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Abstract: We report on a novel forecasting method based on nonlinear

Markov modelling and canonical variate analysis, and investigate the use of a

prediction algorithm to forecast conditional volatility. In particular, we assess

the dynamic behaviour of the model by forecasting exchange rate volatility. It

is found that the nonlinear Markov model can forecast exchange rate volatility

significantly better than the GARCH(1,1) model due to its flexibility in accom-

modating nonlinear dynamic patterns in volatility, which are not captured by

the linear GARCH(1,1) model.

1



1 Introduction

In finance, volatility is a key measure of risk and of the relative change in

the price of a security, such as stock, stock index, or derivative, over time.

Thus, the greater is the price variation, the greater is volatility. As the true

underlying volatility of a security is unobservable, it must be estimated.

Although there are different expressions for volatility, the definition used in

finance is typically the standard deviation of the returns of a security over

a given period.

Volatility is an essential input to the optimisation of financial models

describing the expected risk-return trade-off. For example, it is a crucial

input to mean-variance portfolio optimisation models and for the pricing

of both primary and secondary derivative securities. In general, the higher

is the volatility, the greater is the value of an option. Thus, it is essential

for practitioners to be able to model the volatility dynamics of financial

securities adequately.

Any model that attempts to predict volatility will need to incorporate

the following important dynamics in returns:

1. Financial markets frequently experience large and sudden price move-

ments. A recent example of extreme price movements is the October

1997 stock market crash originating in Asia. On 28 October 1997, the

Hang Seng Stock Index (HSI) dropped by 14.7%, the German Stock

Index (DAX) by 7.2%, the Standard & Poor’s 500 Composite Index

(S&P500) by 5.0%, and the Japanese Stock Index (Nikkei 225) by

4.4%. A consequence of these extreme observations is the fat-tailed

distribution of returns.

2. There is overwhelming evidence that the tail behaviour of equity re-

turns evolves over time (Mandelbrot (1963)). In particular, absolute

returns have significant positive serial correlation over long lags, im-

plying that they have long term memory (Ding et al. (1993)). This is

known as volatility clustering, whereby large (small) absolute returns

are more likely to be followed by large (small) absolute returns than by

small (large) absolute returns. In other words, volatility is positively

correlated over time.
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3. Equity returns are highly asymmetric. In particular, negative shocks

to returns (bad news) lead to larger volatility than equivalent positive

shocks to returns (good news) (Black (1976), Christie (1982), Camp-

bell and Hentschel (1990), Duffee (1995), and Blair et al. (1998), and

Koutmos (1998)). This has commonly been called the ’leverage effect’

because the decline in the firm’s stock price will increase the debt to

equity ratio.

4. The persistence of shocks to volatility is asymmetrically related to the

size of the shocks. When shocks to returns are high (low), trends per-

sist for shorter (longer) periods (Engle and Lee (1993)), which means

that the market reverses itself.

Hence, the implication for practitioners is that financial market volatility is

predictable.

The most commonly used model to forecast volatility is the generalised

autoregressive conditional heteroskedastic GARCH(1,1) model of Engle (1982)

and Bollerslev (1986). Its empirical and theoretical appeal is due to the

following: (i) captures the persistence of volatility; (ii) accommodates the

fat-tails of the returns distribution; and (iii) is simple, and also mathemat-

ically and computationally straightforward. However, its theoretical and

empirical simplicity is also the main reason for its numerous limitations.

For example, the GARCH model imposes a symmetrical influence of lagged

squared residuals on current volatility, thereby failing to accommodate sign

asymmetries. Moreover, high and low volatility shocks are imposed to have

the same rate of persistence. Considering these shortcomings, numerous

extensions have been suggested to the GARCH model in order to capture

the many stylised facts of volatility. For example, the GARCH model has

been extended and refined to include the asymmetric effects of positive and

negative shocks to returns on volatility (such as the Exponential GARCH

model (EGARCH) (Nelson (1990), the GJR-GARCH model (Glosten et al.

(1993)), the threshold GARCH model (TGARCH) (Zakoian (1991)), the

Asymmetric Power GARCH model (APGARCH) (Ding et al. (1993), and

the Quadratic GARCH model (QGARCH) (Sentana (1995)). Also, regime

switching GARCH models (Cai (1994); Hamilton and Susmel (1994); Kim

and Kim (1996); and Susmel (1998)) have been developed that incorporate
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the different degrees of persistence of low-, moderate- and high-volatility

regimes, and that does not attribute a large degree of persistence to the

effects of extreme and outlying observations.

In this paper, we take a more general nonlinear non-parametric approach

which provides flexibility in its ability to model temporal asymmetries as

well as persistence. Although it has been argued that improved in-sample

fit does not necessarily lead to improved out-of-sample forecasting ability,

unless the non-linearities are realised in the latter period (Terasvirta and

Anderson (1992)), we argue that non-linear models will, on average, yield

improved forecasts.

This paper is organised as follows. Section 2 describes the nonlinear

Markov modelling approach. In Section 3, we give a detailed outline of the

implementation of the nonlinear Markov modelling and forecasting algo-

rithm. Section 4 describes the GARCH(1,1) model. Section 5 presents the

data analysis while Section 6 gives the empirical results. Some concluding

remarks are given in Section 7.

2 Nonlinear Markov modelling

We introduce a nonlinear Markov modelling approach based on canonical

variate analysis (CVA), which was first developed by Hotelling (1936). The

method we use for constructing models from time series with non-trivial

dynamics is an extension of the work published by Larimore (1991), and

involves the analysis of canonical correlations and variates from the past and

future of a process. CVA theory was originally developed for independent

and identically distributed (i.i.d.) random variables. However, we apply

CVA to correlated vector time series which is discussed in detail by Larimore

(1997).

Consider a nonlinear, time invariant, strict sense, discrete-time Markov

process with no deterministic input to the system. Let this stochastic process

be observed at equal sampling intervals t to yield a time series given by

yt|[t=1,2,...N ] . (1)

Associated with each time t, define a past vector pt, given as anm-dimensional

uniform embedding of the scalar time series yt. However, there exist more so-
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phisticated embedding procedures (Judd and Mees (1998)). Thus, consider

a non-uniform embedding introduced by the lag vector l = (l1, l2, ..., lm), a

vector of positive integers, and obtain the past vector pt as

pt = (yt−l1, yt−l2, ..., yt−lm). (2)

Having obtained an embedding the dynamics the system can be described

by

yt = G(pt) + εt (3)

with nonlinear function G and εt as the residual error. Judd and Mees

(1995) describe an approach how nonlinear function G can be found. Once,

the nonlinear function G is found, the future value ŷN+1 can be estimated.

The Markov modelling approach extends this concept and we predict n steps

ahead. Hence, the future vector ft of finite window length n is introduced

by

ft = (yt, yt+1, ..., yt+n−1)
T . (4)

Vector pt is the set of predictor variables and ft is the set of variables to be

predicted.

The fundamental characteristic of a nonlinear, time invariant, strict sense

discrete-time Markov process of finite state order is its finite dimensional

state st. Finite dimensional state st is approximated by an r-dimensional

reduced memory vector mt, given as a nonlinear function φ of the past, that

is,

st ≈ mt = φ(pt). (5)

State st has the property that the conditional probability of the future ft

given the past is identical to the conditional probability of ft given st, that

is,

P (ft|pt) = P (ft|st). (6)

Thus, only a finite number r of nonlinear combinations of the past is rele-

vant to the future. The primary effort in calculating an optimal nonlinear

prediction f̂t of the future ft involves the determination of r nonlinear com-

binations of the past pt. The optimal prediction f̂t is a linear combination

of the r-dimensional reduced memory vector mt, where the nonlinear func-

tion φ of the past pt is chosen such that the optimal linear predictor f̂t(mt)

minimizes the prediction error.
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So far we defined the linear embedding of the time series yt, i.e. the

past vector pt, but we have not yet introduced any nonlinear functions to

approximate the future. Hence, we select a class of nonlinear functions

fi|[i=1,2,...,k], of the past pt to obtain a set of basis functions πt to approximate

the future; that is,

πt = (f1(pt), f2(pt), ..., fk(pt)) (7)

where k is the number of nonlinear basis functions. We use radial basis

functions as basis functions fi of the past pt to approximate the future ft

for CVA. The standard radial basis function is defined as

fi(pt) = Φ

(
|pt − ci|

ri

)
(8)

for suitably chosen centres ci, radii ri, and radial basis function Φ.

The predominant effort in estimating the optimal basis functions fi

which are nonlinear functions of centres ci and radii ri, now involves the

application of a selection algorithm (Judd and Mees (1995)). Construct a

class of parameterised nonlinear autoregressive models called pseudo-linear

models from the embedding pt; that is,

yt =
k∑
i=1

λifi(pt) + εt =
k∑
i=1

λiΦ

(
|pt − ci|

ri

)
+ εt (9)

for some selection of nonlinear functions fi, unknown parameters λi, un-

known i.i.d. random variates εt, and a given number k. The choice of k is

not critical. However, k has to be large enough to describe the data from the

measured system sufficiently well, i.e. to guarantee a residual error εt lower

than a pre-specified level. Then, the basis set, the functions fi|[i=1,2,...,k], is

obtained as a set of basis functions that approximates the data yt. In the

following, we use the set of functions fi|[i=1,2,...,k] as a set of basis functions

πt = (f1, f2, ..., fk), given in Eq. ??, to predict the future ft.

Now we define the optimal prediction problem which is solved by a max-

imum likelihood system identification procedure (Larimore (1991)), as fol-

lows. We just give the results; details can be found in Larimore (1997).

Assuming a linear relationship describing the optimal prediction of ft from

πt, consider the following model

ft = Bmt + et

mt = Aπt(pt) = φ(pt) + et (10)
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where memory mt is an intermediate set of r variables that may be fewer

in number than πt. Vector et with covariance matrix Σee is the error in the

linear prediction of ft from πt given by matrices A and B. One may also

predict the future ft from the past pt using Eqs. ??; that is,

ft = BAπt(pt) + et = Cπt(pt) (11)

where the rank of matrix C = BA is given by rank(C) ≤ r. Hence, when

solving the prediction problem it is much easier to deal with matrices A and

B with fixed dimension r than to deal with the constraint rank(C) ≤ r.

For simplicity, denote the matricesM , containing the intermediate set of

r variables mt, E containing the prediction-error variables et, F the future

vectors ft, and Π the basis set πt. Furthermore, define the covariance matri-

ces of the basis set, the future, and the prediction error by Σππ = 1
NΠ ΠT ,

Σff = 1
NFF

T , and Σee = 1
NEE

T , respectively. The cross-covariance matrix

of the basis set and the future is given by Σπf = 1
NΠFT .

Matrices A and B will be determined by a maximum likelihood proce-

dure and the CVA Theorem stated below provides the means of solving Eqs.

?? for the optimalA and B, given Σee. We assume that pt and ft are normal

random variables, jointly distributed with zero mean and covariance matri-

ces Σππ, Σff , and Σπf . A maximum likelihood estimator of A, B, and Σee is

naturally defined by the conditional likelihood function p(F |Π;A,B,Σee) of

the future F given the basis set Π. Maximum likelihood estimation (MLE)

involves substituting Σee, and estimating A and B as the matrices that

maximize the likelihood for the given basis set and future of the observed

process.

CVA Theorem. Let Σππ(m × m) and Σff (n × n), the covariance

matrices of the basis set and the future, respectively, be nonnegative definite

(satisfied by covariance matrices). Then there exist matrices J(m×m) and

L(n× n) such that

JΣππJ
T = Irππ

LΣffL
T = Irff (12)

JΣπfL
T = D = diag(γ1, γ2, ..., γr, 0, ..., 0)

where rππ = rank(Σππ), rff = rank(Σff), and γi are the canonical correla-

tions. Matrix Ir denotes the r× r identity matrix.
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CVA is a generalised singular value decomposition which transforms ba-

sis set πt and future ft to pairwise correlated i.i.d. random variables. Ma-

trices J and L are obtained via a singular value decomposition (SVD) of the

cross-covariance matrix Σπf .

After substitution of the CVA into the log of the likelihood function

p(F |Π;A,B,Σee), substitution of Σee, and maximisation over A and B, we

obtain the following estimates for A:

Â = (Ir 0)J (13)

with Â the first r rows of J, and for B:

B̂ = (Ir 0)L (14)

with B̂ the first r rows of L. Subsequently, we obtain for M :

M = (Ir 0)JΠ (15)

or for instant time t:

mt = (Ir 0)Jπt. (16)

The critical problem now is to determine the rank r of memory M , i.e. the

optimal dimension r ofM to predict F . MatrixM contains the optimal rank

r predictors which are the first r canonical variables c1, c2, ..., cr, where the

optimal rank r is obtained from the number of dominant canonical correla-

tions γi (Larimore (1991)). The number of dominant canonical correlations,

i.e. the optimal rank r, is chosen as the one which gives the best in-sample

one-step ahead predictions.

3 Implementation of forecasting

In practice, given the time series yt|[t=1,2,...N ] sampled at equal “sampling

intervals”, the standard problem is to construct a model and then to predict

one-step ahead to obtain the future ŷN+1. The modelling problem is solved

by a near maximum likelihood system identification procedure (Larimore

(1991)) of the system, given in Eq. ??. Thus, one obtains matrix A, matrix

B, and a nonlinear function φ which is a nonlinear embedding πt(pt) of the

past. Assume the past embedding pN simply given as

pN = (yN , yN−1, ..., yN+1−m) (17)
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where m is the embedding dimension. Substituting the past embedding pN

into Eq. ??, we obtain the future time series

f̂N = (ŷN+1, ŷN+2, ..., ŷN+n) (18)

as

f̂N = BAπN (pN ) = Bφ(pN ). (19)

Hence, future ŷt|[t=N+1 is the first element ŷN+1 of the future vector f̂N .

In the following, we outline the implementation of the CVA prediction

algorithm in detail.

1. Given the time series yt|[t=1,2,...N ], determine the optimal embedding of

the past pt, i.e. embedding dimensionm and lag vector l = (l1, l2, ..., lm),

construct the embedding, and obtain the embedding matrix P .

2. Select the k best fitting functions fi from randomly generated radial

basis functions to obtain an optimal nonlinear embedding. To ensure

a good selection of basis functions, this procedure is repeated ι-times

and we obtain centres ci and radii ri of the selected basis functions

which form the nonlinear embedding matrices Π1,Π2, · · · ,Πι. Finally,

embedding matrix Π of size ν is obtained from the nonlinear embed-

ding matrices Πi, a constant term c and linear embedding matrix P ,

i.e.

Π = (c P Π1 Π2 · · · Πι). (20)

3. Given a future window length n, generate the future matrix F .

4. Solve the following system

F = BM +E

M = AΠ (21)

using CVA. Matrices J and L are obtained via an SVD of cross-

covariance matrix Σπf . Then, calculate estimates of Â = (Ir 0)J,

B̂ = (Ir 0)L, and subsequently M = (Ir 0)JΠ. The rank r of memory

M , i.e. the optimal dimension r of M to predict F , is chosen as the

one which gives the best in-sample one-step ahead predictions.
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5. Build the embedding vector πN from the past, using parameters ri, ci,

and c. Then, estimate the future vector f̂N using model parameters A

and B. Subsequently, predict one-step ahead and obtain the estimated

future ŷN+1.

4 The AR(1)-GARCH(1,1) model

Consider the AR(1)-GARCH(1,1) model, where the conditional mean (or

log-return) is given by

rt = µ+ ϕrt−1 + εt (22)

where

εt = ηt
√
ht (23)

with εt ∼ N (0, ht), ηt ∼ i.i.d.N(0, 1), and the conditional variance of εt is

given by

ht = ω + αε2t−1 + βht−1. (24)

Sufficient conditions for positivity of the conditional variance and the

GARCH(1,1) process to exist are that ω > 0, α > 0 and β ≥ 0.

Several statistical properties have been established for the GARCH(1,1)

process in order to define the unconditional moments of {εt} (see Bollerslev

(1986)). In general, the higher is the moment considered, the stronger is

the condition and the less likely is it to be satisfied empirically. A sufficient

condition for the second moment of {εt} to exist is that (α+ β) < 1. If this

condition is met, {εt, ht} is strictly stationary and ergodic.

Diebold (1988) showed that stationary models converge to normality,

while non-stationary models do not converge to normality. Violation of the

second-order stationarity condition does not necessarily imply non-stationarity

of the process. If some weaker requirements (such as the log moment con-

dition) are met, {εt, ht} may still be stationary even though (α+ β) might

be equal to or greater than unity, in which case E(ε2t) = ∞ (see Nelson

(1990); Lee and Hansen (1994); Lumsdaine (1995)). For example, Nelson

(1990) shows that when ω > 0 and ht < ∞, {εt, ht} is strictly stationary

and ergodic if and only if E[ln(β+αη2
t )] < 0. A practical problem with this
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condition is that it is difficult to apply in practice because it is the mean

value of a distribution of a random variable. A large number of simulations

is typically required to obtain statistically significant values for ηt
1.

A sufficient condition for the existence of the fourth moment of {εt} is

(kα2 +2αβ+β2) < 1 (Bollerslev (1986)) 2, where k is the conditional fourth

moment of ηt. Under the assumption of conditional normality, k ≡ E(η4
t ) =

3, so that the regularity condition becomes (3α2 + 2αβ + β2) < 1. The

assumption of normality is used to define the likelihood function, but is not

necessary for the asymptotic results3.

For estimation purposes, if normality is assumed when the true con-

ditional density is not normal, the resulting maximum likelihood estimates

(MLE) should be interpreted as quasi-maximum likelihood estimates (QMLE).

Weiss (1986) and Bollerslev and Wooldridge (1992) show that, even in the

presence of non-normality, the resulting QMLE are asymptotically normally

distributed and consistent if the second and fourth moment conditions are

satisfied. Ling and McAleer (1999c) show that efficient estimates for non-

stationary ARMA models with GARCH errors can be constructed in the

absence of knowledge of the conditional distribution through adaptive esti-

mation.

5 Data analysis

This paper considers the nonlinear Markov modelling approach and the

AR(1)-GARCH(1,1) model for returns. The models are evaluated using the

noon (Pacific time) British Pound-U.S. Dollar (GBP/USD) spot exchange

rates for 1 June 1988 to 13 May 1992, obtained from the Pacific Exchange

Rate Service.

1This holds because ηt is the true error rather than the estimated error for a given

sample.
2He and Terasvirta (2000) provide a more detailed characterization of the fourth mo-

ment structure of the GARCH(p,q) process. Ling and McAleer (1999b) clarify the ne-

cessity and sufficiency of He and Terasvirta’s fourth moment condition, and provide the

necessary and sufficient conditions for all moments of the general GARCH process, as well

as those of Ding et al.′s (1993) asymmetric power GARCH process.
3Terasvirta (1996) derived the unconditional fourth moment of GARCH(1,1) without

the normality assumption.
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Mean values of the parameter estimates, moment conditions and forecast

errors were calculated using 500 one-day ahead volatility forecasts. The first

500 trading days were used to estimate the model, which yielded the one-day

ahead forecasts for ht. Then the estimation time interval was moved one-day

ahead into the future by deleting the first trading day and adding an extra

day at the end of the sample period. The parameters of the model were

re-estimated and the one-day ahead forecasts re-generated. This procedure

was repeated 500 times. In this paper, the following definition for realised

volatility is used:

σt =| rt − r̄ | (25)

where the daily logarithmic returns are defined as rt = ln( Pt
Pt−1

), r̄ is the

conditional sample mean of rt given the previous values rt−k, k ≥ 1, and Pt

denotes price in period t.

We applied the nonlinear Markov modelling approach to the volatility

sequence σt. To reduce the additive noise component4, we pre-filtered the

volatility series by using a linear filter with exponentially decreasing filter

coefficients, that is,

yt =
j=t∑

j=t−fl+1

σjwj−t+fl (26)

where fl is the filter length and wj|[j=1,2,...fl] are the filter coefficients ob-

tained as follows:

wj =
1∑
j wj

exp(−j/ξ) (27)

with filter parameter ξ = 5 and filter length fl = 20. Then we build the

nonlinear Markov model on N = 500 trading days. The parameters for

modelling and prediction were set as follows:

• lag vector l = (1, 2, · · · , 10), so that

pt = (yt−1, yt−2, yt−3, yt−4, yt−5, yt−8, yt−12,

yt−16, yt−20, yt−26, yt−32, yt−40);

• number of best fitting functions k = 50;

4Andersen and Bollerslev (1998) acknowledge that, while absolute (or squared) daily

returns provide unbiased estimates of the underlying unobservable volatility, they are very

noisy estimators of daily movements in volatility due to the large idiosyncratic error term.
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• dimension ν of embedding matrix Π, i.e. ν = 180;

• future window length n = 90.

6 Empirical results

Table 1 provides a summary of the descriptive statistics for the unconditional

distribution of the GBP/USD spot exchange rates.

Table 1. Summary statistics of the GBP/USD Spot Exchange Rates (1/6/88 to 13/5/92).

Mean -1.375e-5

Median 1.804e-4

σ 6.990e-3

Maximum(σ) 4.093

Minimum(σ) -3.954

SR(σ) 8.047

# +ve observations > 1/2/3/4/5σ 125/17/4/0/0

# -ve observations > 1/2/3/4/5σ 141/35/8/2/0

Skewness -0.301*

Kurtosis 4.608*

LM(N) 123.93*

*Significant at the 5% level. SR(σ) is the Studentised Range of (σ) and is calculated as

(max(σ)-min(σ)). LM(N) is the Jarque-Bera Lagrange multiplier test statistic for normality of

the returns, which is asymptotically χ2 distribution with two degrees of freedom under the null

hypothesis of normality.

The Jarque-Bera Lagrange multiplier (LM(N)) test statistic indicates

that the time series is not normally distributed. While the skewness of the

returns distributions is small, the kurtosis is large, implying that much of

the departure from normality is due to leptokurtosis.

Table 2 reports for the various time series the mean values of the param-

eter estimates of the AR(1)-GARCH(1,1) model, their standard deviations

and their mean t-ratios.
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Table 2. Mean values of 500 estimates of the parameters estimates of the AR(1)-GARCH(1,1)

model for GBP/USD Spot Exchange Rates (1 June 1988 to 13 May 1992).

Parameter Estimate (std) [t-ratio]

µ 3.566e-4 (8.924e-5) [1.254]

ϕ 0.112 (0.037) [2.315]

ω 1.515e-6 (5.484e-7) [1.818]

α 0.082 (0.017) [3.187]

β 0.889 (0.025) [29.397]

(α+ β) 0.971 (0.010)

(3α2 + 2αβ + β2) 0.956 (0.017)

Diagnostics

Mean -0.032 (0.009)

Std 1.000 (0.004)

Skewness -0.37 (0.13)

Kurtosis 4.28 (0.18)

LM(N) 47.87 (13.03)

Q(12) 12.37 (2.16)

Q(12)2 13.35 (15.19)

The robust t-ratios are those of Bollerslev and Wooldridge (1992), and are designed to be

insensitive to non-normality, especially the presence of outliers. JB is the Jarque-Bera LM test

statistics for normality of η2
t , which is asymptotically χ2 distributed with two degrees of freedom

under the null hypothesis of normality. Q(12) is the Ljung-Box test statistic for serial correlation

in ηt with 12 lags. Q(12)2 is the Ljung-Box test statistic for an ARCH process based on η2
t . Under

the null hypothesis of uncorrelated and conditionally homoskedastic errors, respectively, the test

statistics are asymptotically χ2 distributed with 12 degrees of freedom.

The diagnostic tests indicate that there are no serious model misspecifi-

cations, but that the GARCH(1,1) model cannot account for the skewness or

all of the kurtosis in the returns. Also, none of the parameter estimates vio-

lates the second and fourth moment regularity conditions. Hence, the model

provides an adequate description of the data. The parameter estimates im-

ply that the GBP/USD returns are significantly positively correlated and

that, on average, there is a rather weak reaction of the conditional volatility

to shocks (ARCH effect) but with a long-term memory (GARCH effect).

Table 3 reports the various forecast errors of the models.
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Table 3. Forecast errors of the CVA and AR(1)-GARCH(1,1) model for GBP/USD Spot

Exchange Rates (1 June 1988 to 13 May 1992)

total (500) low volatility (433) high volatility (67)

CVA GARCH CVA GARCH CVA GARCH

ME -1.147e-4 1.60e-3 1.231e-3 2.992e-3 -8.815e-3 -7.400e-3

MAE 3.578e-3 4.117e-3 2.768e-3 7.400e-3 8.815e-3 7.400e-3

RMSE 4.788e-3 5.056e-3 3.368e-3 4.259e-3 9.887e-3 8.578e-3

RMedSE 2.782e-3 3.750e-3 2.411e-3 3.417e-3 8.050e-3 6.062e-3

RMSE(+) 3.512e-3 4.539e-3 3.512e-3 4.539e-3 0.00 0.00

RMSE(-) 6.197e-3 6.222e-3 3.028e-3 2.314e-3 9.887e-3 8.578e-3

SMAPE 72.87 76.98 70.99 78.87 84.98 64.75

SMWAPE 62.28 53.12 46.85 43.49 88.96 69.76

PTTEST -6.50 -8.63 -4.99 -4.79 0.98 0.20

Over(%) 59.4 72.6 68.6 83.8 0.0 0.0

R2(%) 4.76 3.61 2.65 3.15 5.35 6.66

R2 is the coefficient of determination by regressing the ex-post volatility on the forecast

volatility. Over(%) is the percentage of forecasts that overpredict realised volatility. RMSE(+)

and RMSE(-) are the RMSE measures for the positive and negative forecast errors, respectively.

PTTEST is the Pesaran and Timmermann test statistic, which is asymptotically normally dis-

tributed. The loss functions are defined as follows:

ME = 1
N

∑N

t=1
(
√
ht − σt), RMSE =

√
1
N

∑N

t=1
(
√
ht − σt)2, MAE = 1

N

∑N

t=1
|
√
ht − σt |,

SMAPE = 100
N

∑N

t=1
(
|
√
ht−σt|

0.5(σt+
√
ht)

), SMWAPE = 100
N

∑N

t=1
(σt
σ̄

|
√
ht−σt|

0.5(σt+
√
ht)

).

Based on the MAE, RMSE, and RMedSE measures calculated over the

entire sample, the CVA model provides significantly improved (up to 25%)

forecasts relative to GARCH(1,1). Unlike the GARCH(1,1) model, the CVA

model is not highly biased. In particular, the CVA model overpredicts

volatility less than 60% of the time, compared to more than 70% for the

GARCH(1,1) model.

The Pesaran and Timmermann test statistic (PTTEST), which com-

putes a non-parametric association between the forecasted and realised volatil-

ity, implies that there is a strong association between both the CVA and

GARCH(1,1) forecasted volatility and the realised volatility.

When the sample is split into low and high volatility periods, sub-

stantially reduced mean forecast errors are observed only for low volatil-

ity, whereas the mean forecast errors of the CVA model are substantially

larger for high volatility. For example, base on MAE, RMSE and RMedSE

measures, the CVA model provides up to 63% lower forecast errors for low
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volatility periods compared to up to 30% worse forecast errors for high

volatility.

7 Discussion

The focus of this paper has been to obtain models that accurately reflect

the dynamics of the system. Thus, a model should not only fit the sample

data and forecast well, but it should also have dynamical behaviour similar

to that of the measured system. As applied to financial exchange rate time

series, the algorithm presented captures the dynamics of a complex system

and also gives reliable one-step ahead predictions for short data sets.

The CVA model might be advantageous when trying to model both

large and small volatility shocks. When GARCH(1,1) is applied to data

that include sudden and large shocks to volatility, the predicted conditional

variance persists strongly and inaccurately. In contrast, the CVA model

accurately models the much smaller persistence of large shocks to volatil-

ity. This is evident from the RMSE measure for positive forecast errors,

which is substantially smaller (more than 40%) for the CVA model than

for GARCH(1,1). However, the forecast ability of the CVA model is lower

for periods of high volatility. This might be due to the effects of the filter-

ing applied which substantially reduces the value of extreme and outlying

observations. Furthermore, it is possible that there is some degree of over-

fitting with the current version of the method. This is because it is difficult

to estimate the optimal model order for this new and relatively complex

approach.
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