1. Introduction

The classical issue in traditional oligopoly theory dealing with the appropriateness of the
equilibrium concept, Cournot-Nash or Stackelberg, in various imperfectly competitive set-
tings has enjoyed a major revival over the last decade. Through the infusion of modern game
theory, it is now widely recognized that the Stackelberg solution concept is not well-defined
for one-shot games. Rather, it corresponds precisely to the notion of subgame-perfect (Nash)
equilibrium of a two-stage game with sequential moves, perfect information and exogenously
defined first and second movers: See [Friedman (1977), p. 78-84] for a detailed discussion of
this and related points.

This revival consists of two main strands of research that are somewhat related and
sometimes overlap. The first deals with the issue of endogenous timing. Its guiding premise
is that in duopoly models, the determination of simultaneity versus sequentiality of moves,
as well as of the assignment of roles to the players in the latter case, should be completely
endogenous. In other words, t he order of play in a given two-player game ought to reflect
the players’ own intrinsic incentives, in the absence of any natural exogenously-determined
timing structure. Studies pursuing this view include among many others: Dowrick (1986),
Boyer and Moreaux (1987), Robson (1990), Anderson and Engers (1994), Amir and Grilo
(1999), and van Damme and Hurkens (1999).

The second strand of research deals with the determination of first- and second-mover ad-
vantages in given subclasses of the general class of duopoly games characterized by monotone
best-responses (upward or downward-sloping), and monotone profits in rival’s actions. In
other words, this strand compares the equilibrium payoffs of the two firms in the two se-
quential games (of perfect information) obtained by considering both orders of moves. This

strand comprises, among others, Gal-Or (1985), Mailath (1993), Daughety and Reinganum



(1994), and Reinganum (1985).

The present paper belongs mostly to the latter strand, and deals with duopoly price com-
petition with differentiated products and constant marginal costs. It is widely believed that
price competition is typically characterized by a second-mover advantage, in the sense that a
firm’s most preferred situation is to have its rival commit to a price, and then optimally react
by appropriately undercutting the observed rival’s price. As Bertrand’s classical critique of
Cournot’s work shows, this intuition certainly holds in an extreme form in the case of ho-
mogeneous products, owing to the totally discontinuous nature of each firm’s demand along
the price diagonal. This intuition has also been proven right in the differentiated-products
case when firms are identical: Gal-Or (1985) and Dowrick (1986).

The present paper has three main objectives. First, we generalize the well-known results
in the literature by removing the common (and sometimes tacit) assumptions of concavity
of profits in own action (or continuity and single-valuedness of the reaction curve), and
of uniqueness of the Bertrand-Nash equilibria. To do so, we invoke the recent results of
supermodular optimization/ games.

Second, we clarify the crucial role played by the strategic complementarity or substi-
tutability of prices in determining timing advantage with asymmetric firms. To this end, we
consider all three possible cases making assumptions on primitives leading to each case. We
prove that when both optimal reactions slope upwards, at least one firm has a second-mover
advantage. When both optimal reactions slope downwards, both firms have a first-mover
advantage. Finally, in the mixed case, the firm with a downward-sloping reaction always has
a first-mover advantage.

Last, we further investigate the scope of the second-mover advantage under strategic

complementarity of prices, asymmetric firms and differentiated products. We show that



under the latter three assumptions, the second-mover advantage property fails even when
demand is linear and symmetric and unit costs are constant and unequal. More precisely,
we show that for some parameter values, the low-cost firm can have a first-mover advantage.
On the other hand, the high-cost firm always has a second-mover advantage in this case,
thus partly confirming the conventional intuition.

The paper is organized as follows. Section 2 describes the model, the equilibrium con-
cepts, and the results. Section 3 has all the proofs. Finally, an appendix, with a brief and

simple outline of the lattice-theoretic notions and results used here, is given.

2. Model and Results

Consider the standard model of duopolistic price competition with differentiated goods.
Firm 4 charges price p;, faces demand D;(p; p2) and is assumed to have linear production

costs with marginal cost ¢;, ¢ = 1,2 . The profit of firm ¢ is then given by

i (p1, p2) = (pi — ci) Di(p1, p2)- (1)

We consider three different games of price competition that are distinguished only by their
timing structure: a simultaneous-move game G and two games with sequential moves and
perfect information, G; and Gb.

In the simultaneous-move game G, firms act simultaneously. So, a pure strategy for firm
i in GG is to choose an element of its price set P; , which is a compact real interval. In game
Gy, firm i (the leader) moves first, choosing a pure strategy p; € P;, and the other firm (the
follower) moves after observing the price of the rival, choosing its pure strategy v(p;), where
v(p;) is a mapping from P, to P;, j # i.

For each of these games, let’s define the associated equilibrium concept. A pair (p3, p3)



constitute a Nash (or Bertrand) equilibrium in game G if

I (p3,p3) > Ti(p1,ps), for all p; € Py, and

o (pi,py) > Ila(pi, pe), for all py € P;.

For games Ghiand G, the equilibrium concept is subgame-perfect equilibrium or SPE (also
known as Stackelberg equilibrium in traditional oligopoly theory), which is defined as follows,

say for game G;. A pair (p], 7*(+)) is a SPE equilibrium for game G if
o (p1, 7" (p1)) > Ia(p1, p2), for all p; € Pland py € P, and

I (p7, 7" (p1)) > i(p1, 7" (p1)), for all py € P.

In other words, a SPE imposes the following restrictions on players’ behavior:
(i) the second-mover must be using as strategy a (single-valued) selection from his best-

response correspondence, defined as usual as

ro(p1) = arg max {Is(p1, pa) : p2 € Pa},

and
(ii) the first-mover must choose a price that maximizes his payoff given the anticipation of
a rational reaction (according to the strategy v*(-)) by the rival.

Thus, a SPE for the sequential game of perfect information G; formalizes in precise
game-theoretic terms the classical concept of Stackelberg equilibrium for the duopoly price
game. Subgame perfection requires that the second-mover react optimally (here, according
to the strategy v*(-)) for any price that the first-mover might choose, optimal or not.

The following standard assumption is made throughout the paper:

(A1) The demand function D;(p1,p2) is assumed to be twice continuously differentiable,



and to satisfy

0 Dz’( D, p2) <0 and 0 Di( Da, p2)
0 p; 0 pj

> 0 for all (p1,p2) € P, X Ps.
The first inequality says that demand for good i is downward sloping in its own price and

the second that goods are substitutes, i.e., the demand for a good increases with the price

of the competitor’s good.

A well known result is that in case of a symmetric duopoly game, there is a second-mover
(first-mover) advantage for both players when each profit function is strictly concave in own
action and strictly increasing (decreasing) in rival’s action, and reaction curves are upward
(downward) sloping: See Gal-Or (1985). Dowrick (1986) extends this result to asymmetric
duopoly under more general assumptions.

Before formulating our results, let us extend the definition of the notions of ”first- and
second-mover advantage” to asymmetric games. We say that firm ¢ has a first (second)
mover advantage if its equilibrium payoff in G;(G}) is higher than in G;(G;). While game G
may have multiple Bertrand-Nash equilibria, the games Grand G, will (essentially) not have
multiple SPEs, as we now argue. Multiple SPEs for (say) game G; can arise in two different
ways. The first is that, given the follower’s strategy ~*, the leader’s payoff I1;(p1, v*(p1))
may have more than one argmax’. While possible, this situation is generically removable, in
that the smallest perturbation of any of the game parameters or primitives will result in a
unique argmax. The second source of nonuniqueness of SPEs is that at the leader’s optimal
choice pf, ro(+) is multi-valued. In this case, Amir, Grilo and Jin (1999) show that there is
a unique SPE, which is (pj,72()), where T2 is the maximal selection of 75, due to the fact
that the two goods are substitutes. In view of these arguments, we will henceforth assume
uniqueness of the SPE of games Giand G5, but not of the game G.

Our first proposition requires the following assumption on the demand functions:



(A2) D;(p1,po) is strictly log-supermodular on P; X P.

This assumption implies that

O*Di(p1,p2) _ ODi( p1, p2) ODi( p1, p2)

0
Op10p2 Op; Ip; B

D;(p1,p2)

and, conversely, the strict version of this inequality implies (A2). The main implication of
(A2) is that it leads to reaction correspondences that are nondecreasing (in the sense that

each selection is nondecreasing).

Proposition 1 Under assumptions (A1), (As), at least one of the firms has a second-mover

advantage.

This result is closely related to a result of Dowrick (1986). We have a different sufficient
condition for increasing best-responses, and our proof makes it clear that the continuity or
the single-valuedness of the optimal reactions, as well as the uniqueness of the Bertrand
equilibrium, are not needed for the result to hold.

Another result relating the same three games has appeared in the literature under some
extra assumptions (Gal-Or, 1985, Dowrick, 1986) It says that each firm prefers games G4
and G5 to game G. In other words, each firm prefers to be a Stackelberg player (whether
leader or follower) to playing simultaneously. Amir, Grilo and Jin (1999) prove this result
precisely under our assumptions here.

The next result deals with the case where the reaction correspondences of both firms are

downward sloping. This requires the following assumption on demands:
(A3) D;(p1,p2) is strictly log-submodular in P, X Py, i = 1,2.

This assumption implies that

*D;( p1, p2) _ 9D;( p1, p2) OD;( p1, p2) <0
Op10p2 Ip; Op; B

D;(p1,p2)



and, conversely, the strict version of this inequality implies (A3). The main implication of
(A3) is that it leads to reaction correspondences that are nonincreasing (in the sense that

each selection is nonincreasing).

Proposition 2 Under assumptions (A1) and (As), each firm has a first mover advantage.

The next result deals with the mixed case, when one of the firms (say firm 2) has log-
supermodular demand function, and hence an upward-sloping reaction, and firm 1 has a
log-submodular demand function, and hence a downward-sloping reaction. Here, the added
quasi-concavity assumption is needed only to guarantee existence of a Bertrand equilibrium
(as Tarski’s theorem clearly does not apply when the two optimal reactions are monotone

in different directions).

Proposition 3 Under conditions (Ay) for both firms, assumption (As) for firm 2, assump-
tion (As) for firm 1, and under the additional assumption that each firm’s profit function is

strictly quasi-concave in own price, firm 1 has a first mover advantage.

The rest of the paper deals with a possible extension of Proposition 1. The argument used
in its proof here (as well as in Dowrick’s proof) cannot be extended to establish or to exclude
a second-mover advantage for the other firm. Furthermore, at an intuitive level, one typically
thinks of price competition as being characterized by a second-mover advantage. Indeed, the
option to undercut the rival’s price seems rather appealing. With homogeneous products,
price undercutting allows a firm to capture the entire market, and thus an extreme advantage.
With differentiated products and identical firms, a second-mover advantage always prevails
when prices are strategic complements. It is thus a very natural question to ask whether

a second-mover advantage would survive high degrees of firm asymmetry and of product



differentiation (still under strategic complementarity of prices.) To this end, the case of
linear demand and costs provides a convenient framework of analysis.

Henceforth, assume symmetric linear demands of the form
Di(p1,p2)=a—prl—bpj, where 0 <b < 1, (2)

with the profit of the firm 7 still given by (1). Furthermore, w.l.o.g., we assume that ¢; > ¢y

To guarantee interiority of solutions for all three games at hand, the following assumption
on demand and unit costs is needed for firm 1 (the high-cost firm):

(B) The demand function is given by (2) and satisfies: a > M, , where M; =
c1 (2—b?)—bcy

240
Assumption ( B) guarantees that quantities are positive and prices are above marginal

cost in each of the three games at hand.

Lemma 4 Under Assumption (2), the unique Bertrand-Nash equilibrium (for game G) is

gwen by (pY, plY) where (withi,j =1,2 1+ j.):

a(2+0) + bc; + 2¢;
py = 22D 2 (3)

The Stackelberg equilibrium prices and profits of the game G; under Assumption (B) and

linear demand and cost functions is given by (here' i,7 =1,2, 1 # j):

L_CL(2+b)+ij C;

pi—er? (4a)

4 — b)) (a+c;)+ 2ab ")
PRl EORL TN )

L The superscripts L and F stand for Stackelberg leader and follower, respectively. Thus pY and pf are firm
i’s prices in game G, and Gj, respectively. This notation is meant to avoid (confusing) superscripts for
games.



o (@b + (7 — 2)ci + bey)?

1 8(2 . b2) ) (46 )
o (a(b® —2b—4) +b(b* — 2)c; + (4 — 3b*)¢;)?
I = 16(b2 — 2)2 ‘ (4d)

To state our next result, we need to define

A ((2 — b2)01 — (2b2 + b — 2)02 + \/ 2(2 — b2)(1 + b)(Cl — 02))
My = 4+ 3b ' (5)

As will be seen in the Appendix, M> is the unique feasible value of a for which firm i is
indifferent between leading and following, i.e., a = M, < I1F = I1F.
Our last result provides a complete characterization of the comparison between the two-

stage games (G; and (5 for our linear specification.

Proposition 5 Under linear demand and cost functions and Assumption (B), firm 1 (high-
cost) has a second-mover advantage for all feasible a. Firm 2 (low cost) has a first-mover
advantage when a € [My, Ms], but a second-mover advantage when a € [Ms, 00),where M
is given in assumption (B) and My is defined by (5). Furthermore, the scope for first-mover

advantage increases with the cost difference c; — cs.

This result establishes that the conjecture that price undercutting is always a favorable
option in Bertrand competition is generally false. It fails to hold globally (i.e., for all feasible
parameter values) even in the most common specification of linear symmetric demand and
constant unit costs. Thus, this conjecture relies crucially on the discontinuity of the single
firms’ demand functions along the price diagonal inherent in homogeneous-product Bertrand
competition, or on the symmetry between the two firms in the differentiated-products case.
Furthermore, as confirmed by Propositions 2 and 3, the strategic complementarity of prices
is also needed for the second-mover advantage to prevail, even in the case of symmetric firms

with differentiated products.



3. Proofs.

Proof of Proposition 1.

Since log I1;(p1, p2) = log(p; — ¢;) + log D;(p1, p2) it follows that logII; is supermodular
in (p1, p2) . Applying Topkis’s Theorem to this transformed payoff function, we get that
every selection from each firm’s reaction correspondence is a nondecreasing function of the
rival’s price.

As shown in [Amir, Grilo and Jin (1999), Proposition 2.4], Stackelberg prices are higher
than Nash prices. This follows from the following argument, say for Game G. Let (pf, p5) be
the price pair associated with an arbitrary Stackelberg equilibrium of game G4 and (p}, pY)
be the largest Bertrand equilibrium of game G, which is the Pareto-preferred Bertrand

equilibrium [Theorem 7 of Milgrom and Roberts, 1990]. Then

(p7 — c)Di(p7,p5) > (p7 — c1)Da(py . py)

> (p} — ) Di(p?, pd), (6)

where the first inequality follows from the fact that a leader’s payoff cannot be worse than
his Nash payoff? , and the second from the Nash property. Since D;(pf,.) is increasing, (6)
implies that p5 > pY. Since both (py,p5) and (p',pY) lie on 75 and every selection of 7y is
nondecreasing, p5 > pY implies that py > pV.

Due to the facts that every selection from r; and 75 is a nondecreasing function of the
rival’s price, and that Stackelberg prices are higher than Nash prices, there are only 3 possible
ways to relate equilibrium prices in Gy and Gy : (i) p& > pl and pl > pf", (ii) pL > pf and

pt < pf') and (iii) pf < pf and pl > pf". We now analyse each case separately:

2 A formal proof of this is given in [Amir, Grilo and Jin (1999), Lemma 4.1].
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Case (i). Consider the following inequalities in games G and Gb:

(P — c1)Di(p¥,p%) > (pF — 1) Di(pF, pk)

> (pf — c1)D1(pT, %)

where the first inequality for firm 1 follows from the definition of Stackelberg equilibrium,
and the second from the facts that pL < pl and D;(p{,.) is increasing. This says that the
profit of firm 1 in higher in game G5 than in game G4, so that firm 1 prefers game G5 to
game (7. A similar argument shows that firm 2 prefers game G; to game Gs.

Case (ii). Here, it can be seen that the argument of Case (i) can be applied only for
firm 1, so we can conclude only that firm 1 prefers to be a follower.

Case (iii). Here, it can be seen that the argument of Case (i) can be applied only for
firm 2, so we can conclude only that firm 2 prefers to be a follower.

Overall then, this establishes that there is always at least one firm that prefers to follow.

Straightforward calculations shows that

O(My — M) (14 b)(20% — 4+ (24 b)v/4 — 2b2)

dcy B (24 b)(4 + 3b)
O(My— M)  (1+0b)(20> —4+ (24 b)v4 — 20?)
dcy o (2 +b)(4 + 3b)

It can be shown that 8(M;7;Ml) > (0 while 8(M§76—21\Jl) <0.1

Proof of Proposition 2.

Here, we know from Topkis’s Theorem that all the selections from both firms’ reaction
correspondences are nonincreasing. [Amir,Grilo and Jin, (1999), Lemma 4.1] proves that,
under either Assumption (A2) or (A3), both firms prefer their Stackelberg leader payoff to
their largest Bertrand equilibrium payoff. Likewise, [Amir, Grilo and Jin (1999), Proposition

2.5] shows that both firms prefer their worst Bertrand equilibrium payoffs (the one with

11



lowest prices) to their Stackelberg follower payoffs. Putting these two results together, it

follows that both players have a first-mover advantage. W

Proof of Proposition 3.

Here, we know from Topkis’s Theorem that all the selections from r; are nonincreasing
while all the selections from 7y are nondecreasing. [Amir, Grilo and Jin (1999), Lemma 4.1]
shows that firm 1 prefers its Stackelberg leader payoff to its Bertrand equilibrium payoff.
[Amir, Grilo and Jin (1999), Proposition 2.6] shows that firm 1 prefers its Bertrand equi-
librium payoff to its Stackelberg follower payoff. It follows that firm 1 has a first-mover

advantage. B

Proof of Lemma 4.

From firm #’s best-response problem max (pi —ci)(a—pi +bp;) , 4, j =1,2,1# j, we
obtain its reaction curve r;(p;) = %. The pair of Bertrand-Nash equilibrium prices (3)
is the unique point where the two reaction curves intersect.

To find Stackelberg point in game G, firm ¢ maximizes its profit along r;, i.e. its objective
function is IL;[p;, 7j(pi)] = (pi — ¢i)la — pi + bmgﬁci]. This yields p* as given in (4a). The
Stackelberg equilibrium price of the follower pf (see 4b) was found by substitution pF into
r;.

To be sure that the solutions of all three games are interior, Assumption (B) is easily

seen to be what is needed. l

Proof of Proposition 5.
Our arguments here are based on simple but tedious (closed-form) computations. Con-

sider the indifference relations

Iy — 1Ty = (7)
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and
ml -1 =o, (8)
where I1Z, TIE (ITF, I1F) are the equilibrium profits of firm 2 (firm 1) in games G, G; (G1, Gs),
respectively. Equations (4c), (4d) provide expressions for all four profit levels. It can be
easily seen that (7) is a quadratic equation with respect to the parameter a. That means the
equation has two solutions - two values of parameter a. But one of the roots (the smaller
one) does not belong to the interval of feasible parameters a, and is therefore not considered.
Only the largest root, which is given in (5) and denoted by M, is a valid solution of (7).
Since (7) is a quadratic equation w.r.t. a and the term a? has a negative coefficient, it follows
that TI5 — TI5" > 0 if and only if a € [My, M).
Concerning (8), it can be easily shown using arguments analogous to the above that,
given ¢; > ¢y and our parameter restrictions (B), we always have IIX < II¥", so that firm 1

always has a second-mover advantage here. B
4. Appendix A

Here, we provide a brief but self-contained summary of all the lattice-theoretic notions and
results used in the present paper, in the simple framework of real action and parameter
spaces: Every result presented here is a special case of the indicated original result.

A function F : [0,00)? — IR is strictly supermodular (strictly submodular) if
F(z1,y1) — F(za,11) > (<) F(21,y2) — F(x2,y2) for all zy > x9,11 > yo. (A1)
F :[0,00)? — IR has the strict single-crossing property or SSCP (dual SSCP) in (z; y) if
F(z1,y2) > (S)F(22,92) = F(z1,y1) > (<) F(29,y1) for all 1 > 9,51 > yo. (A.2)

Note that F strictly supermodular (strictly submodular) = F has the SSCP (dual SSCP),
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while the converse is generally not true. Furthermore, supermodularity is a cardinal property
while the SSCP is ordinal. If F': [0,00)®> — IR and h is a strictly increasing function from
IR to IR such that h o F' is strictly supermodular, then F' has the SSCP. In this paper, we
use only a special case of the SSCP (the dual SSCP), arising from the profit function being
log-supermodular (submodular).

Supermodularity and submodularity have complete characterizations in terms of the
sign of cross-partial derivatives in case of smooth objective functions (Topkis, 1978). On the
other hand, the strict versions of these notions can be given separate (related) necessary and
sufficient conditions. Let F' be twice continuously differentiable. If %% > (<)0,V z,y, then
F is strictly supermodular (strictly submodular). Conversely, if F' is strictly supermodular
(strictly submodular), then we have % > (<)0,V z,y. The latter inequality is equivalent
to supermodularity (submodularity) of F' defined by (A.1) with a nonstrict inequality.

The monotonicity theorem repeatedly used in this paper is due to Topkis (1978).

Theorem A.1. Every function x*(y) € argmaz,>, F(x,y) is nondecreasing (nonincreas-
ing) in y if F is strictly supermodular (strictly submodular) in (z,y).

This result has been generalized by Milgrom and Shannon (1994) who showed the conclu-
sion of the theorem still holds if the assumption that F is strictly supermodular (submodular)
is replaced by the assumption that F satisfies the SCCP (dual SSCP) in (z;y). In this paper,
Topkis’s Theorem is applied to profits and to log-profits, under different assumptions.

We close with a statement of (a special case of) the associated fixed-point theorem, due
to Tarski (1955):

Theorem A.2. Let Ky, Ky be compact intervals in [0,00), and f: K1 X Ky — Kj X Kj

be nondecreasing. Then the set of fixed-points of f is nonempty and contains a smallest and

a largest element.
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A normal-form game is supermodular (ordinally supermodular) if the payoff functions
are supermodular (have the SSCP). In both cases, we also say that the game has strategic
complementarities. A two-player game with payoffs satisfying submodularity (resp., the dual
SSCP) becomes a supermodular (resp., ordinally supermodular) game once we reverse the

order on one of the players’ action set.
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