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Abstract

This paper considers maximum likelihood estimation and inference
in the two-way random effects model with serial correlation. We de-
rive a straightforward maximum likelihood estimator when the time-
specific component follow an AR(1) or MA(1) process. The estima-
tor is easily generalized to arbitrary stationary and strictly invertible
ARMA processes. Furthermore we derive tests of the null hypothesis
of no serial correlation as well as tests for discriminating between the
AR(1) and MA(1) specifications. A Monte-Carlo experiment evaluates
the finite-sample properties of the estimators and test-statistics

1 Introduction

Following the influential work of Lillard and Willis (1978) there has been a
continued interest in error component models which allow for dynamics in the
form of a serially correlated error component. As in Lillard and Willis, An-
derson and Hsiao (1982), MaCurdy (1982) and Baltagi and Li (1991, 1994)
consider a one-way error component model with individual specific effects
and serially correlated idiosyncratic errors. King (1986) studies a one-way
model with correlated time specific effects and independent idiosyncratic er-
rors whereas Magnus and Woodland (1988) consider a multivariate panel
data model where both the time specific effects and the idiosyncratic errors
are correlated. See Baltagi (1995, ch. 4) for a review of the literature.
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In this paper we consider the two way random effects model with serially
correlated time specific effects. That is, the serially correlated component
is common to individuals and can be taken to represent common or macro
effects not accounted for by the explanatory variables. More specifically, the
model of interest is

Y = o+Xu+ei (1)
Eit = M+ A+ Vi

with A\, an AR(1),

At = pAi_1 + Uy, (2)
or MA(1),

Ar = up + Ouy_q, (3)

process. Revankar (1979) studied this model and gave a rather cumbersome
two-step estimator for the special case where A, follows an AR(1) process. We
offer a computationally straightforward maximum likelihood estimator which
is easily generalized to arbitrary stationary and strictly invertible ARMA
processes for );. In addition we consider the model selection problem and give
tests for autocorrelation in \; as well as tests that allow us to discriminate
between the autoregressive and moving average specifications.

The organization of the paper is as follows. Section 2 presents the max-
imum likelihood estimator of the model. Section 3 derives the specification
tests. Section 4 contains results from a Monte-Carlo experiment and section
5 concludes.

2 The Maximume-likelihood estimator
In matrix form the two way model (1) is written as

y = Zd+e
e = Zyp+2IXx+v

where ZM = (IN & LT), ZA = (LN ®IT), 7 = [LNT,X], 0 = [Oé,,@l]l, [,L/ =
(ft1, s fing)s X = (A1, ....; Ap) and ¢y is a vector of ones of dimension N.
Throughout we will maintain the assumption that vy ~ N (0,02), p, ~
N (0,02) , uy ~ N (0,07) independent of each other and X. In addition we
assume that p,0 € (—1,1) that is the AR process (2) is stationary and the
MA process (3) is strictly invertible.



The covariance matrix of the combined error term is given by

S = E(e€) = Z,E(pp')Z, + ZyE(AN)Z) + E(v/)
= (IN®JT)+O'(JN®\I])+O'(IN®IT)

where Jr = ¢t/ a T x T matrix of ones and VU is the covariance matrix of
(2) or (3) with unit innovation variance. When the distinction between the
two types of processes is important we will refer to the covariance matrix of
the AR(1) process as ¥, and the covariance matrix of the MA(1) process as
Wy. More generally ¥ can be the covariance matrix of an arbitrary stationary
and strictly invertible ARMA(p, q) process.

Direct inversion of ¥ is clearly impractical even for panels of moderate
size and the usual spectral decomposition "tricks” employed in the panel
data literature are not directly applicable here. For maximum likelihood
estimation to be practical convenient expressions for 37! and |X| must be
found. To this end, let Ep = Ip — Jp, Jp = Jp /T, 02 = To? + o and

A = o (Iy®Ip) +o,(Iy®Ip) =1y ® (05dr + oolr)
= IN®(O'1JT—|—0'12/ET)

be the covariance matrix of the one-way model with individual specific effects.
We can then write

YS=A+c ey @Ip)V(y @ 1)

Using a well known result from matrix algebra

271 = Ail — Ail(LN X IT)[ Q\If + (LN X IT) (LN & IT)] (L’N & IT)Ail

= In®A" — (ty @ AN)[02U 7+ NA* | (b ® A¥)
— Iy® A" — 02 (ey ® A*) [Ip + No2WA*] ™ (LN®A*)

where
-1 1 *
AT =Iy® O'ET+ JT =Iy® A

We obtain the determinant of X in a similar fashion as

] = AT oo, 0T+ NAY (5)
VTV |1 4 N2 A

(4)



Using these results we have the log-likelihood function as

TN N(T —1)

N
1(d,7) = —71n27r— lnaz—gln(TUfL—l—az) (6)

1 1
—55’ (Iy ® A%) e — 5 In Iy + No, WA

2
—l—%é‘/(bN ® A*) [Ip + NoZWA*] Uy ® AY)e

where ~ is the vector of covariance parameters, (07,07, 0%, p) for (2) and

(0%,0%,0%,0) for (3). This only requires numerical calculation of the deter-
minant and inverse of the 7' x T' matrix Iy + No2WA* which for the modest
time series dimensions common in panel data applications is both speedy
and accurate!. The theorem below shows that the models (1, 2) and (1, 3)
are locally identified in the sense of Rothenberg (1971). The proof is given

in appendix C.

Theorem 1 Assume that —1 < 7 < 1 where 7 = p or 7 = 0, and 0 <
0%, 00,05 < C < oo for some finite constant C. The dynamic two way
random effect models (1, 2) and (1, 3) are then locally identified in the sense

of Rothenberg (1971) when N,T > 2.

The elements of the score are given in appendix A.1 and the information
matrix in appendix A.2. The use of an analytic score is strongly suggested
in applications since numerical derivatives performed poorly. Variance es-
timates can be based on either a numerical approximation to the Hessian
matrix or the information matrix given in the appendix.

3 Specification tests

3.1 Testing for autocorrelation in )\;

To derive an LM-statistic to test the null hypothesis Hy : p = 0 against p # 0
in the AR(1) specification, we need the score and the information matrix
evaluated at the two-way model with A, = u; ~ N(0,02). The information
matrix and the relevant element of the score vector evaluated under the null
hypothesis are obtained from appendix A.2 and A.1 respectively by setting

'Tf an analytic inverse and determinant is available for W it is more convenient to work
with 07201+ NA* (line 2 of (4) 1 of (5)) since the computations are much more efficient
for symmetric positive definite matrices than for general matrices.



VU =1 and L = G, where G is a bidiagonal matrix with bidiagonal elements
all equal to one. The LM-test is computed as

Ol g, Ol
& = (5, lo=0) T"(5 lo=0) (7)

where 7% is the (4,4) element of the inverse information matrix for the
variance parameters, 7, ., evaluated at the null hypothesis. Since the infor-
mation matrix is block-diagonal between ¢ and + it is sufficient to obtain this
block.

Inspection of the score vector for the MA(1) model shows that 2|s_y =
g—f)| o—0- It follows that (7) is also the LM-test against an MA(1) alternative.

The hypothesis of no autocorrelation can, of course, also be tested using
Wald or LR-tests. In addition to requiring the use of slightly more compli-
cated estimators, these tests require the choice of a specific alternative. In
general we expect Wald or LR-tests against the correct alternative to have
more power than the LM-test and the Wald or LR-tests against the wrong
alternative to have lower power than the LM-test.

3.2 Testing AR(1) vs. MA(1)

Having rejected the null of no serial correlation using one of the tests dis-
cussed in the previous section, the next step is to decide wether to model
A+ as an AR or MA process. In this section we develop formal tests which
allow us to discriminate between the AR(1) and MA(1) specifications. Test-
ing is complicated by the hypotheses being non-nested and test results will
frequently be inconclusive. Model choice can then be based on less formal
criteria, such as comparison of p-values or information criteria. Note that
in the case of AR(1) vs. MA(1), the choice of information criteria to use is
irrelevant since they all boil down to a simple comparison of the likelihoods
for the two specifications.

In order to develop formal tests we nest the two hypothesis in the com-
prehensive ARMA(1,1) specification for \;. Since estimation of the com-
prehensive model is complicated we do not consider Wald or LR-tests and
concentrate on LM-tests. The test of the hypothesis that the true process
for A, is AR(1) then corresponds to testing Hy : 6 = 0 in the ARMA(1,1)
specification. We will refer to this test as the LM-AR test. Correspondingly,
testing the null that the true process for \; is MA(1) is equivalent to testing
Hy : p = 0 in the ARMA(1,1) specification. We refer to this test as the
LM-MA test.

Using the standard block diagonality between regression and variance



parameters we have the test statistic for Hy : 7 =0 as

or, ., ol
27 = (5= o) T (- o)

T

where 7 is 6 if the null hypothesis is AR(1) and p if the null hypothesis is
MA(1) and Z77 is the appropriate element of the inverse information ma-
trix for the variance parameters, evaluated under the null hypothesis. The
elements of the score and the information matrix evaluated under the null
hypothesis are given in appendix B.

The LM-tests are relatively complicated and as an alternative we consider
two tests which can be computed using only the within estimates of the
standard two-way model. These tests are based on the same ideas as the
BGT tests of Baltagi and Li (1995), to test implications of the process for A,
being AR(1) or MA(1).

Let Xt be the dummy variable estimates of \;. Then

1 X
G- LY A
t=j+1
is a consistent estimator of (; = cov(As, Ar—;). Under the null of MA(1)
we have ¢, = 0 and VT (22 — CQ) 4N (O,Cg —|—2C%) under H, and the
normality assumption. An asymptotically N (0,1) test statistic for the null
of MA(1) is thus given by
&
&= VI—— (8)
\V Co +2¢,

Under the alternative of AR(1), (, > 0 and we reject in the right tail only in

order to maximize power. We refer to the test (8) as the BGT-MA test.
Let n; = corr (AAs—;), under the null hypothesis of an AR(1) process

Mo — (771)2 =0

whereas under the alternative of an MA(1) process 1, = 0. The test statistic

54 = ﬁ(% - (/771)2)/(1 - /772) (9)

is asymptotically N(0,1) under the null hypothesis and we reject in the left
tail in order to maximize power against MA(1). We refer to the test (9) as the
BGT-AR test. To get a test for which size approaches zero asymptotically
we may also accept the null hypothesis if 7; > % + %, see Baltagi and Li

(1995).



4 Monte-Carlo study

4.1 Design

We generate data from the two way model

Vit = a+ Bry+ ey
Eit = M+ A+ vy

where v = 0, § = 1 and with \; an AR(1) (2) or MA(1) (3) process. The
regressors, x;; are generated as

Ty = 0.6251 + 1y

where 7, is 7id N(0,1) and is held constant over the replicates of ;. The
variance parameters takes the values as o7, o2 = (1/6,2/6,3/6,4/6) and o3 =
2

(1—0? —02) for feasible combinations of 0% and o7. That is o2 = o3 (1 — p?)

for the AR(1) specification and o2 = 11%2 for the MA(1) specification. This
choice of variance parameters holds the explanatory power of the model con-
stant with an R? of 0.6. Finally p, § takes the values (—0.8, —0.4,0,0.4,0.8).
For each combination of parameter values we generate 10,000 samples of
N = (10,20) and T = (25,50). Normal p,, u;, €; and 7;, are obtained from
the normal random number generator in GAUSS and initial values of the
AR(1) process are obtained from the stationary distribution of ;.

Due to the large amount of output from the simulation experiment it is
necessary to conserve on space. We only present results for the sample sizes
N =10,T7 =25 and N = 20,7 = 50. A full set of results can be obtained

from the authors upon request.

4.2 Parameter estimates

The bias of parameters are small and the only potentially troublesome param-
eter to estimate is f. The estimated variance of 6 is very large for estimates
close to one, which comes from the fact that the information matrix is singu-
lar at |#] = 1. Restricting |#| below one led to serious convergence problems.
Instead estimates above one in absolute value are transformed back to the
invertibility region. The near singularity of the information matrix close to
the invertibility boundary is however still reflected in the poor performance
of the information matrix estimate of the variance.

We experienced some convergence problems with the MA(1) model when
the true model was AR(1) with |p| = 0.8%. This is not too surprising since

2 A replicate was dropped from the simulation if convergence was not achieved after 100
iterations. This reduces the effective number of replicates to between 8,467 and 10, 000.

7



the MA(1) model cannot match the moments of the AR(1) process for high
values of |p|.

Figure 1a shows the empirical distributions of parameters for N = 10,7 =
25 in the MA(1) model when true model is MA(1) with § = 0.8. Figure 1b
depicts the corresponding case for the AR(1) model when true model is AR(1)
with p = 0.8. Normal densities with the same means and variances as the
empirical distributions are superimposed. Pictures for negative values of p
and 6 are similar and corresponding pictures for N = 20, T = 50 improves on
the negative skewness of the empirical distributions of variance parameters
as well as centering the empirical distributions of p and 6 around their true
values.

4.3 Hypothesis tests

In each replicate we compute the LM-test of the null of no serial correlation
as well as the LR and Wald-tests of the null of no MA(1) or AR(1). The
Wald-tests are computed using a numerical approximation to the Hessian.
Wald-tests based on the information matrix given in the appendix A.2 failed
in the MA(1) model for |§| = 0.8 due to near singularity of the information.
In addition we compute the tests for discriminating between the two spec-
ifications i.e. the LM-MA, LM-AR as well as the BGT-MA and BGT-AR
tests.

In reporting our Monte-Carlo results for the test-statistics we use the
graphical methods advocated by Davidson and McKinnon (1998). The size
discrepancy graphs plot the difference between estimated size and nominal
size against the nominal size of the tests. The size-power graphs plot power
against the nominal size of the tests.

4.3.1 Tests of the null hypothesis of no serial correlation

Size Figure 2 shows the nominal size (x-axis) and size discrepancy (y-axis)
with 95% Kolmogornov-Smirnov ”confidence bands” for the LR, Wald and
LM-tests®. For N = 20,7 = 50 the size properties are very good for the
LM-test and the Wald and LR-tests against an AR(1) alternative (Figure
2a-2c). When testing against an MA(1) alternative the LR and, especially
the Wald test suffer from size distortion and are sensitive to the choice of
variance parameters (Figure 2d-2e).

3In the graphs we refer to the parameter values of ai,a% as me¢, ¢ = 1,..,4 and vy,
j =1,..,4 respectively. For example m1v4 refer to 02 = 1/6,02 = 4/6 and m2v1 refer to

m
(ri =2/6,02 =1/6.



Figure 1 Empirical distributions of parameters, ai = 1/6 and o% = 4/6,
N=10, T=25

a) MA(1), 6 = 0.8
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For N = 10,7 = 25 the Wald and LR-tests against the alternative of
MA(1) have serious size problems and are sensitive to the choice of variance
parameters. Due to the serious size problems with these tests they will not
be considered further. This is in contrast to the LM-test and Wald and LR-
tests against an AR(1) alternative which performs reasonably well even for
the smaller sample sizes (Figure 2f-2h).

Power Since power results for negative and positive values of p and 6 are
similar, we only report results for positive values of p and . For N = 20,7 =
50 the LR-test typically has the highest power, but power differences are not
large. Figure 3a-3c shows the nominal size (x-axis) and power (y-axis) for the
LM, Wald and LR-tests in the AR(1) model with p = 0.4 and Figure 3d-3e
shows the size and power of the LM-test in the MA(1) model. The picture is
similar for the Wald and LR-tests. The tests are relatively insensitive to the
choice of variance parameters, though a small reduction in power is achieved
by decreasing o3 (increasing o7 + 02), which is not surprising since a low
02 makes it harder to detect the AR(1) or MA(1) structure. Furthermore
for fix 03 power is decreasing with increasing 0. Comparing Figure 3c and
3d it appears that the LM-test has lower power against MA(1) than AR(1)
alternatives. It should however be kept in mind that the AR(1) process with
a high value of |p| is more persistent than the MA(1) process with § = p
and we would expect more power against the AR(1) process due to it being
further away from the null hypothesis.

In the case of N = 10,7 = 25 power is obviously lower, but it is also
more sensitive to the choice of variance parameters. As for N = 20,7 = 50
the LR-test typically has the highest power and power in the AR(1) model
is larger. Still, the power differences between the tests and the models are
relatively small. Figure 3f shows the size and power of the LM-test in the
AR(1) model with p = 0.4.

4.3.2 Tests for discriminating between the AR (1) and MA(1) spec-
ifications

Size of BGT-AR and LM-AR Figure 4a-4d shows the size discrepancy
of the BGT-AR and LM-AR tests for negative values of p. For N = 20,7 =
50 the BGT-AR test is undersized at usual significance levels and the size
is also sensitive to the choice of variance parameters®. A low o2 with a
relatively large 02 makes the BGT-AR test more undersized. For |p| = 0.4

4 All references in the text and in the graphs refer to the unadjusted BGT-AR test i.e.
the statistic (9) without size adjustment.

10



Figure 2 Size discrepancy of tests of no serial correlation
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Figure 3 Power of tests of the null hypothesis of no AR(1)
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Figure 4 Size discrepancy of BGT-AR and LM-AR
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the LM-AR test has correct size, and the size is insensitive to the variance
parametrization. For |p| = 0.8 the LM-AR test is slightly undersized but still
performs much better than the BGT-AR test.

Figure 4e-4f shows the size discrepancy of the LM-AR test for N =
10,7 = 25 with p = —0.4 and p = —0.8. The picture is similar for pos-
itive values of p. The size properties of the BGT-AR test has not changed
much for these smaller sample sizes. The LM-AR test is now undersized for
|p| = 0.4 as well, but not by much. For |p| = 0.8 the size problem is more
serious, but not as severe as for the BGT-AR test.
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Figure 5 Power of BGT-AR and LM-AR
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Power of BGT-AR and LM-AR For N = 20,7 = 50 Figure 5a-5d
compares the power functions for negative 6. Figure 5a and 5c with variance
parameters o> = 1/6,07 = 4/6 and Figure 5b and 5d with o7 = 2/6 and
02 =1/6. The LM-AR test is typically more powerful than the BGT-AR test
at usual significance levels. In fact the power curves cross and the crossing
point moves to the right with decreasing o3. Similar to the tests of the null
of no autocorrelation power is generally reduced for a low % and high o2.

Figure 5e compares the power functions for § = —0.8 and N = 10,7 = 25
with 02 = 1/6 and 02 = 4/6. The power of the LM-AR test is still higher
than the BGT-AR test at usual significance levels. For |#| = 0.4 we have no
useful power with either of these tests.
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Size of BGT-MA and LM-MA Figure 6a-6d shows the size discrepancy
of the BGT-MA and LM-MA tests for N = 20,7 = 50. The size of the
BGT-MA test is insensitive to the choice of variance parameters, however it
is undersized with the more severe cases occurring for positive 6. Given the
sign of 0, size is also unaffected by |0| = 0.4 or |#| = 0.8. The LM-MA test is
also undersized but not by as much as the BGT-MA test, on the other hand
it is slightly more sensitive to the variance parametrization for |#| = 0.8. The
LM-MA test also has better size properties for negative 6.

For N = 10,T = 25 Figure 6e-6f shows the size discrepancy of the LM-MA
test for positive values of 6. The size of the LM-MA test is quite sensitive
to the choice of variance parameters, and undersized. The BGT-MA test
continues to be insensitive to the choice of variance parameters. The size
distortion is however still greater than for the LM-MA test.

Power of BGT-MA and LM-MA Figure 7a-7d shows the size-power
curves for N = 20,7 = 50 with o7 = 1/6 and o2 = 4/6. The power of
the BGT-MA test is typically higher than the power of the LM-MA test at
usual significance levels. At lower significance levels the power of the LM-
MA test is higher and the crossing point of the power curves depends on 0%,

specifically the crossing point moves to the right with decreasing o3 as for

the BGT-AR and LM-AR tests. Furthermore |p| = 0.8 is needed to get large
power with either of these tests.

For N = 10,7 = 25 the relative power properties are similar to the
N =20,T = 50 case, except that the crossing point of power curves occurs at
higher significance levels in these smaller sample sizes. Figure 7e illustrates
the crossing point for p = —0.8 with variance parameters (ri = 1/6 and
02 = 4/6. The LM-MA and BGT-MA tests have power equal to size at
usual significance levels for |p| = 0.4.

4.4 Model selection

In the previous section we saw that for small sample sizes (small 7") and/or
small values of |p| and |6| test results for discrimination may very well be
inconclusive. If a decision is needed we may have to resort to information
criteria or discrimination based on p-values of the tests. Furthermore some
researchers advocate the use of information criteria for model choice rather
than hypothesis tests, see for example Granger, King and White (1995).

In this section we briefly consider the small-sample properties of model se-
lection criteria for (i) the two-way model with A, an AR(1) or MA(1) process
and (ii) overall model selection criteria for choosing between the standard
two-way model and the two-way models (1, 2) and (1, 3). In the first case

15



Figure 6 Size discrepancy of BGT-MA and LM-MA
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Figure 7 Power of BGT-MA and LM-MA
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Table 1 Frequencies of correct classification of the AR(1) or MA(1) model,
0% =2/6, 07 = 2/6, N=20, T=50

Model LL LM-p LM-tests

p=-08 098 098 0.83
p=-04 070 068 0.14
p=04 0.68 0.67 0.13
p=038 096 096 0.77

0=-08 094 091 051
f=-04 066 065 0.14
=04 0.69 0.67 0.15
0 =038 096 093 0.59

the choice of model selection criteria to use is irrelevant and model choice
can simply be based on a comparison of likelihoods of the two specifications,
or p-values of the discriminating tests. In the second case the choice of model
selection criteria matters and we consider the AIC criterion of Akaike (1974)
and the BIC criterion of Schwarz (1978). These two criteria are compared
to a hypothesis testing/p-value approach based on the LM-tests. In the first
step we apply the LM-test of the null of no autocorrelation. If the null is not
rejected at 5% significance level the standard two-way model is favored. If the
null is rejected discrimination of the AR(1) and MA(1) process is based on
the p-values of the discriminating LM-tests. We refer to this as the LM /LM-p
strategy.

4.4.1 Discriminating between the AR(1) and MA(1) specifica-
tions

Let LL and LM-p denote discrimination based on comparing the log-likelihoods
and p-values of the LM-tests respectively. We do not consider discrimina-
tion based on the p-values of the BGT-tests due to their disappointing size
properties. In what follows discrimination with the LL criteria and the LM-
p strategy is conditional on the LM-test of the null of no autocorrelation
rejecting the null at the 5% level.

Table 1 shows the frequencies of correct classification of the AR(1) or
MA(1) model for N = 20,T = 50 with o7 = 2/6,02 = 2/6. For comparison
we also include the frequencies of correct classification with the discriminating
LM-tests, based on the 5% significance level.

For N = 20,7 = 50 the LL criteria and the LM-p strategy are insensi-
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Table 2 Classification frequencies for the standard two-way model (2-way),

AR(1) and MA(1) models, 0% = 2/6, 0% = 2/6, N=20, T=50

AlC BIC LM/LM-p
Modecl
2-way  AR(1) MA(1) 2-way AR(1) MA(1) 2-way AR(1) MA(1)

p=-08 0 0.98 0.02 0 0.98 0.02 0 0.98 0.02
p=-04 0.09 0.60 0.31 0.43 0.40 0.17 0.25 0.51 0.24
p=04 0.13 0.56 0.31 0.49 0.35 0.16 0.29 0.48 0.23
p=028 0 0.96 0.04 0.01 0.96 0.03 0 0.96 0.04
p,0=0 0.81 0.08 0.11 0.99 0 0.01 0.95 0.03 0.02
#=-08 0 0.06 0.94 0.04 0.06 0.90 0.07 0.08 0.85
0=-04 012 0.25 0.63 0.52 0.15 0.33 0.40 0.22 0.40
=04 0.13 0.23 0.64 0.54 0.13 0.33 0.40 0.20 0.40
0 =08 0 0.04 0.96 0.03 0.04 0.93 0.07 0.06 0.87

tive to the choice of variance parameters. The LL criterion performs slightly
better than the LM-p strategy. The rather low frequencies of correct classi-
fication for the LM-tests are mainly due to a large inconclusive region and
illustrates the need to resort to the LL criteria or LM-p strategy if a decision
must be made.

Corresponding frequencies for N = 10,7 = 25 are obviously lower, but
also more sensitive to variance parametrization. For example, the frequencies
of correct classification with the LL criteria and LM-p strategy are only
slightly above 0.5 for some variance parametrizations (low o3 and high o?2)
with a small |p| or |6].

4.4.2 Overall model selection

As for the LL criteria and LM-p strategy considered above the AIC and BIC
criteria and the LM/LM-p strategy are more or less sensitive to variance
parametrization. Generally the performance deteriorate with decreasing o3
and increasing o2.

Table 2 shows the classification frequencies for the standard two-way
model (2-way), AR(1) and MA(1) models for N = 20,T = 50 with 0% =
2/6,0% = 2/6.

BIC favors the standard two-way model whereas AIC favors the AR(1)
or MA(1) model. This behavior is expected since the BIC criterion penal-
ize extra parameters harder than AIC. The LM/LM-p strategy is typically
intermediate to AIC and BIC in performance.

For N = 10,T = 25 frequencies of correct classification of the AR(1) and
MA(1) models are lower, but the relative performance of the AIC and BIC
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criteria and the LM/LM-p strategy is similar to the N = 20,7 = 50 case.

5 Conclusions

In this paper we have derived a straightforward maximum likelihood esti-
mator of the two-way model with a serially correlated time-specific effect.
In addition we have considered specification tests as well as various model
selection strategies.

When testing for the null of no serial correlation we recommend the LM,
Wald (based on Hessian) and LR-tests against AR(1) since they have the
best size properties. Furthermore the power loss to the corresponding Wald
and LR-tests against MA(1) is small. In practice the LM test may be pre-
ferred since it is simple to compute, requiring only estimation under the null
hypothesis of the standard two-way model.

To discriminate between the AR(1) and MA(1) process we have consid-
ered LM-tests as well as tests requiring only the within estimates of the
standard two-way model. The LM-AR test typically performs better than
the BGT-AR test. The size of the LM-AR test is not so sensitive to the
choice of variance parameters as the BGT-AR test and the LM-AR test has
the highest power at usual significance levels. In contrast the BGT-MA test
is less sensitive to variance parametrization than the LM-MA test and typ-
ically has the highest power at usual significance levels. We can however
not recommend the BGT-MA test due to its disappointing size properties.
Large values of |p| or |6| are needed for discrimination with these tests and
test results may very well be inconclusive. One possible way to ”split the tie”
is to simply compare likelihoods or p-values of tests. Of these the likelihood
comparison performs best.

Model selection can also be used to discriminate between the standard
two-way model and the two-way model with \; and AR(1) or MA(1) process.
We have considered model selection based on the AIC and BIC criterions as
well as an LM /LM-p strategy. The AIC criterion performs best when AR(1)
or MA(1) is the true process. BIC favors the standard two-way model and
the LM/LM-p strategy is typically intermediate in performance. When the
standard two-way model is the true model the ranking is reversed.
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A Score and Information

A.1 The score vector

This appendix derives the elements of the score vector for the models (1, 2)
and (1, 3). For the regression parameters we have the standard result

ol

06

and for the variance parameters the score is given by

ol 1 () 1 0%

— __t Z 1 /Z 1
0, 2 r 3%) 0,

=7Z'>"le

——»le

where v = (O‘i,()‘i,()‘i,p), for (2) and (02,02,02,6)" for (3).
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where € = (/y ® Jr)e and € = (y ® A*)e.
For o2 we have

o az 1 % 1\ 2 _
tr(2 180%) = tr(S7!) = Ntr(A*) — Ntr [(A*)°B™]
N N(T-1) N N 1 N 1
Sttt (Taa* - Taﬁ)"TB vt
0%
E—lﬁz—l — 2—2 — IN ® (A*)Q o JN ® A*B—I(A*)Q
O-'U
—Jy ® (A*)?B'A*+ NJy ® A*B7L (A*)’B1A*
with
ol N NT-1) 1/N N N 1
= — 4+ = B! tr B
O0o? 202 202 * 2 (TU1 T04) B e+ 204 '
1 - N
+§€/ |:IN ® (A*)Q] e — E*IE + EE*IE*
where £* = (Vy @ A*B71A")e.
For 02 we have

U
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where ¥ = (/y ® A" e.
For the fourth and last variance parameter, 7,, we have
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with L, = %’i = (1 p o ;U + 5 1 =D where D is a band matrix with zeros on

the main diagonal and ip*~ ! on the it subdiagonal for the AR(1) specification
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(2) and Ly = % a bidiagonal matrix with 26 on the main diagonal and ones

on the subdiagonals for the MA(1) specification (3). This gives

[ N N?
o = o2(——=tr(A*L) + — tr(A*LA*B™")
07,4 2 2
1"” L *f L N2 */ *
—|—§ee — Nev'e —|—7:-: (Iy @ L)e")

with the appropriate L matrix and e = (¢}y ® LA*) .

A.2 The information matrix

This appendix derives the elements of the information matrix for the models
(1, 2) and (1, 3). For the first element we have the result

Tss =Z'Y'Z
and for the elements Is , we have the familiar block-diagonality result

E[—a%z’z—ls] :E[z’z—l%z—ls] =0

The elements of the information matrix for the v parameters are obtained
as

0x 0x

1 ~1
)% ()

Z —tr[2 Y

ViV = 2

We have for the I,ij elements

1 ox. ox.
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Y171 9 1“[ (8’)/1) 8’71)]
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where B~! is defined in appendix A.1.
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where L is L, or Ly defined in appendix A.1. For the relevant L,, ., elements
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where the r:th matrix power denote multiplication of the matrix with itself

r times.
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Finally for the elements involving 74, v, we have
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B The LM-test against ARMA(1,1)

This appendix derives the score and information matrix for the LM test
against ARMA(1,1). Under ARMA(1,1) disturbances we have the covariance

matrix as
Y= A+ 02 (ey @Iy @ 1)
with inverse
SIl=In @A — (ey @ AHB iy @ AY)

where B; ' = o2 (I + NUiFA*)fl ' and I' is covariance matrix of ARMA(1,1)

) [t—s|—
process with elements I';; = %}29’) and Ty, = +9)(1Yf i)f T o t # s.
To derive the LM-test we need the score and information matrix evaluated
under the null hypothesis # = 0 or p = 0. The score needed is given by
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where VU is given by ¥, if 7 = 0 and ¥y if 7 = p. Also %]720 =
o2 (In® L) |0 = 02 (Jy ® K;) where Kj has Epg on the main diago-

u 1
2 1 |t—s|—1
nal and %

on the off-diagonal elements and K, has 26 on the main
diagonal, 1 + 6% on the subdiagonal and # on the subsubdiagonal. We get
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where €, ¢* are defined in appendix A.1 and % = (¢/)y ® K;A*)e. The
information matrix evaluated under the null hypothesis is obtained as
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where v now is defined as v = (07, 07,

gf for elements not involving 7 the only elements needed apart from those

derived in appendix A.2 are those containing 7. We have
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C Proof of theorem 1

It is trivial to show that the information matrix is block-diagonal

I:<% Iv>

and that I is of full rank under standard assumptions on the explanatory
variables. The information matrix of the variance parameters is for the ¢, j

element
1 ox ox
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The conditions on the v parameters ensures that X is of full rank. That [ is
of full column rank then follows from the full column rank of
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Suppose there exists a vector a # 0 s.t.Wa = 0, then this must also hold for
the submatrix W* consisting of rows 1,2, 7+ 1 and T'+ 2 of W. For 7 = p
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wi—| Y TR e
- 1 202 p
0 0 > oI
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oZp o
0 O 1fp2 (1_;2)2 + 171;)2

For W*a = 0 it is clear that we must have a; = a, = 0 and that a3 and a4
are determined by rows 3 and 4. When p = 0, W*a = 0 iff a3 = a4 = 0 as

well giving a contradiction. For p # 0 we normalize a4 to 1 and use row 3 to
—205p
(1-p2)*

obtain az = Substituting into row 4 yields

—207p 2000 _Tu
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which again contradicts the premise. The proof is similar for 7 = 6.
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