
and

�f
i (b

�(vi); wi) =
1

4
[vi � b�(vi)] (41)

following which equation (11) takes the form

1

2
(vi � b�(vi)� e) +

1

4
(vi � b�(vi)) = �e (42)

whose unique solution is

b�(vi) = vi +
2

3
e (43)

It remains to verify that b�(vi) is strictly increasing over the interval
�
v � e � vi <

�
v � 2

3
e. To do so, note that the right side of (43) is strictly concave (globally) and

db�(vi)
dvi

j
vi=

�

v� 2

3
e
= 1

2 > 0.
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3

4
(vi � b�(vi))(b

�(vi)� vi) +
1

2

Z vi+e

b�(vi)

(vi � z)dz +
1

2
f(vi + e)� vige = 0 (36)

The unique solution to (36) satisfying vi � b�(vi) < vi + e is

b�(vi) = vi + e
p
0:5 (37)

Case 2:
�
v � e � vi <

�
v � 2

3e

Equation (14) now takes the form

3

4
(vi � b�(vi))(b

�(vi)� vi) +
1

2

Z �

v

b�(vi)

(vi � z)dz +
1

2
f�v � vige = 0 (38)

The unique solution to (38) satisfying vi � b�(vi) < vi + e is

b�(vi) = vi +

r
e(
�
v � vi)� 1

2
(
�
v � vi)2 (39)

Notice that b�(
�
v � 2

3e) =
�
v.

Case 3:
�
v � 2

3e � vi � �
v

In this case,

�f
i (b

�(vi); si) =
1

2
[(vi � b�(vi))� e] (40)
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Case 2:
�
v � e � vi < b��1

�

(v)

In this case

@�f
i (bi)

@vi
=

8>>>>>><
>>>>>>:

3
8 [F (bi� e j bi) + F (bi j bi)]

+1
4
[
R vi
bi�e

f(z j bi)dz +
R �

v

bi
f(z j bi)dz]

+1
4
ef(vi j bi)

(34)

which is strictly positive due to the same arguments as in Case 1, together with the

fact that b�(vi) � �
v 8vi 2 [

�
v � e; b��1

�

(v)].

Case 3:
�
v � vi � b��1

�

(v)

In this case

@�f
i (bi)

@vi
=

8>>>>>><
>>>>>>:

3
8
[F (bi� e j bi) + F (bi j bi)]

+1
4

R vi
bi�e

f(z j bi)dz

+1
4
ef(vi j bi)

(35)

which is strictly positive due to the arguments made for case 1.�

Proof of Example 1

To solve equation (14) for F � U [v
�
;
�
v], we need to consider three separate cases

since �f
i (bi) is not smooth in vi.

Case I: v �
�

vi <
�
v � e

Using F � U [v
�
;
�
v], equation (14) can be written as
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@2�i(bi)

@bi@vi
= 2

@�f
i (bi)

@vi
f1� F (b��1(bi))gf(b��1(bi))b��1

0

(bi) (31)

In view of the arguments used to prove Proposition 1, we need only show that

@�
f
i (bi)

@vi
> 0.

Incorporating the expressions in (4), (5), (6) and (7) into the right side of (9), we

can write

�f
i (bi) =

8>>>>>><
>>>>>>:

3
8
(vi � bi)[F (bi � e j bi) + F (bi j bi)]

+1
4
[
R vi
bi�e

(vi � z)f(z j bi)dz +
R vi+e

bi
(vi � z)f(z j bi)dz]

�1
4
e[f1� F (vi j bi)g+ f1 � F (vi + e j bi)g

(32)

As explained in the proof of Proposition 2, since the function �f
i (bi) is not smooth

in vi, we need to consider 3 separate cases.

Case 1:v
�
� vi <

�
v � e

Di�erentiating (32) with respect to vi and cancelling terms, we get

@�fi (bi)

@vi
=

8>>>>>><
>>>>>>:

3
8 [F (bi� e j bi) + F (bi j bi)]

+1
4
[
R vi
bi�e

f(z j bi)dz +
R vi+e

bi
f(z j bi)dz]

+1
4ef(vi j bi)

(33)

First note that vi + e > b�(vi) � vi and e > 0 implies that F (bi j bi) > 0 and

the integrals in the right side of (33) are non-negative. Therefore, we conclude that

@�f
i (bi)

@vi
> 0.
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where the last inequality follows from the fact that b > v.

For case (ii): b >
�
v, we have

�(v; b) =
3

2
(v � b)[1� F (v)] + [1� F (vi)]e (30)

since b < v + e. Di�erentiating (30) with respect to b, we have

@�(v; b)=@b = �3

2
[1� F (v)] < 0

Thus, we have shown that @�(v; b)=@b exists and is not equal to zero a.e. on the

domain of b. This concludes our proof.�

Proof of Theorem 1

The proof follows a pseudo-concavity argument borrowed from Matthews[1995]

(p.23). Suppose @2�i(bi)
@bi@vi

> 0 8vi;8bi 2 (0; b�(
�
v)). Then we can show that @�i(

^

b)
@bi

� 0

for all
^

b 2 [0; b�(vi)] and
@�i(

^

b)
@bi

� 0 for all
^

b 2 [b�(vi); b�(
�
v)]. The �rst of the pro-

posed inequalities is proved as follows. Note that since b�(:) is strictly increasing,

b��1(
^

b) � vi 8
^

b 2 [0; b�(vi)]. This implies that @�(vi;
^

b)
@bi

� @�(b��1(
^

b);
^

b)
@bi

= 0 (where

the last equality is the �rst order necessary condition satis�ed by b�(:)). A similar

argument proves @�i(
^

b)
@bi

� 0 for all
^

b 2 [b�(vi); b�(
�
v)]. Hence, we conclude that if

@2�i(bi)
@bi@vi

> 0 8vi;8bi 2 (0; b�(
�
v)), then b�(:) indeed maximizes (9).

It therefore remains to show that @2�i(bi)
@bi@vi

> 0. First note from (9) that
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@�(v; b)

@v
= F (b)� F (v)� vf(v) + bf(v)� 2

3
ef(v + e) +

2

3
[F (v+ e)� F (b)]

+
2

3
[f(v + e)� f(v)]e

= F (b)� F (v) + (b� v � 2

3
e)f(v) +

2

3
[F (v+ e)� F (b)]

> 0

where the last inequality follows from the fact that v + e > b > v and b � v + 2
3
e

(lemma 1).

For case (ii), @�(v;b)
@v

= 1� F (v) + (b� v � 2
3e)f(v) > 0 by lemma 1.

It remains to show that the solution b(v) is di�erentiable in v a.e. Call the LHS of

(14), �(v; b).

From the Implicit Function Theorem, we know that @b
@v

exists and is equal to

�@�(v;b)=@v
@�(v;b)=@b

whenever @�(v; b)=@v and @�(v; b)=@b exist and the latter is not equal to

zero. It is straightforward to verify that @�(v; b)=@v exists over the entire domain of v

except at the point v =
�
v � e. Similarly, @�(v; b)=@b exists over the entire domain of b

except at the point b =
�
v. For case (i): b � �

v, di�erentiating the LHS of (14) we have

@�(v; b)=@b = �3

2
[F (b)� F (v)] +

3

2
(v � b)f(b)� (v � b)f(b)

= �3

2
[F (b)� F (v)] +

1

2
(v � b)f(b)

< 0
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(c1) �0(b) = F (b) + bf(b)

(c2) @�(v;b)
@b

= vf(b) + F (v)� 2
3
(v � b)f(b) = F (v) + (1

3
v + 2

3
b)f(b)

But since b > v, we conclude that (c) @�(v;b)
@b

< �0(b) 8v such that b � �
v.

(a) and (b) together with the fact that �(b) and �(v; b) are both continuous in b

imply that there must be at least one b 2 (v; v + e) that satis�es (28). However (c)

implies that �(b) can intersect �(v; b) only from below, which together with continuity

of both functions in b implies that the solution to (28) is unique.

Case (ii) b >
�
v

In this case,

�(v; b) = v[1� F (v)] + bF (v) +
2

3
[1� F (v)]e (29)

As before, to prove the existence of a unique solution to (14), we verify the following

relationships:

(a) �(v; v) = v + 2
3
[1� F (v)]e � vF (v) = �(v)

(b) �(v; v + e) = v[1 � F (v)] + (v + e)F (v) + 2
3
[1 � F (v)]e = v + e[1

3
F (v) + 2

3
] �

v + e = �(v + e)

(c2) @�(v;b)
@b

= F (v) < 1 = �0(b).

Continuity of the solution b(v) follows from the continuity of �(v; b) in v. To prove

that b(v) is a strictly increasing function of v, it would su�ce to show that �(v; b) is

strictly increasing in v. For case (i), we get
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3

2
(vi � b�(vi))[F (b

�(vi))� F (vi)] +

Z vi+e

b�(vi)

(vi � z)f(z)dz + [F (vi + e)� F (vi)]e = 0

(27)

�

Proof of Proposition 3:

Dropping all superscripts and subcripts, we can rewrite (14) as

bF (b) = v[F (b)� F (v)] + bF (v) +
2

3
[

Z v+e

b

(v � z)f(z)dz + fF (v + e)� F (v)ge] (28)

Denote the LHS of (28) by �(b) and the RHS by �(v; b). Note that �(b) is continuous

in b while �(v; b) is continuous in both b and v. Also, recall from lemma 1 that

v � b � v + e.

Observe that �(v; b) is not di�erentiable in b at b =
�
v. Accordingly, we consider

two separate cases: (i) b � �
v and (ii) b >

�
v.

Case (i) b � �
v

First note the following relationships:

(a) �(v; v) = vF (v) + 2
3 [
R v+e

v
(v � z)f(z)dz + fF (v + e)� F (v)ge] > vF (v) = �(v),

where the inequality follows by noting that
R v+e

v
(v � z)f(z)dz > �e R v+e

v
f(z)dz =

�e[F (v+ e)� F (v)]

(b) �(v; v + e) = v[F (v+ e)� F (v)] + (v + e)F (v) + 2
3 [F (v+ e)� F (v)]e

= vF (v+ e) + e[2
3
F (v + e) + 1

3
F (v)] < (v + e)F (v + e) = �(v + e)
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Appendix

Proof of Proposition 2:

Incorporating beliefs (13), we can simplify expressions (4) - (7) as follows:

�s
i (b

�(vi); si; vi) = �e (22)

�w
i (b

�(vi); si; vi) = (vi � b�(vi))[
F (b�(vi))�F (vi)

1�F (vi)
] +

R vi+e

b�(vi)
(vi � z) f(z)

[1�F (vi)]
dz

+[1�F (vi+e)
1�F (vi)

](�e)
(23)

�s
i (b

�(vi); wi; vi) = 0 (24)

�w
i (b

�(vi); wi; vi) =
1

2
(vi � b�(vi))[

F (b�(vi))� F (vi)

1 � F (vi)
] (25)

Adding up the simpli�ed expressions above, (11) can be written as

1
4
[�e+ 3

2
(vi � b�(vi))[

F (b�(vi))�F (vi)
1�F (vi)

]

+
R vi+e

b�(vi)
(vi � z) f(z)

[1�F (vi)]
dz + [1�F (vi+e)

1�F (vi)
](�e)] + 1

2e = 0

(26)

Multiplying throughout by 4[1 � F (vi)] and cancelling terms yields
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mechanism, average willingness to pay is a su�cient statistic to characterize bidding

behavior

12A second price sealed bid auction di�ers from a �rst price sealed bid auction in

that the winner pays a price equal to the second highest bid

13In a Dutch descending bid auction, starting from some high initial price, the seller

continuously lowers the price till one of the bidders `cries out' to stop the price clock.

The �rst such bidder to cry out then wins the auction at the price at which she cried

out

14This is unlike the equilibrium allocations in an auction without externalities, and

it violates condition (1) in Myerson's Corollary (Revenue Equivalence Theorem) (see

Myerson[1981], p.65-66)

15We simulate expected revenues from the two auction formats using 5000 random

draws for use values at each value of e. e is varied in steps of :002 from 0 to :75

16Aside from revenue considerations, social e�ciency may form part of a benevolent

seller's explicit objective as was the case with the spectrum auctions conducted by the

FCC (see, e.g., Cramton[1995], p.268)
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nature of the open auction reveals the private information of other bidders, thereby

mitigating winner's curse to some extent and causing bidders to bid more aggressively.

In the context of identity dependent externalities, even in a IPV framework, the open

auction reveals useful information by way of bidder identities

6Of course, the ex-ante probability distributions of this two-tuple private informa-

tion is assumed to be symmetric across bidders

7see section 3 for a description of the game used to study the open auction

8Consider for example, the button model game between 2 bidders, each of who

draws their private use value from some distribution with support [v; v]. The following

asymmetric strategy pro�le constitutes a Nash equilibrium: bidder 1 bids 0 and bidder

2 bids v. However, the seller's revenue (which equals 0 in this equilibrium) will not

equal his expected revenue in the symmetric equilibrium to the FPA (the reader may

refer to Riley and Samuelson[1981] for the symmetric equilibrium strategy and hence

expected revenue in the FPA)

9Our interest in �nding an equilibrium in symmetric strategies, together with the

common priors, obviates the need for a si subscript for the belief probability

10In other words we do not need to update bidder i's belief about the random

variable
�
ssi

11This insight regarding sealed-bid auctions is due to JMS(1) who show in their gen-

eral multi-dimensional framework that in any symmetric equilibrium of an anonymous
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Footnotes

1A summary of results that follow from weakening assumptions (i)-(iii) can be found

in McAfee and McMillan[1987] or Wilson[1992]; for (iv) see Che and Gale[1998]

2Jehiel and Moldovanu[1996] answer a di�erent set of questions in the context of

auctions with identity dependent externalities. Among other things, they show that

in a complete information setting, some bidders may gain by credibly commiting to

non-participation

3The second dimension of each bidder's private information, viz., the external-

ity that she causes to the other bidders plays a role only o�-the-equilibrium-path,

where one of the bidders contemplates non-participation. The optimal mechanism

punishes such non-participation by awarding the object to the bidder who causes the

non-participant to receive the lowest payo�

4Ascending bid auctions where bidder identities are kept secret (e.g., by admitting

bids on-line or over the telephone) obviously do not �t this description of an open auc-

tion. However, this does not diminish the normative implications of our work since we

show that in the presence of identity dependent externalities, the seller typically raises

higher revenues and achieves a more e�cient allocation by holding a non-anonymous

mechanism

5This is somewhat reminiscent of the Milgrom and Weber[1982] result that in the

presence of common value uncertainty, unlike a sealed bid auction, the progressive
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establish a general revenue ranking result owing to the lack of closed-form solutions

for bid functions. Nonetheless, the simple model employed in this paper serves to ver-

ify the intuition that an open auction reveals more equilibrium information about the

identity of the auction winner than a sealed bid auction, which in turn leads bidders

to place higher values on the object. Moreover, the open auction is also shown to be

more e�cient in its allocative properties. These results indicate that in the presence of

winner speci�c externalities, the seller may gain by making bidder identities observable

during the course of an open auction. Of course, the merits of this recommendation

must be weighed against the well known result that the openness of an auction makes

it more susceptible to bidder collusion. The greater e�ciency of an open auction makes

it possible that it is ex-ante Pareto superior to the sealed bid auction. It may also be

interesting to pursue the implications of the main intuition of this work for the rev-

enue ranking between simultaneous and sequential auctions of multiple goods in the

presence of externalities. We leave these questions for future work.
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Notice that the open auction is not socially optimal since it is possible for the interim

realizations of valuations and rivalries to be such that it would be most e�cient for

the object to be allocated to the bidder with the lowest use value. In contrast to

the FPA however, the open auction is e�cient with respect to the highest and second

highest valued bidders. Theorem 4 thus contradicts the basic IPV model as well as its

generalizations obtained by relaxing assumptions (i) and (ii), all of which imply that

the FPA and the open auction are both socially optimal in terms of the allocations

they achieve. Our result agrees partially with that from an asymmetric environment

where the open auction is socially optimal while the FPA is not; while our result stands

in sharp contrast to the model with budget constrained bidders which implies greater

e�ciency of allocation in an FPA.

7 Conclusion

The contribution of this paper has been to formalize the intuition that in the presence

of identity dependent externalities, an open ascending bid auction might raise higher

expected revenues compared to a sealed bid auction. The multi-dimensional nature of

private information precludes a completely general analysis of the topic. In particu-

lar, increasing the number of bidders to more than three causes the bid functions to

become multi-dimensional which in turn leads to well known problems for computing

equilibrium strategies. Moreover for a part of the parameter space we are unable to
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(c) the bidder with valuation v(1) is strong with respect to the bidder with valuation

v(2)

(d) the bidder with valuation v(2) is weak with respect to the bidder with valuation

v(1).

In event A, for the open auction, the gross payo�s of the bidders with valuations

v(2) and v(1) are, respectively, v(2) and 0, so that the sum of their payo�s is v(2). In

the same event A, for the FPA, since the bidder with valuation v(1) wins, the sum of

their gross payo�s is �e + v(1). But by (b), the former sum exceeds the latter sum.

This shows that conditional on event A, the total expected surplus is greater in the

open auction. As A is the only event in which the total surpluses in the two auctions

are di�erent, this proves that the total expected surplus in the open auction is greater

than it is in the FPA.

Observe that the bidder with the lowest valuation v(3) loses the auction with prob-

ability 1 in both the open auction and the FPA, and hence her expected surplus equals

�1
2e in both formats. However, in the event where (b)-(d) (see proof of Theorem 4)

are true, the total surplus is clearly higher when the object is allocated to the bidder

with valuation v(2) instead of the bidder with valuation v(1). Thus the open auction

achieves a di�erent allocation than that resulting from the FPA precisely when it is

more e�cient (as measured by the total surplus) to do so.
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6 Allocative E�ciency

In the presence of externalities, an interesting di�erence between the FPA and the open

auction lies in their allocative properties. While the FPA always allocates the object to

the bidder with the highest use value, the open auction sometimes allocates the object

to the bidder with the second highest use value (see the statement of Proposition 4). It

may therefore be important to inquire as to which of these two auction forms generates

a higher surplus.16 Given that the price is simply a transfer payment and utilities are

quasi-linear, we can de�ne an e�cient allocation to be one that maximizes the sum of

the gross payo�s received by bidders. Denote by til the gross payo� to bidder l when

the object is allocated to bidder i. In what follows we compare the expected value of

P
l t

i
l for each of the two auction formats where i denotes the identity of the auction

winner for the format in question.

Theorem 4 For every e > 0, the open auction yields a higher surplus than the FPA.

Proof. First note that the surpluses resulting from the FPA and the open auctions

are the same in any event in which the bidder with the highest valuation v(1) wins both

auctions. Now consider the event in which this is not the case. Call this latter event

A. From the equilibrium characterizations of the two auctions, we know that in event

A the following must be true:

(a) the winner of the open auction is the bidder with valuation v(2)

(b) v(1) < v(2) + e
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b�(vi) =

8>>>>>><
>>>>>>:

vi + e
p
0:5; v � vi < v � e

vi +
q
e(v � vi)� 1

2
(v � vi)2; v � e � vi < v � 2

3
e

vi +
2
3
e; v � 2

3
e � vi � v

(21)

Proof. See Appendix

Given the complexity of the functional form above, we do not attempt to analyt-

ically compute prices from the open auction even for this simple case of uniformly

distributed valuations. Instead, we simulate expected prices from the two auctions

(using random draws of valuations from a uniform distribution) for di�erent values of

the parameter e: We use F � U [0; 1] as the distribution of use values for this exercise

and plot the expected revenues from the open and sealed bid auctions15 in Figure 1.

Figure 1 shows that the open auction and the FPA yield the same expected revenues

approximately up to the point e = 0:25. For e > 0:25, the open auction revenue

dominates the FPA. This �nding should however be interpreted with caution because

(i) we do not have any economic insights as to why the FPA does not yield higher

expected revenues compared to the open auction for small values of e and (ii) because

of the special assumption of uniformly distributed valuations. However, given that

the revenue equivalence theorem holds regardless of the number of bidders and the

distribution of bidder valuations, this numerical calculation complements Theorem 3

in highlighting the critical nature of assumption (v).
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than o�sets the positive di�erence E(pf ) � E(p). Therefore, the revenue superiority

of the open auction over the FPA (for su�ciently large e) is a consequence of the fact

that the open auction reveals more payo�-relevant information to the bidders before

�nal bids (that determine the price) are due. The ability of the bidders who are still

active at the start of phase f to incorporate this additional payo�-relevant information

in their subsequent strategies causes bidders to value the object more at the start of

an open auction (compared to the FPA), leading to higher equilibrium dropout points

in phase r1 and thus higher prices on average.

We next turn to evaluating the revenue ranking between the two auctions for small

values of e. Analytical comparison of expected revenues from the open auction with

that from a FPA for e � 3
�
E(v(2))� E(v(3))

�
requires us to have closed form solutions

for the equilibrium strategy in r1. However, inspection of (14) reveals that for most

distributions of bidder valuations, br1(:) may not possess a closed form solution. The

uniform is the only class of distributions for which we have been able to solve (14)

closed form.

Example 1 For F � U [v; v], the unique solution to (14) consists of the following

piece-wise, continuous and strictly increasing function:
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It is then easily veri�ed that E(po) > E(pf ) for e > 3
�
E(v(2))�E(v(3))

�
.

Theorem 3 shows that for su�ciently large externalities, expected revenues from the

open auction strictly exceed that from the FPA. Of course e > 3
�
E(v(2))� E(v(3))

�
is

an overly strong su�cient condition for the revenue superiority of the open auction. The

necessary condition for this revenue superiority will be much weaker and in particular

will depend on the distribution of bidder valuations.

Notice that in our model the equilibrium allocation in an open auction might di�er

from that in a FPA. In particular, in an open auction, the bidder with the second

highest use value of the object wins with positive probability while in an FPA the bidder

with the highest use value wins with probability one.14 Note also from its probability

distribution in the statement of Proposition 4, that the expected unconstrained price

from the open auction is strictly less than the expected price from the FPA i.e., E(p) <

Efv(2)+ 1
2eg = E(pf ) (since Pr(v(1) < v(2)+e) > 0). Therefore, as the logic of the proof

of Theorem 3 suggests, the revenue superiority of the open auction (for su�ciently large

e) is a consequence of the fact that the constraint po � br1(v(3)) binds frequently enough.

Recall our previous remarks following Theorem 1 regarding the option value to bidders

of staying active till the start of the frozen phase. This option value is increasing in the

magnitude of the externality parameter. For su�ciently large e, the bid or the total

valuation of the object (i.e., average willingness to pay + option value) for the bidder

with the lowest use value binds often enough and when it does, on average it more
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the potential winner before the auction ends. This implies revenue equivalence between

the Dutch auction and the sealed bid auctions.

Observe that for e = 0, the price from an open auction equals v(2) (since b
r1(v(3)) =

v(3) for e = 0) and that the open auction and FPA yield the same expected revenue

in this case, as we would expect. The revenue ranking of the two formats for e > 0

will likely depend on the exact value of e. Our strategy in comparing revenues will be

to �rst �nd regions of the parameter space for which we can theoretically prove the

corresponding revenue ranking results. For the rest of the parameter space, we will

appeal to numerical methods to determine revenue rankings.

Theorem 3 If e > 3
�
E(v(2))� E(v(3))

�
, then the open auction yields strictly greater

expected revenues than the FPA.

Proof. First note that maxfv(2) ; br1(v(3))g � br1(v(3)). Similarly, maxfminfv(2) +

e; v(1)g; br1(v(3))g � br1(v(3)).

From the statement of Proposition 4 and Lemma 1, it then follows that

E(po) � 3

4
fE(v(3)) + 2

3
eg+ 1

4
fE �v(2)�+ eg

while we already know that

E(pf ) = E
�
v(2)

�
+

1

2
e
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respect to each other, and (ii) the second highest valued bidder is strong with respect to

the highest valued bidder, while the reverse is not true. The unconstrained price equals

v(2) + e in the event that both the two highest valued bidders are strong with respect

to each other, an event that occurs with probability 1
4
. Finally in the event that the

highest valued bidder is strong with respect to the second highest valued bidder, while

the reverse is not true, the unconstrained price equals the minimum of v(2)+e and v(1).

The actual price, for any given realization of mutual rivalries, is the maximum, of the

unconstrained price for that realization, and the frozen price br1(v(3)).

The expected price from a FPA is relatively simpler to characterize. From the

similarity of the equilibrium to that in a standard IPV model, it is immediate that the

expectation of the price pf equals E(v(2)) +
1
2e.

Remark 1 JMS describe the equilibrium to a second price sealed bid auction (SPA)12

in their framework. In their equilibrium, each bidder bids her average willingness to

pay for the object and the price therefore equals the second highest order statistic from

the distribution of average willingness to pay. In our framework, this amounts to a SPA

price of v(2)+
1
2e, implying revenue equivalence between the two sealed bid auction for-

mats. This conclusion is expected since both the FPA and the SPA di�er from the open

auction in a similar fashion viz., in their sealed bid feature. Also, note that the Dutch

descending bid auction13 continues to be strategically equivalent to the FPA in the pres-

ence of externalities since neither format reveals any information about the identity of
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question. Recall the equilibrium strategies for the open auction and note that since

strategies in r1 are symmetric, strictly increasing functions of use value alone, the �rst

bidder that quits the auction is the one with the lowest use value of the object. The

price is then determined by a standard open auction between the two highest valued

bidders subject to the constraint that it cannot be any less than the price at which the

lowest valued bidder quit the auction. Let us call the price from an English auction

between the two highest valued bidders the \unconstrained" price. In the two bidder

open auction that follows r1, the unconstrained price is therefore determined by the two

highest use values and the nature of their mutual rivalry. Let us de�ne v(l) (l = 1; 2; 3)

as the lth: highest order statistic of three independent random draws from F (:).

Proposition 4 The price from an open auction po equals max
�
br1(v(3)); p

	
where p

follows the distribution

Price(p) Probability

v(2)
1
2

v(2) + e 1
4

min
�
v(2) + e; v(1)

	
1
4

Proof. Since strategies in r1 are a function of use values alone, each of the two

highest valued bidders is strong with respect to the other with probability 1
2
. The

unconstrained price equals v(2) in the following two events, each of which therefore

occurs with probability 1
4: (i) none of the two highest valued bidders are strong with
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@2�i(bi)

@bi@vi
= F (b��1(bi))f(b

��1(bi))b
��1

0

(bi) (20)

which is strictly positive for all bi 2 (0; b�(
�
v)] since F (:) is strictly increasing and

b�(:) is both strictly increasing and continuous.

In the symmetric strategy equilibrium, the sealed bid nature of the FPA essentially

causes bidder i to behave as if her \type" is vi +
1
2
e. Each bidder's bid takes the

familiar form of the being the expected value of the second highest order statistic from

the distribution of \types", conditional on the bidder's own \type" being the highest.

In contrast to the open auction, where conditional on being active at the start of the

frozen phase, a bidder gets a second chance to revise her bid in response to the observed

history of play, the sealed bid auction is instantaneous and o�ers no such opportunity.

As a result, for each bidder, her average willingness to pay for the object turns out to

be a su�cient statistic to characterize her equilibrium bidding strategy.11 Recall that

in an open auction this is not the case and bidder strategies (for the entire game) are

multi-dimensional, depending on both vi and si.

5 Revenue Comparison

The main objective of this paper is to examine whether the open and sealed bid auctions

continue to be revenue equivalent when bidders su�er identity dependent externalities.

We now turn to computing prices from the two auction formats so as to answer this
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�F (b��1(bi))2 + (vi � bi +
1

2
e)F (b��1(bi))f(b

��1(bi))b
��1

0

(bi) = 0 (18)

Setting bi = b�(vi) and rearranging, we get

b�
0

(vi) = (vi +
1

2
e� b�(vi))

f(vi)

F (vi)
(19)

Also, in a symmetric equilibrium in strictly increasing strategies, the lowest type

to submit a bid must be bidding the reserve price and she must also be indi�erent

to participating in the auction (i.e., making zero expected pro�ts). Notice that in a

symmetric equilibrium, type v's willingness to pay (di�erence between her use value

and her expected payo� from not submitting a bid) equals the minimum allowed bid,

i.e., v+ 1
2e. Hence with a pre-announced reserve price of v+

1
2e, all types would actually

submit bids and b�(v) = v + 1
2e.

Theorem 2 b�(vi) =
R vi
v
�

zf(z)dz
F (vi)

+ 1
2e (with b�(v) = v + 1

2e) constitutes a symmetric

equilibrium strategy for the FPA.

Proof. First note that b�(:) as de�ned in the statement of the Theorem, satis�es the

�rst order condition (19) and is strictly increasing, continuous (note b�(v) = v + 1
2
e)

and di�erentiable. Now in view of the pseudo-concavity argument presented in the

proof of Theorem 1, it would su�ce for existence if we can show that @2�i(bi)
@bi@vi

> 0. But
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case of the open auction, we will con�ne attention to BNE of the FPA in symmetric,

strictly increasing and di�erentiable strategies. Also, as in the case of the open auction,

observe that in a symmetric equilibrium, we can drop the argument si from the bid

function since conditional on losing, each bidder assigns equal probability to each of

her rivals winning the auction. Given the ex-ante symmetry of the model, bidders have

no basis to discriminate amongst their rivals in terms of their equilibrium strategies.

Let b�(:) denote the symmetric strategy employed by bidders si and wi. Bidder i's

objective function can then be formulated as

�i(bi; vi) = (vi � bi)fF (b��1(bi))2g+ [1� F (b��1(bi))
2](�1

2
e) (16)

The �rst term in (16) is the expected payo� of bidder i corresponding to the event

that she wins the auction and the second term, corresponding to the event that she

loses. Notice that if bidders si and wi employ symmetric strategies, then bidder i assigns

equal probability to each of her rivals winning the auction and hence her expected payo�

conditional on losing is simply �1
2
e. Bidder i then solves

Max
bi

�i(bi; vi) (17)

subject to bi(vi) � v + 1
2e.

The �rst order necessary condition for an interior solution to bidder i's problem is
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value in addition to her average willingness to pay of vi +
1
2
e.

Moreover, since b�(vi) is strictly greater than vi +
1
2
e, the equilibrium strategies for

the open auction derived above (and hence the seller's expected revenue) would remain

unchanged if the seller were to start the price-clock from some price less than or equal

tov + 1
2
e instead of a price of 0 as implicitly assumed earlier. In the next section on

sealed-bid auctions, we assume that the seller uses a reserve price of v + 1
2
e:

4 First Price Sealed Bid Auction

In a �rst price sealed bid auction (FPA), each participating bidder secretly submits a

dollar amount by way of a sealed bid, to the seller. The seller then awards the object

to the highest bidder at a price that equals her bid, provided this highest bid exceeds

a pre-announced reserve price (say R). First price auctions are frequently used for

public procurement and sale of natural resources e.g., the Department of Interior's

sale of drilling rights for o�-shore oil and natural gas reserves, the US Forest Service's

sales of timber harvesting rights on federally owned forestland etc. A strategy for each

bidder in a FPA consists of a map from her private information to a positive dollar

amount (at least equal to the reserve price) or the decision not to submit a bid, i.e.,

bi : [v; v]�Sni! [R;1)[fno bidg. A Bayesian Nash Equilibrium (BNE) for the FPA

consists of a strategy for each bidder such that given the strategy of her opponents, her

own strategy maximizes her expected payo�. We assume that R = v + 1
2e. As in the
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externalities. Recall that the nature of private information in this model is such that

in r1, strategies are a function only of the �rst element of private information (i.e.,

use values). Hence for purposes of computing the expected pro�ts at each frozen

price, beliefs need to be updated only along the �rst dimension of private information.

Strategies in f are functions of both elements of private information, but the existence

of a dominant strategy for each active bidder in r2 obviates the need to further up-

date beliefs following the observed outcome of f . In this way the model avoids the

complications associated with multi-dimensional belief updation. Also note that this

simpli�cation works only in a 3 bidder model. If the number of bidders exceeds 3, then

in all phases except the �rst and the last set of rising and frozen phases, both elements

of beliefs would need to be updated, since strategies in the preceding phases would be

two-dimensional.

An interesting feature of b�(vi) is that it is strictly greater than vi +
1
2e. While

the signi�cance of this will become clear during our comparison of expected revenues

between the open and sealed bid auctions, it is worth pointing out at this stage that

the open auction allows active bidders the option to revise their bids in response to

the information that is revealed at the end of the �rst rising phase. In particular, each

active bidder gets to see the identity of her other active rival at the start of the frozen

phase and bid accordingly. Therefore there is an option value to being active at the

start of the frozen phase. Bidder i's bid in the �rst rising phase re
ects this option
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increasing, continuous and di�erentiable a.e. in vi. We next show that (15) indeed has

such a �xed point and furthermore it is unique. The following lemma will be useful for

our proof.

Lemma 1 If b� is a solution to (15) for some vi, then b� � vi +
2
3
e

Proof. Observe that
R vi+e

b�
(vi�z)f(z)dz � �e R vi+e

b�
f(z)dz = �e[F (vi+e)�F (b�)].

Substituting this inequality into (15), we have

b� � vi +
2
3
e[F (vi+e)�F (vi)]�e[F (vi+e)�F (b�)]

[F (b�)�F (vi)]
= vi +

2
3e

Proposition 3 The solution to (15) that satis�es vi � b�(vi) � vi + e is unique and

is strictly increasing, continuous and di�erentiable a.e in vi.

Proof. See Appendix.

In order to complete the equilibrium characterization, we are now left to show that

b�(vi) indeed maximizes the objective function in (9). This is done in the following

theorem.

Theorem 1 b�(vi) de�ned in (15) is the symmetric equilibrium bid function for phase

r1.

Proof. See Appendix.

We have thus proved that there exists a unique equilibrium in symmetric strategies

for the \button model" of an open auction where bidders su�er identity dependent
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some additional probability. By doing this, she gains in expected payo� by an amount

�f
i (b; vi) and loses by an amount of �1

2
e (her expected payo� on being the �rst quitter).

At the optimal bid, the gain must exactly balance the loss.

Fact 1 In an equilibrium in symmetric strictly increasing strategies

F (z j b�(vi)) =

8>>>>>><
>>>>>>:

0 8z 2 (�1; vi]

F (z)�F (vi)
1�F (vi)

8z 2 (vi;
�
v]

1 8z 2 (
�
v;1)

(13)

Proposition 2 b�(vi) must satisfy the following equation

3

2
(vi � b�)[F (b�)� F (vi)] +

Z vi+e

b�
(vi � z)f(z)dz + [F (vi + e)� F (vi)]e = 0 (14)

Proof. See Appendix.

Rearranging (14), we get

b� = vi +
2

3

R vi+e

b�
(vi � z)f(z)dz + [F (vi + e)� F (vi)]e

[F (b�)� F (vi)]
(15)

The equilibrium strategy for the �rst rising phase of the auction is thus a �xed

point of the right hand side (RHS) of (15), if one exists and satis�es the hypotheses

of our equilibrium, i.e., it satis�es the bounds vi � b�(vi) � vi + e, is monotonically
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under the hypothesis vi � p < vi + e are all that we need in order to solve the �rst

order condition that results from (10).

Proposition 1 If b�(:) is di�erentiable a.e. on its domain, then it satis�es the follow-

ing necessary condition a.e.

�f
i (b

�(vi); vi) +
1

2
e = 0 (11)

Proof. If b�(:) is continuous, strictly increasing and di�erentiable a.e. on the

support of vi, then b��1(:) must also be continuous, strictly increasing and di�erentiable

a.e. on the range of b�(:). Setting the derivative of the right side of (9) with respect to

bi equal to zero then gives

2f�f
i (bi; vi) +

1

2
egf1� F (b��1(bi))gf(b��1(bi))b��1

0

(bi) = 0 (12)

Next, note that since b��1(:) is strictly increasing everywhere on its domain, b��1
0

(bi) >

0. Also, note that since F (:) is strictly increasing and b�(:) is continuous, the bidders'

equilibrium bid distributions cannot have any gaps (i.e., f(b��1(bi)) > 0 for all bi in

the range of b�(:)). Then setting bi(:) � b�(:)) gives (11).

Equation (11) has the following interpretation. If bidder i increases her bid from

b by a little bit, then she gets to stay active till the start of the frozen phase with
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�f
i (p; vi) =

1

2
[�f

i (p; si; vi) + �f
i (p;wi; vi)] (8)

Now consider bidder i's problem at the start of the �rst rising phase of the auction.

If none of bidder i's rivals quit the auction in r1 at any price lower than br1i , then

bidder i can expect each one of her rivals to go on to win the auction with probability

1
2
(since strategies are symmetric), which leaves bidder i with a payo� of �1

2
e. Then

(omitting the r1 superscript on the bid function) we can formulate bidder i's objective

function at the start of the auction as

�i(bi; vi) =

Z bi

0

�f
i (p; vi)d[1� f1� F (b��1(p))g2] + [1� F (b��1(bi))]

2(�1

2
e) (9)

where b�(:) denotes the symmetric, strictly increasing and continuous equilibrium

bid function being solved for.

Bidder i's bid in the �rst rising phase is a solution to the optimization problem

Max:
vi�bi�vi+e

�i(bi; vi) (10)

Note that even though the integral in the objective function (9) has a lower limit of

0; our only use of this objective function will be to solve b�(vi) which we have already

argued must satisfy vi � b�(vi) � vi+e. Hence the expressions (4) - (7) that we derived
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Similarly, if bidders i and wi are active at the start of the frozen phase, then

bidder i's expected payo� at price p can be written as �f
i (p;wi; vi) =

1
2
[�s

i (p;wi; vi) +

�w
i (p;wi; vi)] where

�s
i (p;wi; vi) = [1� F (p� e j p)]:[0] + [

1

2
(vi � p) +

1

2
:[0]]F (p� e j p) (6)

= 0 (since F (p� e j p) = 0)

corresponds to the case where bidder i is strong with respect to wi, and

�w
i (p;wi; vi) = [1� F (p j p)]:[0] + [

1

2
(vi � p) +

1

2
:[0]]F (p j p) (7)

to the case where bidder i is weak with respect to wi.

Again, to derive (6), observe from (1) that bidder i will quit in f . Since in this

case i is strong with respect to wi, bidder wi will also quit the auction in f(p; j) only

if p >
�
vwi

+ e. Hence bidder i loses the auction outright, to bidder wi with probability

[1� F (p� e j p)] and ties for the object with bidder wi, with probability F (p� e j p).

Similar arguments, with
�
vwi

+ e replaced by
�
vwi

, lead to the expression in (7).

Thus at the start of the �rst rising phase, conditional on one her rivals quitting the

auction at some price vi � p � vi + e, bidder i considers her expected payo� at the

start of the frozen phase to be
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win the auction at frozen price p with probability F (p� e j p), she will win the auction

at price
�
vsi + e (

�
vsi < vi) with corresponding probability density f(

�
vsi j p), and lose

the auction to bidder si with probability [1 � F (vi j p)]. In the last case bidder i's

payo� is �e. Notice that since no bidder would ever bid greater than the sum of their

use value and e, F (p� e j p) = 0. Incorporating this (3) simpli�es to

�s
i (p; si; vi) =

Z vi

p�e

(vi � z � e)f(z j p)dz + [1� F (vi j p)](�e) (4)

Similarly, in the event bidder i is weak with respect to si, bidder i's expected payo�

at frozen price p is

�w
i (p; si; vi) = (vi � p)F (p j p) +

Z vi+e

p

(vi � z)f(z j p)dz + [1� F (vi + e j p)](�e)

(5)

The derivation of (5) follows the same arguments that were o�ered to explain (4)

with the exception that bidder si is now going to quit the auction in f if
�
vsi � p,

otherwise she will stay in the auction till the price reaches
�
vsi.

Because br1si does not depend on the identity of bidder si's strong rival, bidder i

continues to assign probability 1
2 to herself being strong with respect to bidder si.

10

Hence, if bidders i and si are active at the start of the frozen phase, bidder i's expected

payo� is �f
i (p; si; vi) =

1
2
[�s

i (p; si; vi) + �w
i (p; si; vi)].
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of the frozen phase f(br1i ; j) equals her expected payo� from being the �rst bidder to

quit at price br1i . Therefore, in view of the dominance argument presented above, for

purposes of computing br1i , we can restrict attention to the interval vi � p < vi + e

while computing the expected payo� of a bidder at the start of f(p; j) as a function

of the history H = (p; j). However, since j 2 fsi; wig and strategies in f(p; j) are

dependent on j as well, we need to consider each of these possibilities separately.

Suppose bidders i and si are active at the start of the frozen phase (i.e., j = wi).

Note that since
�
vsi is a random variable, bidder si's bid in r1 is a random variable too.

We denote this random variable by
�

br1si . Let us de�ne F (z j p) (with corresponding

density function f(z j p)) to be the equilibrium probability9 that
�
vsi � z conditional

on
�

br1si being greater than p. Since F (:) is continuous and the hypothesized strategies in

the �rst rising phase are strictly increasing functions of use value, f(z j p) cannot have

any mass points. In the event that i is strong with respect to si, bidder i's expected

payo� at frozen price p can be written as

�s
i (p; si; vi) = (vi � p)F (p � e j p) +

Z vi

p�e

(vi � z � e)f(z j p)dz + [1� F (vi j p)](�e)

(3)

From (2) we know that bidder i will stay in the auction till the price reaches vi+ e.

From (1) and (2) we also know that bidder si will quit the auction in f if
�
vsi � p � e,

otherwise she will stay in the auction till the price reaches
�
vsi + e. Hence bidder i will
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In view of the earlier remarks on the existence of a dominant strategy for each

active bidder at the start of the frozen phase, it is straightforward to compute bidder

i's equilibrium expected payo� (as a function of H) at the start of the frozen phase,

taking as given her beliefs about her active opponent's private information. From (1)

and (2), we know that the expression for the payo� we are about to calculate must

depend on which of the following 3 intervals the value of p lies in (i) 0 � p < vi

(ii) vi � p < vi + e, and (iii) vi + e � p. In addition, it must also depend on the

identity of j. However, note that for bidder i, any bid in phase r1 that is less than vi

is dominated by the bid vi, and similarly, any bid greater than vi + e is dominated by

the bid vi + e. To see the �rst part of the claim, observe from (1) that if bidder i were

active at the start of f(p; j), she would not quit in the frozen phase if p < vi, regardless

of the identity of j. Recall that starting with the frozen phase, the game is simply

an English auction between the two remaining bidders. This means that bidder i is

strictly better o� winning the auction at any price (strictly) less than vi rather than

losing the auction, regardless of the identity of her rival she might be losing to. Since

exit is irrevocable, bidding vi in r1 must then strictly dominate bidding anything less

than vi. An analogous argument with respect to p > vi + e establishes the second part

of the claim.

Intuitively, bidder i's drop-out point br1i in the �rst rising phase must be such,

that on the margin, her expected continuation payo� from being active at the start
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conditional on being active at the start of the frozen phase, each bidder expects to be

confronted by either one of her rivals with equal probability. Also, bidders are ex-ante

identical, leaving them with no basis to discriminate amongst their rivals in terms of

their equilibrium strategies in r1.

The above simpli�cation is important from a technical standpoint and deserves

some discussion. Note that in any asymmetric equilibrium, this simpli�cation will not

be available and br1i must be allowed to depend on si in addition to vi. In addition

to the usual lack of closed-form solutions to asymmetric bidding strategies (see e.g.,

Maskin and Riley[1996]), multi-dimensional bids complicate the Bayesian belief upda-

tion exercise and typically make it di�cult to solve for consistent strategy-belief pairs.

The latter problem also arises if the second element of a bidder's private information

consists of the magnitude of the externality she su�ers (instead of si as we have as-

sumed) in which case br1i is again two-dimensional. Furthermore, multi-dimensional

belief updation is also avoided by restricting the analysis to a three bidder model.

With three bidders, the only multi-dimensionality in equilibrium strategies arises at

the start of the frozen phase, at which point each of the remaining bidders is known to

have a dominant strategy. However with more than three bidders, equilibrium strate-

gies will be multi-dimensional starting with the �rst frozen phase (with three or more

bidders still active), making it essential to update multi-dimensional beliefs in order to

compute equilibrium actions in subsequent phases of the auction.
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A Perfect Bayesian Equilibrium (PBE) of the button model consists of a strategy

for each bidder such that in each phase, given her beliefs about her active opponents'

private information, the action prescribed by the strategy in that phase maximizes her

expected payo� from the auction, and the beliefs so used satisfy Bayes rule with respect

to the opponent's strategies, and priors, for the observed history of the game up until

that phase. In view of the dominant strategy for each bidder at the start of the frozen

phase, we need only solve for equilibrium strategies for the �rst rising phase. In the

spirit of sub-game perfection, we will �rst compute the reduced form pro�t functions

at the start of the frozen phase, taking as given the updated beliefs, and then use

these pro�ts to derive the equilibrium bid functions for the �rst rising phase that are

consistent with those beliefs.

Given the ex-ante symmetry of the model, we will focus on �nding PBE of this game

that are characterized by symmetric strategies which are strictly increasing and contin-

uous in the private use value of the object. The restriction of attention to symmetric

strategy equilibria follows from our objective of re-evaluating the revenue equivalence

result, which holds for the IPV framework only when the symmetric equilibrium to

the open auction is compared to the equilibrium of the FPA.8 Focussing on symmetric

strategies allows us to drop the argument si from br1i , the strategy in the �rst rising

phase. This is because in a symmetric equilibrium, each bidder, conditional on losing

the auction, expects to receive payo�s of 0 and �e with equal probability. Moreover,
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rising phase is a map br1i : [v; v] � Sni ! <+, her strategy in the frozen phase is a

map bfi : [v; v]�Sni�H ! fquit; stayg where history H consists of the frozen price p

and the identity of the �rst quitter j, and strategy in the second rising phase is a map

br2i : [v; v]� Sni�H ! [p;1).

At this point, observe that the continuation game that starts with the frozen phase

is simply an English auction between the two remaining bidders with an opening price

equal to the frozen price. In this subgame, each of the two remaining bidders has a

dominant strategy viz., to quit in the frozen phase if the frozen price exceeds their

current willingness to pay for the object (di�erence between their use value of the

object and the payo� they receive if their active opponent wins), or else to quit the

second rising phase when the price reaches this willingness to pay. In our notation,

bfi (vi; si;H) =

8>>>>>>>>>><
>>>>>>>>>>:

stay if H = (p < vi + e;wi)

quit if H = (p > vi + e;wi)

stay if H = (p < vi; si)

quit if H = (p > vi; si)

(1)

and,

br2i (vi; si;H) =

8>><
>>:

max(p; vi + e) if H = (p;wi)

max(p; vi) if H = (p; si)

(2)
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they so wish. If one of the two remaining bidders accepts this o�er and quits then the

remaining bidder is declared the winner of the auction at the current price. If both

bidders quit the auction then the object is awarded at random to one of them at the

current price. If no bidder quits, then the price clock resumes again and the auction

proceeds to the price at which the �rst of the two remaining active bidders quits. The

still-active bidder then wins the auction at this price. There are potentially two phases

of this auction during which the price rises. We refer to the phase when all three

bidders are active as the �rst rising phase of the auction (r1). Following the �rst exit

is the only frozen phase (f(p; j)) of this auction when the seller makes simultaneous

o�ers to the two remaining bidders to quit the auction. If none of the two remaining

bidders accept this o�er, then the auction witnesses a second rising phase (r2(p; j))

which ends when one of the two active bidders quits.

A strategy for each bidder in the \button model" described above consists of the

following three elements: (i) a price at which to quit the �rst rising phase, (ii) a decision

on whether to quit the auction during the frozen phase, contingent on the history of the

game thus far (i.e., frozen price p and the identity of the rival (j) whose exit marked

the end of the �rst rising phase), and (iii) a price (higher than p) at which to quit the

second rising phase of the auction, contingent on the frozen price p, the �rst quitter's

identity j, and the fact that the active rival at the beginning of the frozen phase chose

not to quit during the frozen phase. To be more precise, bidder i's strategy in the �rst

12



3 Open Ascending-Bid Auction

In an open ascending bid auction, starting from some initial low bid, bidders contin-

ually raise the standing high bid by at least an amount equal to a pre-speci�ed bid

increment. The auction ends when no bidder is willing to raise the standing high bid.

The standing high bidder then wins the object at a price equal to her �nal bid. Open

ascending bid auctions are frequently used for the sale of art, antiques, wine, cars

and real estates, and sometimes by federal agencies like the US Forest Service for sale

of natural resources. Milgrom and Weber[1982] have analyzed the so-called \button

model" as an approximation to the open ascending bid auction. In the \button model",

starting from some initial low price, the seller increases the price continuously and each

bidder indicates her active bidding status by keeping a button pressed. Bidders can

irrevocably exit from the auction at any price simply by removing their �ngers from

the button at that price. All active bidders observe the identity and the quitting price

of each exiting bidder. The auction ends at the price at which the second last bidder

quits the auction. The last remaining bidder wins the object at this price. We follow

Milgrom and Weber in analyzing the \button model" in our context of identity depen-

dent externalities amongst bidders. We make explicit the following assumption in our

three bidder \button model". The seller stops the price clock at the price (p) at which

the �rst irrevocable exit (by bidder j (say)) occurs. He then simultaneously o�ers an

opportunity to each of the two remaining bidders to quit the auction at that price if

11



refer to
�
si and

�
wi as strong and weak respectively, with respect to bidder i. We further

assume that ex-ante,
�
si can be either element of the set Sni with equal probability (in

this case 1
2
).

Each bidder's private information consists of the two-tuple (vi; si), which is the

ordered pair consisting of the actual realizations of the random variables
�
vi and

�
si. All

rivals of i share the common priors on
�
vi and

�
si as described above.

Notice that contrary to the examples used to motivate this work, the model de-

scribed above does not include an explicit post-auction game. Instead, the reduced

form implications of asymmetries in post-auction interaction are allowed to manifest

themselves within the model by way of the assumed identity dependent externalities.

This allows us to analyze a static game (aside from the dynamics of the open ascending-

bid auction) and in the process abstract away from signaling issues that typically arise

in dynamic games of asymmetric information, since such issues are not the focus of

this work. In this respect the model is similar to JMS(1) and JMS(2).
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independence assumptions of our model make it possible to solve for the symmetric

equilibrium of the (dynamic) open auction. We are able to show existence and unique-

ness of symmetric equilibrium strategies for the open auction, and also characterize

revenue ranking between the open and sealed bid auctions.

The remainder of the paper is organized as follows. Section 2 presents the model,

section 3 presents the rules of the open auction and solves for the equilibrium. Section

4 presents the equilibrium to the FPA. Section 5 compares expected revenues and

section 6 examines the allocative properties of the two auctions. Section 7 concludes.

An appendix contains some of the longer proofs.

2 Payo�s and Information

Consider the auction of a single indivisible object amongst three bidders. Let the

set of bidders be denoted by S. Bidder i's use value of the object is denoted by the

random variable
�
vi which is distributed according to F (:) with corresponding density

function f(:). We assume that F (:) is continuous, strictly increasing over its support

[v; v] (v > v > 0) and is common knowledge amongst all bidders. For each bidder i,

there exists a bidder
�
si 2 f j 2 S j j 6= ig, whose win gives i a payo� of �e (e > 0).

We denote the remaining rival of bidder i by the random variable
�
wi � Snfi; �sig. We

assume that if
�
wi wins the auction, bidder i gets a payo� of 0. Bidder i's willingness to

pay is therefore not unique but dependent on the identity of her rival in question. We
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the number of bidders. The minimum number of bidders required to model identity

dependent externalities is 3. In the framework of JMS(1), the dynamic nature of the

open auction would then necessitate the updating of multi-dimensional beliefs (of di-

mension at least 3), which turns out to be an intractable problem in general. The

model is made tractable by restricting the environment in two ways. First, we reduce

the dimensionality of the problem to a minimum by analyzing an open auction with

only 3 bidders. Second, we assume that each bidder has one `strong' and one `weak' ri-

val. In the event that a bidder's `strong' rival wins, she receives a payo� that is strictly

lower than the her payo� in the event that her `weak' rival wins. The magnitude of the

di�erence between these 2 possible payo�s (conditional on losing), is assumed to be

commonly known. However, each bidder's private information is still two-dimensional,

consisting of her use value of the object, and the identity of her `strong' rival. This for-

mulation has the advantage that even though private information is multi-dimensional,

in any symmetric equilibrium, when bidding starts in the open auction, bidders are

asymmetric only with respect to their use value of the object, and not with respect

to the second element of their private information.6 Therefore strategies in the �rst

round of the open auction7 are a function of only the use values and not the identities

of the bidders' `strong' rivals. This simpli�es the task of solving for the equilibrium

strategies in the �rst round of the open auction. Our formulation is thus quite di�erent

from those of JMS(1) and JMS(2). In particular, the slightly stronger symmetry and
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not useful because each bidder has a unique (exogenously realized) willingness to pay.

However, with identity dependent externalities, the identity of the standing high bid-

der at each price during an open auction constitutes payo�-relevant information, and

hence in equilibrium bidders condition their strategies on this additional information.

As an open auction progresses, it o�ers bidders the option of adjusting their bids in

response to changes in their beliefs as to the identity of the potential auction winner.

We show that as a result of having this option, bidders value the object more in an

open auction than in a sealed-bid auction.5

We �nd that the higher endogenous valuations that bidders place on the object in

an open auction (compared to a sealed bid auction) leads to higher revenues from it.

We prove this result for a generic value distribution, for the case in which the exter-

nality su�ered by the bidders is su�ciently large. For smaller values of the externality

parameter, we solve a numerical example (using uniformly distributed valuations) to

show that the open auction could yield higher expected revenues compared to the FPA.

We also �nd that in contrast to the standard IPV model, the open auction achieves a

more e�cient allocation compared to the sealed bid auction.

A few introductory remarks about our model is in order. We �nd that in the pres-

ence of identity dependent externalities, solving for the equilibrium of the open auction

is quite complicated because of the multi-dimensional nature of private information.

In the framework of JMS(1), the dimensionality of private information is the same as
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garding identity dependent externalities, the seller may do better in a non-anonymous

mechanism where bidders can submit multi-dimensional bids and thereby convey more

of their private information. Unlike a sealed bid auction, an open auction has the

feature that at each point in the auction, bidders can observe the identity of the stand-

ing high bidder before they decide whether to raise the standing high bid or not. In

other words, the open auction has the desirable feature that bids are e�ectively multi-

dimensional and expected payments from bidders depend both on their rivals' bids as

well as their identities. This raises the possibility that the open auction may raise

higher revenues than the sealed bid auctions. In this paper, we formally examine the

above conjecture.

To further clarify the main intuition, in the presence of identity dependent exter-

nalities, each bidder's willingness to pay for the object being auctioned is endogenous

and depends on the identity of the highest bidder amongst her rivals. In the presence

of asymmetric information a fundamental di�erence between sealed bid and open auc-

tions is in the extent of information available to bidders before they must make their

�nal bid. In an open auction, bidders can typically observe the identity of the standing

high bidder at every point during the course of the auction.4 In contrast, in a sealed bid

auction, bidders must submit their bids not knowing who amongst their rivals would

submit the highest bid. In the case of auctions without identity dependent externali-

ties, this additional information that is revealed during the course of an open auction is

6



consisting of their use value of the auctioned object and the externalities they in
ict

on the other bidders. Since the second element of a bidder's private information does

not directly determine her willingness to pay, the seller's optimal mechanism makes

no use of this in determining either the bidder's expected payment or her probabil-

ity of winning.3 JMS(1) on the other hand employs a more general model where each

bidder's private information is an N -tuple denoting the ordered vector of gross pay-

o�s that she receives for each possible allocation of the object. The optimal auction is

quite di�erent from standard auction formats that are observed in practice, and among

other non-standard features, it requires losing bidders to make payments to the seller.

While interesting in its characterization, the implementation of such an optimal auction

might prove di�cult and slow because of institutional imperfections and rigidities. It

is therefore important to understand how identity dependent externalities may impact

bidding behavior in standard auctions.

JMS(1) also analyze a class of mechanisms that they call \anonymous". An anony-

mous mechanism is de�ned to be one where (i) bidder reports are one dimensional, (ii)

the expected payment and probability of win for any one bidder remains unchanged if

two other bidders' reports are swapped, and (iii) swapping the reports of two bidders

swaps their expected payments and win probabilities. JMS(1) shows that within this

anonymous class of mechanisms, a second price sealed bid auction is optimal. However,

intuition suggests that when bidders possess multi-dimensional private information re-
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Assumption (v) may be rephrased to state that conditional on losing the auction,

bidders are indi�erent to the identity of the auction winner. This assumption may be

unreasonable in many settings, especially when the auction is followed by subsequent

interaction amongst the bidders. Examples of such ex-post interactions are abundant.

Firms bidding for scarce inputs subsequently compete in product markets, bidders at

auctions of art objects and antiques often meet again in resale markets, winners of

defense contracts often subcontract part of the work to some of the losing bidders,

while bidders at timber and oil auctions bid against each other repeatedly over time.

Asymmetries in such post-auction interaction may create winner speci�c externalities

for losing bidders. Thus, if �rms compete in di�erentiated products in the output

market, a losing bidder may be hurt more if the scarce inputs are won by a �rm

manufacturing close substitutes, or if a friendly �rm wins a defense contract, a losing

bidder may still be subcontracted a share of the work. Such asymmetries in ex-post

interaction will then cause losing bidders to have preferences over the identity of the

auction winner.

Such externalities have received little attention in the literature, especially in the

context of standard auction mechanisms. Recent work by Jehiel, Moldovanu and

Stachetti[1996a], [1996b] (JMS(1) and JMS(2) respectively, hereafter) has sought to

relax this assumption in examining the nature of optimal auctions.2 JMS(2) solves for

the optimal auction in a model where bidders have two dimensional private information
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1 Introduction

Auctions are frequently used as mechanisms of exchange in the presence of asymmetric

information between buyers and sellers. Accordingly a large volume of research in

auction theory has concentrated on examining bidding behavior in standard auction

formats. One of the most remarkable results in this line of research is the theorem of

revenue equivalence. It states that under the assumptions of (i) independent private

use values (IPV), (ii) risk neutrality in bidder payo�s, (iii) ex-ante symmetry in bidder

valuations, (iv) no budget constraints and (v) no identity dependent externalities, the

symmetric equilibrium of the open ascending bid auction and the �rst price sealed-bid

auction (FPA) yield the same expected revenues to the seller (see Vickrey[1961], Riley

and Samuelson[1981] or Myerson[1981]). The revenue equivalence result follows in part

from the fact that in their symmetric equilibria, both auction formats achieve the

same allocation. The generality of this theorem derives from the fact that it does not

rely on any assumptions either on the number of bidders (N) or on the distribution

of bidder valuations. Subsequent research has re-evaluated this revenue equivalence

result by relaxing individually, each one of assumptions (i)-(iv). In each case, the

revenue equivalence result has been shown to break down making possible strict revenue

rankings between the two auction formats.1 Such results have had important policy

implications for the design of optimal selling mechanisms under di�erent economic

environments.
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Abstract

We analyze equilibrium bidding behavior in a three bidder open ascending-bid

auction with identity dependent externalities. We prove the existence of a unique

symmetric equilibrium and then show that for su�ciently large externalities, the

open auction yields strictly higher expected revenues compared to a sealed bid

auction. An open auction reveals to bidders more payo�-relevant information

than a sealed bid auction and as a consequence, bidders are shown to have a

higher willingness to pay in the early rounds of an open auction. The open

auction is also shown to be more e�cient than the sealed bid auction.

Keywords: auctions, externalities, revenue-ranking, allocative e�ciency
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