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abstract

The proportional value is the unique strictly consistent TU and NTU value
which, in two-player TU games, gives players equal proportional gains from
cooperation. Strict consistency means consistency with respect to the Hart
and Mas-Colell (1989) reduced game. The proportional value is a nonlinear
analog of the Shapley (1953) value in TU games and the egalitarian value
(Kalai and Samet (1985)) in NTU games. It is derived from a ratio potential
similar to the Hart and Mas-Colell (1989) difference potential. The propor-
tional value is monotonic and is in the core of a log-convex game. It is also the
unique equilibrium payoff configuration in a variation of the noncooperative
bargaining game of Hart and Mas-Colell (1996) where players’ probabilities
of participation at any point in the game are proportional to their expected
payoff at that time. Thus, it is a model of endogenous power in cooperative
games. Application to cost allocation problems is considered.
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1 Introduction

This paper presents a theory of bargaining and value allocation in cooperative games
based on the principle of equal proportional gain. This is in contrast to standard value
theory, as represented by the Shapley (1953) value, which embodies the principle of equal
gain. In a situation where two risk-neutral players are bargaining over the division of the
proceeds of cooperation, a sum of money, the standard result is that they will split the
surplus equally. The surplus is that amount over that which they could obtain acting
alone. The proportional value, in contrast, would have them split the surplus so each
gains in equal proportion to that which could be obtained by each alone. Further, it
applies the principle of equal proportional gain to games where coalitions may form.

Equal proportional gain, or, more simply, proportional allocation, is not a new idea.
Young (1994: 64) writes that “[p]roportionality is deeply rooted in law and custom as a
norm of distributed justice.” Moulin’s (1999a) survey of the social choice perspective on
allocation opens by quoting Aristotle: “Equals should be treated equally, and unequals,
unequally in proportion to relevant similarities and differences.” Adams (1965: 272) in-
terprets Homans’ (1961) social psychological theory of distributive justice to be that
equity “in an exchange relationship . . . obtains when the profits of each are in proportion
to their investments.” Thompson’s (1998: 197) text on negotiation puts proportionality
at “the heart of equity theory.” It is the standard of business practice: Profit is typically
divided in proportion to investment; and cost is generally allocated on a pro rata basis.
Moriarity (1975) extends cost allocation practice with the accounting theory proposal
that the savings from jointly incurred costs be allocated in proportion to stand-alone
costs, thus apparently proposing the first distinctly game theoretic model of proportional
allocation.

There is only a small game theoretic literature related to proportionality (e.g., Raiffa
(1953), Kalai and Smordinsky (1975), Kalai (1977), Roth (1979), Chun and Thomson
(1992), Vorob’ev and Liapounov (1998), and Feldman (1998)). Most of the results on
proportionality are, instead, found in the accounting and social choice literature. One
reason for this omission is that proportional gain outcomes change with the choice of
origin of a player’s utility scale, and are thus not translation covariant. This has been
thought to be an unacceptable property, as it is customary to consider that translation
of a player’s utility scale, changing its origin, should not change real outcomes. In the
proportional approach, however, essential information is distorted by this process. The
following example from Lemaire’s (1991) survey of the application of cooperative theory
to insurance problems shows that the proportional approach provides a rational and
practical solution to an important class of problems which are poorly served by the
Shapley value.

Example 1.1 Three players have 1.8 million, 900 thousand, and 300 thousand Belgian
Francs to invest, respectively. The interest rate on sums less than 1 million is 7.75%,
then for sums less than 3 million the interest rate is 10.25%, and for sums of 3 million
or greater it is 12%. If players pool their funds, they will receive the 12% rate. Lemaire
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suggests that the first player should “be entitled to a higher rate, on the grounds that she
can achieve a yield of 10.25% on her own, and the others only 7.75%.” (1991: 19)

Lemaire then constructs the coalitional game (assuming 3 months of simple interest)
for this problem, and illustrates different solution concepts. He shows the Shapley value of
this game, expressed as a vector, is (51,750, 25,875, 12,375). Lemaire also reports these
payoffs in annualized rates of interest, (11.5%, 11.5%, 16.5%), and comments that the
“allocation is much too generous” to the third player, “who takes great advantage” because
he is essential to achieve the highest interest rate. Lemaire shows that the nucleolus
generates results close to that of the Shapley value and concludes that these solutions,
“defined in an additive way, fail in this multiplicative problem.” (1991: 37)

The proportional value of this game is (55,022, 26,552, 8,425), and it gives returns
of (12.2%, 11.8%, 11.2%); an outcome consistent with the intuition that larger investors
should not receive smaller rates of return in this problem.

This paper defines the proportional value and develops some of its key practical and
theoretical properties. A brief review of the joint cost allocation literature addresses
both the practical relevance of the proportional approach and some limitations of the
standard theory in this application. A second paper, A Dual Theory of Value (referred
to here as ADTV), develops further properties of the proportional value and considers
its relationship to the existing cooperative theory of value.

Section 2 of this paper first presents basic definitions and notation. It then summarizes
the relevant prior literature in accounting, social choice, and game theory. Finally, it
describes the Hart and Mas-Colell (1989) difference potential for cooperative games.

Section 3 defines the ratio potential and defines the proportional value in TU and
NTU games as its discrete derivative. The proportional value is defined only on positive
games, those where no coalition has zero worth. (ADTV develops methods and results
for games where coalitions may have zero worth.) It is proved to be unique, monotonic,
and in the core of a log-convex game. It is conjectured to be in the core of almost all
convex games. It is also shown to have an equal proportional game property analogous
to the balanced contributions property (Myerson (1980)) of the Shapley value.

Section 4 addresses consistency, which requires the allocation any player receives in
a suitably defined reduced game be the same as that received in the original game. The
reduced game used here is the same as that used by Hart and Mas-Colell (1989) to prove
the consistency of the Shapley and egalitarian (Kalai and Samet (1985)) values. I define
consistency with respect to this reduced game as strict consistency. Theorem 4.4 proves
the proportional value is the unique strictly consistent TU and NTU allocation rule which
gives players equal proportional gains in two-player TU games.

Section 5 implements the proportional value based on a variation of the noncoopera-
tive bargaining game of Hart and Mas-Colell (1996). In the Hart and Mas-Colell game,
when players’ probabilities of participation are equal, the expected payoffs correspond to
the Shapley value when the underlying cooperative game is TU and the Maschler-Owen
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value1 if it is NTU. In the variation developed here, the value-weighted participation
game, a player’s probability of participation at any point in the game is proportional to
her average proposed payoff at that time. The expected payoffs are proved to be given by
the proportional value in TU games, in the limit as the probability of breakdown in nego-
tiations goes to zero. The same is true in NTU games when participation is proportional
to λ-weighted average proposed payoffs.

The proportional value provides a simple model of endogenous power in cooperative
games. The weighted Shapley value (1953) (see Kalai and Samet (1987)) provides a
model of exogenous bargaining power in coalitional games. Svejnar (1986) develops a
similar type of pure-bargaining model. In these models there is an exogenous vector of
weights, or bargaining powers, which must be specified. The nature of endogenous power
in proportional value allocation can be seen in a two-player game such as the example
which opens this paper. In the two-player version of the value-weighted participation
game of Section 5.2, and in equilibrium, players’ probabilities of selection to propose are
proportional to their individual worths, the measure of their outside opportunities. In
games with more players, a player’s probability of participation reflects her contributions
to other coalitions as well. The weighted proportional value may be used to further
condition bargaining power on exogenous factors.

Section 6 considers the relevance of the proportional approach to joint cost allocation
problems.

The conclusion finds that the discrete derivative of the ratio potential indeed deserves
to be considered a cooperative value. A technical appendix follows.

2 Background

This section starts with basic definitions for TU cooperative games. Additional definitions
for NTU games are be provided in Section 3.2. A systematic presentation of the basic
elements of cooperative game theory can be found in Myerson (1991).

2.1 Basic Notation and Definitions

The players in a cooperative game are represented as the elements of a set. The set of
all players, the grand coalition, is denoted by N . The number of players in the game is
n, and N = {1, 2, . . . , n}. A coalition is a subset of N . The relation S ⊂ T implies S is
a proper subset of T , i.e. S 6= T , while S ⊆ T allows for equality. The intersection of

1The Maschler-Owen value was introduced as the consistent (Shapley) NTU value. The consistency
of this value lies in the fact that all coalitions are treated symmetrically in a λ-weighting process. The
Shapley NTU value is based on only one set of weights generated by the grand coalition (see, e.g., Myerson
(1991: 468 or Hart and Mas-Colell (1996: 366)). Since the Maschler-Owen value is not consistent in the
sense of Hart and Mas-Colell (1989) (see Owen (1994) and ADTV, Subsection 6.3), it is not referred to
as the consistent NTU value in order to avoid unnecessary confusion.
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two sets S and T is S ∩ T and their union is S ∪ T . To simplify presentation, a small
coalition will usually be identified with use of the overbar: i.e. i = {i} and ij = {i, j}.
The set minus operation is denoted by the backslash (\), so that S \ T is the members
of S with the members of T ∩ S, if there are any, removed. The notation S 3 i is read
S contains i, and describes the same state as i ∈ S: i is a member of S. The immediate
subcoalitions of S are those with one player removed.

A transferable utility (TU) game in characteristic function form, v, assigns a scalar
worth v(S) to every coalition S ⊆ N . The worth of a coalition is what it can guarantee
for itself, regardless of the actions of other players. In TU games worth is utility which
may be freely divided among the members of a coalition. The worth of Ø, the empty
set, a formal subset of N , is zero. A game may be restricted to a subset of N , which is
represented by the pair (S, v).

A TU game is positive if v(S) > 0 for every S ⊆ N , S 6= Ø. The proportional value
is defined only on positive TU and NTU games.

Pure bargaining games are those where gains are only possible when all players coop-
erate. The worth of a single player i, v(i) is called i’s individual worth. In a coalitional
game, a proper subset of players forming a coalition may be able to obtain outcomes
other than the sum of the individual worths of its players.

A TU game is monotonic if S ⊂ T implies v(T ) ≥ v(S). A TU game is superadditive
if v(S∪T ) ≥ v(S)+v(T ) for all S, T : S∩T = Ø. This requires the worth of the union of
two disjoint coalitions be at least the sum of worths of the coalitions. It is subadditive if
v(S ∪T ) ≤ v(S) + v(T ) for all S ∩T = Ø. A TU game is convex if v(S ∪T ) + v(S ∩T ) ≥
v(S)+v(T ) for all S, T ⊆ N . And it is concave if v(S∪T )+v(S∩T ) ≤ v(S)+v(T ) for all
S, T ⊆ N . In all these cases, the strict definitions correspond to use of strict inequalities.

An allocation rule φ is a function from a domain of cooperative games to allocations
for individual players. If

∑

i∈N φi(v) ≤ v(N) then φ is feasible, if the relation is equality
then φ is efficient. If φi(v) ≥ v(i) for all i ∈ N then φ is individually rational. A value
is a distinguished allocation rule which represents, in some sense, the expected value of
participation in a game. This term is first used by von Neumann to refer to the expected
payoffs to players choosing minmax strategies in 2-player zero-sum games.

2.2 Prior Work Related to Proportional Allocation

2.2.1 Proportional approaches to cooperative theory in accounting

Moriarity (1975) makes the straightforward argument that joint costs are only rationally
incurred because separable, stand-alone costs are greater, and that cost savings might
fairly be allocated in proportion to the stand-alone costs. Thus, if total joint costs are
0 < v(N) <

∑

i∈S v(i), the share of each cost center i is xi = v(i) − v(i)/
∑

j∈S v(j) ×
(
∑

j∈S v(j)−v(N)). This is a model of equal proportional gain in a subadditive pure bar-
gaining game. Louderback (1976) offers a refinement of this approach where cost savings
are allocated in proportion to the difference between stand-alone costs and incremental
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internal costs. Balachandran and Ramakrishnan (1981) develop a continuum of solu-
tions which encompasses both methods. Banker (1981) offers several characterizations of
proportional allocation including one similar to O’Neill (1982), below. Gangolly (1981)
suggests costs be allocated using the weighted Shapley value (see Kalai and Samet (1987))
with weights equal to cost centers’ stand-alone costs. Under his Independent Cost Pro-
portional Scheme (ICPS) the share of cost center i is xi = wSh(N, v, {v(j)}j∈N), where
v represents the joint costs faced by different coalitions of cost centers. The ICPS pro-
vides equal proportional gain in two-player games. It is directly suggestive of Feldman
(1998), below. The comments of Banker, Gangolly, and others in support of proportional
allocation methods can be found in Section 6.

2.2.2 Proportionality in social choice theory

O’Neill (1982) identifies proportional allocation based on the equal proportional gain
concept as one possible method of division in his study of the Talmudic methods of
rights arbitration and characterizes it by efficiency, symmetry, continuity in at least
one player’s payoff, zero payoff to null players, and strategy proofness. The key last
axiom requires that players cannot improve their allocation by merging or splitting their
claims. Moulin (1987) shows that 5 pairwise combinations of 4 axioms identify separate
1-parameter families of values which include equal and proportional sharing of a surplus.
He further finds that any 3 of these axioms identify a class with two elements: the equal
and proportional solutions. Both O’Neill’s and Moulin’s results apply only to games with
3 or more players. Young (1987) shows that any consistent allocation method must be a
member of a family of allocation functions which include both the equal and proportional
sharing methods. Young (1988), in a paper on distributive justice in taxation, shows that
the proportional allocation method is uniquely identified by continuity, self-duality and
composition. Self-duality requires that losses and gains are treated identically and is
introduced by Aumann and Maschler (1985). Composition requires that a bargaining
problem can be solved in stages without affecting the outcome and is used in Kalai
(1977) and Myerson (1977b). Young’s result applies to games of 2 or players, but is
defined only on positive subadditive games. Moulin (1999b) extends the proportional
method to random allocation of indivisible units.

2.2.3 Principal game theoretic results on proportionality

Raiffa (1953) first introduced what is now called a claims model. In his model, each player
claims the maximum he can attain consistent with the other player receiving at least what
could be achieved in disagreement. These joint claims describe the “ideal point.” Chun
and Thomson (1992) allow the ideal point to be independent of the structure of the fea-
sibility set. Call the gains over the individually rational outcomes represented by these
claims the expected gains. The solution in both models is the maximal feasible alloca-
tion in which players’ ratios of actual to expected gains are equal. Kalai and Smordinsky
(1975) identify the Raiffa solution axiomatically in their search for a monotonic alterna-
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tive to the Nash (1950) bargaining solution. Kalai (1977) introduces general proportional
solutions where players’ gains are in some fixed proportion which is determined exoge-
nously. Roth (1979) provides further axiomatic analysis of this approach.

2.2.4 Recent and less known game theoretic results

In an insurance journal, Lemaire (1991) describes a proportional nucleolus, one where
there excess of a coalition is defined in relative terms, as follows:

e(α, S) =

[

v(S)−
∑

i∈S

αi

]

/

v(S),(2.1)

where α is a feasible allocation. The proportional nucleolus results from the lexicograph-
ical minimization of these proportional excesses subject to the individual rationality
constraint. It is derivative of the nucleolus (Schmeidler (1969)), which is the unique indi-
vidually rational allocation resulting from the lexicographical minimization of coalitional
absolute excesses. Lemaire reports that the proportional nucleolus gives all players in
Example 1.1 a 12% return, which he writes, is the “common practice” (1991: 19) in such
situations. It is easily verified that the proportional nucleolus provides equal proportional
gain in two-player games.

Feldman (1998) defines the powerpoint which, in TU games, is based on the weighted
Shapley value. The TU powerpoint is a fixed point in a map formed by the weighted
Shapley value when the space of weights and values are the same. Player’s weights are
their values. If v is a positive game and x is a powerpoint, then x = wSh(N, v, x). The
powerpoint generates equal proportional gain bargaining in two-player games, but is not
strictly consistent. For games of more than three players it does not appear to have an
analytic form. Vorob’ev and Liapounov (1998) independently develop a similar result
which they call the proper Shapley value.

2.3 The Difference Potential

Hart and Mas-Colell (1989) introduce a potential function for cooperative games. This
potential, which will be called the difference potential here, satisfies the relation

v(S) =
∑

i∈S

P d(S, v)− P d(S \ i, v),(2.2)

for any S ⊆ N , S 6= Ø. Clearly, P d(S) is well-defined for any S ⊆ N , once P d(Ø, v)
is determined. Define the discrete derivative DiP d(S, v) = P d(S, v)− P d(S \ i, v). Hart
and Mas-Colell show that DiP d(S, v) is equal to the Shapley value of player i in the
game (S, v) for any choice of P d(Ø, v) and use the difference potential to provide a series
of results regarding the consistency of the Shapley and egalitarian values. It appears
that almost all of these results have analogs for the proportional value. Only the most
important are developed here.
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3 The Proportional Value

3.1 TU Games

3.1.1 The ratio potential of a TU game

The ratio potential of a positive TU cooperative game is the function from the set of
coalitions to the real numbers, P : 2N → R, defined by the recursive relation

v(S) =
∑

i∈S

P (S, v)
P (S \ i, v)

or, equivalently, P (S, v) = v(S)

(

∑

i∈S

1
P (S \ i, v)

)−1

.(3.1)

Given any P (Ø, v) 6= 0, potentials for all other S ⊆ N are uniquely determined. Unless
otherwise noted, it will be assumed that P (Ø, v) = 1. Lemma 3.2 shows this is without
loss of generality.

The ratio potential P (12, v) is easily determined by (3.1) to be

P (12, v) =
v(12)

1
v(1)

+
1
v(2)

=
v(1)v(2)v(12)
v(1) + v(2)

,(3.2)

similarly, P (123, v) has the following recursive structure:

P (123, v) =
v(123)

1
v(1)

+
1
v(2)

v(12)
+

1
v(1)

+
1
v(3)

v(13)
+

1
v(2)

+
1
v(3)

v(23)

.

Let R(S) be the set of all orderings of the players in S and r = (r1, r2, . . . , rs) ∈ R be
any such ordering. Set s =| S | and denote by Ti = {rj : j ≤ i} the coalition composed
of ri and all players before ri in the ordering r. If S = {1, 2, 3} and r = (2, 3, 1), then
T1 = 2, T2 = 23, and T3 = 123 = S. Consider any ordering of players r, call the product
of worths

∏n
i=1 v(Ti) the ordered worth product of S according to r. The potential of a

coalition S is then the harmonic mean of its ordered worth products:

Lemma 3.1 For any positive TU game v, and for all S ⊂ N , S 6= Ø, the ratio potential
of S, may be represented as:

P (S, v) = P (Ø, v)





∑

r∈R(S)

1
∏s

i=1 v(Ti)





−1

= P (Ø, v) v(S)





∑

r∈R(S)

1
∏s−1

i=1 v(Ti)





−1

.
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Proof: Observe that the two formulations are clearly equivalent because v(S) is common to all
of the products on the left-hand side and factors out. If all potentials for coalitions of cardinality
s − 1 satisfy the relation, then it is easy to see that potentials of cardinality s must as well:
Use the right-hand version of (3.1) and substitute the potentials of the immediate subcoalitions
into the first form of the lemma and the right-hand version of the lemma results. To complete
the proof, observe that it is clearly true for singleton coalitions: P (i, v) = P (Ø, v) v(i). �

3.1.2 The proportional value in TU games

The discrete derivative of the ratio potential of a coalition S with respect to a player
i ∈ S in a game v is defined as the ratio of the potential of S to the potential of the
immediate subcoalition of S without player i, coalition S \ i:

DiP (S, v) = P (S, v)/P (S \ i, v).(3.3)

The proportional value of a positive, monotonic TU game is the allocation rule which
assigns each player the discrete derivative of the potential of the coalition of all players
with respect to that player:

ϕi(N, v) = DiP (N, v) =

∑

r∈R(N\i)

n−1
∏

i=1

v(Ti)−1

∑

r∈R(N)

n
∏

i=1

v(Ti)−1

,(3.4)

where the Ti are defined as in Section 3.1.1.

Lemma 3.2 The proportional value is efficient, symmetric, and unique in positive TU
games.

Proof: Efficiency follows directly from the definition of the ratio potential (3.1) and the definition
of ϕ (3.3): The sum of values of all players must be equal to the worth v(N). Symmetry
follows from the observation that any permutation of players’ labels must lead to the same
permutation of their value allocations: e.g., if any two players change names so that they
appear in each other’s place in all coalitions, then their assigned values will be exchanged as
well. The proportional value is unique because it is the ratio of two potentials and Lemma 3.1
shows that potentials scale linearly with P (Ø, v). �

Consider the proportional value for a two-player game. Application of (3.2) and (3.3)
shows that the proportional value assumes the following form in two-player games

ϕi(v) =
v(i)

v(i) + v(j)
v(ij) = v(i) +

v(i)
v(i) + v(j)

(

v(ij)− v(i)− v(j)
)

.(3.5)
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Clearly, the gain from cooperation is shared in proportion to each player’s individual
worth. This outcome is equal proportional gain in two-player games. The proportional
value for a player in 3-player game has the following form:

ϕ1(v) = v(123)
v(1)v(12)v(13)(v(2)+v(3))

v(1)v(12)v(13)(v(2)+v(3))+v(2)v(12)v(23)(v(1)+v(3))+v(3)v(13)v(23)(v(1)+v(2)) .

Remark 3.1 Observe that each player’s share is independent of the worth of the whole.
Examination of (3.4) shows that this is always true in proportional value allocation.

Remark 3.2 Lemma 3.1 shows that the ratio potential is a harmonic mean, a kind of
expectation. The value of a player relative to a coalition is this expectation divided by
the equivalent expectation when the player is not present. In this sense, the proportional
value is a player’s expected marginal proportional contribution.

3.1.3 The weighted proportional value

The Shapley and egalitarian values have weighted variants. Weights are a vector ω ∈
RN

++, each weight corresponding to a player, which may be used to represent exogenous
factors such as variations in players’ bargaining power. The proportional value also has a
weighted variant, which is defined with the weighted ratio potential. The weighted ratio
potential P ω is defined by the following relation:

v(S) =
∑

i∈S

ωi
P ω(S, v)

P ω(S \ i, v)
.(3.6)

The weighted proportional value is the discrete derivative of the weighted ratio potential:
ϕωi (N, v) = ωi(P ω(N, v)/P ω(N \ i, v).

These relations are in direct analogy to the potential representation of weighted Shap-
ley values in Hart and Mas-Colell (1989). It is easy to see that the weighted proportional
value is efficient and uniquely defined. The proof of consistency is a straightforward
extension of the unweighted case, as is the extension to NTU games. These results will
not be presented here.

3.2 The NTU Ratio Potential and Proportional Value

In an NTU game utility is not transferable on a 1-to-1 basis between the players in a
coalition, and, as a consequence, the worth of a coalition cannot be summarized by a
single number. Instead, the worth is represented by a feasible set which represents the
feasible allocations which may be achieved by the members of a coalition.
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Feasible sets are represented as subsets of RS, the |S |-dimensional Euclidean space
whose dimensions are indexed by the members of S. These sets are required to be
positive, comprehensive, closed, and bounded. A feasible set V (S) is positive if there is
an x ∈ V (S) such that x ∈ R++. A set is comprehensive if, when x is feasible for S
and y ≥ x, y is feasible as well. A set is closed if every convergent sequence in that set
converges to a point in the set. A coalitional worth V (S) ⊂ RS is bounded if there is
some y ∈ RS such that for any x ∈ V (S), x < y. Except for positivity, these are the
same conditions used by Kalai and Samet (1985).

An NTU characteristic function game is a collection of such feasible sets, coalitional
worths, one for each coalition in the game. An NTU game V is monotonic if V (S) ×
{0T\S} ⊆ V (T ) for all S ⊂ T : i.e., any allocation for the players of S in V (S) is also
feasible in V (T ). A game V is superadditive if, for any disjoint coalitions S and T , and
for every x ∈ V (S) and every y ∈ V (T ), the joint vector (x, y) is in the feasible set of
the union: (x, y) ∈ V (S ∪ T ).

As in the TU game, the proportional value for a player i in an NTU game is defined as
the ratio of the potential of the coalition of all players to the potential of the immediate
subcoalition that does not contain i. The NTU ratio potential is a straightforward
generalization of the TU ratio potential and is defined in an exactly parallel manner to
the Hart and Mas-Colell (1989) definition of the NTU difference potential.

The TU condition (3.1) is modified to require that the discrete derivatives of the
players in any coalition S identify an allocation on the efficient surface of V (S). Thus,
given (P (S\i, V ))i∈S, the NTU ratio potential P (S, V ) is the unique scalar which satisfies

(

P (S, V )
P (S \ i, V )

)

i∈S
=
(

DiP (S, V )
)

i∈S ∈ ∂V (S).(3.7)

If V represents a TU game, then (3.7) clearly reduces to (3.1). The NTU proportional
value for i in the game (N, V ) is: ϕi(N, V ) = DiP (N, V ) = P (N, V )/P (N \ i, V ).

Lemma 3.3 The proportional value is unique in positive, monotonic NTU games.

Proof: Once P (Ø, V ) 6= 0 is determined, P (S, V ) for all S ⊆ N are uniquely determined. It
is easily seen that P (S, V ) scales linearly with P (Ø, V ), as in the TU case. Thus the discrete
derivative and the value are independent of the choice of P (Ø, V ). �

As in the TU case, it will generally be assumed that P (Ø, V ) = 1.

3.3 Some Properties of the Proportional Value

Further properties related to individual rationality and values when the worths of some
coalitions are zero are developed in ADTV.
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3.3.1 Pareto efficiency

An allocation is weakly Pareto efficient if there is no feasible allocation which can strongly
improve upon it. If there is no allocation which can weakly improve it, then it is strongly
Pareto efficient.

Lemma 3.4 The proportional value is weakly Pareto efficient in comprehensive, closed,
and bounded positive NTU games. It is strongly Pareto efficient if the game is also
required to be nonlevel.

Proof: Let V (1) = V (2) = {x ∈ R : x ≤ 1}, and V (12) = {(x1, x2) ∈ (2, 3) − R2
+}. Then

ϕ(V ) = (2, 2), while the unique strongly Pareto optimal outcome is (2, 3). However, if V
is nonlevel, then the efficient surface ∂V (S) is necessarily a set of strongly Pareto efficient
outcomes. Since ϕ(S, v) ∈ ∂V (S) it must then be strongly Pareto efficient. �

3.3.2 Value monotonicity

A value is monotonic if an increase in the worth of a coalition never reduces the value
allocated to any of its players. For TU games, φ is weakly monotonic if ∂φi(v)/∂v(S) ≥ 0
for S 3 i, and strongly so if the inequality is strict. This definition is equivalent to that
of Kalai and Samet (1985), but weaker than that of Young (1985b).

Lemma 3.5 The proportional value is strongly monotonic in TU and weakly monotonic
in NTU games.

Proof: In the TU case this follows directly from the definition of the potential given by (3.1).
Clearly, an increase of v(S) will increase P (S, v) for any S ⊆ N . Further, an increase in V (S)
will also increase P (T, v) for any T ⊃ S because of the following induction argument. Choose
any R ⊇ S and assume that P (R, v) increases with an increase in v(S). Consider T = R ∪ j.
Then (3.1) shows that P (T, v) must also increase. On the other hand, if S 6⊆ T then P (T, v) is
clearly independent of v(S). Therefore ϕ is strongly monotonic in positive TU games.

In NTU games a similar argument is based on Definition (3.7). In this case, however, an
“increase” in V (S), an outward expansion of the efficient surface, may have no effect on P (T, V ),
S ⊆ T ⊆ N . To see this, let V ′(S) ⊃ V (S) be an enlargement of V (S) such that there is no
y ∈ V ′(S) such that for all i ∈ S, yi > ϕi(S, V ). Then (3.7) requires that P (S, V ) be unchanged,
and therefore, no potentials will change and the value allocation will not change. However, there
is no way that an increase in V (S) can lead to a decrease in P (T, V ) for S ⊆ T ⊆ N or effect
any P (T, V ) where S 6⊆ T . �

3.3.3 Equal proportional gain

A value is characterized by equal proportional gain if and only if the proportional gain to
a player j from a second player k joining a coalition is equal to the proportional gain of
k when j joins.
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Lemma 3.6 The proportional value has the equal proportional gain property in TU and
NTU games:

ϕj(S, V )
ϕj(S \ k, V )

=
ϕk(S, V )

ϕk(S \ j, V )
.

Proof: The proof follows immediately from the restatement of the relationship in terms of
potentials. In both cases, the ratios reduce to P (S, V )/P (S \ jk, V ). �

This result is directly analogous to the “balanced contributions” property of Myerson
(1980) which is called “preservation of differences” in Hart and Mas-Colell (1989). In
weighted proportional values, this result would generalize to parallel Hart and Mas-Colell
Equation 5.4.

3.3.4 The proportional value and the TU core

The proportional value is in the core of a game where the proportional marginal contribu-
tion of a player never decreases from the addition of players to a coalition. A core alloca-
tion is one that cannot be (weakly) improved upon for every player in some coalition that
seeks to implement an alternative allocation on its own. The core is the set of all core allo-
cations in a game. For a TU game, core(v) = {x ∈ RN :

∑

i∈S xi ≥ v(S) for all S ⊆ N}.
The potential of a game v is log-convex if and only if for all coalitions S and T ⊆ N ,

P (S ∪T, v)P (S ∩T, v) ≥ P (S, v)P (T, v). A positive TU game v is log-convex if and only
if (1) for coalitions S and T such that S ∩T 6= Ø, v(S ∪T )v(S ∩T ) ≥ v(S)v(T ), and (2)
v is superadditive otherwise. Let S = R ∪ j and T = R ∪ k, then log-convexity implies
v((R ∪ j) ∪ k)/v(R ∪ k) ≥ v(R ∪ j)/v(R). Thus, if v is log-convex it must be convex as
well. The proof that ϕ is in the core of a log-convex game is in several steps.

Lemma 3.7 If the potential v is log-convex for all R ⊂ S, with S ⊆ N , then ϕi(S, v) ≥
ϕi(R, v) for all i ∈ R ⊂ S.

Proof: For any T ⊂ S ⊆ N choose any i ∈ S and j ∈ S \ T . Then, since P (S, v)P (S \ ij, v) ≥
P (S \ i, v)P (S \ j, v), P (S, v)/P (S \ i, v) ≥ P (S \ i, v)/P (S \ ij, v), which, by the definition of
the proportional value implies that ϕi(S, v) ≥ ϕi(S \ j). This series of steps may be repeated
sequentially for all k ∈ S \ (T \ i) to show first that ϕi(S \ j) ≥ ϕi(S \ jk), and then continue
to build a chain, ϕiS ≥ ϕi(S \ j) ≥ ϕi(S \ jk) ≥ ... ≥ ϕi(T ), proving the result. �

The proof that log-convex games have log-convex potentials utilizes the following
technical lemma, the proof of which is provided in the appendix.

Lemma 3.8 If v is log-convex then for all S ⊆ N with | S |≥ 3:

∑

k∈S\i

1
P (S \ ik, v)

∑

k∈S\j

1
P (S \ jk, v)

≥
∑

k∈S

1
P (S \ k, v)

∑

k∈S\ij

1
P (S \ ijk, v)

.(3.8)
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Lemma 3.9 If v is log-convex then its potential is log-convex as well.

Proof: Start with Lemma 3.8 and use P (T, v) = v(T )/(
∑

k∈T P (T \ k, v)) to remove the sums
in P (S \ ijk, v), P (S \ ik, v), and P (S \ jk, v) and then reorganize to obtain:

(

∑

k∈S

1
P (S \ k, v)

)−1
P (S \ ij, v)
v(S \ ij)

≥ P (S \ i, v)
v(S \ i)

P (S \ j, v)
v(S \ j)

Since v is log-convex, use the relation v(S)v(S \ ij) ≥ v(S \ i)v(S \j) to remove v(S \ i), v(S \j),
and v(S \ ij) and obtain:



v(S)

(

∑

k∈S

1
P (S \ k, v)

)−1


P (S \ ij, v) ≥ P (S \ i, v)P (S \ j, v).

The result follows directly because the terms in brackets are equal to P (S, v). �

Theorem 3.1 If v is log-convex then ϕ(S, v) ∈ core(S, v) for all S ⊆ N .

Proof: Since v is log-convex, by Lemma 3.9 its potential is log-convex as well. Choose any
T ⊂ S. Then

∑

i∈T ϕi(S, v) ≥
∑

i∈T ϕi(T, v) = v(T ), by Lemma 3.7. �

Is the proportional value in the core of a convex TU game? It appears to be difficult
to answer this question one way or the other. The problem does not appear amenable to
simple analytical methods. Monte Carlo simulation with random convex games suggests
the answer is “Yes.” Simulations were conducted on games of up to 7 players, where 400
random convex games were generated. Much larger samples were generated for smaller
games. In all cases, the proportional value is in the convex core. This process, however,
clearly cannot not rule out the existence of a very small subset of convex games, perhaps
of measure zero, where ϕ is not in the core. In fact, the proportional value is frequently
found close to the boundary of the core of a convex game.

Conjecture 3.1 The proportional value is in the core of almost every convex TU game.

4 Strict Consistency

Consistency is an important characteristic of a rational allocation method and a hallmark
of any claim to its fairness. O’Neill (1982) and Aumann and Maschler (1985) document
the consistent nature of rulings in the Babylonian Talmud, a collection of ancient Jewish
religious and legal texts. Young (1994) notes the role of consistency in many rules
including the allocation of seats in representative bodies. Hart and Mas-Colell (1989: 601)
trace the development of consistency concepts in cooperative game theory and provide
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further references and discussion. A reduced game is based on a formula for constructing
a new game in which any chosen set of players are removed from the original game.
Consistency of an allocation rule with respect to a type of reduced game means that, in
any reduced game of this type, the allocations of the remaining players are always the
same as in the original game.

Hart and Mas-Colell (1989) define a new reduced game and show that the Shapley
value is consistent with it. I show the proportional value is consistent with the same
reduced game. I call consistency with respect to the Hart and Mas-Colell game strict
consistency in order to distinguish it from other types of consistency in cooperative theory.
The name is apt in comparing the structure of this reduced game with others and because
strictly consistent values adhere so closely to the basic principles of distributive justice
that they are not strongly Pareto optimal in (level) NTU games. Strict consistency
can also be called Hart and Mas-Colell consistency. The distinguishing aspect of strict
consistency is this: The worth of a coalition in a reduced game is what remains of the
worth of their union with all reduced players, after the reduced players are given the
allocation which the allocation rule specifies for them in the game based on this union.
Other types of consistency differ in the reduced players that cooperate with S or the way
that the reduced players’ allocations are determined.

4.1 Strict Consistency in TU Games

Let φ be an allocation rule and T be the players remaining in the game after players
T c = N \ T are reduced. The worth of a coalition S ⊆ T in the strictly reduced game vφT
is equal to the worth of the coalition with the players in TC minus the total due to the
players in TC in the game (S ∪ T c, v) according to φ:

vφT (S) = v(S ∪ TC)−
∑

i∈TC
φi(S ∪ TC , v), for all S ⊆ T.(4.1)

An allocation rule φ is strictly consistent if and only if

φi(T, v
φ
T ) = φi(N, v), for all i ∈ T and T ⊆ N.(4.2)

In contrast, the Davis and Maschler (1965) reduced game, for example, requires S to give
reduced players their allocation in (N, v). Further, the reduced players who cooperate
with S and are given their allocation are the Q ⊆ TC which maximize vφ(S). The
nucleolus is consistent with respect to the Davis and Maschler reduced game.

The notation v−i refers to a game where i has been reduced.

Theorem 4.1 The proportional value is strictly consistent in TU games.

Proof: First observe that ϕ is (strictly) consistent in two-player games since ϕj(j, v
ϕ
−i) =

vϕ−i(j) = v(ij)−ϕi(ij, v) = ϕj(ij, v). Now choose a player i to reduce from the game and assume
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that ϕ is consistent for games of m > 2 players or less. Then for any S 63 i, | S |< m, and any
j ∈ S, P (S, vϕ−i)/P (S\j, vϕ−i) = P (S∪i, v)/P ((S∪i)\j, v). Since this is true for all players j 6= i
and all coalitions S 63 i, | S |< m, there must be a constant c such that P (S, vϕ−i) = cP (S ∪ i, v)
for the potentials of all these coalitions. Now consider the reduced-game potential of a coalition
R with m players. Since

∑

j∈R(P (R, vϕ−i)/P (R \ j, vϕ−i) = v(R ∪ i) − ϕi(S, v), then P (S, vϕ−i)
must scale with c as well. Thus, ϕ is consistent in m + 1-player games, and the result follows
by induction. �

Corollary 4.1 The proportional value is the unique strictly consistent TU value which
gives equal proportional gain in two-player TU games.

This is an immediate consequence of Theorem 4.4 in the following subsection. The
same result could be reached directly though application of the steps taken in Theorem
4.3 to TU games.

4.2 Strict Consistency in NTU Games

The NTU definition of the strictly reduced game is, again, as in Hart and Mas-Colell
(1989), and is the straightforward extension of the TU definition:

V φ
T (S) =

{

x ∈ RS :
(

x,
(

φi(S ∪ TC , V )
)

i∈TC

)

∈ V (S ∪ TC)
}

.(4.3)

Theorem 4.2 The proportional value is strictly consistent in NTU games.

Proof: We parallel the steps of the TU case. When i is reduced from a two-player game we see
from (4.3) that V ϕ

−i(j) = {x ≤ ϕj(ij, V )}. Therefore ϕj(j, V
ϕ
−i) = P (j, vϕ−i) = P (ij, V )/P (i, V ) =

ϕj(ij, V ). Assume ϕ is (strictly) consistent in m-player games and create V ϕ
−i by reducing i

from V . By the same argument as in the TU case, the potentials of all coalitions with less than
m players must scale by the same factor c. Now consider a coalition R with m players. By the
definition of the reduced game the values of the players in R in the reduced game together with
ϕi(R ∪ i, V ) must lie in ∂V (R ∪ i):

(

(

P (R, V ϕ
−i)

cP ((R ∪ i) \ j, V )

)

j∈S
, ϕi(R ∪ i)

)

∈ V (R ∪ i).(4.4)

Clearly then, P (R, V ϕ
−i) = cP (R∪ i, V ) as well and ϕ must be consistent in m+ 1 player games

as well. �

Theorem 4.3 The proportional value is the unique strictly consistent NTU allocation
rule which gives equal proportional gain two-player NTU games.
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Proof: Assume a second NTU allocation rule φ which is also strictly consistent and has equal
proportional gain outcomes in two-player NTU games. Thus, ϕ and φ agree in two-player
games. This implies that their singleton reduced games must agree. Consistency requires that
both values in the singleton reduced games are equal to the values in the two-player games.
Thus, ϕ and φ must agree for one-player games as well.

Now, for any coalition S, assume that ϕ and φ agree for games of s− 1 players or less and
choose any two distinct players in i, j ∈ N and construct the reduced games consisting of only
this pair of players, V ϕ

ij and V φ
ij , one for each value, according to (4.3). The players N \ ij are

reduced from the game. Since ϕ and φ agree for games of s − 1 players the individual worths
of i and j must be the same in both reduced games.

Since both rules give equal proportional gain outcomes in 2-player games and the individual
worths in both games are the same, each player will gain in the same proportion in both games.
Thus both players’ allocations will be equal or larger according to one of the values than the
other. By consistency, these values are equal to player values in the game (S, V ). This outcome
applies to any pair of players in S. Thus, all players’ allocations according to one of the rules
must be at least as great as according to the other. If ϕ and φ are both efficient in s player
games then they must be equal.

By assumption, φ is efficient in s− 1 player games. But, by the construction of the strictly
reduced game, this immediately implies

(

(

φj(S \ i, V φ
−i)
)

j∈S\i
, φi(S, V )

)

∈ ∂V (S).

Therefore, φ is efficient in s-player games as well and φ = ϕ in (S, V ). The conclusion follows
by induction. �

Again parallel to Hart and Mas-Colell (1989), this result can be strengthened in that
consistency with equal proportional gain in two-player TU games is sufficient to guarantee
the uniqueness of the proportional value.

Theorem 4.4 The proportional value is the unique strictly consistent NTU value which
gives equal proportional gain in TU two-player games.

Proof: Given Theorem 4.3 all that must be proved is that strict consistency with equal propor-
tional gain bargaining in TU two-player games implies it in NTU two-player games as well. The
proof strategy is the same as in Hart and Mas-Colell (1989) Lemma 6.9: A two-player NTU
game (ij, V ) is embedded in a three-player game (ijk, ̂V ) whose other coalitional worths are all
transferable. Because ̂V (ijk) is equivalent to a transferable worth, all games reduced by one
player are equivalent to TU games. Through consistency, the value of the original two-player
NTU game is identified.

Let αi = sup{xi ∈ V (i)}, define αj similarly, and set αk > 0. Define ̂V as follows:

̂V (S) =
{

V (S), S = i, j, or ij,
{

x ∈ RS :
∑

i∈S xi ≤
∑

i∈S αi
}

, otherwise.

Let φ be an allocation rule which satisfies the conditions of the theorem and let (yi, y2, y3) =
φ(ijk, ̂V ). Define the TU versions of the two-player reduced games: v̂φ−i, v̂

φ
−j , and v̂φ−k. In v̂φ−i
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and v̂φ−j the individual worths of i and j must be their values under φ(ij, V ), which is what is
left over after the other player is given his value under φ(ij, V ), by efficiency and the definition
of the reduced game. All other two-player games are additive so players get their individual
worth:

v̂φ−i(j) = φj(ij, V ), v̂φ−i(k) = αk, v̂φ−i(ik) = yj + yk,
v̂φ−j(i) = φi(ij, V ), v̂φ−j(k) = αk, v̂φ−j(jk) = yi + yk,
v̂φ−k(i) = αi, v̂φ−k(j) = αj , v̂φ−k(ij) = yi + yj .

The TU values for these games are easily calculated from (3.5). Since φ is consistent, these
games generate a system of equations equating allocations in two of the reduced games, one for
each player. For example, for player i, φi(v̂

φ
−j) = φi(ijk, ̂V ) = φi(v̂

φ
−k). From the game v̂φ−k we

can determine that φi(ijk, ̂V )/φj(ijk, ̂V ) = αi/αj . Solving for φk(ijk, ̂V ) in the first two games
gives (φi(v̂

φ
−j) + αk)/(φj(v̂

φ
−i) + αk) = (yi + yk)/(yj + yk). Dividing φi(v̂

φ
−j) by φj(v̂

φ
−i) gives

φi(ijk, ̂V )

φj(ijk, ̂V )
=
φi(v̂

φ
−j)

φj(v̂
φ
−i)

φj(v̂
φ
−i) + αk

φi(v̂
φ
−j) + αk

yi + yk
yj + yk

.

Combining these results and recalling that φi(ij, V ) = φi(v̂
φ
−j) and φj(ij, V ) = φj(v̂

φ
−i) we find

that φi(ij, V )/αi = φj(ij, V )/αj . Strict consistency and equal proportional gain in two-player
TU games thus imply equal proportional gain in two-player NTU games as well. Then, by
Theorem 4.3, φ = ϕ. �

5 Noncooperative Implementation

A noncooperative game with equilibria whose payoffs correspond to a cooperative solution
is said to implement the solution. This section implements the TU and NTU proportional
value. The principal insight it offers is that value allocation according to the proportional
value corresponds to simple bargaining environments where a player’s probability of
having the opportunity to make a proposal is proportional to her average proposed payoff
at that point in the game. This is in contrast to models of the Shapley value, the
Maschler-Owen value, and, as shown in ADTV, the egalitarian value; which all result
from games where players’ probabilities of selection to propose are independent of their
average proposed payoffs. Here, the ability to make a proposal is taken to be synonymous
with the ability to participate in the bargaining process.

Gul (1989) implements the Shapley value based on a straightforward (TU) extension
of the Rubinstein (1982) game where players controlling coalitions of resources have
random pairwise meetings during which one, chosen with equal probability, may bid for
the resources of the other. A player that is bought out leaves the game. The worth of any
combination of resources is described by a cooperative game. The Gul approach is not
amenable to implementing NTU values and Hart and Mas-Colell (1996) introduce a new
type of game. In this game a player is selected in every round to propose a division of the
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worth of the coalition of players present. If no player rejects the proposal, the division
is effected and the game ends. If any player rejects, the proposal is rejected. Before
the next round begins, and with probability 1 − ρ, 0 ≤ ρ < 1, where ρ is probability of
continuation, a breakdown occurs and the proposer is ejected from the game and receives
zero final payoff.

When all players then present participate equally, the stationary subgame perfect
(SSP) equilibria of the game have payoffs which correspond to the Shapley value when
the underlying cooperative game is TU, to the Nash bargaining solution in two-player
NTU games, and to the Maschler-Owen NTU value otherwise. The last two results hold
in the limit as ρ → 1. Hart and Mas-Colell generalize these basic results to allow for
unequal probabilities of selection to propose (as well as different consequences following
the rejection of a proposal) in TU and NTU games. These results are utilized here to
implement the proportional value.

Hart and Mas-Colell define a payoff configuration as a set of payoff vectors, a =
{aS}S⊆N , one for each S ⊆ N . Each aS specifies payoffs for all i ∈ S. Following Hart
and Mas-Colell, ajS,k identifies the proposed payoff to j by k when the remaining players
are S and aiS is player i’s ex ante continuation payoff when the players are S. Given an
opportunity to accept or reject a proposal, we will say that a player we will say that a
player follows a simple rational reply strategy if he always accepts a proposal which is
at least as much as he could expect to obtain following rejection, but rejects otherwise.
Assume that all players follow simple rational reply. A complete (pure) strategy for
a player is thus specified by a (proposed) payoff configuration. I use boldface type to
indicate a profile of proposal strategies, so that a represents a complete strategy profile
for all players and aS = {aS,j}j∈S is the profile of proposals for when the remaining
bargainers are S.

5.1 Value-Weighted Participation Games

The variation described will be called a value-weighted participation game. The following
mechanism is used to operationalize the notion that participation, as reflected in the
probability of selection to make a proposal, is proportional to a player’s average proposed
payoff. In every round, all players still in the game submit proposals for the division of
the worth of the coalition of the remaining players. The probability of a player i being
selected to make a proposal is then made proportional to the average of i’s payoffs under
the different proposals. If i is selected to make a proposal she must make the proposal
which she submitted. This is to prevent manipulation of the mechanism. Note that all
players in the game at that time still have equal opportunity to reject the proposal.2

Feldman (1998) shows payoffs converge to the powerpoint in TU games when this
2The ability to reject a proposal is also an aspect of participation in the bargaining process. Fur-

ther, participation would be affected by differing probabilities of proposers’ ejection given rejection of
a proposal. Both of these might be modeled as conditioned by average proposed payoffs. The model
presented here is thus very simple representation of value-weighted participation.
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procedure is conducted only once during the first round of the game and a player’s prob-
ability of selection in subsequent rounds of the game, should they occur, is proportional
to their probability of selection in the first round.

5.2 TU Implementation

Let aS =
∑

j∈S p
j
SaS,j be the expected payoff vector for S given proposal profile aS, where

pjS is the probability of j being selected to propose when the players are S. Hart and
Mas-Colell (1996) Proposition 1 develops the basic conditions of the SSP equilibrium for
both TU and NTU games. These include that all proposals are positive and efficient and
that

ajS,k = ρajS + (1− ρ)aj
S\k,(5.1)

for all j, k ∈ S, j 6= k, and all S ⊆ N . That is, each player is offered the weighted average
of her continuation value and the expected payoff conditional on ejection of the proposer,
where the weights are the probabilities of continuation and breakdown.

Hart and Mas-Colell’s Proposition 9 shows that expected equilibrium payoffs for TU
bargaining games under the circumstances described here satisfy the following recursive
relation:

ajS =
∑

k∈S\j

pkSa
j
S\k + pjS

(

v(S)− v(S \ j)
)

.(5.2)

To formally describe the TU value-weighted participation mechanism, first define
player j’s average proposed payoff as ājS = (1/s)

∑

k∈S a
j
S,k, where s is the number of

players in S. Let the notation pjS(aS) explicitly reflect the dependence of pS on the
proposal profile aS. The mechanism sets

pkS(aS) =
{

ākS/
∑

j∈S ā
j
S : aS,j ∈ RS

+ for all j ∈ S,
1/s : otherwise.

(5.3)

If any player proposes a negative payoff or all players propose zero payoffs for all players,
all players have equal probability of selection. This will never happen in equilibrium.

Lemma 5.1 For any 0 ≤ ρ < 1 the value-weighted participation game has an equilibrium
outcome when the underlying cooperative game is positive, monotonic, and TU.

Proof: Since v is positive the mechanism (5.3) ensures that pS(aS) is well-defined for any
proposal profile and for all S ⊆ N , thus the game is well-defined. Now consider the existence
of a pure strategy SSP equilibrium based on the mechanism and the Hart and Mas-Colell
game. We allow players’ actual proposals to differ from those submitted to the mechanism
and show that a proposal profile always exists such that the submitted proposals and resulting
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“partial” equilibrium proposals are the same. Denote by dS = {dS,j}j∈S the profile of proposals
submitted to the mechanism, and by eS = {eS,j}j∈S the resulting partial equilibrium proposal
profile according to the probabilities generated by the mechanism (5.3), (5.2), and (5.1). Assume
that an equilibrium exists for all R ⊂ S such that aR = dR = eR and that aj

S\k ≥ 0 for all

j, k ∈ S. Then, for any equilibrium proposal profile eS , ejS,k ≥ 0 for every j, k ∈ S and for every
k ∈ S, eS,k must be efficient, by Hart and Mas-Colell Proposition 1 and the monotonicity of v.
Thus eS,k must lie within the s − 1-dimensional simplex Ak(S) = {x ∈ RS+ :

∑

i∈S xi = v(S)}.
Let AS(S) = ×k∈SA(S). Observe that AS(S) is closed, bounded, and convex.

Now consider that the value-weighted participation mechanism is continuous with respect
to the proposal strategy profile when proposals are efficient, and that (5.2) shows that aS is
continuous with respect to pS . Further, (5.1) determines all equilibrium proposals as a con-
tinuous function of aS , given ρ and {aR}R⊂S . The composition of these functions is thus a
continuous function J : AS(S) → AS(S). The Kakutani fixed point theorem then guarantees
the existence of a proposal profile aS such that aS = J(aS), i.e., that dS = eS . Note that equi-
librium outcomes trivially exist for the singleton coalitions. This then completes the induction
argument. �

Theorem 5.1 The proportional value is the unique equilibrium payoff configuration of
the stationary subgame perfect equilibria of the value-weighted participation game in the
limit as ρ→ 1, when the underlying cooperative game is positive, monotonic, and TU.

Proof: By Lemma 5.1 a value-weighted participation equilibrium exists for every 0 ≤ ρ < 1.
In the limit as ρ → 1, aS,j → aS for every j ∈ S and all S ⊆ N . Also āS,j → aS . Now
assume that the proportional value is the equilibrium proposal profile for all coalitions R ⊂ S.
If aiS = ϕi(S, v), then piS can be written piS = 1/v(S) × (P (S, v)/P (S \ i, v)) because v is
positive. Clearly, these probabilities sum to unity. Now substitute these into the equilibrium
payoff characterization along with payoffs in subgames into (5.2) and we see that

aiS =







∑

k∈S
k 6=i

P (S, v)
v(S)P (S \ k, v)

P (S \ k, v)
P (S \ ik, v)





+
P (S, v)

v(S)P (S \ i, v)

(

v(S)− v(S \ i)
)

.

The P (S \ k, v) terms in the sum cancel and the result may be rearranged to get

aiS =
P (S, v)

P (S \ i, v)
− P (S)
v(S)







v(S \ i)
P (S \ i, v)

−
∑

k∈S
k 6=i

1
P (S \ ik, v)





 .

The first term on the right is the proportional value for player i in the game (S, v). The term in
parenthesis must equal zero by the definition of the potential. Thus, if all subgames of S yield
the proportional value, using the proportional value to determine participation probabilities
in the subgame based on S is an equilibrium. Since the relation is trivially true for singleton
coalitions, the conclusion follows by induction. Uniqueness can be proved by the same approach
as taken in Theorem 5.2 ((5.6) and (5.7), here with all λiS = 1). �
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5.3 NTU Implementation

In order to guarantee the existence of equilibria in general NTU games the following
additional restrictions on the structure of the NTU game are added to those set forward
in Section 3.2. In addition to being (A.1) positive, (A.2) comprehensive, (A.3) closed,
and (A.4) bounded; feasible sets must also be (A.5) smooth, (A.6) nonlevel, and (A.7)
convex. Smoothness requires that the tangent hyperplane at any point x ∈ ∂V (S) is
well-defined. A surface is nonlevel if the outward normal vector at any point in the
surface is positive in all directions. Convexity requires that for any x, y ∈ V (S), and any
α : 0 ≤ α ≤ 1, αx+ (1−α)y ∈ V (S) as well. The game V must also be (A.8) monotonic
(see definition in Section 3.2). Assumptions A.2-A.8 are the Hart and Mas-Colell (1996)
assumptions.

Hart and Mas-Colell show that the subgame equilibrium conditions of their Proposi-
tion 9 for the TU case (5.2 here) generalize to NTU games when conditions A.2-A.8 are
met and the expected marginal contribution of i is λ-weighted. The λ-weights are the
marginal rates of substitution of the players’ payoffs, as determined by the tangent hy-
perplane to the equilibrium payoff. (The argument is contained in the paragraph which
follows the proof of Hart and Mas-Colell (1996) Proposition 9.) Thus, in the limit at
ρ→ 1, any equilibrium must satisfy the following relation:

ajS =
∑

k∈S\j

pkSa
j
S\k + pjS

1
λjS





∑

k∈S

λkSa
k
S −

∑

k∈S\j

λkSa
k
S\j



 .(5.4)

In order to implement the proportional value the value-weighted participation mech-
anism must be modified so that players’ participation is proportional to their λ-weighted
average proposed payoff. In a general NTU game, the average of players’ proposals will
not usually lie on the efficient surface. Therefore, we will select an appropriate point in
∂V (S) in order to generate the λ weights. Let a∗S be the intersection of the ray pass-
ing from the origin through the average proposal āS and ∂V (S), and let λ(a∗S) be the
weights associated with the hyperplane tangent to V (S) at a∗S. Now define player i’s
λ-weighted average proposed payoff as: biS = (1/s)λi(a∗S)

∑

j∈S a
i
S,j. This, then, is the

λ-value weighted participation mechanism:

pkS(aS) =
{

biS/
∑

j∈S b
j
S. : aS,j ∈ RS

+ for all j ∈ S,
1/s : otherwise.

(5.5)

Extension of the methods for the TU case can be used to prove the existence of an
equilibrium in the λ-value weighted participation game for hyperplane games under the
same conditions as in the TU case. It is doubtful, however, that conventional methods can
prove the existence of an equilibrium in general NTU games, even in the limit as ρ→ 1.
First, the equilibrium proposal profile as a function of pS may be multivalued (see Owen
(1994) and Hart and Mas-Colell (1996: 366)). It is not clear that this correspondence is
upper-hemicontinuous, except in the limit as ρ → 1. Further, if multivalued, it will not
be convex, even in the limit. Nevertheless, we can prove the following theorem.
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Theorem 5.2 The proportional value is the unique equilibrium payoff configuration, in
the limit as ρ → 1, of the stationary subgame perfect equilibria of the λ-value-weighted
bargaining game when the underlying NTU cooperative game V meets conditions A.1-A.8.

Proof: In the limit, aS,j → aS ∈ ∂V (S) for any pS and all j ∈ S and S ⊆ N because conditions
A.2-A.8 allow us to apply (5.4). Assume that aiR = ϕi(R, V ) for all i ∈ R ⊂ S. Define
VS =

∑

i∈S λ
i
S(aS)aiS . Assume that we can set pjS = λjS(aS)ajS/VS . Condition A.1 guarantees

pS will always be well-defined. We will prove that these conditions are always consistent with
a unique proposal profile. Substitute into (5.4) to obtain

aiS =
∑

k∈S\i

λkS
VS

akS ϕi(S \ k, V ) +
aiS
VS





∑

k∈S
λkSa

k
S −

∑

k∈S\i

λkS ϕk(S \ i, V )



 .(5.6)

Replace ϕ by discrete derivatives of the potential and simplify to get

aiSP (S \ i, V ) =
1

∑

k∈S\i β
k
S

∑

k∈S\i

βkSa
k
SP (S \ k, V ),(5.7)

where βkS = λkS/P (S \ ik, V ), for all k ∈ S \ i. Clearly, all products akSP (S \ k, V ) must
have the same magnitude since each is equal to the weighted average of all the others. Thus
aiS = ϕi(S, V ) and akSP (S \ k, V ) = P (S, V ). Since the theorem is trivially true for singleton
coalitions the conclusion follows by induction. �

Remark 5.1 The λ-value weighted participation game has a unique equilibrium outcome
in general NTU games in the limit as ρ→ 1 even though the Hart and Mas-Colell game,
on which it is based, does not. When the players are S, there may be other partial
equilibrium proposal profiles supported by pS(aS), but players have already committed to
aS. The participation mechanism thus plays the role of a sort of coordination device.

6 Application to Problems of Cost Allocation

Shubik (1962) first makes the case for the use of cooperative game theory to allocate
costs by use of the Shapley value of a cost allocation game. Since then, a considerable
literature has developed around this method (see Young, 1985a), but it appears to be
seldom used. One reason for this lack of adoption may be that cost allocation appears
to be an inherently proportional procedure. Standard activity methods allocate costs in
proportional to some measure of activity (see, e.g., Belkaoui (1991)). Further, as noted in
Section 2.2.1, accounting theorists have gravitated to methods with proportional features.
Review of the literature also shows significant resistance to the linearity of the Shapley
value.

Gangolly (1981) notes that the choice between his ICPS and the Shapley value involves
“trade-offs between the attributes of invariance and proportional equity” and argues that
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“cost centers with higher outputs (and hence lower averages costs) should receive a higher
proportion of the cost savings, if for no other reason than the fact that their lower aver-
age costs give them a bargaining advantage in negotiating a share in the cost savings.”
(1981: 300) Boatsman, Hansen, and Kimbrell (1981) argue that while the Shapley value
“has embodied in it a notion of equity, it appears to be a poor surrogate for the bar-
gaining process.” (1981: 73) Banker (1981) develops a partial characterization of pure
proportional allocation and finds the Shapley value is “not consistent with our axioms,
and hence with traditional cost allocation methods.” (1981: 127) Further reservations
regarding the use of the Shapley value to do cost allocation may be found in Thomas
(1977) and Hamlen, Hamlen, and Tschirhart (1977).

Barton (1988) conducts an experiment where accounting students are asked to allocate
costs when three farmers agree to buy feed together and the information is presented as
a cooperative game. The results are classified by their closeness (measured by minimum
squared error) to 6 allocation rules (which include the Shapley value and the nucleolus).
In the unrestricted trial 75% of the allocations are classified as being closest to the
Moriarity method. None are classified as closest to the Shapley value.

The following corollary to Theorem 4.4 formalizes the claim that there is no necessary
conflict between accounting practice and the theory of cooperative value. The corollary
is clearly true by virtue Moriarity’s method being the allocation of cost savings in equal
proportion to stand-alone costs.

Corollary 6.1 The proportional value is the unique strictly consistent TU and NTU
coalitional cost allocation method which agrees with the Moriarity (1975) cost allocation
method for two cost centers.

It can further be shown that the proportional value is in the core of a cost allocation
game when proportional marginal costs are nonincreasing. This condition is a property
of log-concave games, which stand in the same relation to the concave game as the log-
convex game stands to the convex game (see Section 3.3.4). The proof is exactly the
same as the steps that lead to Theorem 3.1 except that the inequalities are reversed.
This works out well, because in a cost allocation game, a core allocation is one such that
no coalition can, on its own, guarantee all members a lower cost.

Recent work has explored the application of cooperative game theory to other al-
location problems. For example Suijs, de Waegenaere, and Borm (1998) show how to
construct a TU game representing the reinsurance problem where some players are risk
averse and Bilodeau (1999) shows how the problem of determining the distribution of
surpluses in a defined-contribution plan may be represented as a cooperative game. In
both cases, the proportional value appears to be a viable method for determining an
effective allocation.
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7 Discussion and Conclusion

The discrete derivative of the ratio potential has been shown to have many of the essen-
tial qualities commonly associated with a cooperative game value: With respect to the
classical properties of a value, it is efficient, symmetric, and monotonic. It is a type of
expectation, and it is an element of the core of a sufficiently convex game. With respect
to more recent developments, it has been shown to be both strictly consistent and the
expected payoff configuration of a value-style noncooperative bargaining game. I believe
these results justify the conclusion that this discrete derivative should be considered a
cooperative value.

The essential distinguishing property of this value is proportionality. Three aspects of
this proportionality are established here. Lemma 3.6 shows it has the equal proportional
gain property. Theorem 4.1 shows it is strictly consistent with equal proportional gain
in two-player games. And Theorem 5.1 shows that it is implemented in the Hart and
Mas-Colell (1996) noncooperative game when players’ probability of selection to propose
is proportional to their expected payoff at that point in the game.

The proportional value is also defined on and results are developed for NTU games.
The results, except for the noncooperative implementation, are straightforward exten-
sions of those for the TU case. Just as the proportional value is a nonlinear analog of the
Shapley value in TU games, it is the analog of the egalitarian value in NTU games. The
systematic parallels between linear and proportional values in both TU and NTU games
are a salient aspect of this work.

The noncooperative implementation of the NTU value requires λ-weighting of partic-
ipation probabilities, which appears to be the only wrinkle in an otherwise tidy picture.
If we accept the reasonableness of this requirement then we achieve the striking result of
unifying, in the realm of proportional value, the approach of Hart and Mas-Colell (1989)
with that of Hart and Mas-Colell (1996). It is shown, however, in ADTV that the egali-
tarian value may also be implemented with λ-weighted participation probabilities. This
forces us to consider λ-weighting more carefully as Hart and Mas-Colell (1996) conclude,
on the basis of equal participation in the same game, that the Maschler-Owen value is the
appropriate NTU generalization of the Shapley value. This topic is taken up in ADTV.

With respect to application, it appears that an important practical use of the propor-
tional value may be cost allocation. Section 6 shows that there is significant resistance
to the use of the Shapley value and partiality toward proportional methods among ac-
countants and that the proportional value addresses many of these concerns. There are,
of course, still significant computational, informational, and skill-transfer barriers to the
use of cooperative game theory as a standard method of cost allocation.

Another use of the proportional value may be models of endogenous power in coop-
erative games. Models of power based on the Shapley value clearly embody an equality
of sharing and democratic quality of participation which may be inappropriate in many
situations. Many features of the economy, and of our social and political institutions as
well, appear to correspond more closely correspond to a proportional model of power.
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8 Appendix

This is the proof of Lemma (3.8).
Proof: The proof is by induction. Assume the result is true for all coalitions T ⊂ S and select
any two players i, j ∈ S and multiply out the terms in sums on each side.

Consider first the terms which arise from the restrict that k ∈ S \ ij. The left-hand side
contains (n − 2)2 such terms of the form 1/P (S \ iq, v)1/P (S \ jr, v), and the right-hand side
has the same number of terms of the form 1/P (S \ q, v)1/P (S \ ijr, v), where q, r ∈ S \ ij. Now
identify a direct correspondence between terms on both sides based having the same omitted
players q and r.

(a) When q = r = k, compare 1/P (S \ ik, v)1/P (S \ jk, v) on the left with 1/P (S \
k, v)1/P (S \ ijk, v) on the right. Multiplying the left side by the inverse of the right side should
yield a term equal or greater than unity. This term is equal to ϕi(S \ k, v)/ϕi(S \ jk, v), which,
because of the assumption of the log-convexity of P for proper subsets of S and Lemma 3.7,
must be true.

(b) When q 6= r, match the terms 1/P (S \ iq, v)1/P (S \ jr, v) on the left with 1/P (S \
q, v)1/P (S \ ijr, v) on the right, and the same argument as in (a) concludes that the left side
term is at least as large as the right.

Thus the sum these terms on the left-hand side must be equal or greater than the sum of
the corresponding terms on the right-hand side.

Now, the remaining terms will be treated. The desired result can be represented as:

[

A+
1

P (S \ ij, v)

] [

B +
1

P (S \ ij, v)

]

≥
[

C +
1

P (S \ i, v)
+

1
P (S \ j, v)

]

[D] ,

where AB ≥ CD. It is not difficult to determine that this inequality is true when P (S \ i, v) ≥
P (S \ ij, v) and P (S \ j, v) ≥ P (S \ ij, v). This will always be true when ϕi(S \ j, v) ≥ 1 and
ϕj(S \ i, v) ≥ 1. Games with values less than unity can be rescaled. All the ratios here can
be seen to be invariant with respect to scaling, therefore relationships that hold for the scaled
game will hold for the original game as well. This proves the induction step. It can be verified
that the argument is valid for all S with | S |≥ 3.

To complete the proof, note that v(ij) ≥ v(i) + v(j) implies P (ij, v) ≥ P (i, v)P (j, v). This
follows immediately from the relations P (i, v) = v(i), P (j, v) = v(j), P (ij, v) = v(i)v(j)v(ij)
/(v(i) + v(j)). �
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