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Abstract

After brief remarks on the history of modeling and inference techniques in economics and
econometrics, attention is focused on the emergence of economic science in the 20th century.
First, the broad objectives of science and the Pearson-Jeffreys’ “unity of science” principle will
be reviewed.  Second, key Bayesian and non-Bayesian practical scientific inference and
decision methods will be compared using applied examples from economics, econometrics and
business.  Third, issues and controversies on how to model the behavior of economic units and
systems  will be reviewed and the structural econometric modeling, time series analysis
(SEMTSA) approach will be described and illustrated using a macro-economic modeling and
forecasting problem involving analyses of data for 18 industrialized countries over the years
since the 1950s.  Point and turning point forecasting results  and their implications for macro-
economic modeling of economies will be summarized.  Last, a few remarks will be made about
the future of scientific inference and modeling techniques in economics and econometrics.

1. Introduction

It is an honor and a pleasure to have this opportunity to share my thoughts with you at this
Ajou University Conference in honor of Professor Tong Hun Lee.  He has been a very good
friend and an exceptionally productive scholar over the years. We first met in the early 1960s at
the U. of Wisconsin in Madison and I was greatly impressed by his intellectual ability, serious
determination and genuine modesty.  As stated  in his book, Lee (1993),

“I was originally drawn to the study of economics because of my concern over the misery
and devastation of my native country. . . I hoped that what I learned might help
to improve living conditions there.  As a student, however, I encountered numerous
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conflicts between economic theory and real world phenomena. Over time I acquired a
deep conviction that economic research should be rigorous but policy relevant and that
it must reflect an appreciation of empirical evidence as well as of economic theory.” (p.
IX)

Here we have a statement of  Lee’s objectives that are reflected in his many research
publications on econometric methods, economic theory and applications to monetary, fiscal,
regional and other problems that reflect his expertise in economic theory, econometrics and
applied economic analysis.  Indeed, it is the case that Lee has achieved great success in his
research and career.  When we contrast Lee’s knowledge of economics, econometric methods
and empirical economic analysis with that of an average or even an outstanding economist in the
19th century or in the early 20th century, we can appreciate the great progress in economic
methodology that has been made in this century. This progress has led to the transformation of
economics from an art into a science with annual Nobel Prize awards.  Recall that in the 19th

century and early 20th century we did not have the extensive national income and product and
other data bases that are currently available for all countries of the world.  In addition, scientific
survey research methods have been utilized to provide us with extensive survey and panel data
bases.  Also, much experimental economic data are available in economics, marketing, medical
and other areas.

Not only does the current data situation contrast markedly with the situation
in the past but also the use of mathematics in economics was quite limited then. Further, good
econometric and statistical techniques were not available.  For example, as late as the 1920s,
leading economists did not know how to estimate demand and supply functions satisfactorily.  A
leading issue was, “Do we regress price on quantity or quantity on price and do we get an
estimate of the demand or supply function?”  Further, in the 1950s, Tinbergen mentioned to me
that he estimated parameters of his innovative macro-econometric models of various
industrialized countries’ economies by use of
“ordinary least squares” (OLS) since this was the only method that he knew. And of course,
satisfactory statistical inference techniques, that is estimation, testing, prediction, model selection
and policy analysis techniques for the multivariate, simultaneous equation, time series models
that Tinbergen, Klein, Schultz, and many others built in the first half of this century were
unavailable.

As is well known, econometric modeling, inference and computing techniques were in a
very primitive state as late as the 1940s.  Some believed that fruitful quantitative, mathematical
analyses of economic behavior are impossible.  Then too, there were violent debates involving
Tinbergen, Keynes, Friedman, Koopmans, Burns, Mitchell and many others about the methods
of economics and econometrics.  These included charges of “measurement without theory” and
“theory without measurement.” Others objected to the use of statistical sampling theory
methods in analyzing non-experimental data generated by economic systems.  There were
heated debates about how to build and evaluate empirical econometric models of the type that
Schultz, Tinbergen, Klein, Haavelmo, Koopmans, Tobin and others studied and developed.
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Some issues involved simplicity versus complexity in model-building, explanatory versus
forecasting criteria for model performance, applicability of probability theory in the analysis of
economic data, which concept of probability to utilize, quality of available data, etc. Finally,
there were arguments about which statistical approach to use in analyzing economic data,
namely, likelihood, sampling theory, fiducial, Bayesian, or other inference approaches.

Indeed there were many unsettled, controversial issues regarding economic and
econometric methodology in the early decades of this century.  However, economics was not
alone in this regard.  Many other social, biological and physical areas of research faced similar
methodological issues.  Indeed, Sir Harold Jeffreys wrote his famous books, Scientific
Inference (1973, 1st ed. 1931) and Theory of Probability (1998, 1st ed.1939) to instruct his
fellow physicists, astronomers, and other researchers in the methodology of science.  In I. J.
Good’s review of the 3rd edition of the latter book, he wrote that Jeffreys’ book “. . .is of
greater importance for the philosophy of science, and obviously of greater immediate practical
importance, than nearly all the books on probability written by professional philosophers lumped
together.” See also, articles in Kass (1991) and Zellner (1980) by leading authorities that
summarize Jeffreys’ contributions to scientific methodology that are applicable in all fields and
his analyses of many applied scientific problems. It is generally recognized that Jeffreys provided
an operational framework for scientific methodology that is useful in all the sciences and
illustrated its operational nature by using it in applied analyses of many empirical problems in
geophysics, astronomy and other areas in his books and six volumes of collected papers,
Jeffreys (1971).

Jeffreys, along with Karl Pearson (1938), emphasized the “unity of science” principle,
namely that any area of study, e.g., economics, business, physics, psychology, etc., can be
scientific if scientific methods are employed in analyzing data and reaching conclusions.  Or as
Pearson (1938, p. 16) states, “The unity of all science consists alone in its method, not in its
material.” With respect to scientific method, Jeffreys in his book, Theory of Probability,
provides an axiom system for probability theory that is useful to scientists in all fields in their
efforts to learn from their data, to explain past experience and make predictions regarding as yet
unobserved data, fundamental objectives of science in all areas.  He states that scientific
induction involves (1) observation and measurement and (2) generalization from past experience
and data to explain the past and predict future outcomes.  Note the emphasis on measurement
and observation in scientific induction.  Also, generalization or theorizing is critical but deductive
inference is not sufficient for scientific work since it just provides statements of proof, disproof
or ignorance. Inductive inference accommodates statements less extreme than those of
deductive inference. For example, with an appropriate “reasonable degree of belief” definition
of probability (see Jeffreys, 1998, Ch. 7 for a penetrating analysis of various, alternative
concepts of probability), inductive inference provides a quantitative measure of the degree of
belief that an individual has in a proposition, say the quantity theory of money model or the
Keynesian macroeconomic model.  As more empirical data become available, these degrees of
beliefs in propositions can be updated formally by use of probability theory, in particular Bayes’
theorem, and this constitutes a formal, operational way of “learning from experience and data,”
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a fundamental objective of science. Since other statistical approaches do not permit probabilities
to be associated with hypotheses or models, this learning process via use of Bayes’ Theorem is
not possible using them.  See Jeffreys (1957, 1998), Hill (1986), Jaynes (1983,1984), Kass
(1982,1991) and  Zellner (1980, 1982,1988, 1996) for further discussion of these issues. That
Jeffreys was able to formulate an axiom system for probability theory and show how it can be
used formally and operationally to implement learning from experience and data in all areas of
science is a remarkable achievement that he illustrated in many applied studies.  Currently,
Jeffreys’ approach is being utilized in many fields, including business, economics and
econometrics and thus these fields are currently viewed as truly scientific.

Before turning to the specific operations of Bayesian inductive inference, it seems
important to point out that the origins of generalizations or theories is an important issue.  Some,
including C. S. Pierce, cited by Hanson (1958, p.85), refer to this area as “reductive inference.”
According to Pierce, “. . .reduction suggests that something may be; that is, it involves studying
facts and devising theories to explain them.”  Unfortunately, this process is not well understood.
Work by Hadamard (1945) on the psychology of invention in the field of mathematics is helpful.
He writes, “Indeed, it is obvious that invention or discovery, be it in mathematics or anywhere
else, takes place by combining ideas.”(p. 29).  Thus thinking broadly and taking account of
developments in various fields provides for useful input along with an esthetic sense for
producing fruitful combinations of ideas.  Often major breakthroughs occur, according to the
results of a survey of his fellow mathematicians conducted by Hadamard, when unusual facts are
encountered. In economics, e.g., the constancy of the U.S. savings rate over the first part of this
century during which real income increased considerably was discovered empirically by S.
Kuznets and contradicted Keynesian views that the savings rate should have increased given the
large increase in income.  This surprising empirical finding led various economists including
Friedman, Modigliani, Tobin and others to propose new theories of consumer behavior to
explain Kuznets’ unusual finding. Similarly, the striking empirical fact that the logarithm of output
per worker and the log of the wage rate are found to be linearly related empirically caused
Arrow, Chenery, Minhas and Solow to formulate the CES production function to explain this
unusual linear relation.  Since unusual facts are often important in prompting researchers to
produce new breakthroughs,  I thought it useful to bring together various ways, some rather
obvious, to help produce new and unusual facts rather than dull, humdrum facts.  See the list in
Zellner (1984, pp.9-10) that includes (1) study of incorrect predictions and forecasts of models,
(2) study of existing models under extreme conditions, (3) strenuous simulation experiments with
current models and theories, (4) observing behavior in unusual historical periods, say periods of
hyperinflation or major deflation,(5) observing behavior of unusual individuals, e.g., extremely
poor individuals,  etc.  By producing unusual facts, current models are often called into question
and work is undertaken to produce better models or theories.  All of this leads to the following
advice for empirical economists and econometricians, namely, PRODUCE UNUSUAL
FACTS.

With these brief, incomplete remarks regarding how to produce new models and
theories, it is relevant to remark that when no useful model or theory is available, many
recommend that we assume all variation is random unless shown otherwise as a good starting
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point for analysis.  Note that Christ, Friedman, Cooper, Nelson, Plosser, and others used
random walk and other relatively simple time series, benchmark models to appraise the
predictive performance of large-scale macro-econometric models put forward by Klein,
Goldberger, the U.S. Federal Reserve System and others.  Also, such benchmark models have
been utilized in financial economics to evaluate proposed models that purport to predict and
explain the variation of stock prices and in work by Hong (1989) and Min (1992) to evaluate
the performance of complicated models for forecasting growth rates of real GDP for
industrialized countries.  If such work reveals that a complicated model with many parameters
and equations can not perform better than a simple random walk model or a simple univariate
time series model, then the model, at the very least, needs reformulation and probably should be
labeled UNSAFE FOR USE.  Indeed, in the last few years, we have seen the scrapping of
some complicated macroeconometric models. While the issue of simplicity versus complexity is
a difficult one, many in various theoretical and applied fields believe that keeping theories and
models sophisticatedly simple is worthwhile. In industry, there is the principle KISS, that stands
for Keep it Simple Stupid. However, since some simple models are stupid, I reinterpreted
KISS to mean Keep It Sophisticatedly Simple.  Indeed it is hard to find a single complicated
model in science that has performed well in explanation and prediction.  On the other hand,
there are many sophisticatedly simple models that have performed well, e.g. demand and supply
models in economics and business, Newton’s laws, Einstein’s laws, etc.  For more on these
issues of simplicity and complexity, see Jeffreys (1998) for discussion of his and Dorothy
Wrinch’s “simplicity postulate” and the papers and references in Kuezenkamp, McAleer and
Zellner (1999) .

2. Bayesian Inference and Decision Techniques

As regards statistical and econometric inference and decision techniques, in general
since the 1950s and 1960s, there has been an upswing in the use and development of Bayesian
inference and decision techniques in business, statistics, econometrics and many other disciplines
by building on the pioneering work of Bayes, Laplace, Edgeworth, Jeffreys, de Finetti, Savage,
Box, Good, Lindley, Raiffa, Schlaifer, Dreze and many others.  By now almost all general
econometrics textbooks include material on the Bayesian approach. In addition there are a
number of Bayesian statistics, business, engineering and econometrics texts available.  In 1992,
the International Society for Bayesian Analysis (ISBA:www.bayesian.org) and  the Bayesian
Statistical Science Section of the American Statistical Association (www.amstat.org) were
founded and since then have held many successful meetings and produced annual proceedings
volumes, published by the American Statistical Association.  Then too, for many years the
NBER-NSF Seminar on Bayesian Inference in Econometrics and Statistics, the Valencia
Conference, the Bayes-Maxent Workshop, the Workshop on Practical Applications of
Bayesian Analysis and the Bayesian Decision Analysis Section of the Institute for Operations
Research and Management Science (INFORMS) have sponsored many research meetings,
produced a large number of Bayesian publications, and sponsored various awards for
outstanding work in Bayesian analysis.  Further, the current statistical and econometric literature
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abounds with Bayesian papers. Indeed some have declared that a Bayesian Era has arrived and
that the next century will be the century of Bayes.

To understand these developments, it is necessary to appreciate that Bayesian methods
have been applied in analyses of all kinds of theoretical and applied problems in many fields.
Bayesian solutions to estimation, prediction, testing, model selection, control and other problems
have been as good as or better than those provided by other approaches, when they exist.  In
addition, Bayesian methods have been utilized to reproduce many non-Bayesian solutions to
problems.  For example, as Jeffreys pointed out many years ago, in large samples posterior
densities for parameters generally assume a normal form with a posterior mean equal to the
maximum likelihood estimate and posterior covariance matrix equal to the inverse of the
estimated Fisher information matrix which he regarded as a Bayesian justification for the method
of maximum likelihood.

As explained in Bayesian texts, e.g. Jeffreys (1998), Bernardo and Smith (1994),
Berger (1985), Berry et al (1996), Box and Tiao (1993),Gelman et al (1995), Press (1989),
Raiffa and Schlaifer (1961), Robert (1994), Zellner (1996), etc., Bayes’ theorem, Bayes
(1763) can be used to analyze estimation, testing, prediction, design, control and other
problems and provides useful finite sample results as well as excellent asymptotic results.  In
estimation problems, we have in general via Bayes’ theorem that the posterior density for the
parameters is proportional to a prior density times the likelihood function. Thus information
contained in a prior density for the parameters is combined with sample information contained in
a likelihood function by use of Bayes’ theorem to provide a posterior density that contains all
the information, sample and prior.  See Zellner (1988) for a demonstration that Bayes’ theorem
is a 100 per cent efficient information processing rule, invited discussion of this result by Jaynes,
Hill, Kullback and Bernardo and further consideration of it in Zellner (1991). The works, cited
above, provide many applications of Bayes’ theorem to the models used in business,
economics, econometrics and other areas.

Investigators can use a posterior density to compute the probability that a parameter’s
value lies between any two given values, e.g. the probability that the marginal propensity to
consume lies between 0.60 and 0.80 or that the elasticity of a firm’s sales with respect to
advertising outlays lies between 0.9 and 1.1. As regards point estimation, given a convex loss
function, say a quadratic loss function , it is well known that the optimal Bayesian estimate that
minimizes posterior expected loss is the posterior mean while for absolute error loss and for
“zero-one” loss, the optimal Bayesian estimates that minimize posterior expected loss are the
median and the modal value of the posterior density, respectively.  These and other results for
other loss functions, e.g. asymmetric loss functions, are exact, finite sample results that are
extremely useful in connection with, e.g., real estate assessment, time series and simultaneous
equation models where optimal sampling theory finite sample estimators are not available; see
Berry et al (1996) for many examples and references.  Also, as Ramsey, Friedman, Savage and
others have emphasized, this minimal expected loss or equivalently maximal expected utility
action in choosing an estimate is in accord with the expected utility theory of economics; see,
e.g. Friedman and Savage (1948, 1952).  Further, these Bayesian optimal estimates, viewed as
estimators, have been shown to minimize Bayes’ risk, when it is finite, and are admissible.  For
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more on these properties of Bayesian estimators, see, e.g., Berger (1985), Judge et al. (1987),
Greene (1998) and the other texts cited above.

As regards some Bayesian econometric estimation results, see Hong (1989) who used
the Bayesian approach to analyze time series, third order autoregressive-leading indicator
(ARLI) models for forecasting annual growth rates of real GDP.  He not only produced finite
sample Bayesian posterior distributions for the parameters of the model but also computed the
probability 0.85 that the process has two complex roots and one real root.  Also, he computed
the posterior densities for the period and amplitude of  the oscillatory component of the model.
He found a posterior mean for the period of about 4 to 5 years and a high probability that the
amplitude is less than one.  Also, the posterior density for the amplitude of the real root was
centered over values less than one.  These results were computed for each of 18 industrialized
countries’ data in Hong’s sample. From a non-Bayesian point of view, it is not possible to make
such probabilistic statements regarding the properties of solutions to time series processes and,
indeed, it appears that just asymptotic, approximate sampling theory procedures are available
for such problems.

Another area in which Bayesian procedures have produced improved results is in the
area of estimation of parameters of simultaneous equations models.  For example, in estimating
the parameters of the widely-used Nerlove agriculture supply model, Diebold and Lamb (1997)
showed that use of easily computed Bayesian minimum expected loss (MELO) estimators led to
large reductions in the mean-squared error (MSE) of estimation relative to use of the most
widely used sampling theory technique.  Similarly, in  Park (1982), Tsurumi (1990), Gao and
Lahiri (1999) and Zellner (1997, 276-287, 1998), Bayesian  MELO estimators’ finite sample
performance was found to be generally better than that of non-Bayesian estimators including
maximum likelihood, Fuller’s modified maximum likelihood,  two-stage least squares, ordinary
least squares, etc. In addition to these fine “operating characteristics” of Bayesian procedures in
repeated trials, for a given sample of data, they provide optimal point estimates, finite sample
posterior densities for parameters and posterior confidence intervals, all unavailable in non-
Bayesian approaches that generally rely on asymptotic justifications, e.g., consistency,
asymptotic normality and efficiency, properties also enjoyed by Bayesian estimators.

Various versions of Bayes-Stein shrinkage estimation techniques, described in Stein
(1956), James and Stein (1961), Berger (1985), Zellner and Vandaele (1975) and other
references, have been employed with success by Garcia-Ferrar et al. (1987), Hong (1989),
Min (1992), Zellner and Hong (1989), Quintana et al.(1995), Putnam and Quintana (1995) and
many others.  Here in say a dynamic seemingly unrelated regression equation system for
countries’ growth rates or for a set of stock returns, the coefficient vectors in each equation are
assumed randomly distributed about a common mean vector.  By adding this assumption,
Bayesian analysis provides posterior means for the coefficient vectors that are “shrunk” towards
an estimate of the common mean.  This added information provides much improved estimation
and prediction results, theoretically and empirically.  Indeed, Stein showed that many usual
estimators are inadmissible relative to his shrinkage estimator using a standard quadratic loss
function.  See Zellner and Vandaele (1975) for various interpretations of Stein shrinkage
estimators that have been extremely valuable in many empirical estimation and forecasting
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studies and Quintana et al (1995) for their use in solving financial forecasting and portfolio
selection problems.

Further, for a wide range of dichotomous and polytomous random variable models, e.g.
logit, probit, multinomial probit and logit, sample selection bias models, etc., new integration
techniques, including importance function Monte Carlo numerical integration, Markov Chain,
Monte Carlo (MCMC) techniques and improved MCMC techniques have permitted Bayesian
finite sample analyses of these difficult models to be performed.  Many applications using data
from marketing, education, labor markets, etc. have been reported.  See, e.g. Albert and Chib
(1993), selected articles in Berry et al. (1996), Gelman et al. (1995), Geweke (1989),
McCulloch and Rossi (1990,1994), Pole, West and Harrison (1994),  Tobias (1999), and
Zellner and Rossi (1984). It is the case that use of these new numerical techniques, described in
Geweke (1989), Chib and Greenberg (1996), Gelman et al (1995) and the other references
above, has permitted Bayesian analyses of problems that were considered intractable just a few
years ago.

As regards prediction, the standard procedure for obtaining a predictive density function
for unobserved data, either past or future, is to write down the probability density for the future,
as yet unobserved data, denoted by y , given the parameters, θ, f y( )θ .  By multiplying this

density by a proper density for the parameters, say a posterior density, derived from past
observed data via Bayes’ theorem, we can integrate over the parameters to get the marginal
density of the as yet unobserved data, say h y I( ) , where I  denotes the past sample and prior

information.  In this case, and in many others, the integration over the parameters to obtain a
marginal predictive density is a very useful way to get rid of parameters by averaging the
conditional densities using the posterior density as a weight function.  Given that we have the
predictive density, h y I( ), we can use it to make probability statements regarding possible

values of y. For example, we can compute the probability that next year’s rate of growth of

GDP is between 3 and 5 per cent or the probability that next year’s growth rate will be below
this year’s growth rate.  Further, if we have a predictive loss function, we can derive the point
prediction that minimizes expected predictive loss for a variety of loss functions. For example,
for a squared error loss function, the optimal point prediction is the mean of  the predictive
density. See, e.g. Varian (1975), Zellner (1987) and articles in Berry et al (1996) for theoretical
and applied analyses using various symmetric and asymmetric loss functions.  As emphasized in
this literature, symmetric loss functions, e.g. squared error or absolute error loss functions are
not appropriate for many important problems. Thus it is fortunate that in estimation and
prediction, Bayesian methods can be employed to obtain optimal point estimates and
predictions relative to specific, relevant asymmetric loss functions such as are used in real estate
assessment, bridge construction, medicine and other areas.

The predictive density has been shown to be very useful in developing optimal turning
point forecasting techniques; see, e.g.  Zellner and Hong (1991), Zellner, Hong and Min (1991),
LeSage (1996), Zellner and Min (1999) and Zellner, Tobias and Ryu (1998).  Given that the
current value of a variable, say the rate of growth of real GDP, is known, using the predictive
density for next year’s rate of growth, the probability, P, that it is less than this year’s value can
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be computed and interpreted as the probability of a downturn (DT) and 1-P as the probability
of no downturn (NDT).  Given a two by two loss structure associated with the acts, forecast
DT or forecast NDT and the possible outcomes, DT or NDT, the optimal forecast that
minimizes expected loss can be easily determined.  For example, if the loss structure is
symmetric and P>1/2, the optimal forecast is DT whereas if P<1/2, the optimal forecast is
NDT.  Similar analysis can be used to obtain optimal upturn and no upturn forecasts.  Using
these techniques, in the papers cited above, about 70 per cent of 211 turning point outcomes
for 18 industrialized countries’ rates of growth of real GDP, 1974-1995 were correctly
forecast.  This performance was much better than that yielded by using benchmark techniques,
e.g., coin-flipping, “eternal optimist,” “eternal pessimist” and deterministic four-year cycle
approaches.  Also, LeSage (1996) used these techniques and obtained similarly satisfactory
results in forecasting turning points in U.S. regional employment data.

Another area in which predictive densities play an important role is in optimal portfolio
analysis in theoretical and applied finance; see, e.g., Brown (1976), Bawa, Brown and Klein
(1979), Jorion (1983, 1985), Markowitz (1959, 1987), Quintana, Chopra and Putnam (1995)
and Zellner and Chetty (1965).  Given a predictive density for a vector of future returns, a
portfolio is a linear combination of these future returns, denoted by R,  with the weights on
individual returns equal to the proportion of current wealth assigned to each asset.  Maximizing
the expected utility of R, EU(R) with respect to the weights subject to the condition that they
add up to one provides an optimal portfolio. In recent work by Quintana, Chopra and Putnam
(1995), a Bayesian dynamic, state space, seemingly unrelated regression model with time
varying parameters has been employed to model a vector of returns through time. By use of
iterative, recursive computational techniques, the model is updated period by period and its
predictive density for future vectors of returns is employed to solve for period-by-period
optimal portfolios.  In calculations with past data, the cumulative returns, net of transaction
costs, associated with these Bayesian portfolios have compared favorably with the cumulative
returns associated with a hold the S&P five hundred index stocks strategy.  Currently, the CDC
Investment Management Corporation in New York is employing such Bayesian portfolio
methods.  Also, as reported at a workshop meeting at the U. of Chicago several years ago,
Fisher Black and Robert Litterman reported that they use Bayesian portfolio methods at
Goldman-Sachs in New York.

Last, there are many other areas in which Bayesian predictive densities are important
since fundamentally induction has been defined to be generalization or theorizing to explain and
predict.  Further, the philosophers, according to a review paper by Feigl (1953), have defined
causality to be “predictability according to a law or set of laws.” Also practically, forecasting
and prediction are very important in all areas and thus Bayesian predictive densities have been
widely employed in almost all areas of science and application including marketing, business and
economic forecasting, clinical trials,  meteorology, astronomy, physics, chemistry, medicine, etc.

Bayes’ theorem is also very useful in comparing and testing alternative hypotheses and
models by use of posterior odds that are equal to the prior odds on alternative hypotheses or
models, nested or non-nested, times the Bayes factor for the alternative hypotheses or models.
The Bayes factor is the ratio of the predictive densities associated with the alternative
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hypotheses or models evaluated with the given sample observations. This approach to
“significance testing” was pioneered by Jeffreys (1998) and applied to almost all the standard
testing problems considered by Neyman, Pearson and Fisher. Indeed, Jeffreys considered the
Bayesian approach to testing to be much more sensible than the Neyman-Pearson approach or
the Fisher p-value approach and provided many empirical comparisons of results associated
with alternative approaches.  Note that in the non-Bayesian approaches, probabilities are not
associated with hypotheses.  Thus within these approaches, one can not determine how the
information in the data change our prior odds relating to alternative hypotheses or models.  See
the references above and Kass and Raftery (1995) for further discussion of  Bayes’ factors and
references to the voluminous Bayesian literature involving their use.

If, for example,  we have two variants of a model, say a model to forecast GDP growth
rates, as explained in Min and Zellner (1993) and Zellner, Tobias and Ryu (1999a,b), we can
employ prior odds and Bayes’ factors to determine which variant of the model is better
supported by the data.  For example, we might start with prior odds one to one on the two
variants, say a fixed parameter model versus a time-varying parameter model. Then after
evaluating the Bayes’ factor for the two models and multiplying by the prior odds, here equal to
one, we obtain the posterior odds on the two models, say 3 to 1 in favor of the time-varying
parameter model.  Also, the posterior odds on alternative models can be employed to average
estimates and forecasts over models, a Bayesian forecast combination procedure that has been
compared theoretically and empirically to non-Bayesian forecast combination procedures in Min
and Zellner (1993).  Also, in Palm and Zellner (1992), the issue of whether it is always
advantageous to combine forecasts is taken up.  As might be expected, it is not always the case
that combining forecasts leads to better results; however, many times it does.

To close this brief summary of Bayesian methods and applications, note that many
formal procedures for formulating diffuse or non-informative and informative prior densities have
been developed; see Kass and Wasserman (1996) and Zellner (1997) for discussion of these
procedures.  It should also be appreciated that the Bayesian approach has been applied in
analyses of almost all parametric, nonparametric and semiparametric problems.  Indeed, at this
point in time, it is probably accurate to state that most, if not all, the estimation, testing and
prediction problems of econometrics and statistics have been analyzed from the Bayesian point
of view and the results have been quite favorable from the Bayesian viewpoint.  With this said,
let us turn to a comparison of some Bayesian and non-Bayesian concepts and procedures.

3. Comparison of Bayesian and Non-Bayesian Concepts and Procedures

Shown in Table 1 are 12 issues and summary statements with respect to Bayesian and Non-
Bayesian positions on these issues.  First we have the fundamental issue as to whether a formal
learning model is used.  Bayesians use Bayes’ theorem as a learning model whereas non-
Bayesians do not appear to use a formal learning model.  In effect,
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                                     Table 1

                  Some Bayes-Non-Bayes Issues and Responses

         Issues                                                        Responses

                                                                    Bayes        Non-Bayes

1.   Formal learning model?                             Yes          No

2.   Axiomatic support?                                   Yes           ?

3.   Probabilities associated with

      hypotheses and models?                            Yes          No

4.   Probability defined as measure of degree

      of confidence in a proposition?                  Yes          No

5.   Uses Pr(a<θ <b given data)?                      Yes          No

6.   Uses Pr(c< y f <d given data)?                     Yes         No

7.   Minimization of Bayes risk?                       Yes         No

8.   Uses prior distributions?                             Yes          ?

9.   Uses subjective prior information?              Yes        Yes

10.  Integrates out nuisance parameters?           Yes         No

11.  Good asymptotic results?                           Yes        Yes

12.  Exact, good finite sample results?              Yes        Sometimes

non-Bayesians are learning informally.  As mentioned above, use of the Bayesian learning model
has led to many useful results.  However, this does not mean that the Bayesian learning model
can not be improved and indeed several researchers including Diaconis, Goldstein, Hill, Zabell,
Zellner and others have been involved in research designed to extend the applicability of the
Bayesian learning model.

Secondly, there are several Bayesian axiom systems that have been put forward by Jeffreys,
Savage and others to provide a rationale for Bayesian inference procedures. As regards axiom
systems for non-Bayesian inference and decision procedures, I do not know of any.

Third, as stated above, Bayesians use probabilities to express degrees of confidence in
hypotheses and models.  Non-Bayesians who use axiomatic and frequency definitions of
probability do not do so formally.  However, many times non-Bayesians informally do so and
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incorrectly associate p-values with degrees of confidence in a null hypothesis.  While it is true
that some posterior odds expressions are monotonic functions of p-values, the p-value is not
equal to the posterior probability on the null hypothesis nor was it ever meant to be.

Fourth, non-Bayesians pride themselves in their axiomatic and frequency “objective”
concepts of probability and are critical of Bayesians for their ”subjective” concepts of
probability.  In this regard most of these non-Bayesians have not read Jeffreys’(1998, Ch. 7)
devastating critiques of axiomatic and frequency definitions of probability.  For example, on the
long run frequency or Venn limit definition of probability, Jeffreys writes, “No probability has
ever been assessed in practice, or ever will be, by counting an infinite number of trials or finding
the limit of a ratio in an infinite series...A definite value is got on them only by making a
hypothesis about what the result would be. On the limit definition,...there might be no limit at
all....the necessary existence of the limit denies the possibility of complete randomness, which
would permit the ratio in an infinite series to tend to no limit.” (p.373).  Many other examples
and considerations are presented to show the inadequacies of the axiomatic and limiting
frequency definitions of probability for scientific work.  As far as I know, Jeffreys’ arguments
have not been rebutted, perhaps because as some have noted, they are irrefutable.  He further
writes, “The most serious drawback of these definitions, however, is the deliberate omission to
give any meaning to the probability of a hypothesis.” (p.377)  See also Jeffreys (1998, pp.30-
33), Kass (1982) and Zellner (1982) for discussion of  Jeffreys’ definition of probability as
compared to the “personalistic” or “moral expectation” or “betting” definitions put forward by
Ramsey, de Finetti, Savage, and others.

Under issue 5 in Table 1, we have the probability that a parameter’s value lies between two
given numbers, a and b given the data, a typical Bayesian posterior probability statement, first
derived analytically by Bayes (1763).  Non-Bayesians can not validly make such statements
even though many practitioners misinterpret sampling theory confidence intervals in this manner.
The same is true with respect to the Bayesian prediction interval for the future random variable
under issue 6 in Table 1.  For example, a Bayesian might state that the probability that this
random variable lies between the given numbers c and d is 0.95.  On the other hand if c and d
are the realized values of the endpoints of a 95% sampling theory confidence interval, then it is
incorrect to say that the future value lies between c and d with probability 0.95.  Rather one
should state that the interval c to d is the realized value of a random interval that has probability
0.95 of covering the random variable.

With respect to issue 7 in Table 1, non-Bayesians do not minimize Bayes risk since they
don’t introduce a prior density for the parameters, an essential element in the definition of
Bayes’ risk given in Bayesian texts.  Bayesians minimize Bayesian risk in choosing estimators
and predictors in order to insure that they have good operating characteristics.  However in
situations involving a single set of data, averaging over unobserved outcomes may not be
relevant and use of the criterion minimization of expected loss given the one sample of data is
more appropriate.

As regards issue 8, Bayesians use diffuse or non-informative and informative prior
densities quite broadly.  Non-Bayesians generally say they do not.  However in analyses of
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hierarchical models, state space models, random effects models, and random initial conditions
for time series models, distributions are often introduced for parameters that are usually
considered to be “part of the model” and not prior densities.  As Good (1991) and others have
recognized, this distinction is rather thin and for Good represents a possible compromise
between Bayesians and non-Bayesians.  Note too that in econometrics, some non-Bayesians
have attempted to introduce subjective prior information using the “mixed estimation” procedure
of Theil and Goldberger explained in Theil (1971), inequality restrictions on estimators and
predictors, ridge regression and other approaches. In addition, many have recognized that prior
subjective information is used extensively in model formulation by Bayesians and non-Bayesians.

That subjective prior information is used quite broadly is noted by several prominent
non-Bayesians.  For example, Tukey (1978, p. 52) writes, “It is my impression that rather
generally, not just in econometrics, it is considered decent to use judgment in choosing a
functional form but indecent to use judgment in choosing a coefficient . If judgment about
important things is quite all right, why should it not be used for less important ones as well?
Perhaps the real purpose of Bayesian techniques is to let us do the indecent thing while modestly
concealed behind a formal apparatus.”  Also, another prominent non-Bayesian Freedman
(1986, p. 127) has remarked, “When drawing inferences from data, even the most hard-bitten
objectivist usually has to introduce assumptions and use prior information.  The serious question
is how to integrate that information into the inferential process and how to test the assumptions
underlying the analysis.”  Last, Lehmann (1959, p. 62) writes in connection with non-Bayesian
hypothesis testing, “Another consideration that frequently enters into the specification of a
significance level is the attitude toward the hypothesis before the experiment is performed. If one
firmly believes the hypothesis to be true, extremely convincing evidence will be required before
one is willing to give up this belief, and the significance level will accordingly be set very low.”
From these quotations it is clearly the case that non-Bayesian, so-called objective analysts use
considerable subjective information in their analyses, usually informally in a non-reproducible
fashion.

On issue 10 in Table 1, Bayesians with a posterior density involving parameters of
interest and nuisance parameters usually integrate out the nuisance parameters, a beautiful
solution to the nuisance parameter problem.  This integration has been mathematically
interpreted as an averaging over conditional posterior densities of the parameters of interest
given the nuisance parameters.  However, non-Bayesians have no such solution to the nuisance
parameter problem.  For example, when a generalized least squares estimator involves nuisance
parameters, say elements of a disturbance term covariance matrix, it is usual practice to insert
estimates of the nuisance parameters and give the resulting “operational” estimator an
asymptotic justification.  Often times, the finite sample properties of such “operational”
estimators are unknown and sometimes far from optimal. Bayesians, by integrating out nuisance
parameters obtain a finite sample posterior density and can use it to derive optimal, finite sample
estimates of parameters of interest and to make exact finite sample probability statements about
parameters’ possible values.

With respect to issue 11, generally Bayesian and non-Bayesian methods produce good
asymptotic results.  See, e.g., Jeffreys (1998), Heyde and Johnstone (1979) and Chen (1985)
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for Bayesian asymptotic results for iid and stochastically dependent observations. In the former
case, assumptions needed to derive asymptotic normality are the same in Bayesian and non-
Bayesian cases; however, in the case of stochastically dependent observations, Heyde and
Johnstone (1979) state that conditions needed for the asymptotic normality of posterior
densities centered at the maximum likelihood estimate are weaker than those required for the
asymptotic normality of maximum likelihood estimators.  Also, in cases in which the number of
parameters grows with the sample size, the incidental parameter case, both maximum likelihood
and Bayesian estimators are inconsistent as emphasized by Neyman, Scott, Freedman, Diaconis
and others.  With just one observation per parameter, it is indeed unreasonable to have
estimators’ densities become degenerate as the sample size grows.  By adding more
information, e.g. by assuming a hyper distribution for the parameters and integrating out the
incidental parameters, both Bayesian and maximum likelihood techniques yield consistent
results.

Last, with respect to issue 12, generally Bayesian methods produce exact finite sample
results in general whereas in many time series problems, simultaneous equations model
problems, etc., non-Bayesian methods do not yield optimal finite sample estimators, exact
confidence intervals and test statistics with known, finite sample distributions  When this is the
case, usually non-Bayesian approximate large sample inference techniques are employed as in
analyses of cointegrated time series models, generalized method of moments problems, selection
bias models, and many others.  As stated above, Bayesian methods have been employed to
obtain exact finite sample results for these and many other “difficult” models.

To close this section, a simple binomial problem will be considered to illustrate some
general points, one that I have used for many years in my lectures.  Suppose that in five trials,
five sons are born and that the trials are considered independent with a probability θ  of a male
birth on each trial.  How does one make inferences about the possible values of this parameter
given the outcome, five sons in five trials?  For example, what is a good estimate?  How can one
get a confidence interval?  How can one test the hypothesis that  θ = 1? What are the odds on
this hypothesis versus the hypothesis that θ = 1 2/ ?  Or versus the hypothesis that the
parameter is uniformly distributed?  Note that the likelihood function is θ 5  and thus the
maximum likelihood estimate is equal to 1!  What is a good way to compute a confidence
interval to accompany this estimate?  Also, what test statistic is available to test the null
hypothesis that the parameter’s value = 1?  Note that under this null hypothesis, the process is
deterministic and thus there will be difficulty deriving the probability distribution of a test statistic
under the null.  This problem was analyzed years ago by Laplace who put a uniform prior on the
parameter, and used Bayes’ theorem to obtain the normalized posterior density that is
proportional to the prior times the above likelihood function, that is the normalized posterior
density is, 6 5θ .  The modal value is 1, an optimal point estimate relative to a zero-one loss
function while the posterior mean is 6/7, an optimal point estimate relative to a squared error
loss function and a special case of Laplace’s Rule of Succession.  Also, given whatever loss
function that is appropriate, an optimal Bayesian point estimate can be derived that minimizes
posterior expected loss.  Further, posterior probability intervals giving the probability that the
parameter’s value lies between any two given values, say 1/2 and 1, are easily computed using
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the above posterior density.  Also, the posterior odds on the hypotheses that the parameter’s
value is 1 versus that its value is 1/2 is easily evaluated.  If the prior odds are 1:1 on these two
hypotheses, the posterior odds in favor of 1 versus ½  is 32 to 1.  Such problems are important
not only regarding sex birth ratios but also in testing effectiveness of drugs, quality of products,
the validity of scientific theories,  etc.  See Jeffreys (1998) and  Zellner (1997, 1997a) for
further analysis of the Laplace Rule of Succession.

4. Information Theory and Bayesian Analysis

My personal conclusion given the above considerations is that IT PAYS TO GO
BAYES, to quote an old colleague of mine.  However this should not be interpreted to mean
that the Bayesian approach can not be improved.  See, for example Soofi (1994, 1996), Jaynes
(1988), Hill (1986,1988) and Zellner (1988,1991,1997) where it is recognized that inference
involves information processing.  In the Bayesian framework, the input information is information
in a likelihood function, the data information, and information in a prior density. The output
information is the information in a post data density for the parameters and a marginal density for
the observations.  By putting information measures on the inputs and outputs, we can seek the
form of a proper output density for the parameters, say g, that minimizes the difference between
the output information and the input information.  Given the entropic measures of information
employed, when this calculus of variations problem was solved, it was found that the solution is
Bayes’ theorem, namely take g proportional to the product of the prior density and likelihood
function. Further, when g is taken in this form, it is the case that the output information equals the
input information and none is lost in the process.  Thus information-processing when Bayes’
theorem is employed is 100% efficient.  Jaynes (1988, p. 280-281) commented as follows on
this result:

“...entropy has been recognized as part of probability theory since the work of Shannon
(1948)...and the usefulness of entropy maximization...is thoroughly established...This makes it
seem scandalous that the exact relation of entropy to other principles of probability theory is still
rather obscure and confused.  But now we see that there is, after all, a close connection
between entropy and Bayes’s theorem. Having seen such a start, other such connections may
be found, leading to a more unified theory of inference in general.  Thus in my opinion, Zellner’s
work is probably not the end of an old story but the beginning of a new one.”

As part of the “new story,” Zellner (1991) has considered the prior and sample
information inputs to be of differing quality in deriving an information processing rule that
minimizes the difference between output and input information subject to the output post data
density for the parameters being proper.  The result is a modified form of Bayes’ theorem that
equates the quality adjusted input information to the quality adjusted output information.
Similarly, when the information in a prior density is weighted differently from the sample
information in a likelihood function, the optimizing information processing rule is different in form
from Bayes’ theorem, namely the post data density for the parameters is proportional to the
prior raised to a power times the likelihood function raised to a power.  When dynamic
information processing is considered with possible costs of obtaining and adjusting to new
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information, from work in progress it is found that the dynamic optimization solution is different
from the static solution, Bayes’ theorem, just as static and dynamic maximization solutions differ
in engineering, physics and the economic theory of the firm.  Much work remains to be done in
this area of information processing.

Another area in which information theory is useful is the problem of what to do when the
form of the likelihood function is unknown.  Of course for many years maxent or information
theory has been employed to produce models for observations in physics and chemistry.  For
such work in economics, econometrics, finance and statistics, see, e.g., Davis (1941), Cover
and Thomas (1991), Ryu (1990,1993), Stutzer (1996), Soofi (1996), Fomby and Hill (1997)
and Zellner (1997).  In addition, information criterion functionals have been employed to
produce diffuse or non-informative as well as informative prior densities; see e.g. the review
article on prior densities by Kass and Wasserman (1996) and results on various methods for
producing prior densities in Bernardo and Smith (1994) and Zellner (1997, 127-153).

While maxent results are helpful in producing models for the observations when
sampling properties of systems are known, e.g. sampling moment side conditions and other
restrictions, when such sampling properties and restrictions are unknown, then a problem arises
in the derivation of sampling densities for the observations using maxent. In such situations, some
have resorted to empirical likelihood methods and bootstrapped likelihood functions; see, e.g.,
Boos and Monahan (1986) while others have introduced moment side conditions directly on
functions of realized error terms of a model for the given data and from these have deduced
implied post data moments of the model’s parameters.  For example, if  y i = θ + ui , i = 1,2,...,

n, are n observed times to failure, uyyi +=∞<< θθ ,,0  is the relation connecting the
mean of the ysy ,'  to the parameter θ  and the mean of the realized error terms, u.  Then

if we apply a subjective expectation operator to both sides of this last relation, we have for the
given observation mean, y E Eu= +θ . If the measurements have been made properly with no

outliers, no left out variables and departures from the linear form, we can then assume that
Eu = 0.  Given this moment assumption, we have E yθ = ,  that is the post data mean of the

parameter is equal to the sample mean.  Using this moment side condition, the proper
probability density function with this mean that maximizes entropy is the exponential density,
f D y y( ) ( / ) exp{ / }θ θ= −1 , where D denotes the given sample data and background

information.  This is an example of a Bayesian method of moments (BMOM) post data density
for a parameter.  It is called Bayesian since the density can be employed to compute the post
data probability that the parameter lies between any two numbers, i.e. Pr{a<θ <b D}, where D

denotes the given data and prior assumptions, a solution to the problem posed by Bayes
(1763).  See, e.g., Green and Strawderman (1996), Tobias and Zellner (1997), Zellner, Tobias
and Ryu (1999a,b), LaFrance (1999), van der Merwe and Viljoen (1998) and Zellner (1994,
1997, 1997a,1998) for additional applications of the BMOM to location, dichotomous random
variable, univariate and multivariate regression, semi-parametric, time series and other models.
In addition to moments for models’ parameters, by making assumptions about future, as yet
unrealized error terms and given the post data moments of parameters, it is possible to obtain
moments of future, as yet unobserved values of future observations and use them as side
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conditions in deriving maxent probability densities for future observations as shown and applied
in several of the papers cited above.  Also, these predictive densities can be used to form
Bayes’ factors to discriminate between or among models.  The use of maxent densities here is
justified by their well known property of being the least informative densities that incorporate the
information in the moment side conditions as explained in Jaynes (1983), Cover and Thomas
(1991), Soofi (1996) and other works on information theory.

This emerging synthesis of probability theory and information processing is indeed
exciting from a scientific point of view and also from an economic theory point of view in terms
of the economics of information.  For example, using the definition of the information provided
by an experiment in Zellner (1997), with a value of a unit of information given, it becomes
possible to value the information provided by an experiment.  It is then possible to design
experiments so as to maximize the net value of information, namely, the value of the output
information minus the costs of the input information with respect to various control variables,
e.g. the sample size, the number of strata to sample, etc.  This represents an extension of some
of the economic considerations bearing on the design of surveys and experiments described in
the literature on sample survey and experimental design.

Even though the BMOM approach does not require an assumed form for the likelihood
function, it does require a mathematical form for the relation satisfied by the observations and
error terms.  Obtaining the form and relevant input variables for such relations is a problem in
reductive inference, as mentioned earlier.  Unfortunately, formal procedures for obtaining
satisfactory forms for such relations are not available.  In the next section, an approach called
the structural econometric modeling, time series analysis approach (SEMTSA) will be briefly
presented and an application of it in macroeconomic modeling and forecasting will be described.

5. Formulating Models for Explanation and Prediction

The difficult problem of model formulation has been mentioned above. In this section,
we describe the SEMTSA approach that has been formulated and is in the process of being
applied to produce useful macroeconometric models that explain the past and are useful for
prediction and policy analysis.  As explained in previous work, Garcia-Ferrer et al. (1987),
Palm (1976, 1977), Zellner (1979, 1984), and Zellner and Palm (1974), it is possible to derive
univariate transfer function models from dynamic, multivariate time series macroeconomic and
other models.  Such transfer functions can be tested with data to determine whether their
formulations and forecasting performance are satisfactory.  See Zellner and Palm (1975) for one
example of this approach.  However, if no satisfactory multivariate model is available, an
alternative approach is to formulate univariate transfer functions using heuristic economic
considerations and check to determine how well they perform in point and turning point
forecasting.  If a satisfactory transfer function equation, say for the rate of growth of real GDP
for a country is obtained, it may be asked can a macroeconomic theoretical model be specified
that algebraically implies a transfer function for the growth rate of real GDP that is close in form
to that derived empirically from the data.  Then the process is continued by producing other
components, transfer functions for other variables, that perform well in terms of fitting past data
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and are successful in point and turning point forecasting.  Thus our approach is to get
components that work well in forecasting and then put them together to form a reasonable,
economically motivated model for the observations.  This approach contrasts markedly with the
“general to specific “ modeling approach employed by some in the macroeconometric literature.
Note that there are many general models and if the wrong one is chosen, users of the “general
to specific” modeling strategy will be disappointed.

In Garcia-Ferrer et al (1987), we began our analyses using an AR(3) model for annual
real GDP growth rates since such a model could have two complex roots associated with a
oscillatory component and a real root associated with a local trend.  It didn’t take long to find
out that an AR(3) model did not work well in explaining variation in past data and in forecasting
new data.  A fundamental problem was that it was missing cyclical turning points by
overshooting at the top of the business cycle and continuing to go down when the economy was
recovering from downturns.  Given that Burns and Mitchell had found in their research using
pre-World War II data for the US, UK, German and French economies that money and stock
prices tended to lead in business cycles that they studied, we decided to introduce the lagged
rates of change of real money and of real stock prices as leading indicator variables.  Earlier
research has shown that changes in real money affect aggregate demand through real balance
effects.  Also, changes in real stock prices reflect all sorts of shocks hitting an economy, say oil
shocks, war news, etc.  Finally, by introducing the median rate of change of real stock prices for
the countries in our sample in each country’s forecasting equation, a “world return” variable, this
led to contemporary error terms in countries’ equations to be practically uncorrelated.  Thus we
could use a diagonal contemporaneous covariance matrix for our 18 countries’ error terms
rather than a non-diagonal matrix containing many parameters.

Thus our transfer function model or autoregressive-leading indicator  (ARLI) model for
the annual rate of change of real GDP for each of N countries in our sample was formulated as
follows:

                      y X ui i i i= +β          i = 1,2,3,..., N                                       (1)

where, for the i’th country,  y i  is a Txl vector of observed annual growth  rates,  X i  is a Txk

matrix of observations, of rank k, on input variables, namely
(1, y y y SR SR GM WRi t i t i t i t i t i t t, , , , , ,, , , , , , )− − − − − − −1 2 3 1 2 1 1 .  Here we have included three lagged

growth rates to incorporate allowance for endogenous oscillatory behavior, two lagged values
of the rate of growth of real stock prices, SR, one lagged value of the growth rate of real
money, GM, and the median of the N countries’ one period lagged SR variables, a proxy for
the world return, denoted by WR.

Initially, the model in (1) was implemented with data for nine industrialized countries and
later for eighteen countries.  The model and variants of it were fitted using data, 1954-73, and
forecasting tests were performed using data for 1974-1981.  Later the forecast period was
extended to 1995.  See Figure 1 for boxplots of the data.  Of great value in improving our point
forecasts’ RMSEs was the use of  Bayesian shrinkage or pooling techniques.  See Table 2 for a
dramatic demonstration of the effects of the use of shrinkage or pooling on countries’ root mean
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squared errors of forecast. In addition to fixed parameter models, several time varying
parameter models were also employed in point and turning point forecasting experiments.

                                           Table 2

 Root Mean Squared Errors of One Year Ahead Forecasts, 1974-1987,

                Using Pooled and Unpooled ARLIWI Models*

RMSE (%)                       Countries

                                  (a) Pooled

1.00-1.49  FRN  GER  NET  SPN

1.50-1.99  AUR BEL  CAN  FIN  ITY   NOR  SWD  UK  US

2.00-2.49  AUL  DEN JAP   SWZ

2.50-2.99  IRE

          Median = 1.74     Minimum = 1.17    Maximum = 2.53

                                  (b) Unpooled

1.00-1.49  UK

1.50-1.99  BEL  FRN  GER  NET  SPN  SWD

2.00-2.49  AUR US

2.50-2.99  CAN DEN  ITY   NOR

3.00-3.49  AUL  FIN   IRE   JAP   SWZ

         Median = 2.37      Minimum = 1.39    Maximum = 3.32

*See equation (2) below and Zellner (1994) for more information regarding the autoregressive-
leading indicator-world income (ARLIWI) models employed, results and references.
Observations from the U.of Chicago’s IMF International Financial Statistics data base were
employed to fit the models, 1954-73 and to calculate one-year-ahead forecasts, 1974-87,
updating estimates year by year.

 

Another variant of the model involved adding the current median growth rate of the 18
countries, denoted by w w w wT' { , ,. .. , ),= 1 2 as a variable in equation (1) as follows:

 uXwy iiiii ++= βγ (2)

and adding an ARLI equation to explain the variation in the median growth rate, namely,

                 w w w w MSR MGMt o t t t t t t= + + + + + +− − − − −α α α α α α ε1 1 2 2 3 3 4 1 5 1    (3)
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t = 1,2,..., T, where MGM is the median annual growth rate of real money, and MSR is the
median annual growth rate of real stock prices for the 18 countries in our sample; see Fig.1 for
a plot of these variables.  By combining the analysis of (2) and (3), it was possible to improve
point and turning point forecasting performance by use of this autoregressive, leading indicator,
world income, or ARLIWI model.

Given these models, one can use an economic aggregate supply and demand model to
derive an equation in the form of (2); for details, see Appendix A. Further, Hong (1989)
derived an equation in the form of (2) from a macroeconomic Hicksian IS-LM model while Min
(1992) also did so using a generalized real business cycle model that he formulated. Thus
equation (2) and variants of it are compatible with certain macroeconomic theoretical models.

The models described above in equations (1)- (3) and variants of them, including time-
varying state space formulations, performed better in forecasting than various random walk,
AR(3), Barro’s and the Nelson-Plosser ARIMA benchmark models and about the same in
terms of RMSEs of point forecasts as OECD models and probably better in terms of turning
point forecasting.  See Zellner, Hong and Gulati (1990), Zellner and Hong (1991), Zellner,
Hong and Min (1991), Zellner, Tobias and Ryu (1999b) and Zellner and Min (1999) for
methods and results for forecasting turning points in 18 countries’ real GDP growth rates and
LeSage (1996) for use of similar methods in forecasting turning points in regional employment
series.  An editor of the International J. of Forecasting, R. Fildes (1994) commented as follows
in his published review of one of our papers, Min and Zellner (1993):

The alternative models and methods “...were carefully compared based on their
individual country performance measured by root mean squared errors for the years 1974-
1987, and the distribution of these (particularly the median)  The results offer mild support for
using time-varying parameter schemes. Pooling [shrinkage] is important in improving accuracy.
Model selection schemes are not particularly helpful except in so far as they identify pooled
TVP [time varying parameter] models as the most accurate forecasting models.  Combining
does not improve over the TVP models and with the Granger-Ramanathan unconstrained
scheme for choosing the weights, led to substantially poorer accuracy. Equal weights were not
considered.

This paper is an excellent example of good empirical economics where the theory is
utilized effectively in analyzing the problem in hand.” (pp. 163-4)

While previous results are satisfying, there is still the problem of how to achieve
improved forecasting and economic theoretical results with associated reductions in RMSEs and
MAEs of forecast and higher percentages of correct turning point forecasts.  One possible way
to achieve improvement, emphasized for many years by Guy Orcutt, Tong Hun Lee’s mentor at
the U. of Wisconsin when he was a graduate student, is through thoughtful dissaggregation of
the GDP variable.  To show that disaggregation can produce improved forecast performance, in
Zellner and Tobias (1998), equation (3) was employed, as earlier in Zellner and Hong (1989) to
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provide point forecasts of the median growth rates of the 18 countries.  As an alternative way to
forecast the countries’ median growth rates, equations (2) and (3) were employed to forecast
each countries’ one year ahead growth rate and the median of these eighteen forecasts was
employed as a point forecast.  It was found that this latter disaggregated approach produced
better one year ahead point forecasts with RMSEs of forecast approximately 20 per cent lower
for the period 1974-84, that is RMSEs of 1.22 versus 1.54 percentage points and MAEs of
1.08 versus 1.44.  Thus there is some evidence that disaggregation may help in certain
circumstances.

To get a meaningful, economic disaggregation, we are currently formulating Marshallian
demand, supply and entry equations, see e.g. Veloce and Zellner (1985) for major industrial
sectors of the U.S. economy.  For each sectoral model it is possible to solve for the output
transfer function equation that is a function of the growth rates of factor prices, real aggregate
income, household formation, real money balances, etc.  Thus we shall have a set of transfer
function equations for sectoral outputs that can be combined with transfer equations for real
income and factor prices derived from demand and supply models for labor, capital, money,
and bond markets.  Then forecasts can be obtained for sectoral output growth rates and
combined to provide a forecast of aggregate output.  It will be of great interest to determine
whether such forecasts are more accurate than aggregate forecasts, derived from aggregate data
and whether this sectoral Marshallian model will add to our understanding of how the economy
operates.  Note that this model includes interactions among sectors such as construction,
manufacturing, retail, agriculture, mining, etc.,which have different cyclical properties.  Instead of
thinking of the economy as a single oscillator, it may be better to consider it to be a set of
oscillating sectors coupled through common factor markets and product markets  and affected
by macro variables such as real income, real money balances, technical change, real interest
rate, exchange rates and expectations of macroeconomic variables.  When such a
macroeconomic model of interacting sectors is formulated, it will be subjected to simulation and
forecasting experiments to determine its properties and compare them to properties of  the
many theoretical Keynesian, Monetarist, Neo-Keynesian, Neo-Monetarist, Real Business
Cycle, Generalized Real Business Cycle and currently operating macroeconometric models.

In this work, data are being collected and will be analyzed using Bayesian estimation,
testing and forecasting techniques, described above.  Such techniques have been found very
useful in forecasting in our work with aggregate data for 18 countries and will also be extremely
valuable in our future work with models using data for various interrelated sectors of economies.

Given Tong Hun Lee’s keen interest in macroeconomic theory, forecasting and policy, it
will be a pleasure to keep him and his colleagues informed of  progress in our continuing
research. Also, it is very satisfying to recognize the great progress in economic research and
analysis  that has been made in Korea and many other countries of the world that has resulted in
economics and business as coming to be recognized as  progressive, fruitful and useful sciences.
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Appendix

Aggregate Demand and Supply Macroeconomic Model

  Here we consider a short-run aggregate demand and supply model for total real output, Y,
assumed given, that is equal to aggregate demand, the sum of  real consumption, C, investment,
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I, government expenditures, G, and  export, X minus import, IM, demands, i.e. Y = C + I + G
+X -IM is the equilibrium condition.  Now, if we write y = log Y and  assume a semi-
logarithmic representation of total demand, incorporating a monetarist real balance effect, we
have:

    y y y y y r m W ex tt t t t t t
a

t t t= + + + + + + + + +− − − −γ α α α α α α α α α0 1 1 2 2 3 3 4 5 1 6 8  (A1)

where r a =  anticipated real rate of interest, m = log of real money balances, W = log of real
world income,  and ex = real exchange rate. The left side of

(A1) is given supply and the right side is a representation of total demand that includes lagged
real income, real balance, interest rate, world income, exchange rate and trend effects.  If the
change in the anticipated real rate of interest is assumed given by the empirical relation,

   ∆r SR SR WRt
a

t t t= + + +− − −β β β β0 1 1 2 2 3 1                                          (A2)

where SR = rate of change of real stock prices and WR = rate of change of real world stock
prices, then we can first difference (A1) and substitute from (A2) to obtain:

∆ ∆ ∆ ∆ ∆ ∆ ∆y y y y SR SR WR m W ext t t t t t t t t t= + + + + + + + + +− − − − − − −δ δ δ δ δ δ δ δ δ δ0 1 1 2 2 3 3 4 1 5 2 6 1 7 1 8 9

                                                                                                   (A3)

where ∆y Y Yt t t= − −log log ,1  the growth rate of Y, measured as real GDP in our empirical

work.  Note that (A3) is in the form of our ARLIWI model except for the inclusion of an
exchange rate variable that has as yet not been included in our forecasting equations.  Since the
change in the exchange rate is close to being white noise, it is included in our error terms. Taking
it out of the error term and including it in our forecasting equation may help to improve our
forecasting results, as Granger noted many years ago in a general context. See also Hong
(1989) and Min (1992) for more detailed derivations of our ARLIWI model from Hicksian IS-
LM and generalized real business cycle models.

Figure 1: Medians and Interquartile Ranges for Growth Rates of Real
Output (A) Real Money (B) and Real Stock Prices (C)

for 18 Industrialized Countries: 1954-19951

                                       
1The dashed line connects the annual median growth rates )'( sthe tω and the vertical lines give the interquartile

ranges.
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Figure 1 Continued

(B) Growth Rates of Real Money
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(C) Growth Rates of Real Stock Prices
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