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Abstract

After brief remarks on the history of modding and inference techniques in economics and
econometrics, attention is focused on the emergence of economic sciencein the 20 century.
Firg, the broad objectives of science and the Pearson- Jeffreys “unity of science” principle will
be reviewed. Second, key Bayesan and non-Bayesian practica scientific inference and
decison methods will be compared using gpplied examples from economics, econometrics and
business. Third, issues and controversies on how to modd the behavior of economic units and
systems will be reviewed and the structural econometric modeing, time series andys's
(SEMTSA) approach will be described and illustrated using a macro-economic modeling and
forecasting problem involving analyses of datafor 18 indudtrialized countries over the years
gncethe 1950s. Point and turning point forecasting results and their implications for macro-
economic modeling of economieswill be summarized. Lagt, afew remarks will be made about
the future of scientific inference and modeling techniques in economics and econometrics.

1. Introduction

It is an honor and a pleasure to have this opportunity to share my thoughts with you at this
Ajou University Conference in honor of Professor Tong Hun Lee. He has been avery good
friend and an exceptionally productive scholar over the years. We firs met in the early 1960s at
the U. of Wisconsin in Madison and | was greetly impressed by hisintdlectud ability, serious
determination and genuine modesty. As stated in his book, Lee (1993),

“I was originaly drawn to the study of economics because of my concern over the misery
and devadtation of my native country. . . | hoped that whét | learned might help
to improve living conditions there. As a student, however, | encountered numerous
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conflicts between economic theory and red world phenomena. Over time | acquired a
deep conviction that economic research should be rigorous but policy rdevant and that
it must reflect an gppreciation of empirical evidence aswdl as of economic theory.” (p.
IX)

Here we have a statement of Lee s objectivesthat are reflected in his many research
publications on econometric methods, economic theory and applications to monetary, fiscd,
regiond and other problems that reflect his expertise in economic theory, econometrics and
aopplied economic anadlyss. Indeed, it isthe case that Lee has achieved great successin his
research and career. When we contrast Le€’ s knowledge of economics, econometric methods
and empirica economic andysiswith that of an average or even an outstanding economist in the
19™ century or in the early 20™ century, we can appreciate the great progress in economic
methodology that has been made in this century. This progress has led to the transformation of
economics from an art into a science with annual Nobel Prize awards. Recall that in the 19"
century and early 20" century we did not have the extensive nationa income and product and
other data bases that are currently available for al countries of the world. In addition, scientific
survey research methods have been utilized to provide us with extensive survey and pand data
bases. Also, much experimenta economic data are available in economics, marketing, medica
and other aress.

Not only does the current data Situation contrast markedly with the Situation
in the past but dso the use of mathematics in economics was quite limited then. Further, good
econometric and satistica techniques were not avallable. For example, aslate as the 1920s,
leading economisgts did not know how to estimate demand and supply functions satisfactorily. A
leading issue was, “Do we regress price on quantity or quantity on price and do we get an
estimate of the demand or supply function?’ Further, in the 1950s, Tinbergen mentioned to me
that he estimated parameters of his innovative macro-econometric models of various
indudtrialized countries' economies by use of
“ordinary least squares’ (OLS) since this was the only method that he knew. And of course,
satisfactory gatigtica inference techniques, that is estimation, testing, prediction, model selection
and palicy analys's techniques for the multivariate, Smultaneous equation, time series models
that Tinbergen, Klein, Schultz, and many others built in the first haf of this century were
unavailable.

Asiswel known, econometric modeding, inference and computing techniques werein a
very primitive date as late as the 1940s. Some believed that fruitful quantitative, mathematical
andyses of economic behavior areimpossble. Then too, there were violent debates involving
Tinbergen, Keynes, Friedman, Koopmans, Burns, Mitchdl and many others about the methods
of economics and econometrics. These included charges of “measurement without theory” and
“theory without measurement.” Others objected to the use of statistical sampling theory
methods in analyzing non-experimenta data generated by economic systems. There were
heated debates about how to build and evauate empirica econometric models of the type that
Schultz, Tinbergen, Klein, Haavelmo, Koopmans, Tobin and others studied and devel oped.



Some issues involved smplicity versus complexity in modd-building, explanatory versus
forecasting criteriafor model performance, gpplicability of probability theory in the analyss of
economic data, which concept of probability to utilize, quaity of available data, etc. Findly,
there were arguments about which statistical gpproach to use in anayzing economic data,
namely, likdihood, sampling theory, fiducia, Bayesian, or other inference approaches.

Indeed there were many unsettled, controversid issues regarding economic and
econometric methodology in the early decades of this century. However, economics was not
doneinthisregard. Many other socid, biologica and physical areas of research faced smilar
methodological issues. Indeed, Sir Harold Jeffreys wrote his famous books, Scientific
Inference (1973, 1% ed. 1931) and Theory of Probability (1998, 1% ed.1939) to instruct his
fellow physicists, astronomers, and other researchers in the methodology of science. Inl. J.
Good's review of the 3 edition of the latter book, he wrote that Jeffreys book “. . .is of
greater importance for the philosophy of science, and obvioudy of greater immediate practica
importance, than nearly al the books on probability written by professond philosophers lumped
together.” See dso, articlesin Kass (1991) and ZdIner (1980) by leading authorities that
summarize Jeffreys  contributions to scientific methodology that are applicable in dl fiddsand
his andyses of many applied scientific problems. It is generdly recognized that Jeffreys provided
an operationd framework for scientific methodology thet is useful in dl the sciences and
illugtrated its operationd nature by using it in applied anayses of many empiricd problemsin
geophysics, astronomy and other areas in his books and six volumes of collected papers,
Jeffreys (1971).

Jeffreys, dong with Karl Pearson (1938), emphasized the “unity of science’ principle,
namely that any area of study, e.g., economics, business, physics, psychology, etc., can be
scientific if scientific methods are employed in andyzing data and reaching conclusons. Or as
Pearson (1938, p. 16) dtates, “The unity of dl science congsts aone in its method, not inits
materid.” With repect to scientific method, Jeffreys in his book, Theory of Probability,
provides an axiom system for probability theory thet is useful to scientigsin dl fiedldsin their
effortsto learn from their data, to explain past experience and make predictions regarding as yet
unobserved data, fundamenta objectives of sciencein dl areas. He states that scientific
induction involves (1) observation and measurement and (2) generdization from past experience
and data to explain the past and predict future outcomes. Note the emphasis on measurement
and obsarvation in scientific induction.  Also, generdization or theorizing is critical but deductive
inference is not sufficient for scientific work since it just provides statements of proof, digproof
or ignorance. Inductive inference accommodates statements | ess extreme than those of
deductive inference. For example, with an appropriate “ reasonable degree of belief” definition
of probability (see Jeffreys, 1998, Ch. 7 for a penetrating andysis of various, dterndtive
concepts of probakility), inductive inference provides a quantitative measure of the degree of
belief that an individua hasin a propogtion, say the quantity theory of money modd or the
Keynesian macroeconomic model. As more empirica data become available, these degrees of
beliefs in propogtions can be updated formally by use of probability theory, in particular Bayes
theorem, and this condtitutes aformal, operationa way of “learning from experience and data,”



afundamental objective of science. Since other Statistical gpproaches do not permit probabilities
to be associated with hypotheses or models, this learning process viause of Bayes Theorem is
not possible using them. See Jeffreys (1957, 1998), Hill (1986), Jaynes (1983,1984), Kass
(1982,1991) and ZdIner (1980, 1982,1988, 1996) for further discussion of these issues. That
Jeffreys was able to formulate an axiom system for probability theory and show how it can be
used formaly and operationdly to implement learning from experience and dataiin al areas of
science is aremarkable achievement that he illugtrated in many applied studies. Currently,
Jeffreys gpproach isbeing utilized in many fidds, including business, economics and
econometrics and thus these fidlds are currently viewed as truly scientific.

Before turning to the specific operations of Bayesian inductive inference, it seems
important to point out that the origins of generdizations or theories is an important issue. Some,
including C. S. Rierce, cited by Hanson (1958, p.85), refer to this area as “reductive inference.”
According to Pierce, “. . .reduction suggests that something may be; that is, it involves studying
facts and devising theories to explain them.” Unfortunately, this processis not well understood.
Work by Hadamard (1945) on the psychology of invention in the field of mathematicsis helpful.
He writes, “Indeed, it is obvious that invention or discovery, be it in mathematics or anywhere
else, takes place by combining idess” (p. 29). Thus thinking broadly and taking account of
developmentsin various fidds provides for useful input along with an esthetic sense for
producing fruitful combinations of ideas. Often mgor breskthroughs occur, according to the
results of asurvey of hisfelow mathematicians conducted by Hadamard, when unusud facts are
encountered. In economics, e.g., the constancy of the U.S. savings rate over the first part of this
century during which real income increased considerably was discovered empiricaly by S.
Kuznets and contradicted Keynesian views that the savings rate should have increased given the
largeincreasein income. This surprising empiricad finding led various economisgts induding
Friedman, Modigliani, Tobin and others to propose new theories of consumer behavior to
explan Kuznets unusud finding. Smilarly, the striking empirical fact thet the logarithm of output
per worker and the log of the wage rate are found to be linearly related empiricaly caused
Arrow, Chenery, Minhas and Solow to formulate the CES production function to explain this
unusud linear reaion. Since unusud facts are often important in prompting researchers to
produce new breakthroughs, | thought it useful to bring together various ways, some rather
obvious, to hep produce new and unusud facts rather than dull, humdrum facts. Seethelistin
ZdIner (1984, pp.9-10) that includes (1) study of incorrect predictions and forecasts of models,
(2) dudy of existing models under extreme conditions, (3) strenuous Smulation experiments with
current models and theories, (4) observing behavior in unusua historical periods, say periods of
hyperinflation or mgor deflation,(5) observing behavior of unusud individuds, eg., extremely
poor individuds, etc. By producing unusud facts, current models are often caled into question
and work is undertaken to produce better models or theories. All of this leads to the following
advice for empirical economists and econometricians, namely, PRODUCE UNUSUAL
FACTS.

With these brief, incomplete remarks regarding how to produce new models and
theories, it is rdevant to remark that when no useful mode or theory is available, many
recommend that we assume dl variation is random unless shown otherwise as a good sarting



point for analysis. Note that Christ, Friedman, Cooper, Nelson, Plosser, and others used
random walk and other rlaively smple time series, benchmark models to appraise the
predictive performance of large-scale macro-econometric modes put forward by Klein,
Goldberger, the U.S. Federa Reserve System and others. Also, such benchmark models have
been utilized in financid economics to evauate proposed mode s that purport to predict and
explain the variation of stock prices and in work by Hong (1989) and Min (1992) to evaluate
the performance of complicated models for forecasting growth rates of real GDP for
indudtrialized countries. If such work reveds that a complicated modd with many parameters
and equations can not perform better than a smple random wak moded or a smple univariate
time series mode, then the modd, at the very least, needs reformulation and probably should be
labeled UNSAFE FOR USE. Indeed, in the last few years, we have seen the scrapping of
some complicated macroeconometric modds. While the issue of amplicity versus complexity is
adifficult one, many in various theoretica and applied fieds believe that kegping theories and
models sophiticatedly smple is worthwhile. In indugtry, there is the principle KISS, that stands
for Keep it Simple Stupid. However, Snce some Smple modeds are supid, | reinterpreted
KISS to mean Keep It Sophigticatedly Simple. Indeed it is hard to find a single complicated
modd in science that has performed well in explanation and prediction. On the other hand,
there are many sophigticatedly smple models that have performed well, e.g. demand and supply
models in economics and business, Newton’s laws, Eingtein’slaws, etc. For more on these
issues of smplicity and complexity, see Jeffreys (1998) for discussion of his and Dorothy
Wrinch's“amplicity postulate’ and the papers and referencesin Kuezenkamp, McAleer and
ZdIner (1999) .

2. Bayesian I nference and Decision Techniques

Asregards gatisticad and econometric inference and decision techniques, in generd
since the 1950s and 1960s, there has been an upswing in the use and development of Bayesian
inference and decision techniquesin business, gatistics, econometrics and many other disciplines
by building on the pioneering work of Bayes, Laplace, Edgeworth, Jeffreys, de Finetti, Savage,
Box, Good, Lindley, Raffa, Schlafer, Dreze and many others. By now amost dl generd
econometrics textbooks include material on the Bayesian gpproach. In addition there are a
number of Bayesian gatistics, business, engineering and econometrics texts available. 1n 1992,
the Internationa Society for Bayesan Anayss (ISBA:www.bayesian.org) and the Bayesian
Statistical Science Section of the American Statistical Association (www.amgtat.org) were
founded and since then have held many successful meetings and produced annua proceedings
volumes, published by the American Statistica Association. Then too, for many yearsthe
NBER-NSF Seminar on Bayesian Inference in Econometrics and Statigtics, the Vaencia
Conference, the Bayes-Maxent Workshop, the Workshop on Practical Applications of
Bayesan Andyss and the Bayesian Decison Andyss Section of the Indtitute for Operations
Research and Management Science (INFORMYS) have sponsored many research meetings,
produced alarge number of Bayesian publications, and sponsored various awards for
outstanding work in Bayesan andysis. Further, the current satistica and econometric literature



abounds with Bayesian papers. Indeed some have declared that a Bayesian Era has arrived and
that the next century will be the century of Bayes.

To understand these developments, it is necessary to appreciate that Bayesan methods
have been gpplied in andyses of dl kinds of theoretical and gpplied problemsin many fidds.
Bayesan solutions to estimation, prediction, testing, modd selection, control and other problems
have been as good as or better than those provided by other approaches, when they exist. In
addition, Bayesian methods have been utilized to reproduce many non-Bayesian solutionsto
problems. For example, as Jefreys pointed out many years ago, in large samples posterior
dengtiesfor parameters generdly assume anorma form with a posterior mean equd to the
maximum likelihood estimate and pogterior covariance matrix equa to the inverse of the
estimated Fisher information matrix which he regarded as a Bayesan judtification for the method
of maximum likelihood.

Asexplained in Bayesan texts, eg. Jeffreys (1998), Bernardo and Smith (1994),
Berger (1985), Berry et d (1996), Box and Tiao (1993),Gelman et d (1995), Press (1989),
Raffaand Schlaifer (1961), Robert (1994), ZdIner (1996), etc., Bayes theorem, Bayes
(1763) can be used to andyze estimation, testing, prediction, design, control and other
problems and provides useful finite sample results as well as excellent asymptotic results. In
edimation problems, we have in generd viaBayes theorem that the posterior dengty for the
parametersis proportiond to a prior dengty times the likelihood function. Thus information
contained in a prior dengity for the parametersis combined with sample information contained in
alikdihood function by use of Bayes theorem to provide a posterior dendty that contains dl
the information, sample and prior. See ZdIner (1988) for a demondtration that Bayes theorem
isa 100 per cent efficient information processing rule, invited discussion of this result by Jaynes,
Hill, Kullback and Bernardo and further consideration of it in ZdlIner (1991). The works, cited
above, provide many gpplications of Bayes theorem to the modds used in business,
€conomics, econometrics and other aress.

Investigators can use a pogterior dendity to compute the probability that a parameter’s
vaue lies between any two given vaues, e.g. the probability that the margind propensty to
consume lies between 0.60 and 0.80 or that the dasticity of afirm’s sales with respect to
advertisng outlays lies between 0.9 and 1.1. As regards point estimation, given a convex loss
function, say a quadratic loss function, it iswell known that the optimal Bayesan estimate that
minimizes posterior expected loss is the posterior mean while for absolute error loss and for
“zero-one’ loss, the optima Bayesian estimates that minimize posterior expected loss are the
median and the moda vaue of the pogterior density, respectively. These and other results for
other loss functions, e.g. asymmetric loss functions, are exact, finite sample results thet are
extremely useful in connection with, e.g., red estate assessment, time series and Smultaneous
equation modd s where optima sampling theory finite sample estimators are not available; see
Berry et d (1996) for many examples and references. Also, as Ramsey, Friedman, Savage and
others have emphasized, this minimal expected loss or equivaently maxima expected utility
action in choosing an estimate is in accord with the expected utility theory of economics; see,
e.g. Friedman and Savage (1948, 1952). Further, these Bayesian optimal estimates, viewed as
edimators, have been shown to minimize Bayes' risk, when it isfinite, and are admissble. For



more on these properties of Bayesan estimators, see, eg., Berger (1985), Judge et d. (1987),
Greene (1998) and the other texts cited above.

As regards some Bayesian econometric estimation results, see Hong (1989) who used
the Bayes an approach to anadyze time series, third order autoregressive-leading indicator
(ARLI) moddsfor forecasting annud growth rates of real GDP. He not only produced finite
sample Bayesian pogterior digtributions for the parameters of the mode but aso computed the
probability 0.85 that the process has two complex roots and one real root. Also, he computed
the pogterior densities for the period and amplitude of the oscillatory component of the model.
He found a posterior mean for the period of about 4 to 5 years and a high probability that the
amplitude islessthan one. Also, the posterior density for the amplitude of the redl root was
centered over valuesless than one. These results were computed for each of 18 industridized
countries datain Hong's sample. From a non-Bayesian point of view, it is not possible to make
such probabilistic statements regarding the properties of solutions to time series processes and,
indeed, it gppears that just asymptotic, approximate sampling theory procedures are available
for such problems.

Another areain which Bayesian procedures have produced improved resultsisin the
area of estimation of parameters of Smultaneous equations models. For example, in estimating
the parameters of the widely-used Nerlove agriculture supply modd, Diebold and Lamb (1997)
showed that use of easilly computed Bayesian minimum expected loss (MELO) estimators led to
large reductions in the mean-squared error (M SE) of estimation relative to use of the most
widdy used sampling theory technique. Similarly, in Park (1982), Tsurumi (1990), Gao and
Lahiri (1999) and ZdIner (1997, 276-287, 1998), Bayesan MELO edtimators finite sample
performance was found to be generdly better than that of non-Bayesian estimators including
maximum likelihood, Fuller’s modified maximum likelihood, two-dage least squares, ordinary
least squares, etc. In addition to these fine “ operating characterigtics’ of Bayesan proceduresin
repeated trids, for agiven sample of data, they provide optimal point estimates, finite sample
posterior dengties for parameters and posterior confidence intervas, al unavailable in non-
Bayes an gpproaches that generdly rely on asymptatic judtifications, e.g., consstency,
asymptotic normality and efficiency, properties dso enjoyed by Bayesan estimators.

Variousversons of Bayes-Stein shrinkage estimation techniques, described in Stein
(1956), James and Stein (1961), Berger (1985), ZelIner and Vandadle (1975) and other
references, have been employed with success by Garcia-Ferrar et a. (1987), Hong (1989),
Min (1992), Zdllner and Hong (1989), Quintana et d.(1995), Putnam and Quintana (1995) and
many others. Herein say a dynamic seemingly unrelated regression equation system for
countries growth rates or for aset of stock returns, the coefficient vectorsin each equation are
assumed randomly distributed about a common mean vector. By adding this assumption,
Bayesan andysis provides posterior means for the coefficient vectors that are “ shrunk” towards
an esimate of the common mean. This added information provides much improved estimation
and prediction results, theoretically and empiricaly. Indeed, Stein showed that many usud
edimators are inadmissible reative to his shrinkage estimator using a sandard quadratic loss
function. See Zdlner and Vandagle (1975) for various interpretations of Stein shrinkage
edimators that have been extremely vauable in many empirical esimation and forecagting



sudies and Quintana et d (1995) for their use in solving financid forecasting and portfolio
selection problems.

Further, for awide range of dichotomous and polytomous random variable modds, eg.
logit, probit, multinomia probit and logit, sample saection bias modds, etc., new integration
techniques, including importance function Monte Carlo numericd integration, Markov Chain,
Monte Carlo (MCMC) techniques and improved MCM C techniques have permitted Bayesian
finite sample andyses of these difficult modelsto be performed. Many agpplications using data
from marketing, education, labor markets, etc. have been reported. See, eg. Albert and Chib
(1993), sdlected articlesin Berry et d. (1996), Gelman et d. (1995), Geweke (1989),
McCulloch and Ross (1990,1994), Pole, West and Harrison (1994), Tobias (1999), and
ZdIner and Ross (1984). It isthe case that use of these new numerica techniques, described in
Geweke (1989), Chib and Greenberg (1996), Gelman et d (1995) and the other references
above, has permitted Bayesian andyses of problems that were considered intractable just afew
years ago.

As regards prediction, the standard procedure for obtaining a predictive dengity function
for unobserved data, either past or future, isto write down the probability densty for the future,
as yet unobserved data, denoted by vy, given the parameters, g, f (y|q) . By multiplying this

dendty by a proper density for the parameters, say a posterior density, derived from past
observed data via Bayes theorem, we can integrate over the parametersto get the margina
dengty of the as yet unobserved data, say h(y|| ), where | denotes the past sample and prior

information. In this case, and in many others, the integration over the parametersto obtain a
margind predictive dengty isavery ussful way to get rid of parameters by averaging the
conditiond dengties using the pogterior dendty as aweight function. Given that we have the
predictive density, h(y|| ), We can useit to make probability statements regarding possible
vaduesof y.  For example, we can compute the probability that next year’ s rate of growth of
GDP is between 3 and 5 per cent or the probability that next year’ s growth rate will be below
thisyear’ sgrowth rate. Further, if we have a predictive loss function, we can derive the point
prediction that minimizes expected predictive loss for a variety of loss functions. For example,
for asguared error loss function, the optima point prediction isthe mean of the predictive
dengity. See, eg. Varian (1975), ZelIner (1987) and articlesin Berry et d (1996) for theoretica
and applied andyses using various symmetric and asymmetric loss functions. Asemphasized in
this literature, symmetric loss functions, e.g. squared error or absolute error loss functions are
not appropriate for many important problems. Thusit is fortunate that in estimation and
prediction, Bayesian methods can be employed to obtain optimal point estimates and
predictions relative to specific, relevant asymmetric loss functions such as are used in red edtate
assessment, bridge congtruction, medicine and other aress.

The predictive density has been shown to be very useful in deveoping optimd turning
point forecasting techniques, see, eg Zellner and Hong (1991), ZdIner, Hong and Min (1991),
LeSage (1996), ZdIner and Min (1999) and ZdIner, Tobias and Ryu (1998). Given thet the
current value of avariable, say the rate of growth of real GDP, is known, using the predictive
dengty for next year’ srate of growth, the probability, P, that it isless than this year’ s value can
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be computed and interpreted as the probability of adownturn (DT) and 1-P as the probability
of no downturn (NDT). Given atwo by two loss structure associated with the acts, forecast
DT or forecast NDT and the possible outcomes, DT or NDT, the optima forecast that
minimizes expected loss can be easily determined. For example, if the loss Sructure is
symmetric and P>1/2, the optima forecast isDT whereas if P<1/2, the optima forecast is
NDT. Smilar andyss can be used to obtain optima upturn and no upturn forecasts. Using
these techniques, in the papers cited above, about 70 per cent of 211 turning point outcomes
for 18 industriaized countries rates of growth of real GDP, 1974-1995 were correctly
forecast. This performance was much better than that yielded by using benchmark techniques,
eg., coinflipping, “eterna optimist,” “eterna pessmist” and determinigtic four-year cycle
approaches. Also, LeSage (1996) used these techniques and obtained similarly satisfactory
results in forecasting turning pointsin U.S. regiond employment data

Another areain which predictive densties play an important roleisin optima portfolio
andysisin theoretica and applied finance; see, eg., Brown (1976), Bawa, Brown and Klein
(1979), Jorion (1983, 1985), Markowitz (1959, 1987), Quintana, Chopra and Putnam (1995)
and ZdIner and Chetty (1965). Given a predictive dengity for avector of future returns, a
portfolio isalinear combination of these future returns, denoted by R, with the weights on
individua returns equa to the proportion of current wealth assigned to each asset. Maximizing
the expected utility of R, EU(R) with respect to the weights subject to the condition that they
add up to one provides an optima portfolio. In recent work by Quintana, Chopraand Putnam
(1995), a Bayesian dynamic, state space, seemingly unrelated regresson model with time
varying parameters has been employed to modd a vector of returns through time. By use of
iterative, recursve computationd techniques, the modd is updated period by period and its
predictive dengty for future vectors of returns is employed to solve for period-by-period
optima portfolios. In caculaions with past data, the cumulative returns, net of transaction
cogts, associated with these Bayesian portfolios have compared favorably with the cumulative
returns associated with a hold the S& P five hundred index stocks strategy. Currently, the CDC
Investment Management Corporation in New Y ork is employing such Bayesian portfolio
methods. Also, as reported at a workshop meeting at the U. of Chicago severad years ago,
Fisher Black and Robert Litterman reported that they use Bayesian portfolio methods at
Goldman-Sachsin New Y ork.

Ladt, there are many other areas in which Bayesian predictive densties are important
gnce fundamentaly induction has been defined to be generdization or theorizing to explain and
predict. Further, the philosophers, according to areview paper by Feigl (1953), have defined
causdity to be “ predictability according to alaw or set of laws” Also practicdly, forecasting
and prediction are very important in al areas and thus Bayesian predictive densities have been
widely employed in dmost dl areas of science and gpplication including marketing, business and
economic forecadting, dlinicd trids, meteorology, astronomy, physics, chemistry, medicine, etc.

Bayes theorem isdso very useful in comparing and testing dternative hypotheses and
models by use of pogterior odds that are equa to the prior odds on dternative hypotheses or
models, nested or non-nested, times the Bayes factor for the dternative hypotheses or models.
The Bayes factor istheratio of the predictive dengties associated with the dternative



hypotheses or models evauated with the given sample observations. This gpproach to
“dgnificance testing” was pioneered by Jeffreys (1998) and applied to dmost al the standard
testing problems considered by Neyman, Pearson and Fisher. Indeed, Jeffreys consdered the
Bayesian approach to testing to be much more sensible than the Neyman-Pearson approach or
the Fisher p-value gpproach and provided many empirica comparisons of results associated
with dternative approaches. Note that in the non-Bayesian approaches, probabilities are not
associated with hypotheses. Thus within these approaches, one can not determine how the
information in the data change our prior odds relating to aternative hypotheses or models. See
the references above and Kass and Raftery (1995) for further discusson of Bayes factorsand
references to the voluminous Bayesian literature involving their use.

If, for example, we have two variants of amodel, say amode to forecast GDP growth
rates, as explained in Min and ZdIner (1993) and ZdIner, Tobias and Ryu (1999a,b), we can
employ prior odds and Bayes factors to determine which variant of the modd is better
supported by the data. For example, we might start with prior odds one to one on the two
variants, say afixed parameter modd versus atime-varying parameter modd. Then after
evauaing the Bayes factor for the two models and multiplying by the prior odds, here equa to
one, we obtain the posterior odds on the two models, say 3to 1 in favor of the time-varying
parameter model. Also, the posterior odds on aternative models can be employed to average
estimates and forecasts over models, a Bayesian forecast combination procedure that has been
compared theoretically and empiricaly to non-Bayesan forecast combination proceduresin Min
and ZdIner (1993). Also, in PAm and ZdIner (1992), the issue of whether it isdways
advantageous to combine forecagts is taken up. As might be expected, it is not ways the case
that combining forecasts leads to better results; however, many timesit does.

To cosethisbrief summary of Bayesan methods and applications, note that many
forma procedures for formulating diffuse or non-informative and informative prior dengties have
been developed; see Kass and Wasserman (1996) and Zedllner (1997) for discussion of these
procedures. It should also be appreciated that the Bayesian approach has been applied in
andyses of dmogt al parametric, nonparametric and semiparametric problems. Indeed, at this
point in time, it is probably accurate to Sate that mog, if not dl, the estimation, testing and
prediction problems of econometrics and Statistics have been andyzed from the Bayesian point
of view and the results have been quite favorable from the Bayesan viewpoint. With this said,
let us turn to a comparison of some Bayesian and non-Bayesian concepts and procedures.

3. Comparison of Bayesian and Non-Bayesian Concepts and Procedures

Shown in Table 1 are 12 issues and summary statements with respect to Bayesian and Non-
Bayesan postions on theseissues. Firgt we have the fundamentd issue as to whether aforma
learning model isused. Bayesans use Bayes theorem as alearning model whereas non-
Bayesians do not gppear to use aforma learning modd. In effect,
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Table1
Some Bayes-Non-Bayes I ssues and Responses
Issues Responses

Bayes Non-Bayes

1. Formd learning modd? Yes No
2. Axiomatic support? Yes ?
3. Probabilities associated with

hypotheses and models? Yes No
4. Probability defined as measure of degree

of confidence in a proposition? Yes No
5. UsesPr(a<q<b given data)? Yes No
6. UsesPr(c<y, <dgiven data)? Yes No
7. Minimization of Bayesrisk? Yes No
8. Usesprior digtributions? Yes ?
9. Uses subjective prior information? Yes Yes
10. Integrates out nuisance parameters? Yes No
11. Good asymptotic results? Yes Yes
12. Exact, good finite sample results? Yes Sometimes

non-Bayesans are learning informally. As mentioned above, use of the Bayesan learning mode!
has led to many useful results. However, this does not mean that the Bayesian learning model
can not be improved and indeed severa researchersincluding Diaconis, Goldstein, Hill, Zabell,
ZdIner and others have been involved in research designed to extend the gpplicability of the
Bayesan learning modd.

Secondly, there are severd Bayesan axiom systems that have been put forward by Jeffreys,
Savage and others to provide arationde for Bayesan inference procedures. As regards axiom
systems for non-Bayesian inference and decision procedures, | do not know of any.

Third, as stated above, Bayesians use probabilities to express degrees of confidence in

hypotheses and models. Non- Bayesans who use axiomatic and frequency definitions of
probability do not do so formadly. However, many times non-Bayesians informaly do so and
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incorrectly associate p-vaues with degrees of confidence in anull hypothess. Whileit istrue
that some posterior odds expressions are monotonic functions of p-values, the p-vaueis not
equal to the posterior probability on the null hypothesis nor wasiit ever meant to be.

Fourth, non- Bayesians pride themsdvesin their axiomatic and frequency “ objective’
concepts of probability and are critica of Bayesans for their " subjective’” concepts of
probability. Inthisregard most of these non- Bayesians have not read Jeffreys' (1998, Ch. 7)
devadtating critiques of axiomatic and frequency definitions of probability. For example, on the
long run frequency or Venn limit definition of probability, Jeffreys writes, “No probability has
ever been assessed in practice, or ever will be, by counting an infinite number of trids or finding
the limit of aratio in an infinite series...A definite vaue is got on them only by making a
hypothes's about whet the result would be. On the limit definition,...there might be no limit at
dl....the necessary exigtence of the limit denies the possibility of complete randomness, which
would permit theratio in an infinite seriesto tend to no limit.” (p.373). Many other examples
and congderations are presented to show the inadequacies of the axiomatic and limiting
frequency definitions of probability for scientific work. Asfar as| know, Jeffreys arguments
have not been rebutted, perhaps because as some have noted, they areirrefutable. He further
writes, “The most serious drawback of these definitions, however, is the ddliberate omisson to
give any meaning to the probability of a hypothess” (p.377) See also Jeffreys (1998, pp.30-
33), Kass (1982) and ZdIner (1982) for discussion of Jeffreys definition of probability as
compared to the “personaigtic” or “mora expectation” or “betting” definitions put forward by
Ramsey, de Finetti, Savage, and others.

Under issue 5in Table 1, we have the probability that a parameter’ s vaue lies between two
given numbers, aand b given the data, atypicad Bayesan posterior probability statement, first
derived andyticaly by Bayes (1763). Non- Bayesans can not vaidly make such statements
even though many practitioners misinterpret sampling theory confidence intervasin this manner.
The sameis true with respect to the Bayesian prediction interva for the future random varigble
under issue 6in Table 1. For example, a Bayesian might state that the probability that this
random variable lies between the given numbers c and d is 0.95. On the other hand if cand d
are the redlized vaues of the endpoints of a 95% sampling theory confidence intervd, then it is
incorrect to say that the future vaue lies between ¢ and d with probability 0.95. Rather one
should gate thet the interval c to d isthe redized value of arandom interva that has probability
0.95 of covering the random variable.

With respect to issue 7 in Table 1, non- Bayesans do not minimize Bayes risk since they
don't introduce a prior dengty for the parameters, an essentid eement in the definition of
Bayes risk given in Bayesan texts. Bayesans minimize Bayesan risk in choosng esimators
and predictorsin order to insure that they have good operating characteristics. However in
gtuationsinvolving asingle set of data, averaging over unobserved outcomes may not be
relevant and use of the criterion minimization of expected |loss given the one sample of datais
more appropriate.

Asregards issue 8, Bayesians use diffuse or non-informetive and informative prior
densties quite broadly. Non- Bayesansgenerdly say they do not. However in andyses of
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hierarchicd modds, state space modds, random effects models, and random initid conditions
for time series models, distributions are often introduced for parametersthat are usudly
congdered to be “part of the mode” and not prior dengties. As Good (1991) and others have
recognized, this distinction is rather thin and for Good represents a possible compromise
between Bayesans and non- Bayesians. Note too that in econometrics, some non- Bayesans
have attempted to introduce subjective prior information using the “mixed estimation” procedure
of Thell and Goldberger explained in Thell (1971), inequdity restrictions on estimators and
predictors, ridge regression and other gpproaches. In addition, many have recognized that prior
subjective information is used extensvely in modd formulation by Bayesans and non- Bayesians.

That subjective prior information is used quite broadly is noted by severa prominent
non-Bayesans. For example, Tukey (1978, p. 52) writes, “It is my impression that rather
generdly, not just in econometrics, it is considered decent to use judgment in choosing a
functiond form but indecent to use judgment in choosing a coefficient . If judgment about
important things is quite dl right, why should it not be used for less important ones aswell?
Perhaps the red purpose of Bayesian techniquesisto let us do the indecent thing while modestly
conceded behind aforma apparatus.” Also, another prominent non-Bayesian Freedman
(1986, p. 127) has remarked, “When drawing inferences from data, even the most hard-bitten
objectivigt usualy has to introduce assumptions and use prior information. The serious question
is how to integrate that information into the inferentid process and how to test the assumptions
underlying the andysis” Last, Lehmann (1959, p. 62) writes in connection with non-Bayesan
hypothesis testing, “ Another congderation that frequently enters into the specification of a
sgnificance leve is the attitude toward the hypothess before the experiment is performed. If one
firmly believes the hypothesis to be true, extremely convincing evidence will be required before
oneiswilling to give up this belief, and the sgnificance level will accordingly be set very low.”
From these quotationsiit is clearly the case that non-Bayesan, so-cdled objective andysts use
condderable subjective information in their analyses, usudly informdly in a non-reproducible
fashion.

Onissue 10in Table 1, Bayesans with a posterior dengity involving parameters of
interest and nuisance parameters usudly integrate out the nuisance parameters, a beautiful
solution to the nuisance parameter problem. Thisintegration has been mathematically
interpreted as an averaging over conditiond posterior dengities of the parameters of interest
given the nuisance parameters. However, non- Bayesians have no such solution to the nuisance
parameter problem. For example, when a generdized least squares estimator involves nuisance
parameters, say eements of a disturbance term covariance matrix, it isusua practice to insert
estimates of the nuisance parameters and give the resulting “operationd” estimator an
asymptotic judtification. Often times, the finite sample properties of such “operationa”
estimators are unknown and sometimes far from optima. Bayesans, by integrating out nuisance
parameters obtain afinite sample pogterior dendty and can use it to derive optimd, finite sample
estimates of parameters of interest and to make exact finite sample probability statements about
parameters possible vaues.

With respect to issue 11, generdly Bayesian and non-Bayesian methods produce good
asymptotic results. See, e.g., Jeffreys (1998), Heyde and Johnstone (1979) and Chen (1985)
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for Bayesian asymptotic results for iid and stochasticaly dependent observations. In the former
case, assumptions needed to derive asymptotic normdlity are the same in Bayesian and non-
Bayesan cases;, however, in the case of stochagtically dependent observations, Heyde and
Johnstone (1979) dtate that conditions needed for the asymptotic normaity of posterior
dengties centered a the maximum likelihood estimate are weaker than those required for the
asymptatic normdity of maximum likelihood estimators. Also, in casesin which the number of
parameters grows with the sample sze, the incidentd parameter case, both maximum likelihood
and Bayesan estimators are incons stent as emphasized by Neyman, Scott, Freedman, Diaconis
and others. With just one observation per parameter, it isindeed unreasonable to have
edimators densities become degenerate as the sample size grows. By adding more
information, e.g. by assuming a hyper distribution for the parameters and integrating out the
incidenta parameters, both Bayesian and maximum likelihood techniques yield consstent
results.

Last, with respect to issue 12, generdly Bayesian methods produce exact finite sample
results in genera whereasin many time series problems, Smultaneous equiations model
problems, etc., non-Bayesan methods do not yield optimal finite sample estimators, exact
confidence intervas and test gatistics with known, finite sample distributions When thisisthe
case, usudly non-Bayesian gpproximate large sample inference techniques are employed asin
andysesof cointegrated time series models, generdized method of moments problems, sdection
bias modds, and many others. As stated above, Bayesian methods have been employed to
obtain exact finite sample results for these and many other “difficult” modds.

To close this section, asmple binomid problem will be consdered to illustrate some
generd points, onethat | have used for many yearsin my lectures. Suppose thet in fivetrids,
five sons are born and that the trids are considered independent with a probability g of amde
birth on each trid. How does one make inferences about the possible values of this parameter
given the outcome, five sonsin five trids? For example, what isagood estimate? How can one
get aconfidence interva? How can one test the hypothesisthat q = 1? What are the odds on
this hypothesis versus the hypothesisthat g = 1/ 2? Or versus the hypothesis that the
parameter is uniformly distributed? Note that the likelihood functionis q° and thusthe
maximum likelihood estimate isequa to 1! What is agood way to compute a confidence
interva to accompany this estimate? Also, what test datistic is available to test the null
hypothesis that the parameter’ s value = 1? Note that under this null hypothesis, the processis
determinigtic and thus there will be difficulty deriving the probability distribution of atest satidtic
under the null. This problem was analyzed years ago by Laplace who put a uniform prior on the
parameter, and used Bayes theorem to obtain the normalized posterior density that is
proportiond to the prior times the above likeihood function, that is the normaized posterior
density is, 60°. Themoda vaueis 1, an optima point estimate relaive to a zero-one loss
function while the pogterior mean is 6/7, an optimal point estimate relative to a squared error
loss function and a specid case of Laplace’s Rule of Succession. Also, given whatever loss
function that is appropriate, an optima Bayesian point estimate can be derived that minimizes
posterior expected loss. Further, posterior probability intervas giving the probability that the
parameter’ s vaue lies between any two given vaues, say 1/2 and 1, are easily computed using
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the above pogterior dengity. Also, the posterior odds on the hypotheses that the parameter’s
vaueislversusthat itsvaueis 1/2 is easly evauated. If the prior odds are 1:1 on these two
hypotheses, the posterior odds in favor of 1 versus% is32to 1. Such problems are important
not only regarding sex birth ratios but dso in testing effectiveness of drugs, qudity of products,
the vdidity of scientific theories, etc. See Jeffreys (1998) and Zdlner (1997, 1997a) for
further andlysis of the Laplace Rule of Succession.

4, Information Theory and Bayesian Analysis

My persona conclusion given the above consderationsisthat IT PAYSTO GO
BAYES, to quote an old colleague of mine. However this should not be interpreted to mean
that the Bayesian approach can not be improved. See, for example Soofi (1994, 1996), Jaynes
(1988), Hill (1986,1988) and ZdIner (1988,1991,1997) where it is recognized that inference
involves information processing. In the Bayesan framework, the input informeation is information
in alikdlihood function, the datainformation, and information in aprior dengity. The output
information is the information in a post data dengity for the parameters and amargina density for
the observations. By putting information measures on the inputs and outputs, we can seek the
form of a proper output density for the parameters, say g, that minimizes the difference between
the output information and the input information. Given the entropic measures of information
employed, when this calculus of variations problem was solved, it was found that the solution is
Bayes theorem, namely take g proportiona to the product of the prior density and likelihood
function. Further, when g istaken in thisform, it is the case that the output information equas the
input information and noneislogt in the process. Thus information-processing when Bayes
theorem is employed is 100% efficient. Jaynes (1988, p. 280-281) commented as follows on
thisresult:

“..entropy has been recognized as part of probability theory since the work of Shannon
(1948)...and the usefulness of entropy maximization...is thoroughly established...This makes it
seem scanda ous that the exact relation of entropy to other principles of probability theory is il
rather obscure and confused. But now we see that thereis, after dl, aclose connection
between entropy and Bayes s theorem. Having seen such a tart, other such connections may
be found, leading to a more unified theory of inferencein generd. Thusin my opinion, Zdlner's
work is probably not the end of an old story but the beginning of anew one.”

As part of the*new story,” Zelner (1991) has considered the prior and sample
information inputs to be of differing quality in deriving an information processing rule that
minimizes the difference between output and input information subject to the output post data
dengty for the parameters being proper. The result isamodified form of Bayes theorem that
equates the quadity adjusted input information to the quality adjusted output information.
Smilarly, when the information in a prior dengity isweighted differently from the sample
information in alikelihood function, the optimizing information processing ruleis different in form
from Bayes theorem, namely the post data dengity for the parametersis proportiond to the
prior raised to a power times the likelihood function raised to a power. When dynamic
information processing is consdered with possible costs of obtaining and adjusting to new
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information, from work in progressit is found that the dynamic optimization solution is different
from the gatic solution, Bayes theorem, just as Satic and dynamic maximization solutions differ
in engineering, physics and the economic theory of the firm. Much work remains to be donein
this area of information processing.

Another areain which information theory is useful is the problem of what to do when the
form of the likdihood function is unknown. Of course for many years maxent or information
theory has been employed to produce models for observationsin physics and chemistry. For
such work in economics, econometrics, finance and statistics, see, e.g., Davis (1941), Cover
and Thomeas (1991), Ryu (1990,1993), Stutzer (1996), Soofi (1996), Fomby and Hill (1997)
and ZdIner (1997). In addition, information criterion functionals have been employed to
produce diffuse or non-informative aswell asinformative prior dengties, see eg. the review
atticle on prior densities by Kass and Wasserman (1996) and results on various methods for
producing prior dendtiesin Bernardo and Smith (1994) and Zellner (1997, 127-153).

While maxent results are helpful in producing models for the observations when
sampling properties of systems are known, e.g. sampling moment side conditions and other
regtrictions, when such sampling properties and restrictions are unknown, then a problem arises
in the derivation of sampling dengtiesfor the observations usng maxent. In such Stuations, some
have resorted to empirica likelihood methods and bootstrapped likelihood functions; see, eg.,
Boos and Monahan (1986) while others have introduced moment side conditions directly on
functions of redized error terms of amode for the given data and from these have deduced
implied post data moments of the moddl’s parameters. For example, if 'y, =q+u,,i=12,...,
n, are n observed timesto falure, 0< y;,q <¥,y =q +U isthe relation connecting the
mean of the y's,y to the parameter g and the mean of the redlized error terms, T. Then

if we apply asubjective expectation operator to both sides of this last relation, we have for the
given observation mean, ¥ = Eq + EU. If the measurements have been made properly with no

outliers, no left out variables and departures from the linear form, we can then assume that
ET = 0. Given this moment assumption, we have Eq =y, that isthe post data mean of the
parameter is equd to the sample mean. Using this moment side condition, the proper
probability dengty function with this mean that maximizes entropy is the exponentia dengty,
f (q|D) = (1/y)exp{-q/Vy}, where D denotes the given sample data and background

information. Thisis an example of a Bayesan method of moments (BMOM) post data density
for aparameter. It iscdled Bayesian since the density can be employed to compute the post
data probability that the parameter lies between any two numbers, i.e. Pr{a<q <b| D}, whereD

denotes the given data and prior assumptions, a solution to the problem posed by Bayes
(1763). See, e.g., Green and Strawderman (1996), Tobias and ZdIner (1997), Zellner, Tobias
and Ryu (1999a,b), LaFrance (1999), van der Merwe and Viljoen (1998) and Z€elIner (1994,
1997, 1997a,1998) for additional applications of the BMOM to location, dichotomous random
variable, univariate and multivariate regresson, semi-parametric, time series and other models.
In addition to moments for models parameters, by making assumptions about future, as yet
unredized error terms and given the post data moments of parameters, it is possible to obtain
moments of future, as yet unobserved values of future observations and use them as sde
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conditionsin deriving maxent probability dendties for future observations as shown and applied
in severa of the papers cited above. Also, these predictive dengties can be used to form
Bayes factorsto discriminate between or among modds. The use of maxent densties hereis
justified by their well known property of being the least informative dengties that incorporate the
informéation in the moment sde conditions as explained in Jaynes (1983), Cover and Thomas
(1991), Soofi (1996) and other works on information theory.

This emerging synthesis of probability theory and information processing isindeed
exciting from a scientific point of view and adso from an economic theory point of view in terms
of the economics of information. For example, using the definition of the information provided
by an experiment in ZdIner (1997), with avaue of a unit of information given, it becomes
possible to vaue the information provided by an experiment. It is then possible to design
experiments so as to maximize the net vaue of information, namely, the vaue of the output
information minus the costs of the input information with respect to various control variables,
e.g. the sample size, the number of dratato sample, etc. This represents an extenson of some
of the economic congderations bearing on the design of surveys and experiments described in
the literature on sample survey and experimenta design.

Even though the BMOM approach does not require an assumed form for the likelihood
function, it does require amathematica form for the relation satisfied by the observations and
eror terms. Obtaining the form and rlevant input variables for such relationsisaproblemin
reductive inference, as mentioned earlier. Unfortunately, forma procedures for obtaining
satisfactory forms for such relations are not available. In the next section, an approach cdled
the structural econometric modeling, time series anadyss gpproach (SEMTSA) will be briefly
presented and an gpplication of it in macroeconomic modeling and forecasting will be described.

5. Formulating Modelsfor Explanation and Prediction

The difficult problem of mode formulation has been mentioned above. In this section,
we describe the SEMTSA gpproach that has been formulated and is in the process of being
gpplied to produce ussful macroeconometric models that explain the past and are useful for
prediction and policy andyss. Asexplained in previous work, Garcia-Ferrer et al. (1987),
Pdm (1976, 1977), ZdIner (1979, 1984), and Zellner and Pam (1974), it is possible to derive
univariate transfer function models from dynamic, multivariate time series macroeconomic and
other models. Such transfer functions can be tested with data to determine whether their
formulations and forecasting performance are satisfactory. See Zdlner and PAm (1975) for one
example of this gpproach. However, if no satisfactory multivariate modd is available, an
dternative gpproach isto formulate univariate transfer functions using heuristic economic
consderations and check to determine how well they perform in point and turning point
forecadting. If asatidfactory transfer function equation, say for the rate of growth of real GDP
for acountry is obtained, it may be asked can a macroeconomic theoretical modd be specified
that agebraicaly implies atrander function for the growth rate of red GDP that isclosein form
to that derived empiricaly from the data. Then the process is continued by producing other
components, transfer functions for other variables, that perform well in terms of fitting past data
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and are successful in point and turning point forecasting. Thus our gpproach isto get
components that work well in forecasting and then put them together to form areasonable,
economicaly motivated modd for the observations. This gpproach contrasts markedly with the
“generd to specific “ modding gpproach employed by some in the macroeconometric literature.
Note that there are many general models and if the wrong one is chosen, users of the “generd
to specific’” modeling strategy will be disgppointed.

In Garcia-Ferrer et d (1987), we began our analyses usng an AR(3) modd for annua
real GDP growth rates since such amode could have two complex roots associated with a
oscillatory component and aredl root associated with aloca trend. 1t didn't take long to find
out that an AR(3) modd did not work well in explaining variation in past data and in forecasting
new data A fundamenta problem was that it was missing cydlica turning points by
overshooting a the top of the business cycle and continuing to go down when the economy was
recovering from downturns. Given that Burns and Mitchdl had found in their research using
pre-World War |1 data for the US, UK, German and French economies that money and stock
prices tended to lead in business cycles that they studied, we decided to introduce the lagged
rates of change of real money and of red stock prices asleading indicator variables. Earlier
research has shown that changes in redl money affect aggregate demand through red baance
effects. Also, changesin red stock prices reflect al sorts of shocks hitting an economy, say ail
shocks, war news, etc. Findly, by introducing the median rate of change of red stock pricesfor
the countriesin our sample in each country’ s forecasting equation, a“world return” varigble, this
led to contemporary error termsin countries equationsto be practically uncorrdlated. Thuswe
could use adiagona contemporaneous covariance matrix for our 18 countries error terms
rather than a non-diagond matrix containing many parameters.

Thus our trandfer function model or autoregressive-leading indicator (ARLI) modd for
the annual rate of change of real GDP for each of N countries in our sample was formulated as
follows

y, = X,b, +u i=123,..,N D

where, for thei’th country, y, isaTxl vector of observed annud growth rates, X, isaTxk
matrix of observations, of rank k, on input variables, namely

(LYie1Yiea Yies R R 2, GM i, WR ;). Herewe have included three lagged
growth rates to incorporate alowance for endogenous oscillatory behavior, two lagged vaues
of the rate of growth of real stock prices, SR, one lagged value of the growth rate of red
money, GM, and the median of the N countries' one period lagged SR variables, a proxy for
the world return, denoted by WR.

Initidly, the modd in (1) was implemented with data for nine industrialized countries and
later for eighteen countries. The modd and variants of it were fitted using data, 1954-73, and
forecagting tests were performed using data for 1974-1981. Later the forecast period was
extended to 1995. See Figure 1 for boxplots of the data. Of greet value in improving our point
forecasts RMSEswasthe use of Bayesian shrinkage or pooling techniques. See Table 2 for a
dramatic demongtration of the effects of the use of shrinkage or pooling on countries' root mean
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squared errors of forecast. In addition to fixed parameter models, severd time varying
parameter models were also employed in point and turning point forecasting experiments.

Table2

Root Mean Squared Errors of One Y ear Ahead Forecasts, 1974-1987,
Using Pooled and Unpooled ARLIWI Modes*
RMSE (%) Countries
(a) Pooled

1.00-1.49 FRN GER NET SPN
1.50-1.99 AURBEL CAN FIN ITY NOR SWD UK US
2.00-2.49 AUL DEN JAP Swz

2.50-2.99 IRE
Median=174 Minimum=117 Maximum =253
(b) Unpooled
1.00-1.49 UK

1.50-1.99 BEL FRN GER NET SPN SWD
2.00-2.49 AURUS
2.50-2.99 CAN DEN ITY NOR
3.00-349 AUL FIN IRE JAP SWz
Median=237 Minimum=139 Maximum = 3.32

*See equation (2) below and Zdlner (1994) for more information regarding the autoregressive-
leading indicator-world income (ARLIWI) models employed, results and references.
Observations from the U.of Chicago’s IMF Internationa Financia Statigtics data base were
employed to fit the models, 1954-73 and to calculate one-year-ahead forecasts, 1974-87,
updating estimates year by year.

Another variant of the mode involved adding the current median growth rate of the 18
countries, denoted by w'={w,,w, ,...,w; ) asavaiablein equation (1) asfollows:

Yj = Wg; + Xibj +u 2
and adding an ARLI equation to explain the variation in the median growth rate, namely,

Wt :ao +ath-1 +a2Wt-2 +a 3Wt-3 +a4MSQ[-l +a5MGMt-l +et (3)
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t=212.., T, where MGM isthe median annua growth rate of red money, and MSR isthe
median annua growth rate of real stock prices for the 18 countriesin our sample; see Fig.1 for
aplot of these variables. By combining the andysis of (2) and (3), it was possible to improve
point and turning point forecasting performance by use of this autoregressive, leading indicator,
world income, or ARLIWI modd!.

Given these models, one can use an economic aggregate supply and demand model to
derive an equation in the form of (2); for details, see Appendix A. Further, Hong (1989)
derived an equation in the form of (2) from a macroeconomic Hicksian IS-LM modd while Min
(1992) d=0 did s0 using a generdized red business cycle modd that he formulated. Thus
equation (2) and variants of it are compatible with certain macroeconomic theoretica models.

The models described above in equations (1)- (3) and variants of them, including time-
varying state space formulations, performed better in forecasting than various random walk,
AR(3), Baro's and the Nelson- Plosser ARIMA benchmark models and about the samein
terms of RMSEs of point forecasts as OECD modes and probably better in terms of turning
point forecasting. See Zellner, Hong and Gulati (1990), Zellner and Hong (1991), ZdIner,
Hong and Min (1991), ZdIner, Tobias and Ryu (1999b) and ZelIner and Min (1999) for
methods and results for forecasting turning pointsin 18 countries real GDP growth rates and
LeSage (1996) for use of smilar methods in forecasting turning points in regiona employment
series. An editor of the Internationd J. of Forecasting, R. Fildes (1994) commented as follows
in his published review of one of our papers, Min and ZdIner (1993):

The dternative moddls and methods “...were carefully compared based on their
individua country performance measured by root mean squared errors for the years 1974-
1987, and the didtribution of these (particularly the median) The results offer mild support for
using time-varying parameter schemes. Pooling [shrinkage] isimportant in improving accuracy.
Modd sdection schemes are not particularly helpful except in so far asthey identify pooled
TVP [time varying parameter] models as the most accurate forecasting models. Combining
does not improve over the TV P modds and with the Granger- Ramanathan unconstrained
scheme for choosing the weights, led to substantialy poorer accuracy. Equa weights were not
considered.

This paper is an excdlent example of good empiricad economics where the theory is
utilized effectively in andyzing the problem in hand.” (pp. 163-4)

While previous results are satisfying, there is il the problem of how to achieve
improved forecasting and economic theoretical results with associated reductionsin RM SEs and
MAEsS of forecast and higher percentages of correct turning point forecasts. One possible way
to achieve improvement, emphasized for many years by Guy Orcutt, Tong Hun Lee' s mentor at
the U. of Wisconsn when he was a graduate student, is through thoughtful dissaggregation of
the GDP variable. To show that disaggregation can produce improved forecast performance, in
ZdIner and Tobias (1998), equation (3) was employed, as earlier in Zellner and Hong (1989) to
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provide point forecasts of the median growth rates of the 18 countries. As an dternative way to
forecast the countries’ median growth rates, equations (2) and (3) were employed to forecast
each countries’ one year ahead growth rate and the median of these eighteen forecasts was
employed as apoint forecast. 1t was found that this latter disaggregated approach produced
better one year ahead point forecasts with RM SEs of forecast approximately 20 per cent lower
for the period 1974-84, that is RMSEs of 1.22 versus 1.54 percentage points and MAES of
1.08 versus 1.44. Thusthereis some evidence that disaggregeation may help in certain
circumstances.

To get ameaningful, economic disaggregation, we are currently formulating Marshdlian
demand, supply and entry equations, see e.g. Veoce and ZdIner (1985) for mgor industrid
sectors of the U.S. economy. For each sectord modd it is possible to solve for the output
transfer function equation that is a function of the growth rates of factor prices, real aggregate
income, household formation, rea money baances, etc. Thuswe shdl have aset of transfer
function equations for sectoral outputs that can be combined with transfer equations for red
income and factor prices derived from demand and supply models for [abor, capital, money,
and bond markets. Then forecasts can be obtained for sectoral output growth rates and
combined to provide aforecast of aggregate output. It will be of great interest to determine
whether such forecasts are more accurate than aggregate forecadts, derived from aggregate data
and whether this sectoral Marshdlian modd will add to our understanding of how the economy
operates. Note that this mode includes interactions among sectors such as construction,
manufacturing, retail, agriculture, mining, etc.,which have different cyclica properties. Instead of
thinking of the economy as a single oscillator, it may be better to consider it to be a set of
oscillating sectors coupled through common factor markets and product markets and affected
by macro variables such asreal income, rea money baances, technica change, redl interest
rate, exchange rates and expectations of macroeconomic variables. When such a
macroeconomic mode of interacting sectorsis formulated, it will be subjected to smulation and
forecasting experiments to determine its properties and compare them to properties of the
many theoretical Keynesian, Monetarist, Neo-Keynesian, Neo-Monetarist, Redl Business
Cycle, Generdized Red Business Cycle and currently operating macroeconometric models.

In thiswork, data are being collected and will be analyzed usng Bayesian estimation,
testing and forecasting techniques, described above. Such techniques have been found very
useful in forecadting in our work with aggregate deta for 18 countries and will aso be extremey
vauable in our future work with models using data for various interrel ated sectors of economies.

Given Tong Hun Le€ s keen interest in macroeconomic theory, forecasting and policy, it
will be a pleasure to keep him and his colleagues informed of progressin our continuing
research. Also, it is very satisfying to recognize the great progress in economic research and
andyds that has been made in Korea and many other countries of the world that has resulted in
economics and business as coming to be recognized as progressive, fruitful and useful sciences.

21



Appendix
Aggregate Demand and Supply Macr oeconomic Model

Here we consider a short-run aggregate demand and supply model for total rea output, Y,
assumed given, that is equd to aggregate demand, the sum of red consumption, C, investment,
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|, government expenditures, G, and export, X minusimport, IM, demands,i.e Y =C+1+G
+X -IM isthe equilibrium condition. Now, if wewritey =logY and assume a semi-
logarithmic representation of total demand, incorporating a monetarist real balance effect, we
have:

—_ a
Y =g+agy, ta,y,  ta,y,, tagy, s ta,r tam , +a W +a ex, +agt (Al

where r? = anticipated red rate of interest, m = log of rea money balances, W = log of red
world income, and ex = rea exchange rate. The left Side of

(A1) isgiven supply and theright Sde is a representation of total demand that includes lagged
rea income, red balance, interest rate, world income, exchange rate and trend effects. If the
change in the anticipated red rate of interest is assumed given by the empirica relation,

Dr® =b, +b,SR , +b, R, +bWR , (A2)

where SR = rate of change of real stock prices and WR = rate of change of real world stock
prices, then we can firgt difference (A1) and substitute from (A2) to obtain:

Wt = dO +dlDyt—l +d2Dyt— 2+d3Dyt— 3+d4 s%— 1 +dSSQt— 2 +d6V\Rt— l+d7 I:)-nt—l-i-dBDvM +d9 Dext
(A3)

where Dy, =logY, - logY, ,, the growth rate of Y, measured as redl GDP in our empirical

work. Note that (A3) isin the form of our ARLIWI mode except for theincluson of an
exchange rate variable that has as yet not been included in our forecagting equations. Since the
change in the exchange rate is close to being white noise, it isincluded in our error terms. Taking
it out of the error term and including it in our forecagting equation may help to improve our
forecasting results, as Granger noted many years ago in agenerd context. See dso Hong
(1989) and Min (1992) for more detailed derivations of our ARLIWI modd from Hicksan IS
LM and generdized redl business cycle models.

Figure 1: Mediansand Interquartile Ranges for Growth Rates of Real
Output (A) Real Money (B) and Real Stock Prices (C)
for 18 Industrialized Countries: 1954-1995"

“The dashed line connects the annual median growth rates (thewy; 'S) and the verticd lines give the interquartile
ranges.
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