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0DFURHFRQRPLFV� KDV� D� ORQJ� WUDGLWLRQ� RI� LQVSHFWLQJ� DQG� LQWHUSUHWLQJ� SDWWHUQV� LQ� JUDSKV� RI

DJJUHJDWH�GDWD�� �+RZHYHU�� WKH�PRYH� WRZDUGV�PRUH�SUHFLVH�TXDQWLILFDWLRQ�RI�PDFURHFRQRPLF

SKHQRPHQD�KDV�VHHQ�DFDGHPLFV�VKLIW�DZD\�IURP�D�VWXG\�RI�WXUQLQJ�SRLQWV��ZKLFK�DUH�D�QDWXUDO

DQG� REYLRXV� ZD\� RI� VXPPDUL]LQJ� EXVLQHVV� F\FOHV�� WRZDUGV� PHDVXUHV� RI� FR�PRYHPHQW� LQ

GHWUHQGHG�VHULHV�� � �7KLV�VKLIW�DULVH�IURP�VHYHUDO�GHYHORSPHQWV��EXW�DQ� LPSRUWDQW�RQH�ZDV�WKH

EHOLHI� DPRQJ� DFDGHPLFV� WKDW� %XUQV� DQG�0LWFKHOO·V� PHWKRGV� ODFNHG� WKH� VWDWLVWLFDO� EDVLV� DQG�

KHQFH��WKH�SUHFLVLRQ�UHTXLUHG�LQ�PRGHUQ�PDFURHFRQRPLFV�

:H�DGRSW�WKH�ROGHU�SHUVSHFWLYH�WKDW�EXVLQHVV�F\FOHV�DUH�WR�EH�GHILQHG�LQ�WHUPV�RI�WKH�WXUQLQJ

SRLQWV�LQ�WKH�OHYHO�RI�HFRQRPLF�DFWLYLW\���:H�VKRZ�WKDW�VXFK�WXUQLQJ�SRLQWV�FDQ�EH�DVVRFLDWHG

ZLWK�D�ZHOO�GHILQHG�VHTXHQFH�RI�RXWFRPHV�DQG�FDQ�WKHUHIRUH�EH�SUHFLVHO\�DQDO\]HG��,Q�WXUQ�WKLV

HQDEOHV� XV� WR� H[SORUH� KRZ� YDULRXV� SDUDPHWULF�PRGHOV� RI� DJJUHJDWH� RXWSXW� JHQHUDWH� D� F\FOH

WKURXJK�WKH�LQWHUDFWLRQ�RI�WUHQG�PRYHPHQWV�LQ�DFWLYLW\�ZLWK�WKH�YRODWLOLW\�DQG�VHULDO�FRUUHODWLRQ

LQ�JURZWK�UDWHV�

2QH�RI�WKH�VWURQJHVW�SRLQWV�LQ�WKH�UKHWRULF�RI�PRGHUQ�EXVLQHVV�F\FOH�WKHRU\�LV�WKDW�WUHQG�DQG

F\FOHV�VKRXOG�QRW�EH�GLYRUFHG��&RQVHTXHQWO\��DQ\�GHILQLWLRQ�RI�WKH�EXVLQHVV�F\FOH�LQ�WHUPV�RI

WKH� FR�PRYHPHQW� RI� GHWUHQGHG� GDWD� KDV� WR� ILQG� WKH� WDVN� RI� LQWHJUDWLRQ� D� GLIILFXOW� RQH�� ,Q

FRQWUDVW��ZH�VKRZ�WKDW�D�UHWXUQ�WR�WKH�ROGHU�WUDGLWLRQ�RI�VWXG\LQJ�WKH�FODVVLFDO�F\FOH�LQ�WKH�OHYHO

RI�HFRQRPLF�DFWLYLW\�SURGXFHV�D�QDWXUDO�LQWHUSUHWDWLRQ�RI�WKH�RULJLQ�RI�WKH�F\FOH�LQ�WHUPV�RI�WKH

LQWHUDFWLRQ�RI�WUHQG�DQG�WKH�VHFRQG�PRPHQWV�RI�JURZWK�UDWHV���7KLV�VHHPV�D�FULWLFDO�DGYDQWDJH

IRU�WKH�DSSURDFK�WDNHQ�LQ�WKLV�SDSHU�

$Q�LPSRUWDQW�LVVXH�WKDW�KDV�DOVR�EHHQ�GHEDWHG�LQ�WKH�OLWHUDWXUH�LV�ZKHWKHU�QRQ�OLQHDU�PRGHOV�DUH

UHTXLUHG�WR�PDNH�D�EXVLQHVV�F\FOH���8VLQJ�WKH�WHFKQLTXHV�GHYHORSHG�LQ�WKLV�SDSHU�ZH�GLVVHFW�WKH

F\FOH� RI� D� QXPEHU� RI� FRXQWULHV� DQG� ILQG� OLWWOH� HYLGHQFH� WKDW� QRQ�OLQHDULWLHV�� RI� WKH� W\SH

LQYHVWLJDWHG�LQ�WKH�OLWHUDWXUH��DUH�LPSRUWDQW�LQ�DFFRXQWLQJ�IRU�WKH�EURDG�IHDWXUHV�RI�WKH�DYHUDJH

F\FOH�
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���,QWURGXFWLRQ

 From the beginning of macroeconomics investigators have been fascinated by

patterns in graphs of data on production, employment and prices. Such patterns were

termed cycles. Many theories have been advanced to explain these cycles and there has

been constant debate over whether particular series, such as prices, are “pro or counter

cyclical”. Amongst academics, evidence on the nature of cycles has changed from a

graphical orientation towards quantitative measures extracted from parametric models; a

shift that is vividly captured by comparing the books by Burns and Mitchell (1946) and

Cooley and Prescott (1995). Such a movement is not as apparent amongst policy makers

and the business community. Indeed these latter groups have shown little interest in the

debates which have engaged academics and continue to emphasize graphical methods

when describing the cycle. This suggests that there are some disadvantages to conducting

discussion of the cycle in the mode favored by academics and that a good deal of useful

information about the likely causes of cycles is not reaching its intended recipients. In this

paper we argue a brief that much of what is referred to as “modern business cycle

research” is less valuable than it might be because of the way in which discussion of the

cycle has been conducted. We see little reason for the shift in emphasis by academics and

point out that the older tradition can be given a formal treatment that clarifies what the

connections between the two approaches are. After doing this we suggest that the older

one might be preferred.

Section 2 of the paper considers definitions of the cycle framed in terms of the

turning points of a series, this being the methodology set out in Burns and Mitchell

(1946). Looking at the cycle in this way is the obvious method of summarizing what we

see in any graph of a macro-economic time series. We suggest some new measures that

might be useful when thinking about the nature of the cycle and take up the central issue

of whether one wants to detrend a series before its cycle is investigated. Section 3

explores the connections between a definition of the cycle derived from the turning points

of a series and the moments of the random variables taken to represent that series, as well

as other issues involving “co-movements” between series across cycles. We embark on
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this latter investigation since a common criticism of Burns and Mitchell’s work was that

it did not have a statistical foundation, and recent writers such as Stock and Watson

(1998) have repeated such a criticism when adopting the academic approach.

Sections 2 and 3 are largely methodological in canvassing different ways of

describing and measuring the cycle. They do not directly address the issue of how to

describe the temporal behaviour of a series. For that task, researchers have always

resorted to parametric models, either statistical or economic, and a large body of evidence

has now been accumulated in this format. Section 4 asks what type of business cycles

these parametric models generate, where the cycle is defined through the set of measures

built up in section 2. Our aim here is to try to learn what are the most important

ingredients in “making a cycle” with a parametric economic model. Section 5 concludes.

���:KDW�6KRXOG�:H�EH�7U\LQJ�WR�([SODLQ"

2.1  Definitions of the Cycle

The business cycle is a pattern seen in any series yt taken to represent aggregate

economic activity. Clearly such a statement lacks precision on two counts; it does not say

how one can measure aggregate economic activity and it does not indicate how one is to

describe the patterns in it. In their classic work on business cycles, Burns and Mitchell

gave an answer to the second question through a description of how they located turning

points in many series, each of which was a partial reflection of “economic activity”. Such

turning points defined specific cycles and the information in these specific cycles was

distilled into a single set of turning points that identified the reference cycle.1 It was the

latter which was called the business cycle, and the tradition continues today in the

publication of a single set of turning points by the National Bureau of Economic

Research.

                                                          
1 This description is too simple. Reading their text one is struck by the amount of iteration they engaged in.
Tentative reference cycle dates were found from a variety of measures of general business conditions and
these were then refined with specific cycle information. There is also a problem with terminology as the
“reference cycle” actually describes many cycles in time. Later, when comparing specific cycles and the
reference cycle, we need to bear in mind the latter fact.
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Given how natural it is to think of a cycle through its turning points, it is

somewhat odd that academic work has largely departed from this emphasis.2 The origin

of the transition seems to be Koopmans’ (1947) attack on Burns and Mitchell’s work.

One way to interpret Koopmans’ stance is to observe that, if one could completely

describe the characteristics of yt, then it must be true that its turning points could be

extracted, since they are functions of the yt. Hence Koopmans’ recommendation was that

one should model yt. Of course this still leaves the question of how the measured

characteristics of the process generating yt map into the business cycle. Moreover, there

are suggestions in the literature that it was much easier to think about how to

parametrically model yt than to analyse turning points, because the procedures followed

by Burns and Mitchell were more an art than a science. Stock and Watson (1998), for

example, comment on Burns and Mitchell’s procedures in the following way:

“… the methods of business cycle analysis have been criticized for lacking a statistical

foundation”.;

Of course, this is not an argument against working with the Burns and Mitchell

methodology but rather one for developing a statistical foundation for the latter and it is a

major objective of this paper to do just that.3

As should be clear from the way the reference cycle was constructed Burns and

Mitchell also had reservations about whether any of the series that were available to them

were suitable measures of aggregate economic activity. They comment (p 72)

“Aggregate [economic] activity can be given a definite meaning and made conceptually
measurable by identifying it with gross national product”

but

                                                          
2 Not completely though. King and Plosser (1994) and Simkins (1994) look at the cycle in this way and it is
also very common to see articles in which reference is made to turning points before the analysis proceeds
in quite a different way e.g. Christiano and Fitzgerald (1998).
3 It is true that there is judgement in what Burns and Mitchell did, so that one could never exactly replicate
their thinking unless one knew exactly what steps they followed. But one can get close enough for most
purposes.
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“Unfortunately, no satisfactory series of any of these types is available by months or quarters for
periods approximately those we seek to cover” (p. 73)

Accordingly they used a wide range of series to come up with a single reference

cycle.4 It is not surprising then that an application of Koopmans’ philosophy would point

towards the need to first find representations of the joint behaviour of a number of series

y1t ,…yKt and to then determine a method of combining them into a single measure of

activity. Curiously, whilst the first of these steps was enthusiastically endorsed in the

academic literature, the second was largely discarded.5 Somehow the impression has been

created in the academic literature that what was important in discussing the business cycle

were the inter-relationships (or co-movements) between the specific series used to

construct the reference information. For example, Cooley and Prescott (1995, p26)

summarize what they feel the implications of Burns and Mitchell’s work was in the

following way:

“…the one very regular feature of these fluctuations is the way variables move together. It is the co-
movements of variables that Burns and Mitchell worked so hard to document and that Robert Lucas
emphasized as the defining features of the business cycle".

What is strange here is the transformation in the motivation for considering many

series. In Burns and Mitchell’s case it was simply an instrument used to define the

business cycle, through the way in which turning points in many series clustered together;

in much of the modern literature it has become an end unto itself. In fact the latter’s

obsession with co-movements between series seems to miss the point of why we are

interested in the business cycle. It is an extraordinary feature of much of the modern

academic literature that one can find papers which provide extensive accounts of the co-

movements of consumption, investment etc. but which make little or no reference to the

temporal characteristics of the series that might be taken to be aggregate economic

                                                          
4 The arguments in favor of using a variety of measures of activity rather than a single one are reviewed in
Boehm (1998).
5 It has returned recently in papers such as Stock and Watson (1991) and Diebold and Rudebusch (1996)
where a common factor is taken to be present among the yt and this may be defined as the equivalent of the
reference cycle. Epstein (1998) observes that Burns maintained that he did not subscribe to this common
factor view and we return to this issue later.
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activity, namely output.  “Hamlet without the Prince” is the phrase that comes to mind

when reading such papers.

The discordance between what Burns and Mitchell did, and what much of the

modern literature on business cycles does, widens when one notes that the latter has even

ceased to study the cycle in yt and has replaced it with a “detrended” series, zt.

Unfortunately, there are many different ways of removing trends. Official agencies

generally use Henderson filters e.g. Australian Bureau of Statistics (1987); NBER type

researchers use “phase averaging” as described in Boschan and Ebanks (1978); and

academics either remove a low order polynomial in time (a deterministic trend) or both

stochastic and deterministic trends either with a “band-pass” or Hodrick- Prescott (HP)

filter.6 The question that obviously arises is why one wants to do this? A number of

reasons might be given.

1. It is the quantity that is of most interest for policymakers. There are times when

it is important to possess a detrended series e.g. “output gaps” are a key ingredient in

some versions of the Phillips curve. But most policy and public discussion is concerned

with cycles in  the level of yt i.e. the classical cycle. For example, using a series on post-

war US GDP, and detrending it with the HP filter (λ=1600), one finds that there was a

peak in 1994/4 and a trough in 1996/1 i.e. there was a “recession” over these years.7  It is

very hard to square this with the current “longest peace time expansion” rhetoric unless

one adopts a classical view of the cycle. The period 1994/4-1996/1 did show a slowdown

in growth rates, and there is no doubt that policymakers sometimes compare growth rates

to what is believed to be their potential values, but the latter tend to be constant for long

periods of time, so that such comparisons are akin to removing a low order deterministic

trend.

2. What determines trends in data is unknown and so modelers should stick to

modeling quantities that they have something to say about. There is some truth to this

                                                          
6 As Phillips (1998) argues the distinction between a deterministic and a stochastic trend is largely one of
degree. Here we conceive of a deterministic trend as one that is linear in time,
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argument. Most dynamic stochastic general equilibrium (DSGE) models exhibit a

deterministic long run balanced growth path whose determinants are unknown and whose

magnitude is generally set at what is seen in the data. Thus linear detrending of the log of

the data makes some sense for modelers. Moreover, even though one is now looking at a

“deviation” or growth cycle rather than the classical cycle, the latter can be recovered

relatively easily by adding back in a known quantity.8 However, this argument does not

extend to rationalizing the removal of  a stochastic trend, as is done by the HP filter. It is

a central theme of DSGE models that the characteristics of the cycle are bound up with

the stochastic trend, so that removing it is not a neutral operation for cyclical analysis.

Moreover, one cannot recover the classical cycle by any simple operation, as one can do

with deterministically de-trended data. In fact, the cycle is changed to something that is

quite unrecognisable. For example, using HP detrended data on post-WW2 US GDP, one

finds some 19 peaks and troughs, implying a 30 month cycle. That cycle can be

contrasted with the 72-96 months of the classical cycle (as dated by the NBER).

Consequently, it is always rather odd to see articles which work with HP filtered data

justifying their results by reference to classical cycle attributes.

 3. One sometimes suspects that detrending was also attractive to academics

because it seemed to offer a different definition of the cycle that put them into the

scientific mainstream. Specifically, once the process had been rendered stationary, its

spectral density could be computed, and the existence of cycles could be taken as

corresponding to a peak in the spectral density of zt. As the experiment in Slutsky (1937)

suggests however there may be no connection between these two ways of talking about

the cycle. An excellent illustration of this point is the discussion in Kydland and Prescott

(1990) about the cycle in data simulated from an AR(1) in zt , where they concentrate on

turning points when describing the cycle. Of course, an AR(1) has no peaks in the

spectral density, except at the origin.  Thus conclusions about cycles drawn from spectral

density arguments, as in Burnside (1998), have very little relevance to the cycle that we

                                                                                                                                                                            
7 We use the BBQ program described later to find these turning points although one could have done it
visually.
8 See Mintz (1972) for probably the earliest formalization of this concept.
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speak most about. Any series has a cycle, in the sense of possessing turning points, and so

the shape of its spectral density is irrelevant, and contains no direct information about

cycle characteristics.  Later we demonstrate that one can reproduce published cycle

characteristics using series that have no peaks in the spectrum of ∆yt.

4. Although rarely expressed, we think there is a feeling that detrending is

necessary owing to statistical difficulties when working with the levels of variables,

particularly if they have a stochastic trend. Certainly, the latter create problems for many

traditional parts of estimation and inference. However, as we will show, this is not an

issue in this instance, as the location of turning points is done with the differences of a

series rather than their levels, making the presence of a stochastic trend in yt unimportant.

2.2 Methodologies For Describing a Cycle

The detection and description of any cycle is accomplished by first isolating

turning points in the series, after which those dates are used to mark off periods of

expansions and contractions. Viewed in this light business cycle analysis involves pattern

recognition techniques, and this fact goes to the heart of how one learns about the

business cycle, regardless of whether we work with the log levels of series yt or their

detrended form zt. Location of turning points can sometimes be done visually. When

performing the datings in this way the eye is also very good at filtering out “false turning

points” i.e. movements which are either short lived or of insufficient amplitude.

Translating the ocular judgments into an algorithm has proved to be challenging. At a

minimum such an algorithm needs to perform three tasks.

1. Determination of a potential set of turning points i.e. the peaks and troughs in

a series.

2. A procedure for ensuring that peaks and troughs alternate.

3. A set of rules that re-combine the turning points established after steps one

and two in order to satisfy pre-determined criteria concerning the duration and

amplitudes of phases and complete cycles; what we will refer to as “censoring

rules”.
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The best known algorithm for performing these tasks is that associated with the

NBER and set out in Bry and Boschan (BB) (1971) for monthly observations on a series.

Although there are many sub-stages involved in it, the heart of the first step is a definition

of a local peak (trough) as occurring at time t whenever {yt >(<)yt±k }, k=1,…,K, where K

is generally set to five.9 The main criteria relating to the third step are that a phase must

last at least six months and a complete cycle should have a minimum duration of fifteen

months. Growth cycles have also been dated with the same set of rules, with the inputs

now being zt rather than yt ; clearly the turning point definitions should be invariant to

this change but it may not be so reasonable to adopt the same censoring rules.

When the data is measured at the quarterly frequency an analogue to the first step

of the BB algorithm would be to put K=2 i.e. {∆2yt>0 , ∆yt>0, ∆yt+1<0, ∆2yt+2<0}, as this

ensures that yt is a local maximum relative to the two quarters (six months) on either side

of yt. Later, this quarterly version of the BB algorithm, combined with some censoring

rules, is described as BBQ. An even simpler rule, based on the idea that the derivative

changes sign at peaks and troughs, would be to treat ∆yt as a measure of the derivative of

y(t) with respect to t, producing{∆yt>0, ∆yt+1<0}as the criterion. The problem with the

latter is that it would conflict with the requirement that a phase must be at least six

months in length.

Instead of attempting to locate local maxima directly a class of “sequence” rules

have also been suggested for identifying peaks and troughs. A good example of one of

these for locating a peak is {∆yt>0, ∆yt+1<0, ∆yt+2<0} (Wecker (1979)).10 In this form it

replicates a rule popularized by Arthur Okun that a recession involves at least two

quarters of negative growth. The latter rule is widely used in the media and policy circles

                                                          
9 King and Plosser (1994) give a description of the steps. One of these involves smoothing of the data and
this has led to a belief that the data is therefore being detrended. In fact the smoothing is simply aiding in
the process of identifying peaks and troughs through the removal of some idiosyncratic variation. The utility
of smoothing is much reduced if the dating is being done with quarterly data, and for that reason we ignore
it in the algorithm developed later.
10 A trough would be defined by {∆yt<0 , ∆yt+1>0, ∆yt+2>0}. Pagan (1997a,b) uses this rule to compute the
average length of a cycle.
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to signal a classical recession and has also been used by Canova (1994) to establish

growth cycle dates, with yt replaced by zt.

All of these methods for locating a turning point can be thought of as defining a

turning point as an event to which probabilities can be attached, and recognition of that

fact enables a formal statistical analysis to be performed. Notice however that sequence

rules used in the literature only correspond to step one of the BB algorithm and, most

importantly, ignore the third step i.e. they impose no censoring upon the basic set of

turning points and therefore cannot be directly compared to growth cycle information

published by the Foundation for International Business Cycle Research (FIBCR).11

Nevertheless, they all emphasise that, even though the classical cycle refers to the

behaviour of the level of a variable, the analysis of its turning points is done with a

stationary series viz. functions of the first differenced series, ∆yt, such as sgn(∆yt).
12 It

cannot be stressed too much that the rules above are not locating a cycle in ∆yt; rather ∆yt

is just an input into the dating process of the classical cycle. Most of the literature sees the

action of taking differences as a “detrending filter”, see Canova (1998a) for example. The

importance of ∆yt for us, however, is that it points to the need to develop models of that

quantity so as to account for the classical cycle. As the models of ∆yt are varied, so also

will the probabilities of the sequences which define the classical cycle.

Given that turning points have been established how should the dating

information be used in conjuction with the series from which the dates were derived?

Burns and Mitchell provided an elaborate classification of the cycle into nine stages. We

suspect that this level of detail is of marginal interest to most of those who think about

and observe the business cycle. Much more useful would be some general summaries of

what one sees in a graph of data. Inspection of comments that are frequently made about

the cycle suggest that there are four items of interest.

                                                          
11 It is also the case that none of the trend adjustment methods Canova uses in Canova (1994), (1998a) and
(1999) corresponds to that used by FIBCR.
12 When working with growth cycles it is ∆zt which is analysed. With the Bry-Boschan definition of a
turning point it is “long differences” yt-yt-k that need to be examined, but these are the sum of first
differences.
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• The duration of the cycle and its phases

• The amplitude of the cycle and its phases

• Any asymmetric behavior of the phases

• Cumulative movements within phases.

In thinking about these measures it is useful to consider a phase as a triangle. Fig

1 shows a stylized recession, with A being the peak and C the trough. The height of the

triangle is the amplitude and the base is the duration. Knowledge of these two elements

for any cycle enables one to compute the area of the triangle, and thereby an

approximation to (say) the cumulated losses in output from peak to trough, relative to the

previous peak. Designating the duration of the i’th phase as Di and the amplitude as Ai ,

the product  CTi =.5(Di *A i ) will be referred to as the “triangle approximation” to the

cumulative movements. In practice the actual cumulative movements (Ci ) may differ from

CTi since the actual path through the phase may not be well approximated by a triangle,

and this points to the need for an index of the excess cumulated movements; the natural

candidate is, Ei = (CTi – Ci+0.5*Ai)/Di. In this formula Di is the duration of the phase and

the term 0.5*Ai removes the bias that arises in using a sum of rectangles (Ci) to

approximate a triangle. Although it is Ci which is of fundamental interest to policy

makers and historians, the triangle approximation is still likely to be useful in shedding

light upon the ability of business cycle models to generate realistic cycles.
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Most of the characteristics just described can be obtained through regression

analysis using data on {yt,St}, where St is a dichotomous variable taking the value unity

when the economy is in expansion at time t and zero if it is in contraction. Two examples

can be given. First a regression of  ∆yt against St gives the average amplitude of an

expansion. Second, taking the regression equation St = α+βSt-1, and designating estimates

of  α and β by a and b, the average duration of an expansion is given by 1/(1-a-b). Other

uses of St , such as checking for duration dependence, are given in Pagan(1998).

Although the reference cycle was the key element in Burns and Mitchell’s

business cycle analysis, any understanding of the business cycle was also seen to involve

a knowledge of the nature of specific cycles and how they behaved in relation to reference

cycles.13 To summarize the information provided by specific cycles one could use the

same set of characteristics as was used for the reference cycle viz. the average amplitude,

duration etc. To describe relationships with the reference cycle they devised an “index of

                                                          
13 Epstein (1998) argues that Burns and Mitchell valued the specific cycle information as highly as that
contained in the reference cycle i.e. the dispersion of the turning points in the specific series around the
“central tendency” of the reference cycle was important to them.
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conformity”. Defining Aij now as the change in a specific series yjt over a phase (say

expansion) of the i’th reference cycle (out of a total of k), their index of conformity was k
-1Σi=1,k sgn( Aij) *100. King and Plosser (1994) and Simkins (1994) used this index in

their work. In some ways it is not an ideal measure of the extent of coherence between

cycles. Consider for example the i’th expansion of the business (reference) cycle dated

between time t and t+m. Then sgn(Aij) = sgn (yj,t+m-yjt), and this could be positive even if

observations t+n,…,t+m corresponded to a recession in the specific variable yjt. This

suggests that another measure of the concordance between cycles would be useful. To this

end we propose that the degree of concordance between the specific cycle for yjt and the

reference cycle (based on (say) the variable yrt) can be measured by the fraction of time

they are both in the same state. Mathematically this is

Ijr = n-1 [ #{Sjt=1, Srt=1}] + n-1 [ #{Sjt=0, Srt=0}] 

    = n-1 { Σ SjtSrt + (1-Sjt)(1-Srt) }

This index might be used in a number of ways. First, it can capture the notion of

whether a variable yjt is pro or counter-cyclical. If it is exactly pro-cyclical then the index

would be unity, while a value of zero marks it down as being exactly counter-cyclical. An

advantage of the index is that it is a well defined quantity even if the variables yjt and yrt

are non-stationary. Most of the literature relating to the nature of cyclicality of a series has

proceeded as if detrending was necessary, so as to define the concept in terms of a

covariance. An unresolved problem with the concordance index is to define a cross over

point. If the two series underlying the cycles were independent then E[Ijr] = E[Sjt]E[Srt] +

(1-E[Sjt])(1-E[Srt}) and E[Sjt]= prob(Sjt =1). The latter can be estimated by the fraction of

time spent in an expansion for yjt while E[Srt] can be measured in the same way using the

reference cycle. The concordance index also represents a way to summarize information

on the clustering of turning points. If the turning points of a specific and reference cycle

are coincident then the index would equal one. Hence one would wish any of the series

that are used to set up the reference cycle to have high values for this index.
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2.3 Characteristics of Actual Cycles

For later reference it is worth establishing some of the characteristics of the

classical cycle in a number of countries. We choose three of these  the US, the UK and

Australia. Most modern business cycle research has been conducted upon data relating to

the former but it is important not to get into the habit of thinking that this is “the”

business cycle.  The UK and Australia represent economies that, historically, have been

more open than the US. They differ both in terms of size and in population growth.

Australian population growth tends to be about 1% p.a. more than the UK, and this

translates into a higher trend growth rate in GDP. Turning points were established for

each country using the quarterly analogue of the Bry-Boschan program applied to series

on the log of GDP. 14   Data was over 1947/1-1997/1 (US), 1955/1-1997/1 (UK), and

1959/1-1997/1 (Australia). A difficulty was encountered in adapting the censoring rules

in BB to BBQ, in that a decision has to be made on the appropriate minimal length of the

phases in terms of quarters. A fifteen month minimal length to a complete cycle would be

compatible with either a four or five quarter restriction, depending on the month in which

the turning point occurred, and the relative magnitudes of the monthly values in the

quarter. US and Australian turning points were invariant to using either a four or five

quarter rule, but this was not so for the UK. With a five quarter rule the cycle in 1974 was

ignored. Since the latter was quite a major event in terms of magnitude the four quarter

minimum was therefore adopted to effect the UK dating.

Table 1 gives some of the business cycle information; contractions are designated

as PT and expansions as TP.  With the exception of duration statistics, all measurements

are made in terms of percentage changes. For the US and UK the statistics are very close

to those established with monthly dates, in that the average cycle length is recognised to

                                                          
14 There is an issue of what series should be used to measure economic activity. As Burns and Mitchell
(1946, p 72) noted  it is difficult to go past GDP as the single index. Through the expenditure side of the
national accounts it captures all aspects of demand; through the production side it aggregrates all industry
sectors; and through the income side it captures hourly wages, employment, hours worked and profits.
Moreover, through the production function, output can be related to labour, capital and material inputs.   A
problem with GDP is that in some cases there are different measures of it from the income, production  and
expenditure sides, and these may need to be combined together in some optimal way so as to produce a
single measure of it.
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be around 62 months for the US and  60 for the UK.15 The Australian cycle dated this

way is shorter than the eighty months that is the standard. What is striking about the table

is the similarity of the contraction phases and the divergences from a triangle in the

expansion phase. Rapid recovery in the early part of an expansion has been documented

in Sichel (1994) and this is consistent with the results of the “excess” computations in

Table 1 which indicate that the shape of expansions deviate substantially from a

triangle.16 It is also apparent that the cycle and its expansions tend to be longer in

Australia. The indices of concordance between UK and Australian GDP (relative to the

US ) are .82 and .86 respectively. Based on the probabilities of expansions and

contractions revealed in Table 1, the expected values would be .72 and .76 respectively if

there was no relationship. The latter values point to the fact that graphical methods might

suggest a close connection between the cycles of different countries, even though activity

evolves independently in each case.

                                                          
15 In the appendix we compare the peaks and troughs in the cycle found using BBQ with those given by
FIBCR (converted to a quarterly basis) which combine together a variety of series in the way that Burns and
Mitchell did in order to come up with reference cycle dates. Hence this comparison yields some insight into
how effective it is to use a single series such as GDP to represent aggregate economic activity.
Unfortunately, the comparison is clouded by the different frequency of observations in the series used to
accomplish the dating. Nevertheless, with one exception, the two sets of dates are close. The exception is
FIBCR’s identification of a trough in 1970/4 which is dated as 1970/1 by BBQ. Inspection of GDP shows
that the level of GDP in 1970/1 is slightly below that in 1970/4.
16 Note that the excess measure in the tables is found by averaging the Ei  over all cycles rather than
constructing it from the average values of Ci and CTi.
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U.S UK Aust
Mean Duration (quarters)
 PT 3 3.75 3.3
 TP 17.8 16.14 20.6
Mean Amplitude (%)
 PT -2.5 -2.5 -2.2
 TP 20.2 14.5 24.7
Cumulation (%)
 PT -4.1 -6.1 -4.0
 TP 256 196 320
Excess
 PT -0.1 0.0 0.1
 TP 1.1 0.7 1.0

Some specific cycles may also be of interest e.g. the cycles in hours, asset prices,

consumption, investment etc. Table 2 looks at the cycles in US consumption and

investment. Taking GDP data as establishing the reference cycle, there are some marked

differences between the two specific cycles and the reference cycle; expansions in

consumption are much longer and stronger than those in GDP while investment has

strong expansions but with an average duration that is much shorter than that in GDP.

Contractions in investment are also relatively long. Again there is some asymmetry in the

shapes of the two phases. The indexes of concordance of US Consumption and US

investment (relative to US GDP) are .89 and .78 respectively, compared with their

expected values of .81 and .61 (under independence).
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GDP Con Inv
Mean Duration (quarters)
 PT 3 2.8 5.3
 TP 17.8 37.0 10.3
Mean Amplitude (%)
 PT -2.5 -2.0 -22.6
 TP 20.2 36.0 35.2
Cumulation (%)
 PT -4.1 -2.4 -53.2
 TP 256 1012 233
Excess
 PT -0.1 0.2 1.6
 TP 1.1 0.1 2.4

���8QGHUVWDQGLQJ�WKH�%XUQV�DQG�0LWFKHOO�0HWKRGRORJ\

Although it is true that business cycle characteristics can be established whenever

a series representing aggregate economic activity is available, simply by passing

observations on the latter, yt , through a dating algorithm, there are advantages to be had

from relating the cycle characteristics to the nature of yt. Following the tradition of

business cycle research established by Tinbergen (1939) the nature of yt has generally

been described with parametric statistical models. Indeed, for many years

econometricians have sought statistical models that would adequately describe the

temporal behaviour of yt. Consequently, it seems a useful exercise to consider a range of

statistical models that have been proposed for yt and to relate the parameters of these

models to the classical cycle characteristics described in section 2.

Before embarking on such a task we need to establish some of the relationships

that are critical to the dating of cycles.17 Using definitions of conditional probability,

                                                          
17 Some of this material appears in Harding (1997).
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Pr (peak at t-1) = Pr(St=0 |St-1=1)Pr(St-1=1) (1)

Pr (trough at t-1) = Pr(St=1 |St-1=0)Pr(St-1=0). (2)

Making the additional assumption that the random variable, St , is strictly

stationary, implies that Pr(St=1)=Pr(St-1=1). Because the number of peaks and troughs are

the same, and Pr(St=1)=1-Pr(St=0), it follows that there are four unknowns in  (1) and (2).

Once two of these are fixed the other two follow. NBER dating rules effectively fix

Pr(peak) and Pr(St=1), since the latter follows once the turning points are located.

Harding (1997) analyses the cycle by setting the two exit probabilities; to do this he

introduces the concepts of an expansion terminating sequence (ETS) and a contraction

terminating sequence (CTS), so that Pr(ETS|St-1=1) = Pr( St=0 |St-1=1) and Pr(CTS|St-

1=0)= Pr(St=1 |St-1=0). His preferred ETS = {∆ yt <0 , ∆ yt+1 <0} with CTS={∆ yt >0, ∆

yt+1 >0}when dating a classical cycle. Making the peaks and troughs alternate and using

Harding’s descriptors leads to

Pr(St=1)= Pr(CTS|St-1=0)/[ Pr(CTS|St-1=0) + Pr(ETS|St-1=1)]. (3)

(3) may be substituted back into (1)  to find the probability of a turning point that satisfies

steps one and two of the dating algorithm. If the data is quarterly, the average length of a

cycle will then be 3/Pr(peak) months and the average length of an expansion in months

would be 3*Pr(St=1)/Pr(peak). Of course, these computations ignore the censoring

performed in the final step of an algorithm like BBQ.

The analysis of dating algorithms through the concepts of terminating sequences

is very useful for many purposes. One is to relate classical cycle characteristics to the

nature of ∆y(t). It will prove hard to do this solely with analytical methods, although it

can be done for some simple models that are close to reality, and the results thereby

established should provide insights into more complex cases. Taking the frequency of

observation to be a quarter, a very simple model for y(t) is that of a random walk with

drift,

∆yt = µy +σet, (4)
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where e(t) is n.i.d. (0,1). The absence of serial correlation in quarterly growth rates of

GDP is characteristic of quite a few countries, for example the UK and Australia.

Moreover, what correlation there is tends to be generally rather weak e.g. on data over

1961/1-1997/4 both the US and Canadian GDP growth rates have first order serial

correlation coefficients around .3. As Cogley and Nason (1995) observe the output

processs in a variety of  RBC models have the structure of (4) and so a study of (4) sheds

light on the ability of those models to generate a cycle.18 After such a study, the case

where et is correlated can be examined.

When et is n.i.d. (0,1)  there are only two parameters, µy and σ, and these

completely describe the temporal behaviour of ∆yt. Consequently, it follows that all the

business cycle characteristics that are derivative from dating algorithms based on yt must

also be a function of these parameters. In fact, given that dating methods for the classical

cycle have as their basis a study of events such as { ∆yt < 0}, and the Pr(∆yt<0)= φ =

Pr[et<-(µy/σ)], it is the ratio -(µy/σ) which will be critical. The exact mapping between

(say) the duration of the cycle and the single index (µy/σ) will however depend upon the

nature of the dating algorithm employed. For example, if the CTS is {∆yt > 0} and the

ETS={ ∆yt < 0}, Pr(CTS|St-1=0)=1-φ, Pr(ETS|St-1=1)=φ and (3) shows that Pr(St=1)= 1-φ,

making Pr(peak)= φ(1-φ) and the average duration of the cycle will be 3/[φ(1-φ)] months.

Another dating rule, referred to as “Okun’s Rule” in Harding and Pagan (1998),

puts ETS = {∆yt<0 , ∆yt+1<0} and CTS={∆yt>0, ∆yt+1>0). This rule is slightly more

complex than the previous example, because conditioning on St-1 restricts the set ={∆yt-1,

∆yt}. Conditioning on St-1=1 means that it cannot be the case that {∆yt-1<0 , ∆yt<0}, while

conditioning on St-1=0 means that it cannot be the case that {∆yt-1>0 , ∆yt>0}.    These

pairs are ruled out because, if observed, they would have terminated the assumed state

one period earlier. Thus,

                                                          
18 Harding and Pagan (1998) explore the type of classical cycle generated by a variety of theoretical models
that appear in the literature.
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 Pr(ETS|St-1=1)= Pr({∆yt<0 , ∆yt+1<0}|St-1=1)
                        =Pr(∆yt<0|St-1=1). Pr(∆yt+1<0|St-1=1)      (5)

and St-1=1 implies that {∆yt-1 , ∆yt} is drawn from the set {(∆yt-1<0 , ∆yt>0); (∆yt-1>0 ,

∆yt<0); (∆yt-1>0 , ∆yt>0)}.   Thus Pr(∆yt<0| St-1=1)= φ(1+φ) and      Pr(∆yt<0| St-1=1)= (1-

φ)/(2-φ) making Pr(ETS|St-1=1)= φ2(1+φ) and Pr(ETS|St-1=0)= (1-φ)2(2-φ).   Use of

equation (3) then shows that Pr(St-1=1)= (1-φ)2(1+φ)/(1-φ+φ2) making   Pr(peak)= (1-

φ)2φ2/(1-φ+φ2) and the average duration of the cycle will be

3(1-φ+φ2)/ (1-φ)2φ2.

More generally, the Pr(ETS|St-1=1) and Pr(CTS|St-1=0) will depend upon other

features of ∆yt, such as serial correlation in it. Because this is so it is useful to examine

many questions relating to the modeling of  ∆yt through their effects upon these terms.

One example is to study the relationship between the states St and the latent states ξt

found in popular statistical models of the cycle such as Hamilton (1989). Clearly a

terminating sequence involves a switch in the state St and a statement of the rules

governing termination is equivalent to specifying a set of transition probabilities for the S

states. Take the simple case that ETS = {∆yt<0 } and CTS={∆yt>0}. Then

Pr[St= 1 | St-1=1]=1-Pr(∆yt<0)=p , (6)

Pr[St= 0 | St-1=0]=1-Pr(∆yt>0)=q . (7)

If an extra assumption is made that the growth rate and its volatility varies with

the state as

∆yt = a1St + a0(1- St) + [Stσ1+(1-St)σ0 ]εt , (8)

where εt is n.i.d. (0, 1), we would have Hamilton’s (1989) model of the cycle

when St are replaced by the latent states ξt. Given that the same format (6)-(8) is involved

in both the dating rules and Hamilton’s model, there is clearly some connection between

the two approaches. Differences might simply reside in the values of p and q, but they

might also be located in the auxiliary assumption in (8). In the simple dating rule being

examined, St=1 if ∆yt>0 and so E[∆yt|St=1]= E[∆yt|∆yt>0]. Consequently, it cannot be the
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case that εt is n.i.d., as the situation is equivalent to that which occurs with sample

selection. Therefore, the states St generated by a set of rules such as BBQ will differ from

the ξt and it is unwise to treat statistics derived from the St as also pertaining to the ξt (and

conversely). In particular, the lengths of phases corresponding to ξt , and the possibility of

duration dependence within the ξt states, cannot be answered by examining these issues

with the St, unless some allowance is made for the selection bias. These questions are

further investigated in Pagan(1998).

The terminating rules can also be useful when looking at issues of “co-

movement”. The index of coherence introduced earlier is a useful way of thinking about

whether variables “co-move”, in the sense that they have common cycles. Because a

fundamental determinant of the length of a classical cycle is the ratio µy/σ, to get common

cycles i.e. for turning points to cluster together, it will be necessary that the ratios for any

two series being compared – yjt and yrt - must be of similar magnitude. Moreover, having

a common “serial correlation feature” in ∆yjt and ∆yrt will also be useful, as serial

correlation in growth rates will be a determinant of the length of a cycle through its effect

upon the probability of the event defining a turning point. But this cannot be the end of

the story. Having the same univariate processes for ∆yjt and ∆yrt tends to make for the

same cycle lengths but does not ensure that the turning points will occur together. To

examine the forces acting on the latter phenomenon, take the simplest termination rule. A

peak in both series occurs at the same point if the event T = {∆yjt<0, ∆yrt<0}occurs.

Hence to get turning points to coincide one would wish to maximize the probability of

this event occurring. Obviously, a crucial element will be the cov(∆yjt, ∆yrt) and one

would normally expect that, as this rises, the prob (T) will rise. It is here that a common

factor in the two growth rates proves useful since it will tend to raise the correlation

between them. It is not necessary though; one could still have a high correlation between

the two series without a common factor being present. This line of thought suggests that

co-integration between yjt and yrt would also maximize the chances of having common

turning points in yjt and yrt, since that introduces a common factor and, if the permanent
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shocks have much higher variance than the transitory ones, ∆yjt and ∆yrt will tend to have

the same serial correlation structure and variances.19

���'LVVHFWLQJ�WKH�&\FOH

 Having established the fact that the ratio (µy/σ) is important for the cycle, it is

natural to estimate that quantity and to see if it provides an explanation of the observed

business cycle characteristics established earlier. Table 3 summarizes information on µy,σ

and (µy/σ) using the same sample periods as underlie Tables 1 and 2.
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µy(%) σ(%) (µy/σ)
US GDP .81 1.07 .76
UK GDP .58 1.04 .56
Aust GDP .93 1.36 .68
US Cons .83 .74 1.12
US Inv .98 5.0 .20

We will use Table 3 later but, for purposes of comparison with some published

work, it will also be useful to use the period 1952/1-1984/4 for estimating µy and σ for

the US. These are .82 and 1.15. The difference between these estimates and those in

Table 3 is largely a reduction in volatility, see McConnell and Perez-Quiros (1998). It

might also be thought that the implied trend growth rate seems high; today estimates of

the long-run growth potential of the US economy are closer to .65% per quarter rather

than .8

Adopting the stance that it is the ratio (µy/σ) which controls much of the nature of

the cycle, Table 3 might be used in order to interpret the outcomes in Tables 1 and 2.

There are some clear successes – the relative length of the cycles of consumption,

investment and US GDP for example, but in other instances the mapping seems to be

                                                          
19 In this discussion we have assumed that µ was the same for both series i.e. the series need to co-trend as
well as to co-integrate. If the µ’s are very disparate then it would be improbable that a bunching of turning
points would occur.
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much more imperfect. However, one has to exercise some care, since Tables 1 and 2

involve censoring of durations, while the simple sequence rules, from which the

importance of  (µy/σ) was derived, do not incorporate it. Table 4 below shows the cycle

characteristics one would get from simulating data from (4) with µy and σ set to their

1947/1-1997/1 sample estimates. A comparison of the second and third columns shows

the impact of censoring; clearly such actions have a major impact and cannot be ignored

if one wishes to compare the business cycle characteristics of some model to those

established by institutions such as the NBER. A comparison of columns one and two also

shows that the pure random walk model of the log of GDP does pretty well at capturing

the main features of the cycle, in particular the durations of the phases, the cycle length,

and the asymmetry between expansions and contractions. To a first approximation then,

one could provide an analysis of the business cycle simply by asking what it is that

determines µy and σ. If there is a discrepency between the simulated and actual features

found from the random walk simulations it lies in the inability to fully capture the shapes

of the expansion phases. Table 5 provides the same statistics for the UK and Australia

using the values of µ and σ in Table 3, and employing the censored version of BBQ as the

dating algorithm.
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Mean Duration (quarters) Data RW(Cen) RW(Unc
en).

RW+Ser
Corr

PT 3.0 2.8 2.3 3.3
TP 17.8 23.6 16.4 17.9
Mean Amplitude (%)
PT -2.5 -1.5* -1.5* -2.0
TP 20.2 22.9 16.6 19.0
Cumulation (%)
PT -4.1 -2.4* -1.8* -4.0
TP 256 471 254 297
Excess (%)
PT -0.1 -0.0 0.0 0.0
TP 1.1 -0.0* -0.0* -0.0*

    * Indicates that less than 5% of simulations were further out in the tail relative to the data estimate.
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Mean Duration (quarters) UK Data UK Sim Aust
Data

Aust Sim

 PT 3.75 3.1 3.33 2.9
 TP 16.1 13.9 20.6 19.7
Mean Amplitude (%)
 PT -2.5 -1.7* -2.2 -2.1
 TP 14.5 11.5 24.7 23.0
Cumulation (%)
 PT -6.1 -3.1* -4.0 -3.4
 TP 196 137 320 386
Excess (%)
 PT 0.0 -0.0 0.1 0.0
 TP 0.7 0.0* 1.0 0.0*

    * Indicates that less than 5% of simulations were further out in the tail relative to the data estimate.

Suppose we focus upon the prediction of cycle length for each country based on

the random walk with drift model. Both the UK and Australian predictions are quite close

to reality. In contrast, the predicted length of the US cycle is closer to that of Australia’s

rather then the UK one it matches in reality. This suggests that there is another factor at

work which is missing in the description of output growth in the US. Indeed, as we

observed earlier, the UK and Australian growth rates show no serial correlation, whereas

the US does, leading to the suspicion that this difference plays a role in explaining the

evidence on cycle length.  Consequently, let us examine what happens when there is

serial correlation in growth rates of the form

∆yt = µy (1-ρ) + ρ∆yt-1 + σεε(t), (9)

where ε(t) is n.i.d. (0,1). This model was fitted to the quarterly growth rate in US GDP

over the period 1947/1-1997/1 and simulations were then performed with the resulting

estimates of µy , σε  and ρ (.81, 1.01 and .34 respectively). These results are presented in

column 4 of Table 4.   Comparing these results to column two shows that the presence of

positive serial correlation in growth rates makes for shorter cycles. The origin of this

result is most clearly understood by thinking about what would happen were one of the
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sequence rules given earlier to be used for dating the turning points. When there is

positive serial correlation between adjacent growth rates the probability of getting two

negative outcomes is greater than when they were independent,  and this should have the

effect of producing more turning points, a shorter cycle, and shorter expansions.

Accordingly, the prediction of a lengthy cycle coming from a high value of (µy/σ) needs

to be revised downwards. With serial correlation present there is quite a good match with

US data. Consequently, some positive serial correlation in ∆yt is useful in explaining the

cycle, but  its main features can be explained without such an effect, and that fact enables

one to appreciate why King and Plosser (1994) found that RBC models replicated

business cycle features pretty well. Conclusions such as Wen (1998, p 186)

“This indicates that standard RBC models lack the necessary propagation mechanism to generate
movements around business cycle frequencies. In other words, business cycles do not really exist in current
real-business-cycle models”,

are correct in pointing to the need for serial correlation in growth rates to get a cycle that

is close to reality, but quite incorrect in saying that a model without such a feature does

not have a cycle. The invalid conclusion stems from a failure to define a business cycle in

the appropriate manner. As we have emphasized earlier, the concentration in that article

upon whether there is a peak in the spectral density of output movements “at the business

cycle frequencies” is an irrelevant one for whether there is a business cycle; the latter is

produced even with no peaks in the spectral density of ∆y(t) at any frequency.

If there is any notable deficiency in all the models discussed above, it relates to

the shapes of expansions and the ability to reproduce cumulated movements. Given that

these models are linear it is natural to ask whether some non-linearity might be helpful in

explaining such  “fine details” of the cycle.  A problem which arises in any such inquiry

is how to choose suitable representatives of the non-linear approach. There is a huge

literature on this. One stream stems from chaotic phenomena and is best classified as “gee

whiz” research, with little or no attempt to bring evidence to bear upon the utility of the

models. It is hard to know what to say about such work. A second stream concentrates



27

upon non-linear stochastic models of GDP growth and does have some foundation in

evidence. Hess and Iwata (1997) provide a collection of these.20

An appealing class of models is that of Hamilton (1989); this class has been used

in many applied studies describing economic fluctuations and it sometimes forms the

foundation for theoretical models as well.  In his model the state of the economy ξt is a

two-state Markov Chain process with transition probabilities Pr[ξt =1|ξt-1 =1]=p and Pr[ξt

=0|ξt-1 =0] = q. The basic model produces a statistical representation of ∆yt which exhibits

serial correlation and also makes E[∆yt| ∆yt-1] a non-linear function of ∆yt-1. Timmermann

(1998) derives E[∆yt∆yt-1] as c1
2π1 (1-π1)(p+q-1), where π1 is the unconditional

probability of being in the first state. Consequently, such a model can account for some

observed serial correlation in growth patterns, and the implied non-linear conditional

mean may create some extra movement that is useful in replicating certain elements of

the business cycle. Extensions of the basic model have also been proposed.  For example,

Durland and McCurdy (1994) suggested that the transition probabilities p and q be

dependent upon how long the economy has been in a given state i.e. the Pr[ξt =1|ξt-1 =1]

might depend upon how long the expansion had been in existence at time t (det). They

assume that the modified p has the logit form

Pr[ξt =1|ξt-1 =1] =exp(a+bdet)/(1+exp(a+bdet)), (10)

with a similar expression for q.

Both the basic Hamilton model and one exhibiting duration dependence have been

fitted by Durland and McCurdy over the period 1952/2-1984/4, and the parameter

estimates in their paper may be used to determine the nature of the non-linearity in ∆yt

through a computation of E[∆yt|∆yt-1] at a range of values for ∆yt-1.
21 15,000 observations

                                                          
20 Hess and Iwata also study the ability of these models to produce selected characteristics but their
definitions of turning points are not standard and do not produce cycle characteristics that are familiar.
Nevertheless, given their definitions, it seemed as if the non-linear models they studied did not improve
much on linear models when it came to explaining the cycle.
21 Durland and McCurdy actually fitted  a non-linear AR(4) process. Since none of the AR coefficients were
significantly different from zero we set them to that value. Note that the latent state process implies that
there is serial correlation in ∆yt so that it may not be surprising that extra linear terms are not needed.
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were generated from these two models and E[∆yt|∆yt-1] was then non-parametrically

estimated by kernel methods for each model. Fig 2 shows a plot of both conditional

means against values of ∆yt-1, along with the linear forecast function obtained from a

regression of  ∆yt against ∆yt-1. There is little doubt that predictions made of the following

period’s growth rate using current period information will differ between the two latent

state models, and that the model featuring duration dependence produces markedly

different outcomes when the economy is in contraction. Even more striking is the gap

between those two functions and that of the linear model. Given the latter feature, it is

interesting to investigate whether these differences show up as business cycle

characteristics. To assess that aspect, the simulated output from each of the models was

passed through the BBQ dating algorithm and the results are given in Table 6.

Figure 2: Estimates of Conditional Mean of Growth Rate in US GDP, Various
Models
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Data Hamilton Dur Dep
Mean Duration (quarters)
 PT 3.0 4.4 4.8*
 TP 17.8 20.0 16.9
Mean Amplitude (%)
 PT -2.5 -2.8 -3.3*
 TP 20.2 27.3 25.0
Cumulation (%)
 PT -4.1 -8.2 -8.5*
 TP 256 496 293
Excess (%)
 PT -0.1 0.0 0.0
 TP 1.1 -0.0* 0.0*

                 * Indicates that less than 5% of simulations were further out in the tail relative to the data estimate.

Introducing duration dependence certainly has an impact. In particular,

contractions tend to last longer and the cumulated losses are higher than with the random

walk plus drift model. One might have expected this, given the shape of the non-

parametric means for both models. However, the models seem to go too far, producing

cycles that are too extreme, particularly in relation to cumulated movements, and do little

to get the shape of expansions right.22 Given that these models are chosen over random

walk models by statistical tests, such an outcome was a little unexpected, but it does serve

to show that adding non-linear structure to the conditional moments can have a powerful

effect upon cycle characteristics, albeit they may be undesirable.

So far it is the question of whether univariate statistical models have the ability to

generate the reference cycle which has held center-stage. By and large our conclusion has

been that very simple models can produce realistic cycles. It is inevitable then that the

information in specific cycles will need to be examined if cycle theories are to be

differentiated. Following the same strategy as adopted for univariate models, it is

necessary to establish a relationship between  multivariate statistical models and

multivariate measures of the cycle. The obvious multivariate statistical model to start

                                                          
22 Hess and Iwata’s (1997) results can also be interpreted in this way.
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with would be a VAR in the differences of  the extended set of variables. A popular set is

the trio in Table 2. Our strategy involved fitting a VAR(2) to a sample of observations on

these and then simulating data from the fitted VAR. The simulated series can then be

used to describe the cycle characteristics for US GDP and investment.  An argument that

can be advanced to justify  this choice is that many theoretical models of fluctuations

have as their objective the reproduction of the VAR parameters found from the data.

Consequently, the simulations we are performing can be taken as representing what

would be found from such models if  they were completely successful in their objective.23

As for the analysis conducted with univariate models, the determinants of the

statistics in Table 7 will be the means and variances of the growth rates, along with any

multivariate serial correlation in them i.e. the turning points in specific cycles will depend

upon the joint moments of the random variables underlying them. The extent of clustering

in the turning points will be reflected in the values of the indices of concordance and, in

turn, these will depend upon the covariances between the VAR errors, since such indices

fundamentally depend upon the joint probability, Pr(∆yjt<0, ∆yrt<0). It is interesting to

note that fitting an AR(1) to the simulated VAR output on GDP growth, and averaging

the parameters over 1000 replications, produced estimates for a univariate model of

output growth that were extremely close to those from the data sample. However, this

does not mean that the cycles generated by a univariate model will be the same as from a

multivariate one, since  the dating algorithms are functionals of the joint probabilities of

sequences of events, and the latter may well differ between univariate and multivariate

models, due to the fact that the building blocks of such computations are conditional

densities with differing information sets. Table 7 gives the results. By and large one can

conclude that any theoretical model that was capable of replicating the VAR in growth

rates would do well in explaining specific cycles. Moreover, there is a good match

between the extent to which cycles cohere, as the average indices of concordance between

consumption and investment relative to output are .85 and .73, versus the .87 and .76 of

the US data.

                                                          
23 Harding and Pagan (1998) perform the simulations with some well-known theoretical models.
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Mean Duration (quarters) GDP
Data

GDP Sim Inv Data Inv Sim

 PT 3 3.2 5.3 4.8
 TP 17.8 23.2 10.3 7.7
Mean Amplitude (%)
 PT -2.5 -1.8 -22.6 -16.8
 TP 20.2 23.3 35.2 30.2
Cumulation (%)
 PT -4.1 -3.8 -53.2 -58.8
 TP 256 549 233 198
Excess (%)
 PT -0.1 0.0 1.6 0.0*
 TP 1.1 -0.0* 2.4 -0.1*

    * Indicates that less than 5% of simulations were further out in the tail relative to the data estimate.

 
���&RQFOXVLRQ

To dissect a cycle one first needs to define it. In this paper we adopt the stance

that the business cycle is defined by the turning points in aggregate economic activity, so

that any statistical analysis of it requires that one be able to define such events. Although

there is no unique way of doing this, we adopted a method that corresponds quite closely

to that used by the NBER when dating cycles in the level of activity. Once this definition

has been made mathematically precise, it emerges that the statistical behavior of the

growth rate of output determines the nature of the business cycle. Accordingly, by

examining different parametric statistical models for output growth, we are able to dissect

observed cycles according to the contributions made by trend growth, volatility and serial

correlation in growth rates, and non-linear effects. Regarding the latter we find little

evidence that non-linear effects are important to the nature of business cycles. The

perspective on the business cycle which we expound was also used to discuss specific

cycles in the components of output, and to suggest ways of defining concepts such as

“pro-cyclicality” between the levels of two series.
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Appendix

                                  Classical Cycle Turning Point Comparisons, US Data
                             FIBCR and Quarterly Bry-Boschan Dating

P T
FIBCR BBQ FIBCR BBQ

48/4 48/4 49/3 49/2
53/2 53/3 54/2 54/2
57/3 57/3 58/2 58/1
60/2 60/1 61/1 60/4
69/4 69/3 70/4 70/1
73/4 73/4 75/1 75/1
80/1 80/1 80/3 80/3
81/3 81/3 82/3 82/4
90/3 90/2 91/1 91/1

References

Australian Bureau of Statistics (1987), A Guide to Smoothing Time Series- Estimates of
“Trend” , Catalogue No1316.0, 1987.

Boehm, E.A. (1998), “A Review of Some Methodological Issues in Identifying and
Analysing Business Cycles”, Melbourne Institute Working Paper, No. 26/98.

Boschan,C. and W.W. Ebanks (1978), “The Phase-Average Trend: A New Way of
Measuring Growth”, Proceedings of the Business and Economic Statistics Section of the
American Statistical Association

Bry, G. and C. Boschan (1971), Cyclical Analysis of Time Series: Selected Procedures
and Computer Programs, New York, NBER.

Burns, A.F. and W.C. Mitchell (1946), Measuring Business Cycles, New York, NBER

Burnside, C. (1998), “Detrending and Business Cycle Facts: A Comment”, Journal of
Monetary Economics, 41, 513-532.

Canova, F. (1994), “Detrending and Turning Points”, European Economic Review, 38,
614-623.

Canova, F. (1998a), “Detrending and Business Cycle Facts”, Journal of Monetary
Economics, 41, 475-512.

Canova, F. (1998b), “Detrending and Business Cycle Facts: A User’s Guide”, Journal of
Monetary Economics, 41, 533-540.

Canova (1999), “Does Detrending Matter for the Determination of the Reference Cycle
and the Selection of Turning Points”, Economic Journal, 109, 126-149.



33

Christiano L., T., and Fitzgerald, (1998) “The Business Cycle: Its still a Puzzle”, Federal-
Reserve-Bank-of-Chicago-Economic-Perspectives, 4th Quarter, p56-83.

Cogley,T. and J. Nason (1995), “Output Dynamics in Real-Business-Cycle-Models”,
American Economic Review, 85, 492-511.

Cooley, T.F. and E.C. Prescott (1995) "Economic Growth and Business Cycles", ch 1 of

Cooley, T.F. and E.C. Prescott (eds) Frontiers of Business Cycle Research Princeton
University Press.

Diebold, F.X. and G.D. Rudebusch (1996), “Measuring Business Cycles: A Modern
Perspective”, Review of Economics and Statistics, 78, 67-77.

Durland, J.M and T.H. McCurdy (1994), “Duration-Dependent Transitions in A Markov
Model of US GNP Growth”, Journal of Business and Economic Statistics, 12, 279-288.

Epstein, P. (1998), “Wesley Mitchell’s Grand Design and its Critics”, Journal of
Economic Issues (forthcoming)

FIBCR, (1998), International Economic Indicators – A Monthly Outlook,
January/February, Vol. 21, Nos.1-2.

+DPLOWRQ�� -�'�� �������� ´$� 1HZ� $SSURDFK� WR� WKH� (FRQRPLF� $QDO\VLV� RI� 1RQ�
6WDWLRQDU\�7LPHV�6HULHV�DQG�WKH�%XVLQHVV�&\FOHµ��(FRQRPHWULFD��������������

+DUGLQJ�� '�� � �������� ´7KH� 'HILQLWLRQ�� 'DWLQJ� DQG� 'XUDWLRQ� RI� &\FOHVµ�� 3DSHU
SUHVHQWHG�WR�WKH�0HOERXUQH�,QVWLWXWH�FRQIHUHQFH�RQ�%XVLQHVV�&\FOHV��3ROLF\�DQG�$QDO\VLV�

Harding, D. and A.R. Pagan (1998), “Knowing the Cycle”, paper presented at the
conference on Theory and Evidence in Macroeconomics, University of Bergamo.

Hess, G.D. and S. Iwata (1997), “Measuring and Comparing Business-Cycle Features”,
Journal of Business and Economic Statistics, 15, 432-444.

King, K.H. , R.A, Buckle and V. Hall (1994), “Key Features of New Zealand Business
Cycles”, Economic Record, 70, 56-72.

King, R.G. and C.I. Plosser (1994), “Real Business Cycles and the Test of the
Adelmans”, Journal of Monetary Economics, 33, 405-438.

Koopmans. T.J. (1947), “Measurement without Theory”, Review of Economics and
Statistics, 29, 161-172.

Kydland. F.E. and E.C. Prescott (1990), “Business Cycles: Real Facts and a Monetary
Myth”, Federal Reserve Bank of Minnesota Quarterly Review, Spring, 383-398.

Lucas (1981), “Methods and Problems in Business Cycle Theory in R.E. Lucas Studies in
Business Cycle Theory, 1981, M.I.T. Press.

McConnell, M. and G.P. Quiros (1998), “Output Fluctuations in the United States: What
Has Changed Since the Early 1980’s”, Staff Report no. 41, Federal Reserve Bank of New
York.



34

Mintz, I (1972), “Dating American Growth Cycles”, in V. Zarnowitz (ed) The Business
Cycle Today, NBER, New York, p 39-88

Pagan, A.R. (1997a), Towards an Understanding of Some Business Cycle
Characteristics”, Australian Economic Review, 30, 1-15.

Pagan, A. R. (1997b), “Policy, Theory and the Cycle”, Oxford Review of Economic
Policy, 13, 19-33.

Pagan, A.R. (1998), “Bulls and Bears”, Walras-Bowley Lecture given at the North
American Summer Meetings of the Econometric Society, Montreal, June.

Phillips, P.C.B. (1998), “New Tools for Understanding Spurious Regressions”
Econometrica (forthcoming)

Scutella, R. (1996), “Obtaining an Efficient Estimate of the True Level of GDP”,
Honours Research Essay, Melbourne University

Sichel, D.E. (1994), “Inventories and the Three Phases of the Business Cycle”, Journal of
Business and Economic Statistics, 12, 269-277.

Simkins, S.P. (1994), “Do Real Business Cycle Models Really Exhibit Business Cycle
Behavior”, Journal of Monetary Economics, 33, 381-404.

Slutsky, E.E. (1937), “The Summation of Random Causes as the Source of Cyclic
Processes”, Econometrica, 5, 105-146.

Stock, J.H. and M.W. Watson (1991), “A Probability Model of the Coincident Economic
Indicators”, in K. Lahiri and G.H. Moore,(eds) Leading Economic Indicators, Cambridge
University Press, Cambridge.

Stock, J.H. and M.W. Watson (1998), “Business Cycle Fluctuations in US
Macroeconomic Time Series”, Working Paper No. 6528, National Bureau of Economic
Research.

Timmermann, A. (1998), “Moments of Markov Switching Models”, mimeo, University
of California at San Diego

Tinbergen, J (1939),  Statistical Testing of Business Cycle Theories, 2 vols,
Geneva, League of Nations.

Wecker, W. (1979), “Predicting the Turning Points of a Time Series”, Journal of
Business, 52, 35-50.

Wen, Y. (1998), “Can a Real Business Cycle Model Pass the Watson Test”, Journal of
Monetary Economics, 42, 185-203.


