (the zero
function) or vice versa.

Proof. Since f and g are statewise ranked by FOSD, then if they differ
at state s, they are ranked according to FOSD. Assume f (s) FOSD g(s).
Then:

Fθ(s) (x) = Ff(s)(x)− Fg(s)(x) ≤ 0

The symmetric argument holds when g(s) FOSD f(s).

Lemma 11 Let ξ be a function, which is the difference of two probabil-
ity mass measures and assume ξ and 0 are ranked according to Þrst order
stochastic dominance. Then ξ can be written as a Þnite sum of measures:

ξ =
LX
l=1

ξl (23)

where:
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ξl(x) = ξal,bl,pl(x) =

 pl if x = al
−pl if x = bl
0 OTHERWISE

(24)

with al < bl and |pl| ≤ 1. If 0 FOSD ξ (ξ FOSD 0) then all pl can be chosen
positive (negative) in the decomposition (24).

Proof. Recall that since ξ is a difference of probability mass measures,
it is a Þnite measure with Fξ (+∞) = 0. Assume 0 FOSD ξ, i.e.: Fξ(x) ≥ 0
∀ x ∈ X with strict inequality for at least one x. Then:

a1 ≡ min {x|ξ(x) > 0}

exists. Since Fξ (x) ≥ 0, it follows that for all x < a1: Fξ(x) = 0. Therefore
Fξ(a1) = ξ (a1) . Similarly, there exists

b1 ≡ min {x > a1|ξ(x) < 0}

DeÞne:

p1 ≡ min {ξ (a1) , |ξ (b1)|} > 0

DeÞne ξ1 = ξ − ξa1b1p1. It is still true that Fξ1(x) ≥ 0, since Fξ1(·) differs
from Fξ(·) only in the interval [a1, b1] , and there Fξ ≥ ξ (a1) ≥ p1. Note that
ξ1 is a measure with at least one less mass point than ξ.
Hence if ξ1 6≡ 0 then 0 FOSD ξ1 and we can repeat the process, obtaining

iteratively (ξ2, ξ3, . . . , ξL). Because each ξl has at least one less mass point
than ξl−1, and ξ is Þnitely supported (i.e. there exist only Þnitely many
points x such that ξ (x) 6= 0), the sequence is Þnite. The sequence has to
stop, at some stage L with ξL ≡ 0. Hence ξ ≡

PL
l=1 ξl, with pl > 0 for all l.

A similar proof holds for the case where ξ FOSD 0.

Lemma 12 If plpk > 0 then 0 (the zero function) SOSD ξl ∗ ξk (the convo-
lution of ξl and ξk), when ξl and ξk have the (24) structure.

Proof. The measure ξl ∗ ξk is given by:
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(ξl ∗ ξk) (x) =


plpk if x = al + ak
−plpk if x = al + bk
−plpk if x = bl + ak
plpk if x = bl + bk

Fξl∗ξk(x) =
R x
−∞ (ξl ∗ ξk) (t)dt is equal to:

Fξl∗ξk(x) =

 pkpl if x ∈ [al + ak,min {ak + bl, bk + al}]
−pkpl if x ∈ [max {ak + bl, bk + al} , bk + bl]
0 OTHERWISE

Therefore: Z x

−∞
Fξl∗ξk(t)dt ≥ 0

That is, the zero function SOSD ξl ∗ ξk.
Corollary 13 In every state in which f and g differ, the zero function SOSD
θ(s) ∗ θ(s).
Proof. Since f and g are statewise ranked by FOSD, by Claim 10 the

zero function FOSD θ(s) or vice versa. By Lemma 11, we can decompose
every difference measure θ(s) into L(s) measures with all pl (l = 1, . . . , L(s))
positive (if 0 FOSD θ(s)) or negative (if θ(s) FOSD 0). Therefore:

θ(s) ∗ θ(s) =
L(s)X

l=1

θl(s)

 ∗
L(s)X
k=1

θk(s)

 =

L(s)X
l=1

L(s)X
k=1

θl(s) ∗ θk(s) (25)

By Lemma 12 each convolution element of the above sum is second order
stochastically dominated by the zero function. Therefore, the zero function
SOSD the sum of those convolutions.

Proof of Theorem 5. Recall from (21) that U
¡
θ(2)
¢
is additive across

states. By Corollary 13 and Claim 9: U [θ(s) ∗ θ(s)] < 0 in every state in
which f and g differ. In states in which f and g are equal, θ(s) ≡ 0, and
therefore: U [θ(s) ∗ θ(s)] = 0. It follows that U ¡θ(2)¢ < 0 and (18) holds.
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