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ABSTRACT

As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional

to a spectral density matrix at frequency zero and can be consistently estimated by such popular kernel

methods as those of Andrews-Newey-West. In practice, it is di¢cult to estimate the spectral density

matrix if it has a peak at frequency zero, which can arise when there is strong autocorrelation, as

often encountered in economic and …nancial time series. Kernels, as a local averaging method, tend

to underestimate the peak, thus leading to strong overrejection in testing and overly narrow con…dence

intervals in estimation.

As a new mathematical tool generalizing Fourier transform, wavelet transform is a powerful tool to

investigate such local properties as peaks and spikes, and thus is suitable for estimating covariance ma-

trices. In this paper, we propose a class of wavelet estimators for the covariance matrices of econometric

parameter estimators. We show the consistency of the wavelet-based covariance estimators and derive

their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet esti-

mation. We propose a data-driven method to select the …nest scale—the smoothing parameter in wavelet

estimation, making the wavelet estimators operational in practice. A simulation study compares the …nite

sample performances of the wavelet estimators and the kernel counterparts. As expected, the wavelet

method outperforms the kernel method when there exists relatively strong autocorrelation in the data.

Key Words: Data-driven methods, Heteroskedasticity and autocorrelation consistent covariance matrices,

Kernel estimation, Spectral density matrix, Wavelet analysis, Time series



1. INTRODUCTION

Estimation of heteroskedasticity and autocorrelation consistent covariance matrices is a long-standing

problem in time series econometrics. Leading examples are estimation of asymptotic covariance matrices

of least square estimators in linear, nonlinear and unit root regression models, of two-stage least squares,

three-stage least squares, quasi-maximum likelihood, and generalized method of moment estimators. Such

covariance matrix estimation is important for con…dence interval estimation, inference and hypothesis

testing in dynamic contexts.

To represent a covariance matrix by a spectral density matrix at frequency zero and to estimate it by

nonparametric kernel methods was suggested by Brillinger (1975, p.184; 1979), Hansen (1982, p.1047),

and Phillips and Ouliaris (1988) among others. Various kernel-based covariance estimators have been

proposed. These include Domowitz and White (1982), Levine (1983), White (1984), White and Domowitz

(1984), Newey and West (1987, 1994), Gallant (1987), Gallant and White (1988), Kool (1988), Andrews

(1991), Andrews and Monahan (1992), and Hansen (1992). Andrews (1991) and Newey and West (1994)

propose some data-driven bandwidth choices suitable for covariance matrix estimation, making the kernel

methods operational in practice. Andrews (1991) derives the optimal kernel—the Quadratic-Spectral

(QS) kernel over a class of kernels that generate positive semi-de…nite covariance estimators. denn Haan

and Levin (1998) also propose an autoregression-based covariance estimator.

It is well-known that kernel-based covariance estimators do not perform well in …nite samples when

there is strong autocorrelation in data (e.g., Schwert 1989, Keener, Kmenta and Weber 1991, Andrews

1991, Andrews and Monahan 1992, Christiano and den Haan 1995, Newey and West 1994, den Haan and

Levin 1997). They often lead to strong overrejection in testing and overly narrow con…dence intervals

in estimation. In the context of the generalized method of moments, for example, the sizes of Wald

tests that use kernel-based covariance estimators overreject and they become worse as the dimension

of the estimated parameters increases (e.g., Christiano and den Haan 1995). It makes little di¤erence

how exactly a bandwidth or a kernel is chosen. Indeed, as Andrews (1991) points out, kernel estimators

perform poorly in an absolute sense when autocorrelation is strong, and this is so even if the …nite sample

optimal bandwidth is used.

The bulk of the problem is the di¢culty in estimating a spectral density matrix at frequency zero

when it has a peak there, which can arise due to strong dependence. To reduce the downward bias, one

has to choose a very large lag order, and consequently, the sample size n would have to be very large to

keep the variance reasonable. Alternatively, if both the sample size and the lag order are …xed, the bias

would be substantial near the peak. It is well-known that positive autocorrelation is apt to entail a mode

in the spectral density at frequency zero, and strong autocorrelation yields a peak at frequency zero.

Kernel estimators often tend to underestimate the peak, leading to overly narrow con…dence intervals

and liberal tests. In fact, Priestley (1981, pp.547-556) shows that the modes of the spectral densities of

some low order AR and ARMA processes, whose autocorrelations decay to zero at an exponential rate,

are still underestimated even if some undersmoothing bandwidths are used. Spectral peaks often arise in

economic time series, due to seasonalities, business cycle periodicities, and strong dependence. Cochrane
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(1988), for example, argues that for economic data, low order ARMA procedures tend to yield poor

estimates of in…nite sums of autocorrelations (i.e., the long-run variance), because the autocorrelation

function often is positive and decays slowly. Granger (1969) points out that the typical spectral shape of

many economic time series is that it has a sharp peak at frequency zero and decays to zero as frequency

increases. For such time series, kernel methods may not work well.

Because of the unsatisfactory …nite sample performances of the kernel-based covariance estimators, it

has been emphasized in the literature (e.g., Newey and West 1994, p.632) that extensions or re…nements

to the existing kernel methods should be a priority for further work. More reliable sampling distribution

theory and better covariance estimators are required for the statistics used in economic and …nancial

time series analysis. To our knowledge, however, few progress has been made so far. The most noticeable

progress is Andrews and Monahan’s (1992) prewhitening procedure. Prewhitening is a technique aimed to

improve the accuracy of spectral density estimators by making certain transformations to the data before

applying spectral estimation procedures. The idea is to “‡atten” the spectral density by passing the

original series through a …lter so that its output has a relatively ‡at spectrum. A ‡at spectrum is much

easier to estimate and the corresponding kernel estimator is less sensible to the choice of a bandwidth.

Andrews and Monahan’s (1992) prewhitening kernel estimator is e¤ective in reducing the bias, and leads

to considerably better sizes for related test statistics. In the meantime, it is also found that prewhitening

in‡ates the variance, and may lead to a larger mean squared error (MSE) than the kernel estimator

without prewhitening (see Andrews and Monahan 1992, Newey and West 1994, p.634).

The recently developed wavelet analysis provides an approach to construct a possibly better estima-

tor for covariance matrices when autocorrelation is strong. As a new mathematical tool generalizing

Fourier transform, Wavelets fundamentally di¤ers from Fourier bases and Gabor bases (i.e., windowed

Fourier bases). With spatially varying orthonormal bases, wavelets can e¤ectively capture the peaks of

an unknown function (cf. Donoho and Johnstone 1994, 1995, 1996, Donoho et al. 1996), and therefore

are natural tools to investigate the local properties of the function of interest. In particular, when there

are signi…cant spatially inhomogeneous features like peaks in the unknown function, wavelet estimators

are expected to outperform kernel estimators. In this paper we propose a new class of wavelet-based

covariance estimators.

It should be noted that in such situations as hypothesis testing in a regression context, there exists

some alternative approach (e.g., Kiefer et al. 1999) that avoid estimation of heteroskedasticity and

autocorrelation consistent covariance matrices. We shall compare our method with this procedure via

simulation.

In Section 2, we describe the framework in which estimation of heteroskedasticity and autocorrelation

consistent covariance matrices is of interest. In Section 3, we introduce wavelet analysis and propose

a class of wavelet-based covariance estimators. In Section 4 we show the consistency of the wavelet

estimators and derive their asymptotic mean squared errors, which provide insight into the smoothing

nature of the wavelet estimators. In Section 5, we propose a data-driven choice of the …nest scale—the

smoothing parameter for the wavelet estimators. In Section 6, we conduct a simulation experiment to

compare the wavelet estimators with the kernel counterparts. Section 7 provides a concluding remark

and directions for further research. The mathematical proofs are collected in the appendix. Throughout,
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Z = f0;§1;§2; :::g denotes the set of integers, Z+ = f0; 1; 2; :::g the set of nonnegative integers, A¤ the

complex conjugate of A; Re(A) the real part of A; jjAjj = tr(A0A) the usual Euclidean norm, and C a

generic bounded constant. Unless indicated, all convergencies are taken as the sample size n ! 1:

2. FRAMEWORK

To motivate, we …rst consider a linear time series regression model with a possibly heteroskedastic

and autocorrelated disturbance error

Yt = X0
tµ0 + Ut; t = 1; :::; n; (2.1)

where Yt is a dependent variable, Xt a p £ 1 vector consisting of explanatory variables, and µ0 a p £ 1

unknown parameter vector, p 2 Z+. The ordinary least square (OLS) estimator of µ0 is

µ̂n =

Ã
n¡1

nX

t=1

XtX
0
t

!¡1

n¡1
nX

t=1

XtYt: (2.2)

Its asymptotic covariance matrix is

AVAR
h
n

1
2 (µ̂n ¡ µ0)

i
=

³
lim

n!1
Mn

´¡1

lim
n!1

­n

³
lim

n!1
Mn

´¡1

; (2.3)

where Mn = n¡1
Pn

t=1 E(XtX0
t) and ­n = n¡1

Pn
t=1

Pn
s=1 E[XtUt(UsXs)0]: To estimate (2.3), one can

estimate Mn by its sample analog M̂n = n¡1
Pn

t=1 XtX
0
t; but ­n is more challenging to estimate.

More generally, we have

(Mn­nM 0
n)¡1n

1
2 (µ̂n ¡ µ0) ! N(0; Ir); r 2 Z+; (2.4)

where Mn is a nonstochastic r £ p matrix, Ir is a r £ r identity matrix, and

­n = n¡1
nX

t=1

nX

s=1

E [Vt(µ0)Vs(µ0)
0] (2.5)

for some stochastic p £ 1 vector process Vt(µ0): The function Vt(µ0) can be the product of the distur-

bance with the gradient of the regression function in nonlinear regression estimation, the product of the

disturbance with instrumental variables in two-stage least squares estimation, the score function in quasi-

maximum likelihood estimation, or the moment function in generalized method of moment estimation.

Usually, Mn is relatively simple to estimate, often by its sample analog. It is more di¢cult to estimate

­n; and this is the focus of this article:

When Vt(µ0) is a second order stationary process with mean zero, we have

lim
n!1

­n = ­ ´ 2¼f(0); (2.6)

where

f(0) = (2¼)¡1
1X

l=¡1
¡(l)

is the p £ p spectral density matrix of Vt(µ0) at frequency zero, with ¡(l) = E[Vt(µ0)Vt¡l(µ0)
0]: Thus,

­ can be consistently estimated by a nonparametric spectral density estimator at frequency zero, as

3



suggested in Brillinger (1975), Hansen (1982) and Phillips and Ouliaris (1988) among others. Newey and

West (1987) propose a convenient positive semi-de…nite kernel estimator for ­

­̂NW =
BnX

l=¡Bn

K(j=Bn)¡̂n(l); (2.7)

where K(x) = (1¡jxj)1(jxj · 1) is the Bartlett kernel, 1(¢) is the indicator function, Bn is a lag truncation

parameter depending on the sample size n,

¡̂n(l) =

(
n¡1

Pn
t=l+1 Vt(µ̂n)Vt¡l(µ̂n)0; l ¸ 0

n¡1
Pn

t=1¡l Vt+l(µ̂n)Vt(µ̂n)0; l < 0;
(2.8)

is the sample autocovariance matrix of Vt(µ̂n); and µ̂n is a consistent estimator of µ0: Andrews (1991)

consider a class of estimators

­̂A =
n¡1X

l=1¡n

K(j=Bn)¡̂n(l); (2.9)

where K : R ! [¡1; 1] is a general kernel, and Bn a bandwidth. Examples of K(¢) include Bartlett,

Parzen, QS, Tukey-Hanning, and truncated kernels. When K(¢) has in…nite support, Bn is no longer

a lag truncation parameter. Andrews derives the optimal kernel —the QS kernel, that minimizes an

asymptotic MSE; he also proposes a parametric “plug-in” data-driven bandwidth choice for Bn: Newey

and West (1994) propose a nonparametric “plug-in” data-driven choice of Bn for their Bartlett kernel-

based estimator ­̂NW : Andrews and Monahan (1992) further propose a prewhitening kernel estimator

­̂AM =
h
I ¡ G(µ̂n)

i¡1
"

n¡1X

l=1¡n

K(j=Bn)¡̂¤
n(l)

#h
I ¡ G(µ̂n)

i¡10

; (2.10)

where G(µ̂n) is a …lter based on a Vector AutoRegression (VAR) approximation for fVt(µ̂n)g with residuals

V ¤
t (µ̂n) and

¡̂¤
n(l) =

(
n¡1

Pn
t=l+1 V ¤

t (µ̂n)V ¤
t¡l(µ̂n)0; l ¸ 0

n¡1
Pn

t=1¡l V
¤
t+l(µ̂n)V ¤

t (µ̂n)0; l < 0:

Extensive simulation experiments in the literature show that kernel estimators perform poorly in

…nite samples when there is strong autocorrelation. They often lead to strong overrejection in testing

and too narrow con…dence intervals in estimation. This is true even if the …nite sample optimal bandwidth

parameter is used. It appears that it is the very nature of the kernel method, rather than the choice of

a bandwidth or a kernel, that attributes its poor performance in …nite samples when the data display

strong dependence.

In our opinion, the main reason for the poor performance of the kernel estimators is that the spectral

density has a peak at frequency zero when there exists strong autocorrelation, but the kernel method is

relatively ine¢cient to estimate the peak. As a local averaging method, kernels tend to underestimate

f(0) when there is a mode at zero: Andrews and Monahan’s (1992) prewhitening procedure alleviates

this downward bias substantially and thus gives better test sizes. Of course, it in‡ates the variance, and

thus may not dominate the same procedure applied to the original series in terms of MSE criteria.

The recent development of wavelet analysis provides a plausible approach to estimating inhomogeneous

functions such as the spectral density with a peak at frequency zero. In a series of papers (e.g., Donoho and
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Johnstone 1994,1995,1996, and Donoho et al. 1996), Donoho and his coworkers show that in the regression

and probability density estimation contexts, some wavelet methods, with no prior information about the

a priori degree or amount of regularity of the function, can nearly achieve the optimal convergence rate

that could be obtained by knowing such regularity. Gao (1993) and Neumann (1996) extend these results

to estimation of the spectral density function of univariate stationary Gaussian and non-Gaussian time

series respectively. Our aim here is to estimate ­ by using a di¤erent wavelet estimation method.

3. WAVELET ESTIMATORS

3.1 Introduction to Wavelet Analysis

Recently, a growing and enthusiastic community of applied mathematicians has developed wavelet

transform as a tool for signal decomposition and analysis. It is a natural tool to investigate the local

properties of spatially inhomogeneous functions. Before wavelet analysis is given the status of a uni…ed

scienti…c …eld in the late 1980s, it had been independently used in mathematics, physics, signal or image

processing, and numerical analysis. The …eld is growing rapidly, both as a practical, algorithm-oriented

enterprise and as a …eld of mathematical analysis. Daubechies (1992) features an algorithmic viewpoint

about the wavelet transform; Frazier et al. (1991) feature the functional space viewpoint. Donoho and

his coworkers (e.g., Donoho and Johnstone 1994,1995a,1995b, Donoho et al. 1995), feature the statistical

viewpoint of wavelet transform in combination with functional approximation theory.

For concreteness we shall consider multiresolution analysis, …rst introduced by Mallat (1989) and

Meyer (1992). The idea is to express a function g(¢) in the L2(R) space as a linear superposition of

“elementary” functions or building blocks called wavelets, centered on a sequence of spatial points. These

wavelets are derived from a single function Ã : R ! R; called the mother wavelet, by translations and

dilations as explained below. The mother wavelet Ã(¢) satis…es the following condition:

Assumption A.1: Ã : R ! R is an orthonormal wavelet such that
R 1

¡1 Ã(x)dx = 0;
R 1
¡1 jÃ(x)jdx <

1;
R 1

¡1 Ã2(x)dx = 1; and
R 1

¡1 Ã(x)Ã(x ¡ k)dx = 0 for all k 2 Z; k 6= 0:

An orthonormal wavelet Ã(¢) is a function such that the doubly in…nite system fÃjk(¢)g is an ortho-

normal basis for L2(R); where

Ãjk(x) = 2
j
2 Ã(2jx ¡ k); j; k 2 Z: (3.1)

Cf. Mallat (1989) and Daubechies (1992). The integer j is called a scale parameter, representing a

resolution level; the integer k is called a translation parameter. Intuitively, j localizes analysis in frequency

and k localizes analysis in time or space. The simultaneous time-frequency localization of information is

the key feature of wavelet analysis.

The condition
R 1
¡1 jÃ(x)jdx < 1 ensures that the Fourier transform of Ã(¢)

Ã̂(z) = (2¼)¡ 1
2

Z 1

¡1
Ã(x)e¡izxdx; i =

p
¡1; (3.2)

exists, and is continuous in R almost everywhere: Note that Ã̂
¤
(z) = Ã̂(¡z) and Ã̂(0) = (2¼)1=2

R 1
¡1 Ã(x)dx =

0 under Assumption A.1.
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Because
R 1

¡1 Ã(x)dx = 0; Ã(¢) exhibits some oscillation. Usually, Ã(¢) has a continuous wiggly

localized appearance, which motivates the label “wavelet”. Many Ã(¢)’s have compact support. An

example is Haar wavelet

Ã(x) =

8
>><
>>:

1 0 · x < 1
2 ;

¡1 ¡1
2 · x < 0;

0 otherwise,

(3.3)

whose Fourier transform

Ã̂(z) = ¡ieiz=2 sin2(z=4)

(z=4)
; z 2 R: (3.4)

For this wavelet, the doubly in…nite sequence

Ãjk(x) =

8
>><
>>:

1 k
2j · x < k

2j (1 + 1
2
);

¡1 k
2j (1 ¡ 1

2) · x < k
2j ;

0 otherwise,

(3.5)

which is nonzero only over an interval of width 2¡j centered at x = k=2j : The compact support of Ã(¢)
ensures that Ãjk(¢) is well localized. Other examples of wavelets with compact support are Daubechies’

(1992) wavelets.

The mother wavelet Ã(¢) can have unbounded support, but it must decay to zero su¢ciently fast to

ensure its localization property. An example is Shannon (or Littlewood-Paley) Wavelet, de…ned in terms

of its Fourier transform

Ã̂(z) =

(
1 if ¼ · jzj · 2¼;

0 otherwise.
(3.6)

Assumption A.1 is a standard condition on Ã(¢): We impose an additional condition.

Assumption A.2: jÃ̂(z)j · C min[jzjq; (1 + jzj)¡¿ ] for some q > 0 and ¿ > 1:

This requires some regularity (i.e., smoothness) of Ã̂(¢) at 0 and a su¢ciently fast decay at 1: The

condition jÃ̂(z)j · Cjzjq is e¤ective when z ! 0: The constant q governs the degree of smoothness of

Ã̂(¢) at zero, which is closely related to the tail behaviors of Ã(¢). Suppose that Ã(¢) has …rst À vanishing

moments, À 2 Z+; that is,
Z 1

¡1
xrÃ(x)dx = 0; for r = 0; 1; :::; À ¡ 1; (3.7)

and
R 1
¡1 xÀÃ(x)dx < 1; then Ã̂(¢) is À-time di¤erentiable in the neighborhood of zero, with

dr

dzr
Ã̂(0) = (¡i)r

Z 1

¡1
xrÃ(x)dx = 0; for r = 0; 1; :::; À ¡ 1; (3.8)

and jÃ̂(z)j · CjzjÀ as z ! 0:

The condition jÃ̂(z)j · C(1 + jzj)¡¿ implies Ã̂(z) ! 0 as z ! 1; the constant ¿ governs the rate

at which Ã̂(z) ! 0 as z ! 1: The condition ¿ > 1 rules out Haar wavelet (¿ = 1); but includes many

wavelets commonly used in multiresolution analysis.

Below are some other examples of wavelets:
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²Franklin wavelet

Ã̂(z) = eiz=2 sin4(z=4)

(z=4)2

(
1 ¡ 2

3 cos2(z=4)

[1 ¡ 2
3 sin2(z=2)][1 ¡ 2

3 sin2(z=4)]

)1
2

; z 2 R: (3.9)

²Meyer Wavelet:

Ã̂(z) =

8
>><
>>:

(2¼)¡ 1
2 sin

£
¼
2 v(3

2 jzj ¡ 1)
¤

if 2¼
3 · jzj · 4¼

3 ;

(2¼)¡ 1
2 cos

£
¼
2 v( 3

4¼ jzj ¡ 1)
¤

if 4¼
3 < jzj · 8¼

3

0 otherwise,

; z 2 R; (3.10)

where v(¢) is a regular function with v(x) + v(¡x) = 1; v(x) = 0 for x < 0 and v(x) = 1 for x > 1:

Examples are v(x) = x for x 2 (0; 1) and v(x) = x2(3 ¡ 2x) for x 2 (0; 1):

²Spline Wavelet of Order m 2 Z+ :

Ã̂(z) =

8
><
>:

eiz=2 (sin z=4)2m+2

(z=4)m+1

h
P2m+1[

1
4z+ 1

2¼]

P2m+1(z=2)P2m+1(z=4)

i1
2

; z 2 R; if m is odd

¡ieiz=2 (sin z=4)2m+2

(z=4)m+1

h
P2m+1[

1
4z+ 1

2 ¼]

P2m+1(z=2)P2m+1(z=4)

i 1
2

; z 2 R; if m is even.
(3.11)

where Pm(z) is the m-th order trigonometric polynomial. The …rst …ve polynomials are

P1(z) = 1;

P2(z) = cos(z);

P3(z) = 1 ¡ 2

3
sin2(z);

P4(z) =
1

3
cos3(z) +

2

3
cos(z);

P5(z) =
1

30
cos2(2z) +

13

30
cos(2z) +

8

15
:

Note that Haar wavelet and Franklin are the zero-th and …rst order spline wavelets. For more discussion

on these wavelets, see (e.g.) Hernandez and Weiss (1996).

Let Á : R ! R be a non-zero function such that
R 1

¡1 Á(x)dx = 1: This function is called the father

wavelet or scale function. Given fÁ(¢); Ã(¢)g; the doubly in…nite sequence fÁjk(¢); Ãjk(¢)g forms a complete

orthonormal basis for the L2(R) space (see, e.g., Mallat 1989, Daubechies 1992, p.129), where

Ájk(x) = 2
j
2 Á(2jx ¡ k); j; k 2 Z: (3.12)

Any square-integrable function g(x) admits the representation

g(x) =
2j0X

k=1

¯j0kÁj0k(x) +
1X

j=j0

2jX

k=1

®jkÃjk(x); x 2 R; (3.13)

where j0 2 Z+ is a cut-o¤ resolution level, and the Fourier transforms

¯j0k =

Z 1

¡1
g(x)Áj0k(x)dx; (3.14)

®jk =

Z 1

¡1
g(x)Ãjk(x)dx: (3.15)
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The ®jk is the wavelet coe¢cient at level j and translation k. It is called the discrete wavelet transform

of g(¢): Intuitively, the …rst sum of (3.13) will capture the smooth part of g(¢); while the second sum of

(3.13) will capture the inhomogeneous part of g(¢):
Because the mother wavelet Ã(¢) is well-localized, i.e., Ã(x) ! 0 quickly as x ! 1; ®jk roughly

re‡ects the local behavior of g(¢) in an interval of width 2¡j centered at x = k=2j; it is not signi…cantly

contaminated by the behavior of g(¢) outside the interval: This renders wavelet analysis a natural tool to

investigate the local properties of g(¢): Large wavelet coe¢cients arise only in the places where there exists

a signi…cant degree of inhomogeneity. A key feature of wavelet analysis is that wavelets, in an “automatic”

manner, evaluate high frequency components over short intervals and low frequency components over large

intervals. The wavelet method simultaneously increases the frequency of the wavelet oscillations and

shrinks the e¤ective width of Ãjk(¢); or simultaneously decreases the frequency of the wavelet oscillations

and enlarges the e¤ective width of Ãjk(¢). Consequently, it can capture the singular features of g(¢) with a

relatively small number of wavelet coe¢cients, leading to e¢cient approximation. In contrast, the Fourier

transform depends on the global behavior of g(¢); and consequently, the Fourier representation need more

coe¢cients to represent singular features. It is well known, for example, that if g(¢) has a discontinuity

point, one would require a large number of terms in its Fourier series to obtain an adequate approximation

of g(¢) in the region of the discontinuity. If g(¢) is smooth except at the discontinuity, however, we may

obtain quite good an approximation by using a relatively small number of wavelet coe¢cients.

3.2 Spectral Wavelet Representation

Suppose that f(!); ! 2 [¡¼; ¼]; is a spectral density matrix of the second order stationary vector

process Vt(µ0): Then its Fourier representation is

f(!) = (2¼)¡1
1X

l=¡1
¡(l)e¡il!; ! 2 [¡¼; ¼]; (3.16)

where, as before, ¡(l) = E[Vt(µ0)Vt¡j(µ0)0]: Because f(¢) is 2¼-periodic, it is not square-integrable on

R: We need a class of 2¼-periodic wavelet bases. Given any wavelet bases fÁjk(¢); Ãjk(¢)g that form an

orthonormal basis of L2(R); we can construct the 2¼-periodic functions via formula

©jk(!) = (2¼)¡ 1
2

1X

l=¡1
Ájk

³ !

2¼
+ l

´
; (3.17)

ªjk(!) = (2¼)¡ 1
2

1X

l=¡1
Ãjk

³ !

2¼
+ l

´
: (3.18)

The system f©jk(¢);ªjk(¢)g forms an orthonormal basis of L2(I); the L2-space of 2¼-periodic functions

on I = [¡¼; ¼] (cf. Daubechies 1992, Ch. 9.3). When Á(¢) and Ã(¢) have bounded support, the sums in

(3.17) and (3.18) contain only a …nite number of terms. On the other hand, if the Fourier transforms

Á̂(z) = (2¼)¡1=2
R 1
¡1 Á(x)e¡izxdx and Ã̂(z) = (2¼)¡1=2

R 1
¡1 Ã(x)e¡izxdx have bounded support, it is more convenient to compute ©jk(¢) and ªjk(¢) via their

Fourier transforms

©jk(!) = (2¼)¡ 1
2

1X

l=¡1
©̂jk(l)eil!; (3.19)

8



ªjk(!) = (2¼)¡ 1
2

1X

l=¡1
ª̂jk(l)eil!; (3.20)

where ©̂jk(l) = (2¼)¡ 1
2

R ¼

¡¼
©jk(!)e¡il!d! and ª̂jk(l) = (2¼)¡ 1

2

R ¼

¡¼
ªjk(!)e¡il!d! are the Fourier

transforms of ©jk(¢) and ªjk(¢): Given (3.17) and (3.18), we can obtain

©̂jk(l) = (2¼)
1
2 Á̂jk(2¼l) = e¡i2¼lk=2j

(2¼=2j)
1
2 Á̂(2¼l=2j); (3.21)

ª̂jk(l) = (2¼)
1
2 Ã̂jk(2¼l) = e¡i2¼lk=2j

(2¼=2j)
1
2 Ã̂(2¼l=2j) (3.22)

by the change of variable, where

Á̂jk(z) = (2¼)¡ 1
2

Z 1

¡1
Ájk(x)e¡izxdx and Ã̂jk(z) = (2¼)¡ 1

2

Z 1

¡1
Ãjk(x)e¡izxdx

are the Fourier transforms of Ájk(¢) and Ãjk(¢):
Now, we can represent f(¢) via the wavelet basis fªjk(¢)g: By choosing j0 = 0; we obtain

f(!) = ¯00©00(!) +
1X

j=0

2jX

k=1

®jkªjk(!): (3.23)

where the wavelet transforms

¯00 =

Z ¼

¡¼

f(!)©00(!)d!; (3.24)

®jk =

Z ¼

¡¼

f(!)ªjk(!)d!: (3.25)

The wavelet coe¢cients f®jkg depend only on the local behavior of f(!) in an interval with width 2¡j

centered at x = k=2j . By Parseval’s identity, we can write

¯00 = (2¼)¡ 1
2

1X

l=¡1
¡(l)©̂¤

00(l); (3.26)

®jk = (2¼)¡ 1
2

1X

l=¡1
¡(l)ª̂¤

jk(l): (3.27)

Thus, ¯00 and ®jk are weighted averages of autocovariances f¡(l)g: For convenience, we can choose the

scale function Á(¢) such that its Fourier transform Á̂(¢) is continuous in R, or Á̂(z) = 0 if jzj > ¼; then

Á̂(2¼l) = 0 for any nonzero integer l 2 Z (cf. Hernandez and Weiss, 1996, p.64, Proposition 2.17). This,

with Á̂(0) = (2¼)¡1=2
R 1

¡1 Á(x)dx = (2¼)¡1=2; (3.19), (3.21) and (3.26), implies ©00(!) = (2¼)¡ 1
2 and

¯00 = (2¼)¡ 1
2 ¡(0): It follows from (3.23) that

f(!) = (2¼)¡1¡(0) +
1X

j=0

2jX

k=1

®jkªjk(!); ! 2 [¡¼; ¼]: (3.28)

If f(¢) is square-integrable on [¡¼; ¼], we have
P1

j=0

P2j

k=1 ®2
jk < 1; and so max0<k<2j j®jkj ! 0 as j

! 1: Thus, wavelet coe¢cients with su¢ciently …ne resolution levels are negligible in their contributions

to f(¢). This motivates us to consider the estimator

f̂n(!) = (2¼)¡1¡̂n(0) +
JnX

j=0

2jX

k=1

®̂njkªjk(!); ! 2 [¡¼; ¼]; (3.29)
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where Jn 2 Z+ is called the …nest scale parameter, depending on the sample size n, and

®̂njk = (2¼)¡1
2

n¡1X

l=1¡n

¡̂n(l)ª̂¤
jk(l) (3.30)

is an empirical wavelet coe¢cient. Note that we can also equivalently write

®̂njk =

Z 1

¡1
În(!)ªjk(!)d!;

where În(!) is the periodogram of Vt(µ̂n); that is,

În(!) = (2¼n)¡1

¯̄
¯̄
¯

nX

t=1

Vt(µ̂n)eit!

¯̄
¯̄
¯

2

:

Because the bias of f̂n(¢) from f(¢) is mainly caused by the exclusion of nonzero wavelet coe¢cients, we

expect that the bias will vanish as Jn increases. Since the variance of f̂n(¢) increases with the number of

the empirical wavelet coe¢cients, we should also control Jn not to grow too fast to ensure the variance

of f̂n(¢) to vanish as n ! 1: Proper conditions on Jn will be provided to ensure consistency of f̂n(0) to

f(0):

The wavelet estimator (3.29) di¤ers from those of Gao (1993) and Neumann (1996), who consider

estimation of f(¢) over [¡¼; ¼]. Gao (1993) and Neumann (1996) do not consider the …nest scale Jn as the

smoothing parameter: Instead, they consider a di¤erent smoothing parameter—the level of thresholding.

Neumann (1996) shows that the nonlinear thresholding wavelet estimators can attain a near (up to a

factor of log n) optimal convergence rate for any f(¢) in the balls of a rather general function space called

Besov space

Bq
d;m =

8
><
>:

f(¢) in (3.28):
1X

j=0

2
642js

0
@

2jX

k=1

j®jkjd
1
A

1=d
3
75

m

< 1

9
>=
>;

; (3.31)

where s = q + 1
2 ¡ 1

d : For more discussion on Besov space, the reader is referred to Tribel (1990). When

d < 2; (3:31) contains functions with substantial spatial inhomogeneity. For these spatially inhomogeneous

functions, the wavelet coe¢cients at a …xed resolution level j will be of considerably di¤erent orders of

magnitude at di¤erent locations and only those coe¢cients corresponding to signi…cant spatial variability

will be large. Threshold shrinkage will e¤ectively keep large coe¢cients and kill small ones, leading to

e¢cient estimation in terms of MSE. In contrast, linear estimators such as (3.29) cannot attain such a

rate if f(¢) belongs to Bq
d;m with d < 2. Thus, one may expect that nonlinear estimators will perform

better than linear estimators in terms of MSE when there exist substantial spatial inhomogeneity of f(¢)
over [¡¼; ¼].

Nevertheless, for f(¢) in B2
d;m with d ¸ 2; linear estimators attains the optimal convergence rate (cf.

Neumann 1996). In addition, because we are interested only in estimating f(¢) at frequency zero rather

than over the interval [¡¼; ¼], the wavelet coe¢cients of f(0) will have a certain degree of homogeneity

in order of magnitude. More importantly, the use of threshold shrinkage would increase the bias in

general whereas it is the bias rather than the variance that has bigger adverse impact on the test size

and con…dence interval estimation (see the simulation below). We thus expect that we will not lose much

10



by choosing simply between the inclusion and exclusion of each level. This heuristic leads us to consider

linear estimators (3.29). Another advantage of using (3.29) is that we can derive its MSE explicitly,

which was not previously available in the wavelet literature. The MSE formula shows insight into the

smoothing nature of wavelet estimation, and provide a basis to develop a data-driven method to select

Jn; the …nest scale parameter.

4. CONSISTENCY

In this section, we …rst show the consistency of the wavelet estimator

­̂n(Jn) = ¡̂n(0) + 2¼
JnX

j=0

2jX

k=1

®̂njkªjk(0); (4.1)

and then derive its asymptotic MSE: To establish the consistency of ­̂n(Jn) to ­; we impose the following

conditions.

Assumption A.3: fVt ´ Vt(µ0)g1
t=¡1 is a p £ 1 vector-valued zero-mean fourth order stationary

process with
P1

l=¡1 k¡(l)k < 1 and
P1

j=¡1
P1

k=¡1
P1

l=¡1 j·abcd(j; k; l)j < 1; where kabcd(j; k; l) is

the fourth cumulant of the joint distribution of fVat; Vbt+j; Vct+k; Vdt+lg; 1 · a; b; c; d · p:

Assumption A.4: n
1
2 (µ̂n ¡ µ0) = OP (1):

Assumption A.5: E supµ2£0
krµVt(µ)k2 · C and E supµ2£0

kVt(µ)k2 · C; where £0 ½ Rp is a small

neighborhood of µ0:

Assumptions A.3-A.5 are identical to those of Andrews (1991) and Newey and West (1987,1994)

for kernel estimation. In Assumption A.3, the absolute summability of ¡(l) ensures the existence and

continuity of f(¢) over [¡¼; ¼]: However, f(¢) may not be di¤erentiable, thus permitting certain degrees of

inhomogeneity such as peaks and spikes. The fourth order cumulant condition is standard in time series

analysis (for the de…nition of ·abcd(j; k; l), the reader is referred to, for example, Parzen (1957) or Andrews

1991, (3.1)). This condition holds trivially when Vt is stationary Gaussian with
P1

l=¡1 k¡(l)k < 1. It

also holds if Vt is a fourth order stationary linear process with absolutely summable coe¢cients and i.i.d.

innovations whose fourth moments are …nite (cf. Hannan 1970, p.211). Andrews (1991, Lemma 1) shows

that the cumulant condition holds if Vt is a mixing process with EjjVtjj4º · C and
P1

l=1 l2®(l)(º¡1)=º ·
C for some º > 1: We note that Assumption A.3 allows for conditional heteroskedasticity, but not

unconditional heteroskedasticity. In Assumption A.4, we do not require any speci…c estimation method

for µ̂n; any n
1
2 -consistent estimator µ̂n su¢ces. This ensures that the e¤ect of using µ̂n rather than µ0

when constructing ­̂n(Jn) is asymptotically negligible. One can proceed as if µ0 were known and were

equal to µ̂n:

Theorem 4.1: Suppose that Assumptions A.1-A.5 hold, and Jn ! 1; 22Jn=n ! 0: Then ­̂n(Jn) !p ­:

Thus, ­̂n(Jn) is consistent for ­ as long as 2Jn ! 1 but a rate slower than n
1
2 :

To gain insight into the smoothing nature of ­̂n(Jn); we now consider the MSE of ­̂n(Jn); which is

de…ned as

MSE
h
­̂n(Jn); ­

i
= E

µn
vec[­̂n(Jn) ¡ ­]

o0
W

n
vec[­̂n(Jn) ¡ ­]

o¶
; (4.2)
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where W is a preselected p2 £ p2 nonstochastic weight matrix, and vec(¢) is a column by column vec-

torization operator. As will be shown below, MSE contains two con‡icting factors—asymptotic variance

and asymptotic bias squared. The asymptotic bias of the wavelet estimators depends on the smoothness

of f(¢) at zero and the smoothness of Ã̂(¢) at zero: To characterize the smoothness of the wavelet, we

de…ne a function ¸ : R ! R by

¸(z) = 2¼Ã̂
¤
(z)

1X

m=¡1
Ã̂(z + 2¼m): (4.3)

Given Assumptions A.1-A.2, ¸(z) is continuous at 0 and is symmetric about 0, with ¸(0) = 0: Suppose

for some q 2 [0;1);

¸q ´ (2¼)q

1 ¡ 2¡q
lim
z!0

¸(z)

jzjq ; (4.4)

exists, and is nonzero and …nite. Obviously, the smoother is ¸(¢) at 0, the larger is the value of q for

which ¸q is nonzero and …nite. If q is an even integer, then

¸q =
(2¼)q

1 ¡ 2¡q

1

q!

dq¸(0)

dzq

and ¸q < 1 if and only if ¸(¢) is q-time di¤erentiable at 0. For Meyer and Shannon (or Littlewood-

Parley) wavelets, ¸q = 0 for all q < 1: These are analogous to the truncated kernel. For Haar wavelet,

¸1 6= 0; ¸q = 0 for q < 1; and ¸q = 1 if q > 1: This is analogous to Bartlett kernel. (As noted earlier,

Assumption A.2 rules out Harr wavelet.) For Franklin wavelet, ¸2 6= 0; ¸q = 0 for q < 2; and ¸q = 1
for q > 2: This is analogous to the QS kernel. For the m-th order spline wavelet, ¸m+1 6= 0; ¸q = 0 for

q < m+1; ¸q = 1 for q > m+1: In general, if the mother wavelet Ã(¢) has and only has …rst À vanishing

moments (cf. (3.7)), then ¸q = 0 for q < À; ¸q = 1 for q > À; and ¸À 6= 0:

The smoothness of f(¢) at zero can be characterized by its generalized derivative at zero

f (q)(0) =
1

2¼

1X

l=¡1
jljq¡(l): (4.5)

If q is an even integer and f(¢) is q-time di¤erentiable at zero, then

f (q)(0) = (¡1)
q
2
dqf(!)

dq!
j!=0 :

However, there is no simple relationship between the two for a general q:

We impose the following conditions.

Assumption A.6: For Ã(¢); there exists a largest number q 2 [0; 1) such that ¸q is nonzero and …nite.

Assumption A.7:
P1

l=¡1 jljqjj¡(l)jj < 1; where q is as in Assumption A.6.

Assumption A.8: Put ~Vt = fVt(µ0)0;vec[rµVt(µ0) ¡ ErµVt(µ0)]0g0: Then (i) f~Vtg is a p(1 + p) £ 1

vector-valued zero mean fourth order stationary process with absolutely summable autocovariances and
P1

j=¡1
P1

k=¡1
P1

l=¡1 j~·abcd(j; k; l)j < 1; where ~·abcd(j; k; l) is the fourth cumulant of the joint dis-

tribution of f~Vat; ~Vbt+j; ~Vct+k; ~Vdt+lg; 1 · a; b; c; d · p(1 + p); (ii) supµ2£0
Ejjr2

µVt(µ)jj2 < 1:
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Assumption A.7 ensures the existence of the generalized derivative f (q)(0). For q 2 (0; 1); f(¢) is

continuous but not di¤erentiable at 0. Spectral peaks are thus allowed. Assumption A.8 is used to obtain

the sharp convergence rate for ­̂(Jn); which is necessary to derive its MSE.

To state our theorem below, we de…ne

DÃ =

Z 2¼

0

¯̄
¯̄
¯

1X

m=¡1
Ã̂(z + 2m¼)

¯̄
¯̄
¯

2

dz: (4.6)

This integral exists and is …nite given Assumption A.2.

Theorem 4.2: Suppose that Assumptions A.1-A.8 hold. (i) Let 2Jn=n ! 0; Jn ! 1: Then ­̂n(Jn) !p

­;

(ii) Let 2Jn+1=n
1

2q+1 ! c 2 (0; 1): Then

lim
n!1

n
2q

2q+1 MSE
h
­̂n(Jn);­

i
= 4¼2cDÃtrW (I + Kpp)f(0) ­ f(0)

+
4¼2¸2

q

c2q

½h
vecf (q)(0)

i0
W

h
vecf(q)(0)

i¾
;

where tr(A) is the trace operator, ­ is the tensor (or Kronecker) product operator, Kpp denotes the p2£p2

communication matrix that transforms vec(A) into vec(A0); i.e., Kpp =
Pp

i=1

Pp
j=1 eie0

j ­ eje0
i; and ei is

the i-th elementary p-vector.

In Theorem 4.2(i), ­̂n(Jn) !p ­ under the condition on Jn that Jn ! 1 at a rate slower than the

sample size n; which is weaker than that of Theorem 4.1. This is of theoretical interest, but perhaps of

little practical importance, because the optimal rate for 2Jn is slower than n
1
2 for wavelets with q > 1

2 :

Also, the weaker condition on Jn is achieved under a stronger condition on the process Vt(µ): Theorem

4.2(ii) delivers an asymptotic MSE, which contains the variance and biased squared components. Note

that the asymptotic covariance between the (a; b) and (c; d) elements of ­̂n(Jn)

n

2Jn+1
cov

h
­̂nab(Jn); ­̂ncd(Jn)

i
! 4¼2DÃ[fac(0)fbd(0) + fad(0)fbc(0)]; (4.7)

where fab(0) denotes the (a; b) element of the spectral density matrix f(0): When 2Jn+1 (or 2Jn) grows

at a rate n
1

2q+1 ; the variance and the bias squared are of the same order, yielding the best convergence

rate for MSE. As will be discussed in Section 5, Theorem 4.2(ii) provides a basis to develop a data-driven

method to select …nest scale Jn.

5. DATA-DRIVEN FINEST SCALE

Like the choice of a bandwidth in kernel estimation, the choice of the …nest scale Jn is important

both in theory and practice. Applied workers always prefer a speci…c and complete rule for the choice of

Jn given a sample size n: Before discussing speci…c rules to choose Jn; we …rst provide a condition on a

data-driven …nest scale Ĵn (say) under which the estimator ­̂n(Ĵn) is consistent for ­.

Theorem 5.1: Suppose that Assumptions A.1-A.5 hold. (i) If Ĵn is a data-dependent …nest scale such

that 2Ĵn=2Jn + 2Jn=2Ĵn = OP (1); for some nonstochastic Jn such that 22Jn=n ! 0; Jn ! 1; then

­̂n(Ĵn) ¡ ­̂n(Jn) !p 0; and ­̂n(Ĵn) ¡ ­ !p 0:
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(ii) If in addition Assumptions A.6-A.8 hold, and 2Ĵn=2Jn = 1 + oP (2¡Jn) where the nonstochastic

Jn ! 1; 2Jn=n ! 0; then ­̂n(Ĵn)¡ ­̂n(Jn) !p 0; ­̂n(Ĵn)¡­ !p 0: Furthermore, if 2Jn+1=n
1

2q+1 ! c 2
(0;1);

lim
n!1

n
2q

2q+1 MSE
h
­̂n(Ĵn);­

i
= lim

n!1
n

2q
2q+1 MSE

h
­̂n(Jn); ­

i

= 4¼2cDÃtrW (I + Kpp)f(0) ­ f(0)

+
4¼2¸2

q

c2q

½h
vecf (q)(0)

i0
W

h
vecf(q)(0)

i¾
:

Theorem 5.1 implies that under proper conditions, the e¤ect of using Ĵn rather than Jn has asymp-

totically negligible impact on ­̂n(Ĵn) and its MSE. The conditions on Ĵn are weak. Often, Ĵn and Jn

have the forms of 2Ĵn+1 = ĉnnº and 2Jn+1 = cnº; where c 2 (0;1) is a tuning constant, and ĉn is its

estimator: In Theorem 5.1(i), the condition on Ĵn implies ĉn=c = OP (1): Here, ĉn need not be consistent

for c: In Theorem 5.1(ii), the condition on Ĵn implies ĉn = c + oP (2¡Jn): This rate condition is weak.

In many cases 2¡Jn / n¡ 1
2q+1 ; which is slower than n¡ 1

2 if q > 1
2 : For the parametric plug-in method

considered below, ĉn=c = 1 + OP (n¡ 1
2 ), thus satisfying the condition on Ĵn for all wavelets with q > 1

2
:

So far there are very few data-driven methods to choose Jn in the wavelet literature. To our knowledge,

only Walter (1994) proposes a data-driven method to choose Jn based on an integrated MSE criterion.

This method is legitimate but not very suitable in the present context, because it explores information

of f(¢) over [¡¼; ¼] rather than at zero: Here, a more appropriate data-driven method should explore the

information of f(¢) at zero only.

The MSE criterion provides a criteria to choose an optimal Jn: By Theorem 4.2(ii), the optimal

convergence rate for MSE can be attained by setting the derivative of the MSE with respect to tuning

constant c to zero. This yields the optimal tuning constant

c0 =
£
q¸2

q®(q)=DÃ

¤ 1
2q+1 ; (5.1)

where

®(q) =
2

£
vecf(q)(0)

¤0
W

£
vecf (q)(0)

¤

trW (I + Kpp)f(0) ­ f(0)
: (5.2)

Thus, the asymptotically optimal …nest scale J0
n can be obtained by

2J0
n+1 = c0n

1
2q+1 : (5.3)

This optimal …nest scale J0
n is infeasible because ®(q) involves the unknown f(0). Nevertheless, we can

use a “plug-in” method. Plug-in methods are characterized by the use of an asymptotic formula such as

(5.3) for an optimal …nest scale in which estimators are “plugged-in” in place of various unknowns in the

formula. Various “plug-in” methods have been used for the choice of bandwidth in kernel estimation (cf.

Andrews 1991, Newey and West 1994). Suppose that ®̂n(q) is an estimator for ®(q); then a “plug-in”

data-driven …nest scale Ĵn can be given by

2Ĵn+1 = ĉnn
1

2q+1 ; (5.4)

where the tuning constant estimator

ĉn =
£
q¸2

q®̂n(q)=DÃ

¤ 1
2q+1 : (5.5)
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Note that Ĵn must be an integer for each n.

Corollary 5.2: Suppose that Assumptions A.1-A.5 hold, and Ĵn be given as in (5.4). (i) If ®̂n(q) +

®̂¡1
n (q) = OP (1); then ­̂n(Ĵn) ¡ ­ !p 0:

(ii) If in addition Assumptions A.6-A.8 hold, and ®̂n(q) = ®» + oP (n¡ 1
2q+1 ) for some constant ®» 2

(0;1); then ­̂n(Ĵn) ¡ ­ !p 0; and

lim
n!1

n
2q

2q+1 MSE
h
­̂n(Ĵn); ­

i
= 4¼2c»DÃtrW (I + Kpp)f(0) ­ f(0)

+
4¼2¸2

q

c2q
»

h
vecf (q)(0)

i0
W

h
vecf(q)(0)

i
;

where c» = (q¸2
q®»=DÃ)

1
2q+1 :

In Corollary 5.2(i), ®̂n(q) need not converge to some constant in probability. In Corollary 5.2(ii), we

require that ®̂n(q) !p ®» at a rate faster than n¡ 1
2q+1 : This ensures that the use of ®̂n(q) rather than ®»

has no impact on the MSE asymptotically.

Plug-in methods can be parametric (cf. Andrews 1991) or nonparametric (Newey and West 1994).

These methods have their own merits. Parametric plug-in methods use an approximating model (e.g.,

ARMA) to estimate ®̂n(q): It yields a less variable smoothing parameter, but when the approximating

model is misspeci…ed, it will not attain the asymptotic minimum MSE, although this has no impact

on the consistency of ­̂n(Ĵn). On the other hand, nonparametric plug-in methods use a nonparametric

method to estimate ®̂n(q): It attains the minimum MSE asymptotically but still involves the choice of a

preliminary smoothing parameter.

Both parametric and nonparametric plug-in methods can be used here. Below, we consider a paramet-

ric “plug-in” method in spirit similar to that of Andrews (1991). For simplicity, we can use p univariate

approximating parametric models. We use a diagonal weight matrix W = diagfw1; :::; wp; :::; w1; :::; wpg;
and consequently,

®(q) =
pX

a=1

wa

h
f (q)

aa (0)
i2

=

pX

a=1

waf2
aa(0); (5.6)

where f (q)
aa (0) and faa(0) denotes the ath diagonal elements of f (q)(0) and f(0) respectively. The usual

choice of wa is 1 for a = 1; :::; p; or 1 for all a except that which corresponds to an intercept parameter and

zero for the latter. An estimator ®̂n(q) can be obtained by using appropriate approximating parametric

models for fVatg: For example, we can consider univariate ARMA(1,1) models for fVatg; namely,

Vat = ½aVat + ´a"at¡1 + "at; a = 1; :::; p; (5.7)

where var("at) = ¾2
a . Let (½̂a; ^́a; ¾̂2

a)p
a=1 be a quasi-maximum likelihood estimator for (½a; ´a; ¾2

a)p
a=1:

Then an estimator for ®(2) is given as:

®̂n(2) =

pX

a=1

wa
4(1 + ½̂a^́a)2(½̂a + ^́a)¾̂4

a

(1 ¡ ½̂a)8
=

pX

a=1

wa
(1 + ^́a)4¾̂4

a

(1 ¡ ½̂a)4
: (5.8)

Cf. Andrews (1991) for more discussion. It could be shown that under proper conditions, ®̂n(2) = ®» +

OP (n¡ 1
2 ) where ®» = p limn!1 ®̂n(2); thus satisfying the conditions in Corollary 5.2: When ARMA(1,1)
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is correctly speci…ed for fVatg; we have ®» = ®(2); and ĉn = c0 + OP (n¡ 1
2 ): In this case, we attain

the asymptotic minimal MSE, with the asymptotic variance and bias squared accounting for 2q
2q+1

and
1

2q+1 of the MSE respectively. In general, ®» 6= ®(2); and so ĉn does not converge to the optimal tuning

constant c0: Nevertheless, this does not a¤ect the convergence rate of ­̂n(Ĵn):

We describe the wavelet estimator as follows:

1) Use a VAR(1) model to prewhiten the series fV̂t(µ̂n)g: That is, to regress Vt(µ̂n) on its …rst lagged

Vt¡1(µ̂n); and obtain the p£p VAR(1) autoregression coe¢cient matrix Â (say). Save the resulting p£1

residual vector V̂t.

2) Estimate p univariate zero-mean ARMA(1; 1)models to each of the p components of V̂t: Obtain

the parameter estimates f½̂a; Á̂a; ¾̂2
agp

a=1:

3) Use f½̂a; Á̂a; ¾̂2
agp

a=1 to compute the estimator ®̂n(2) in (5.8).

4) Compute the data-driven …nest scale Ĵn via (5.4). For Franklin wavelet, 2Ĵn+1 = ĉnn
1
5 and

ĉn = 0:8287 [®̂n(2)]
1
5 :

5) Compute the covariance estimator ­̂n(Ĵn) via (4.1).

A GAUSS code consisting of the above steps is available from the authors.

6. MONTE CARLO EVIDENCE

We now compare the …nite sample performances of wavelet- and kernel-based covariance estimators,

as well as Kiefer et al.’s (KVB, 1999) test that does not require estimation of a covariance matrix .

The simulation designs basically follow those of Andrews (1991) and Andrews and Monahan (1992). We

consider the linear regression model

Yt = µ00 + µ10X1t + µ20X2t + µ30X3t + µ40X4t + Ut: (7.1)

We …rst consider three conditionally homoskedastic processes for fUtg, respectively:

AR(1)-HOMO: Ut = ½Ut¡1 + "t;

MA(1)-HOMO: Ut = ´"t¡1 + "t;

ARMA(1,1)-HOMO: Ut = ½Ut¡1 + ´"t¡1 + "t;

where f"tg is i.i.d. N(0; ¾2): The four regressor series fXitg and fUtg are mutually independent. Each

of the fXitg follows the same process as fUtg with the same AR and MA coe¢cients (½; ´): We consider

two cases: (i) E(Xit) = 0; and (ii) E(Xit) = 1: Zero-mean random regressors are considered in Andrews

(1991) and Andrews and Monahan (1992). Following Andrews (1991), we transform fXitg such that

n¡1
Pn

t=1 XtX
0
t = I5; where Xt = (1;X1t;X2t;X3t;X4t)0: This simpli…es the computation of the covari-

ance estimand and its estimators. On the other hand, the use of non zero-mean random regressors is to

strengthen serial dependence for Vt = XtUt: In this case, we use n¡1
Pn

t=1 XtX 0
t directly to compute the

covariance estimand and its estimators.

As in Andrews (1991) and Andrews and Monahan (1992), we also consider conditionally heteroskedas-

tic disturbances for fUtg. Here, we …rst generate fXt; Utgn
t=1 by AR(1)-HOMO, MA(1)-HOMO, and

ARMA(1,1)-HOMO, respectively. Then we use fXt; ~Utgn
t=1 as regressors and disturbance, where ~Ut =
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jX0
t»jUt. Two types of conditional heteroskedastic disturbances are considered: (i) HET1, where » =

(1; 0; 0; 0)0; and (ii) HET2, where » = (0:5; 0:5; 0:5; 0:5)0:

We compare the following covariance estimators: the wavelet estimator (4.1) using Franklin wavelet

(FR), Andrews’ (1991) QS estimator, and Newey and West’s (NW, 1994) Bartlett kernel based estimator.

For NW, we select the bandwidth by Newey and West’s (1994, pp.637) nonparametric plug-in method.

For QS, we select the bandwidth by Andrews’ (1991) parametric plug-in method based on individual

ARMA(1,1) models. Similarly, for FR, we use the parametric plug-in method (5.8) to select the …nest

scale parameter. We also apply a prewhitening procedure to NW, QS and FR, respectively: we …t

a VAR(1) model for fVt(µ̂n)g, use the resulting residual vector series to construct NW, QS and FR

estimators and then recolor them. The resulting variance estimators are denoted as PW-NW, PW-QS,

and PW-FR.

We set the true parameter µ0 = (µ00; µ10; µ20; µ30; µ40)0 = (0; 0; 0; 0; 0)0; and estimate it by the OLS

estimator µ̂n: We examine various estimators for the asymptotic variance of µ̂10; the parameter estimator

for X1t: We shall examine their biases, variances and MSE’s.

We also examine the size and power of a t-test for H10 and F -tests for H20 and H30, where

H10 : µ10 = 0 v.s. H1A : µ10 = ±;

H20 : µ10 = µ20 = 0 v.s. H2A : µ10 = µ20 = ±;

H30 : µj0 = 0; j = 1; 2; 3; 4 v.s. H3A : µj0 = ±; j = 1; 2; 3; 4:

These tests are constructed using the OLS estimator µ̂n and various covariance estimators. In testing

these hypotheses, we include the KVB test that does not require estimation of the covariance matrix.

We …rst consider the case with zero-mean random regressors. Table 1 reports the bias, variance,

MSE, and the size of the t-test and F -tests under AR(1)-HOMO, MA(1)-HOMO, and ARMA(1,1)-

HOMO, respectively. First consider AR(1)-HOMO in Table 1(a). Among NW, QS and FR, FR has the

smallest downward bias, followed by QS and NW. This is consistent with theoretical expectation that the

wavelet estimators are more e¤ective to capture peaks. However, FR has the largest variance, followed

by QS, and then by NW. When ½ = 0; 5; which implies rather weak serial dependence, NW has the

smallest MSE, while FR has the largest one. The order is reversed, however, when ½ = 0:9; 0:95: This

suggests that when data has relatively strong dependence, reduction in bias of FR will overwhelmingly

compensate increase in variance, leading to a smaller MSE. For the test size, FR is the best, followed

by QS and then by NW, although the di¤erences seem small, especially for the t-test. It appears that

reduction in bias is more important than reduction in variance in improving the test size.

We now consider the prewhitening procedures PW-NW, PW-QS, and PW-FR in Table 1(a): PW-FR

has the smallest downward bias, followed by PW-QS, and then by PW-NW. However, PW-FR has the

largest MSE, while PW-NW has the smallest MSE. For the test size, PW-FR, PW-QS and PW-NW are

better than FR, QS and NW respectively. Moreover, their sizes are rather similar, suggesting no clear

gain using wavelets here. This, however, should be expected because fVtg follows an AR(1) process, and

after prewhitened by VAR(1), its residuals are approximately white noise. Consequently, wavelet and

kernel estimators will perform similarly, as the spectrum is ‡at. Note that KVB has slightly better size

than PW-FR and PW-QS in terms of the t and F2 tests, but not for F4 when ½ = 0:95.
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Next, we turn to MA(1)-HOMO in Table 1(b). Here, fVtg follows an MA(1), a very short memory

process. For all ´ = 0:5; 0:9; 0:95 and among NW, QS and FR, FR has the smallest downward bias, the

largest variance and MSE, while NW has the largest downward bias, the smallest variance and smallest

MSE. For the test size, FR is slightly better than QS, which in turn is slightly better than NW, especially

for F4. The prewhitening procedures have slightly better sizes their non-prewhitening counterparts. Both

PW-FR and PW-QS have similar sizes and they have slightly better sizes than PW-NW. There is no

clear gain of favoring PW-FR over PW-QS here. This is because MA(1) is a very short memory. Note

that KVB perform similarly to PW-FR and PW-QS here.

We now turn to ARMA(1,1)-HOMO in Table 1(c), which exhibits stronger dependence than the

previous two cases. Again, FR has the smallest downward bias, and the largest variance, while NW

has the largest downward bias and smallest variance. When (½; ´) = (0:5; 0:5); QS has the smallest

MSE, followed by FR, and then by NW. For (½; ´) = (0:9; 0:9) and (0:95; 0:95); FR has the smallest MSE,

followed by QS, and then by NW. For the test size, FR is better than QS, which is in turn better than NW.

Among the prewhitening procedures, PW-FR has the largest MSE, and PW-NW has the smallest MSE.

However, the prewhitening procedures have much better sizes than their non-prewhitening counterparts.

Among PW-FR, PW-QS and PW-NW, PW-FR has the best size, followed by PW-QS, and then by

PW-NW. For all the parameter values here, KVB has worse sizes than PW-FR and PW-QS, especially

for (½; ´) = (0:9; 0:9) and (0:95; 0:95); which display relatively strong dependence.

We now turn to Table 2, the case with nonzero-mean random regressors. Here fVtg exhibits stronger

dependence than it was with zero mean random regressors. Under AR(1)-HOMO in Table 2(a), FR

has the smallest downward bias, and it has the smallest MSE when ½ = 0:9; 0:95: It has slightly better

sizes than QS and NW. Among the prewhitening procedures, PW-FR has better sizes than PW-QS and

PW-NW, although the VAR(1)-prewhitened residuals behave like a white noise process. Note that unlike

AR(1)-HOMO with zero-mean random regressors in Table 1(a), KVB now has worse sizes than PW-FR

and PW-QS for the F -tests when ½ = 0:9 and 0:95:

Under MA(1)-HOMO in Table 2(b), FR has the smallest bias, but the largest MSE. Contrary to Table

1(b), QS now has the smallest MSE for all the three parameter values. For the test size, FR is the best,

followed by QS, and then by NW. The prewhitening procedures improve sizes, but only slightly. KVB

has similar sizes to PW-FR and PW-QS.

Under ARMA(1,1)-HOMO in Table 2(c), FR has the smallest MSE when (½; ´) = (0:9; 0:9) and

(0:95; 0:95): It has the best size, followed by QS, and then by NW. The prewhitening procedures improve

the size substantially, and PW-FR is the best, followed by PW-QS and then by PW-NW. KVB has

similar sizes to PW-FR when (½; ´) = (0:5; 0:5); but it has much worse sizes than PW-FR and PW-QS

when (½; ´) = (0:9; 0:9) and (0:95; 0:95):

Finally, we turn to the power. Table 3(a) and 4(a) report the power when the deviation from the null

hypotheses is relatively small (± = 0:2). The power is based on the empirical critical values at the 5%

level. Here, FR, QS and NW have better power than PW-FR, PW-QS and PW-NW, which in turn have

better power than KVB. On the other hand, when the deviation parameter is relatively large (± = 0:5;

see Table 3(b), 4(b)), FR, QS and NW still have better power than PW-FR, PW-QS, PW-NW, and

KVB, but KVB now becomes more powerful than PW-FR, PW-QS and NW-PW. These rankings remain

18



unchanged no matter whether the random regressors have zero-mean.

We also conduct simulation experiments with a larger sample size n = 256; and with conditional

heteroskedastic errors (AR(1)-, MA(1)-, and ARMA(1,1)-HET1 and HET2). The relative rankings remain

largely the same as those in Tables 1-3, so we do not report them for the sake of space.

In summary, we observe the following:

1) Wavelet estimators have a smaller bias and a larger variance than kernel estimators. The MSE of

wavelet estimators is larger than that of kernel estimators when serial dependence is weak, and becomes

smaller when serial dependence is relatively strong.

2) In terms of the test size, wavelet estimators outperform kernel estimators in all except the case

where the prewhitened series is a white noise process and the random regressors have zero-mean (in

this case the wavelet and kernel estimators perform similarly). The degree of improvement of wavelet

estimators over kernel estimators depends on the degree of serial dependence, and the dimension of the

parameter under test. The stronger serial dependence and/or the larger the parameter dimension, the

larger improvement.

3) The prewhitening procedure enlarges MSE for both wavelet and kernel estimators, but it improves

the test size substantially. The degree of improvement depends on the degree of serial dependence, and the

dimension of the parameter under test. The stronger serial dependence and/or the larger the parameter

dimension, the larger improvement.

4) Both wavelet and kernel estimators have similar size-adjusted power. Prewhitening procedures

have smaller size-corrected power than non-prewhitening procedures.

5) KVB has sizes slightly better than or comparable to those of wavelet and kernel estimators when se-

rial dependence is very weak. For relatively strong dependent processes, it has worse sizes than prewhiten-

ing wavelet and kernel estimators.

6) When the departure of the alternative from the null hypothesis is small, prewhitening wavelet

and kernel procedures are more powerful than KVB. This ranking is reversed when the departure of the

alternative from the null hypothesis is relatively large. In both the cases, non-prewhitened wavelet and

kernel estimators always have better power than KVB.

It may be noted that our simulation designs, which follows from those of Andrews (1991), only focus

on AR(1), MA(1) and ARMA(1,1) processes for the regression error fUtg: These models, as noted by

Cochrane (1988), may not be adequate for economic and …nancial time series, which display stronger serial

dependence. It would be interesting to examine the …nite sample performance of the wavelet estimators

using simulation designs that mimic the dependence structure of economic and …nancial data. Newey and

West’s (1994) simulation designs will be very useful, but this is beyond the scope of the present paper.

7. CONCLUSION

As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional

to a spectral density matrix at frequency 0; and can be consistently estimated by the popular kernel

methods of Andrews-Newey-West. When the data displays strong dependence, the spectral density has

a peak at frequency zero: Kernels, as a local averaging method, tend to underestimate the peak. This

often leads to overrejection in testing and too narrow con…dence intervals in estimation. In this paper we
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have proposed a class of wavelet-based covariance estimators. As a new mathematical tool generalizing

Fourier transform, wavelet transform is a powerful tool to investigate such local properties as peaks and

spikes in the spectral function. We show the consistency of the wavelet-based covariance estimators and

derive their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet

estimation. We propose a data-driven method to select the …nest scale—the smoothing parameter in

wavelet estimation, making the wavelet estimation operational in practice. A simulation study compares

the …nite sample performance of the wavelet and kernel estimators, as well as a test procedure that does

not require estimation of long-run covariance matrices. As expected, the wavelet estimators outperform

the kernel estimators when there is strong autocorrelation in the data.
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MATHEMATICAL APPENDIX

To prove Theorems, we …rst prove an important lemma.

Lemma A.1: For l; Jn 2 Z; de…ne

dJn(l) =
JnX

j=0

¸(2¼l=2j); Jn > 0;

where ¸(z) as in (4.3). Then

(i) dJn(0) = 0 and dJn(¡l) = dJn(l) for all l; Jn 2 Z+;

(ii) jdJn(l)j · C uniformly in l; Jn 2 Z+;

(iii) For any given l 2 Z; l 6= 0; dJn
(l) ! 1 as Jn ! 1;

(iv) For any r ¸ 1;
Pn¡1

l=1¡n jdJn
(l)jr = O(2Jn) if Jn ! 1:

(v) 2¡(Jn+1)
Pn¡1

l=1¡n d2
Jn

(l) ! DÃ if Jn ! 1; where DÃ is de…ned in (4.6).

Proof of Lemma A.1: (i) By Assumptions A.1, we have Ã̂(0) = 0 and Ã̂
¤
(z) = Ã̂(¡z): It follows from

(4.3) that ¸(0) = 0 and ¸(¡z) = ¸(z): Hence, dJn
(0) = 0 and dJn

(¡l) = dJn
(l).

(ii) Put m = [log2 l]; the integer part of log2 l: By Assumption A.2, we have

jdJn
(l)j ·

0
@

mX

j=0

+
1X

j=m+1

1
A j¸(2¼l=2j)j

· C
mX

j=0

j2¼l=2j j¡¿ + C
1X

j=m+1

j2¼l=2j jq

· C
mX

j=0

2¡¿(m¡j) + C
1X

j=m+1

2¡q(j¡m)

· C
1X

j=0

(2¡¿j + 2¡qj)

· C: (A1)

(iii) We …rst show d1(l) = 1 for any l 2 Z; l 6= 0 and then dJn
(l) ¡ d1(l) ! 0 as Jn ! 1: Consider a

spectral density at frequency 0

f(0) =
1

2¼

1X

l=¡1
¡(l); (A2)

where ¡(l) is an arbitrary autocovariance function. We now obtain an alternative expression for f(0): By

(3.27) and (3.22), we have

®jk = (2¼)¡ 1
2

1X

h=¡1
¡(l)ei2¼hk=2j

(2¼=2j)
1
2 Ã̂

¤
(2¼h=2j):

Moreover, from (3.20) and (3.22), we obtain

ªjk(0) = (2¼)¡ 1
2

1X

l=¡1
e¡i2¼lk=2j

(2¼=2j)
1
2 Ã̂(2¼l=2j):

23



It follows from (3.28) that

f(0) =
1

2¼
¡(0) +

1X

j=0

2jX

k=1

®jkªjk(0)

=
1

2¼
¡(0) +

1

2¼

1X

l=¡1

2
4

1X

j=0

1X

h=¡1

2jX

k=1

ei2¼(h¡l)k=2j

(2¼=2j)Ã̂(2¼l=2j)Ã̂
¤
(2¼h=2j)

3
5¡(l)

=
1

2¼
¡(0) +

1

2¼

1X

l=¡1
d1(l)¡(l); (A3)

where the third equality follows because by the change of variable h = l + m; we have

1X

j=0

1X

h=¡1

2jX

k=1

ei2¼(h¡l)k=2j

(2¼=2j)Ã̂(2¼l=2j)Ã̂
¤
(2¼h=2j)

=
1X

j=0

2¼
1X

m=¡1

0
@2¡j

2jX

k=1

ei2¼mk=2j

1
A Ã̂(2¼l=2j)Ã̂

¤ £
2¼(l + m)=2j

¤

=
1X

j=0

¸(2¼l=2j) ´ d1(l) (A4)

where we used the well-known identity that
P2j

k=1 ei2¼mk=2j

= 2j if m = 2jr; r 2 Z and
P2j

k=1 ei2¼mk=2j

=

0 otherwise (e.g., Priestley 1981, p.392). Because (A2) and (A3) hold for any autocovariance function ¡(l)

and d1(0) = 0; d1(¡l) = d1(l); we have d1(l) = 1 for all l 6= 0: It follows that dJn(l) ! 1 as Jn ! 1
because jdJn(l)¡d1(l)j · 2 supl2Z

P1
j=Jn+1 j¸(2¼l=2j)j ! 0 as Jn ! 1 given supl2Z

P1
j=0 j¸(2¼l=2j)j <

1 as shown in (A1).

(iv) First, we have

n¡1X

l=1

jdJn
(l)j ·

JnX

j=0

2j

"
2¡j

n¡1X

l=1

j¸(2¼l=2j)j
#

= O(2Jn) (A5)

where the inequality follows by Lemma A.1, and the equality follows because 2¡j
Pn¡1

l=1 j¸(2¼l=2j)j · C

for any 0 · j · log2 n; which holds because by Assumption A.2,

2¡j
n¡1X

l=1

j¸(2¼l=2j)j = 2¡j

0
@

2jX

l=1

+
n¡1X

l=2j+1

1
A j¸(2¼l=2j)j

· 2¡j
2jX

l=1

C(2¼l=2j)q + 2¡j
n¡1X

l=2j+1

C(1 + 2¼l=2j)¡¿

· C + C

"
2¡j

nX

l=1

(1 + 2¼l=2j)¡¿

#

· C

·
1 +

Z 1

0

(1 + x)¡¿dx

¸
; (A6)
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where the …rst inequality follows by Assumption A.2 and the last one follows from the convexity of

(1 + jxj)¡¿ . Therefore, by (A5) and Lemma A.1(ii), we have that for any r ¸ 1;

n¡1X

l=1¡n

jdJn(l)jr · 2

·
max
0<l<n

jdJn(l)j
¸r¡1 n¡1X

l=1

jdJn(l)j = O(2Jn)

as Jn ! 1.

(v) We …rst write

n¡1X

l=1¡n

d2
Jn

(l) =
JnX

j=0

JnX

j0=0

n¡1X

l=1¡n

¸(2¼l=2j)¸¤(2¼l=2j0
)

=
JnX

j=0

n¡1X

l=1¡n

j¸(2¼l=2j)j2

+2Re
JnX

j=0

Jn¡1X

r=1

n¡1X

l=1¡n

¸(2¼l=2j)¸¤(2r2¼l=2j)

= An + 2 ReBn; say. (A7)

Put In ! 1 such that In=Jn ! 0 as n ! 1: We decompose the …rst term in (A7):

An =
InX

j=0

n¡1X

l=1¡n

j¸(2¼l=2j)j2 +
JnX

j=In+1

n¡1X

l=1¡n

j¸(2¼l=2j)j2

= A1n + A2n; say. (A8)

For the A1n term, we have

A1n ·
InX

j=0

2j

"
2¡j

n¡1X

l=1¡n

j¸(2¼l=2j)j2
#

= O(2In); (A9)

where for any j ¸ 0;

2¡j
n¡1X

l=1¡n

j¸(2¼l=2j)j2 = 2

0
@2¡j

2jX

l=1

+2¡j
n¡1X

l=2j+1

1
A j¸(2¼l=2j)j2 · C

·
1 +

Z 1

0

(1 + x)¡2¿d

¸
x;

using reasoning analogous to (A6). For the A2n term, we have that as Jn ! 1;

A2n = 2Jn(2¼)¡1
JnX

j=I+1

2¡(Jn¡j)

"
(2¼=2j)

n¡1X

l=1

j¸(2¼l=2j)j2
#

= 2Jn+1(2¼)¡1

Z 1

¡1
j¸(z)j2dz[1 + o(1)]; (A10)

by dominated convergence,
PJn

j=In+1 2¡(Jn¡j) ! 2 as In ! 1; Jn=In ! 1; and

(2¼=2j)
n¡1X

l=1¡n

j¸(2¼l=2j)j2 !
Z 1

¡1
j¸(z)j2dz

as j ¸ Jn ! 1:
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Next, we consider the second term in (A7). Decompose

Bn =

0
@

InX

j=0

+
JnX

j=In+1

1
A

Jn¡1X

r=1

n¡1X

l=1¡n

¸(2¼l=2j)¸¤(2r2¼l=2j)

= B1n + B2n; say. (A11)

Using reasoning analogous to those of A1n and A2n, we can obtain

B1n = O(2(In+Jn)=2) = o(2Jn) (A12)

given In=Jn ! 0; and

B2n = 2Jn+1(2¼)¡1
1X

r=1

Z 1

¡1
¸(z)¸¤(2rz)dz[1 + o(1)]: (A13)

Combining (A7)-(A13), we obtain

2¡(Jn+1)
n¡1X

l=1¡n

d2
Jn

(l) ! (2¼)¡1

Z 1

¡1
j¸(z)j2dz

+2Re
1X

r=1

(2¼)¡1

Z 1

¡1
¸(z)¸¤(2rz)dz: (A14)

It remains to show that the right hand size of (A14) is equal to DÃ : Put ¡(z) =
P

m2Z Ã̂(z + 2m¼):

Then ¸(z) = 2¼Ã̂
¤
(z)¡(z) by (4.3); and

Z 1

¡1
¸(z)¸¤(2rz)dz =

X

l2Z

Z 2¼

0

¸(z + 2l¼)¸¤(2r(z + 2l¼))dz

= (2¼)2
X

l2Z

Z 2¼

0

Ã̂
¤
(z + 2l¼)¡(z + 2l¼)Ã̂[2r(z + 2l¼)]¡¤[2r(z + 2l¼)])dz

Because ¡(z) is 2¼-periodic, i.e., ¡(z + 2¼l) = ¡(z) for all l 2 Z, we have
Z 1

¡1
¸(z)¸¤(2rz)dz = (2¼)2

Z 2¼

0

(X

l2Z

Ã̂
¤
(z + 2l¼)Ã̂[2r(z + 2l¼)]

)
¡(z)¡¤(2rz)dz

=

(
2¼

R 2¼

0
j¡(z)j2 dz if r = 0

0 if r > 0;
(A15)

where the last equality follows from the well-known orthogonality condition that

X

l2Z

Ã̂
¤
(z + 2l¼)Ã̂(2r(z + 2l¼)) =

(
(2¼)¡1 if r = 0

0 if r > 0;

for z 2 R almost everywhere (cf. Hernandez and Weiss 1996, (1.4) and (1.5), p.332; note that the Ã̂(¢)
there di¤ers from our Ã̂(¢)by a factor of (2¼)): The desired result follows from (A14)-(A15) and (4.6).

This completes the proof.

Proof of Theorem 4.1: De…ne the pseudo covariance estimator

~­n(0) = ~¡n(0) + 2¼
JnX

j=0

2jX

k=0

~®jkªjk(0); (A16)
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where ~®jk = (2¼)¡ 1
2

Pn¡1
l=1¡n

~¡n(l)ª̂¤
jk(l); ~¡n(l) is de…ned in the same way as ¡̂n(l) except that Vt(µ̂n) is

replaced with Vt(µ0): We write

­̂n(Jn) ¡ ­ =
h
­̂n(Jn) ¡ ~­n(Jn)

i
+

h
~­n(Jn) ¡ E~­n(Jn)

i
+

h
E ~­n(Jn) ¡ ­

i
; (A17)

where the …rst term is the e¤ect of using µ̂n rather than µ0; the second term is the variance e¤ect of
~­n(Jn); and the third term is the bias of ~­n(Jn) from ­:

We …rst show that the e¤ect of using µ̂n is asymptotically negligible. Following reasoning analogous

to (A3), we can obtain the following representations:

­̂n(Jn) = ¡̂n(0) +
n¡1X

l=1¡n

dJn(l)¡̂n(l); (A18)

~­n(Jn) = ~¡n(0) +
n¡1X

l=1¡n

dJn(l)~¡n(l): (A19)

It follows that

­̂n(Jn) ¡ ~­n(Jn) =
h
¡̂n(0) ¡ ~¡n(0)

i
+ 2

n¡1X

l=1¡n

dJn
(l)

h
¡̂n(l) ¡ ~¡n(l)

i
: (A20)

By the mean-value theorem, we obtain that for l ¸ 0;

¡̂n(l) ¡ ~¡n(l) = n¡1
nX

t=l+1

h
Vt(µ̂n)Vt¡l(µ̂n)0 ¡ Vt(µ0)Vt¡l(µ0)

0
i

= (µ̂n ¡ µ0)
0n¡1

nX

t=l+1

£rµVt(¹µn)Vt¡l(¹µ)
0 + Vt(¹µn)rµVt¡l(¹µn)0¤ (A21)

where ¹µn lies on the segment between µ̂n and µ0 such that jj¹µn ¡ µ0jj · jjµ̂n ¡ µ0jj: A similar result holds

for l < 0: It follows from (A21), Cauchy-Schwarz inequality and Assumptions A.3-A.5 that

max
¡n<l<n

°°°¡̂n(l) ¡ ~¡n(l)
°°° · 2

°°°µ̂n ¡ µ0

°°°
"
n¡1

nX

t=1

sup
µ2£0

jjrµVt(µ)jj2
# 1

2
"
n¡1

nX

t=1

sup
µ2£0

jjVt(µ)jj2
# 1

2

= OP (n¡ 1
2 ):

This, Lemma A.1(iv) and dJn
(0) = 0 imply

°°°­̂n(Jn) ¡ ~­n(Jn)
°°° ·

°°°¡̂n(0) ¡ ~¡n(0)
°°° + 2 max

0<jlj<n

°°°¡̂n(l) ¡ ~¡n(l)
°°°

n¡1X

l=1¡n

jdJn(l)j

= OP (2Jn=n
1
2 ): (A22)

Next, we consider the second term in (A17). Given Assumption A.3, we have max¡n<l<n

Ejj~¡n(l) ¡ E~¡n(l)jj2 = O(n¡1): Cf. Hannan (1970). It follows from Lemma A.1(iv) that

E
°°°~­n(Jn) ¡ E ~­n(Jn)

°°° · max
¡n<l<n

Ejj~¡n(l) ¡ E~¡n(l)jj2
n¡1X

l=1

jdJn(l)j = OP (2Jn=n):

27



Therefore, by Markov’s inequality, we have

~­n(Jn) ¡ E~­n(Jn) = OP (2J=n): (A23)

Finally, we consider the bias term in (A17). Because E~¡n(l) = (1 ¡ jlj=n)¡(l); we have

E ~­n(Jn) ¡ ­ =
n¡1X

jlj=1

dJn(l)E~¡n(l) ¡
1X

jlj=1

¡(l)

=
n¡1X

jlj=1

[(1 ¡ jlj=n)dJn
(l) ¡ 1]¡(l) ¡

1X

jlj=n

¡(l)

! 0 (A24)

where the …rst term in second equality vanishes by dominated convergence, j(1 ¡ jlj=n)dJn(l) ¡ 1j · C

and (1 ¡ jlj=n)dJn(l) ¡ 1 ! 0 given l 2 Z as n ! 1 by Lemma A.1(iii). Also, the second term in

the second equality vanishes given
P1

l=1 jj¡(l)jj < 1 by Assumption A.3. Combining (A22)-(A24) and

2Jn=n ! 0; Jn ! 1 then ensures ­̂n(Jn) ¡ ­ !p 0. This completes the proof.

Proof of Theorem 4.2: We shall show (ii) only. The proof of (i) is simpler and is thus omitted. Consider

(A17) again. First, we show that the e¤ect of using µ̂n rather than µ0 is at most oP (2Jn=2=n1=2); or its

square is oP (2Jn=n): By a second order Taylor series expansion, we have that for l > 0;

¡̂n(l) ¡ ~¡n(l) = (µ̂n ¡ µ0)
0n¡1

nX

t=l+1

[rµVt(µ0)Vt¡l(µ0)
0 + Vt(µ0)rµVt¡l(µ0)

0]

+(µ̂n ¡ µ0)
0(2n)¡1

nX

t=l+1

£
r2

µVt(¹µn)Vt¡l(¹µn)0 + Vt(¹µn)r2
µVt¡l(¹µn)0

+ 2rµVt(¹µn)rµVt¡l(¹µn)0¤ (µ̂n ¡ µ0); (A25)

where ¹µn lies on the segment between µ̂n and µ0: A similar result holds for l < 0: Put

~¤n(l) =

(
n¡1

Pn
l+1[rµVt(µ0)Vt¡l(µ0)0 + Vt(µ0)rµVt¡l(µ0)0]; l > 0;

n¡1
Pn

1¡l[rµVt+l(µ0)Vt(µ0)
0 + Vt¡l(µ0)rµVt(µ0)

0]; l · 0:

By the triangle inequality, Cauchy-Schwarz inequality and (A25), we have

°°°­̂n(Jn) ¡ ~­n(Jn)
°°° ·

°°°¡̂n(0) ¡ ~¡n(0)
°°° +

°°°µ̂n ¡ µ0

°°°
°°°°°

n¡1X

l=1¡n

dJn(l)~¤(l)

°°°°°

+2
°°°µ̂n ¡ µ0

°°°
2
"

n¡1X

l=1¡n

jdJn(l)j
#"

n¡1
nX

t=1

sup
µ2£0

jjVt(µ)jj2
# 1

2

£
"
n¡1

nX

t=1

sup
µ2£0

jjr2
µVt(µ)jj2

# 1
2

+2
°°°µ̂n ¡ µ0

°°°
2
"

n¡1X

l=1¡n

jdJn(l)j
#"

n¡1
nX

t=1

sup
µ2£0

jjrµVt(µ)jj2
#

= OP (n¡1=2 + 2J=n) (A26)
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by Assumptions A.3-A.5 and Lemma A.1(iv), where we have made use of the fact that

n¡1X

l=1¡n

dJn(l)~¤n(l) =
n¡1X

l=1¡n

dJn(l)E ~¤n(l) +
n¡1X

l=1¡n

dJn(l)
h
~¤n(l) ¡ E~¤n(l)

i

= O(1) + OP (2Jn=n
1
2 );

following reasoning analogous to (A24).

Next, we consider the second term ~­n(Jn) ¡E ~­n(Jn) in (A17): Let Aab denotes the (a; b) element of

matrix A: Given ~¡nab(¡l) = ~¡nba(l) and Lemma A.1(i); we have

~­nab(Jn) = ~¡nab(0) +
n¡1X

l=1

dJn(l)
h
~¡nab(l) + ~¡nba(l)

i
: (A27)

De…ne

Aabcd(n) = E

(h
~¡nab(0) ¡ E~¡nab(0)

i
)

n¡1X

l=1

dJn(l)
h
~¡ncd(l) ¡ E~¡ncd(l)

i)
; (A28)

Babcd(n) =

(
n¡1X

l=1

n¡1X

m=1

dJn
(l)dJn

(m)Cov
h
~¡nab(l); ~¡ncd(l)

i)
: (A29)

By straightforward algebra, we have

Cov
h
~­nab(Jn); ~­ncd(Jn)

i
= Aabcd(n) + Aabdc(n) + Acdab(n) + Acdba(n)

+Babcd(n) + Babdc(n) + Bbacd(n) + Bbadc(n): (A30)

We …rst consider the last four terms in (A20). From Hannan (1970, p. 313), we have

(n ¡ l)(n ¡ m)

n
Cov

h
~¡nab(l); ~¡ncd(m)

i
= n¡1

1X

u=¡1
wn(u; l;m)[¡ac(u)¡bd(u + m ¡ l)

+¡ad(u + m)¡bc(u ¡ l) + ·abcd(0; l; u; u + m)];

where for m ¸ l;

wn(u; l;m) =

8
>>>>>>><
>>>>>>>:

0; u · ¡n + l;

1 ¡ (l + u)=n; ¡n + l · u · 0;

1 ¡ l=n; 0 · u · n ¡ l;

1 ¡ (m + u)=n; n ¡ l · u · n ¡ l;

0 u ¸ n ¡ l:

It follows that

(n=2Jn+1)Babcd(n) = 2¡(Jn+1)
n¡1X

l=1

n¡1X

m=1

dJn(l)dJn(m)
1X

u=¡1
wn(u; l;m)¡ac(u)¡bd(u + m ¡ l)

+2¡(Jn+1)n¡1
n¡1X

l=1

n¡1X

m=1

dJn
(l)dJn

(m)
1X

u=¡1
wn(u; l; m)¡ad(u + m)¡bc(u ¡ l)

+2¡(Jn+1)n¡1
n¡1X

l=1

n¡1X

m=1

dJn(l)dJn(m)
1X

u=¡1
wn(u; l; m)·abcd(0; l; u; u + m)

= B1abcd(n) + B2abcd(n) + B3abcd(n): (A31)

29



The role of dJn(l) is similar to that of the kernel function K(j=Bn). Following reasoning analogous to

those for kernel-based spectral density estimators (cf. Parzen 1957, or Hannan 1970, Proof of Theorem

9, pp.313-318), we can obtain

B1abcd(n) =

"
2¡(Jn+1)

n¡1X

l=1

d2
Jn

(l)

#" 1X

u=¡1
¡ac(u)

#" 1X

¿=¡1
¡bd(¿)

#
[1 + o(1)]

= 2¡1DÃ(2¼)2fac(0)fbd(0)[1 + o(1)]; (A32)

where 2¡(Jn+1)
Pn¡1

l=1 d2
Jn

(l) = 2¡12¡(Jn+1)
Pn¡1

l=1¡n d2
Jn

(l) ! 2¡1DÃ by Lemma A.1(i,v). Moreover, we

have

B2abcd(n) ! 0; (A33)

by changes of variables, and

B2abcd(n) · C
1X

l=¡1

1X

m=¡1

1X

¿=¡1
j·abcd(l; m; ¿)j = O(1) (A34)

by Lemma A.1(ii) and Assumption A.3. It follows from (A31)-(A34) that

n=2Jn+1[Babcd(n) + Babdc(n) + Bbacd(n) + Bbadc(n)] ! 4¼2DÃ[fac(0)fbd(0) + fad(0)fbc(0)]: (A35)

Moreover, by Cauchy-Schwarz inequality, V ar[~¡nab(0)] = O(n¡1) and (A35); we have

jAabcd(n)j = O(2Jn=2=n) = o(2Jn=n): (A36)

Combining (A30) and (A35)-(A36) yields

(n=2Jn+1)Cov
h
~­nab(Jn); ~­ncd(Jn)

i
! 4¼2DÃ[fac(0)fbd(0) + fad(0)fbc(0)]: (A37)

Using the matrix notation, (A37) is equivalent to

n

2Jn+1
E

½h
vec[~­n(Jn) ¡ E ~­n(Jn)]

i0
W

h
vec[~­n(Jn) ¡ E ~­n(Jn)]

i¾

! 4¼2DÃtrW (I + Kpp)[vecf(0)]0 ­ [vecf(0)]: (A38)

Now, we consider the bias term E ~­n(Jn) ¡ ­ in (A17): By the de…nition of ~­n(Jn) in (A19), we can

decompose

E ~­n(Jn) ¡ ­ =
n¡1X

jlj=1

dJn
(l)(1 ¡ jlj=n)¡(l) ¡

1X

jlj=1

¡(l)

=
n¡1X

jlj=1

(1 ¡ jlj=n) [dJn(l) ¡ 1]¡(l) ¡
n¡1X

jlj=1

(jlj=n)¡(l) ¡
1X

jlj=n

¡(l)

= B1n ¡ B2n ¡ B3n; say. (A39)

Because
P1

jlj=1 jljq jj¡(l)jj < 1 by Assumption A.3; we have

kB2nk · n¡ min(1;q)
n¡1X

jlj=1

jljqjj¡(l)jj = O(n¡ min(1;q)); (A40)
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and

kB3nk · 2n¡q
1X

jlj=n

jljqjj¡(l)jj = o(n¡q): (A41)

Moreover, for the …rst term in (A39), we have

B1n = [1 + o(1)]
1X

jlj=1

[dJn(l) ¡ 1]¡(l): (A42)

Because dJn(l) ¡ 1 = dJn(l) ¡ d1(l) = ¡P1
j=Jn+1 ¸(2¼l=j); we have

1X

jlj=1

[dJn(l) ¡ 1] ¡(l) =
1X

jlj=1

2
4¡

1X

j=Jn+1

¸(2¼l=2j)

3
5¡(l)

= ¡(1 ¡ 2¡q)
1X

j=Jn+1

2¡qj
1X

jlj=1

(2¼)q

1 ¡ 2¡q

¸(2¼l=2j)

j2¼l=2jjq jljq¡(l)

= ¡¸q2¼f (q)(0)(1 ¡ 2¡q)
1X

j=Jn+1

2¡qj

+
1X

j=Jn+1

2¡qj
1X

jlj=1

·
¸q ¡ (2¼)q

1 ¡ 2¡q

¸(2¼l=2j)

(2¼l=2j)q

¸
jljq¡(l)

= ¡2¡q(Jn+1)¸q2¼f (q)(0)[1 + o(1)]; (A43)

where the second term is o(2¡qJn) because

sup
j>Jn

1X

jlj=1

¯̄
¯̄¸q ¡ (2¼)q

1 ¡ 2¡q

¸(2¼l=2j)

(2¼l=2j)q

¯̄
¯̄ jljq¡(l) ! 0

given Jn ! 1; jjf(q)(0)jj < 1; continuity of ¸(¢) and ¸q = [(2¼)q=(1 ¡ 2¡q)] limz!0 ¸(z)=jzjq : Collecting

(A39)-(A43) and 2Jn=n ! 0; Jn ! 1 implies

E ~­n(l) ¡ ­ = ¡2¡q(Jn+1)¸q2¼f(q)(0) + o(2¡qJn) + O(n¡ min(1;q)): (A44)

Now, combing (A17), (A26), (A38) and (A44), we obtain

E

½³
vec[­̂n(Jn) ¡ ­]

´0
W

³
vec[­̂n(Jn) ¡ ­]

´¾

= (2Jn+1=n)4¼2DÃtrW (I + Kpp)f(0) ­ f(0)

+2¡2q(Jn+1)4¼2¸2
q [vecf

(q)(0)]0W [vecf(q)(0)] + o(2Jn=n + 2¡2qJn): (A45)

The desired result follows by using 2Jn=n
1

2q+1 ! c: This completes the proof.

Proof of Theorem 5.1: Recall the representation of ­̂(J) in (A18). We can write

­̂n(Ĵn) ¡ ­̂n(Jn) =
n¡1X

l=1¡n

h
dĴn

(l) ¡ dJn(l)
i
¡̂n(l)
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=
n¡1X

l=1¡n

h
dĴn

(l) ¡ dJn(l)
i
E~¡n(l)

+
n¡1X

l=1¡n

h
dĴn

(l) ¡ dJn(l)
i h

~¡n(l) ¡ E~¡n(l)
i

+
n¡1X

l=1¡n

h
dĴn

(l) ¡ dJn(l)
i h

¡̂n(l) ¡ ~¡n(l)
i

= B̂1n + B̂2n + B̂3n; say. (A46)

For the …rst term in (A46), using the de…nition of dJn
(l) in Lemma A.1, we have

¯̄
¯dĴn

(l) ¡ dJn
(l)

¯̄
¯ ·

max(Ĵn;Jn)X

j=min(Ĵn;Jn)

¯̄
¸(2¼l=2j)

¯̄
:

It follows from Assumptions A.2-A.3 that

°°°B̂1n

°°° · c

max(Ĵn;Jn)X

j=min(Ĵn;Jn)

n¡1X

l=1¡n

j2¼l=2jjq k¡(l)k

= (2¼)qC

2
4

max(Ĵn;Jn)X

j=min(Ĵn;Jn)

2¡qj

3
5

"
n¡1X

l=1¡n

jljq k¡(l)k
#

= 2¡qJn

h
OP (2Ĵn=2Jn ¡ 1) + OP (2Jn=2Ĵn ¡ 1)

i
: (A47)

Next, we consider the second term in (A46). Let m 2 Z such that 1 · m < n: By Assumption A.2,

and sup¡n<l<n Ejj~¡n(l) ¡ E~¡n(l)jj2 = O(n¡1); we have

°°°B̂2n

°°° · 2

Ã
mX

l=1

+
n¡1X

l=m+1

! ¯̄
¯dĴn

(l) ¡ dJn(l)
¯̄
¯
°°°~¡(l) ¡ E~¡(l)

°°°

· C

max(Ĵn;Jn)X

j=min(Ĵn;Jn)

"
mX

l=1

j2¼l=2jjq
°°°~¡(l) ¡ E~¡(l)

°°° +
n¡1X

l=m+1

j2¼l=2j j¡¿
°°°~¡(l) ¡ E~¡(l)

°°°
#

· C

2
4

max(Ĵn;Jn)X

j=min(Ĵn;Jn)

2¡qj

3
5

"
mX

l=1

j2¼ljq
°°°~¡(l) ¡ E~¡(l)

°°° +
n¡1X

l=m+1

j2¼lj¡¿
°°°~¡(l) ¡ E~¡(l)

°°°
#

= 2¡qJn[OP (2Ĵn=2Jn ¡ 1) + OP (2Jn=2Ĵn ¡ 1)]OP (mq+1=n
1
2 + m1¡¿=n

1
2 )

= (2Jn=n
1
2 )[OP (2Ĵn=2Jn ¡ 1) + OP (2Jn=2Ĵn ¡ 1)]; (A48)

where the last equality follows by setting m = 2Jn :

Finally, for the last term in (A46), using the mean value expansion (A21), we have

°°°B̂3n

°°° · 2
°°°µ̂n ¡ µ0

°°°
"
n¡1

nX

t=1

sup
µ2£0

jjrµVt(µ)jj2
#

n¡1X

l=1¡n

¯̄
¯dĴn

(l) ¡ dJn(l)
¯̄
¯

= (2Jn=n
1
2 )

h
OP (2Ĵn=2Jn ¡ 1) + OP (2Jn=2Ĵn ¡ 1)

i
; (A49)
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where the equality follows by reasoning analogous to that of B̂2n: Combining (A46)-(A49), we obtain

­̂n(Ĵn) ¡ ­̂n(Jn) =
h
OP (2Ĵn=2Jn ¡ 1) + OP (2Jn=2Ĵn ¡ 1)

i
OP (2Jn=n

1
2 + 2¡qJn):

For case (i), given 22Jn=n ! 0; Jn ! 0 and 2Ĵn=2Jn +2Jn=2Ĵn = OP (1); we have ­̂n(Ĵn)¡ ­̂n(Jn) !p 0:

This, together with ­̂n(Jn) !p ­ from Theorem 4.1, ensures ­̂n(Ĵn) ¡ ­ !p 0: For case (ii), given

2Jn=n ! 0; Jn ! 1 and 2Ĵn=2Jn = 1 + oP (2¡Jn), we have ­̂n(Ĵn) ¡ ­̂n(Jn) = oP (2
Jn
2 =n

1
2 + 2¡qJn):

This, together with ­̂n(Jn) !p ­ from Theorem 5.1, ensures that ­̂n(Ĵn) ¡ ­ !p 0 and

MSE
h
­̂n(Ĵn); ­

i
= MSE

h
­̂n(Jn); ­

i
[1 + oP (1)]: (A50)

The desired result follows immediately from Theorem 4.2(ii). This completes the proof.

Proof of Corollary 5.2: (i) Suppose Jn is a nonstochastic sequence such that 2Jn+1=n
1

2q+1 ! c 2 (0; 1):

Given ®̂n(q) = OP (1), we have

2Ĵn=2Jn = ĉn=c = c¡1
£
q¸2

q®̂n(q)=2DÃ

¤ 1
2q+1 = OP (1):

Similarly, we have 2Jn=2Ĵn = OP (1); given ®̂¡1
n (q) = OP (1): Thus, all the conditions of Theorem 5.1(i)

hold, and thus the desired results follow immediately.

(ii) Because ®̂n(q) = ®» + oP (n¡ 1
2q+1 ) implies that there exists a nonstochastic sequence Jn such that

2Jn+1=n
1

2q+1 ! c» ´ (q¸2
q®»=2DÃ)

1
2q+1 2 (0;1) and 2Ĵn=2Jn = 1 + oP (2¡Jn): Thus, the conditions of

Theorem 5.1 hold, and the desired results follow immediately. This completes the proof.
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Table 1(a): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

AR(1)-Homo Model: Zero-mean Random Regressors with n = 128:

(½; ´) = (0:5; 0) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.385 0.181 0.33 18.0 11.3 21.3 13.3 26.1 18.2

QS -0.262 0.361 0.43 16.5 10.8 19.9 12.6 24.2 16.8

FR -0.138 0.558 0.57 15.9 9.7 18.3 11.8 21.4 15.0

PW -NW -0.211 0.532 0.57 17.2 12.0 18.5 12.2 23.2 16.7

PW -QS -0.237 1.384 1.44 16.9 12.0 16.1 10.7 18.6 13.2

PW -FR -0.241 2.122 2.18 17.2 12.3 15.4 11.1 19.1 12.6

KV B 13.5 8.1 13.9 7.6 17.3 9.1

(½; ´) = (0:9; 0)

NW -3.815 1.663 16.21 38.2 30.0 48.2 42.2 66.5 58.7

QS -3.420 2.942 14.64 33.9 26.0 45.3 38.1 60.7 52.9

FR -3.068 4.171 13.58 30.9 24.0 41.9 33.5 55.2 46.9

PW -NW -1.977 26.76 30.67 28.2 21.6 34.8 27.1 47.9 39.9

PW -QS -2.009 30.0 34.04 27.5 20.6 33.7 25.2 44.0 36.6

PW -FR -1.915 37.12 40.78 27.9 21.7 34.3 26.3 43.8 36.8

KV B 25.2 17.0 32.2 23.7 46.3 35.9

(½; ´) = (0:95; 0)

NW -5.322 1.556 29.88 46.4 37.3 60.8 52.2 80.4 74.9

QS -4.965 3.018 27.67 42.7 33.6 56.6 48.3 75.0 70.1

FR -4.677 4.222 26.10 40.4 32.0 51.7 44.4 71.6 66.0

PW -NW -2.990 55.96 64.90 33.8 26.5 43.8 36.1 61.2 53.6

PW -QS -3.123 54.05 63.80 34.2 26.3 40.0 33.5 57.1 51.0

PW -FR -2.999 65.68 74.67 34.6 26.8 39.6 32.9 54.7 48.5

KV B 31.4 22.5 41.6 32.4 61.0 51.8



Table 1(b): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

MA(1)-Homo Model: Zero-mean Random Regressors with n = 128:

(½; ´) = (0; 0:5) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.204 0.115 0.15 15.9 9.2 16.6 9.8 21.3 13.2

QS -0.132 0.238 0.25 16.1 9.3 16.9 10.9 21.6 14.4

FR -0.054 0.33 0.33 15.9 9.2 14.0 10.0 18.2 12.1

PW -NW -0.114 0.349 0.36 15.8 10.7 16.1 11.9 20.5 14.5

PW -QS -0.11 0.908 0.92 14.5 9.8 14.2 9.6 16.7 11.3

PW -FR -0.096 1.435 1.44 14.7 9.6 14.1 9.8 16.9 11.1

KV B 12.6 6.0 14.3 8.6 14.4 8.4

(½; ´) = (0; 0:9)

NW -0.280 0.149 0.22 16.8 11.1 18.9 11.5 22.8 15.0

QS -0.174 0.248 0.27 15.7 9.4 16.0 10.2 19.9 12.1

FR -0.029 0.346 0.34 14.0 8.2 14.4 8.9 16.3 10.3

PW -NW -0.124 0.499 0.51 15.5 10.5 16.8 11.6 19.7 14.5

PW -QS -0.043 1.04 1.04 14.2 9.8 14.1 9.5 16.2 10.7

PW -FR 0.001 1.80 1.80 15.2 9.8 12.3 8.6 14.9 9.7

KV B 12.3 6.9 14.4 9.0 15.3 8.6

(½; ´) = (0; 0:95)

NW -0.282 0.150 0.22 16.8 11.0 19.0 11.5 22.7 15.0

QS -0.174 0.234 0.26 15.7 9.3 15.9 10.1 19.4 11.8

FR -0.029 0.33 0.33 14.1 8.1 14.4 8.6 16.2 10.3

PW -NW -0.125 0.503 0.51 15.7 10.7 17.2 11.6 19.9 14.3

PW -QS -0.029 0.977 0.98 14.0 8.6 13.2 8.5 14.4 9.3

PW -FR 0.024 1.46 1.46 14.8 8.7 12.1 8.2 14.8 9.0

KV B 12.2 6.9 14.3 9.0 15.2 8.5



Table 1(c): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

ARMA(1)-Homo Model: Zero-mean Random Regressors with n = 128:

(½; ´) = (0:5; 0:5) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.711 0.384 0.89 21.6 13.6 25.0 17.9 32.8 23.5

QS -0.489 0.538 0.77 17.8 11.6 21.4 14.0 26.1 17.8

FR -0.209 0.758 0.80 15.1 9.4 17.0 10.8 20.4 12.7

PW -NW -0.108 2.126 2.13 16.4 12.0 18.7 12.4 21.4 16.3

PW -QS 0.329 1.778 1.88 12.2 7.2 12.2 7.4 13.3 8.6

PW -FR 0.735 3.264 3.80 11.2 6.1 10.7 6.0 11.3 7.1

KV B 13.9 8.8 14.9 8.6 20.3 12.2

(½; ´) = (0:9; 0:9)

NW -4.283 2.040 20.38 38.7 30.8 49.4 43.6 67.7 60.4

QS -3.869 3.546 18.51 34.1 26.5 45.8 39.0 61.8 53.1

FR -3.494 4.868 17.08 31.5 24.5 43.0 34.0 56.2 47.7

PW -NW 0.523 94.51 94.78 22.0 16.5 24.6 18.3 32.4 25.9

PW -QS 2.373 132.20 137.83 15.2 10.2 17.5 11.1 20.9 16.5

PW -FR 4.418 228.45 247.97 12.8 8.5 14.1 8.7 17.6 13.2

KV B 26.2 18.3 33.3 24.5 48.3 36.9

(½; ´) = (0:95; 0:95)

NW -5.663 1.775 33.85 46.5 38.1 60.0 52.6 81.3 75.0

QS -5.303 3.33 31.45 43.3 34.1 57.0 49.9 76.5 70.6

FR -5.011 4.788 29.89 40.6 31.1 53.0 45.5 72.4 66.6

PW -NW -0.593 81.96 82.31 23.4 17.8 30.2 23.0 41.0 35.4

PW -QS 0.791 110.2 110.82 18.8 12.6 24.6 18.5 34.0 28.2

PW -FR 2.753 203.12 210.71 16.4 10.6 20.8 15.6 29.5 24.3

KV B 31.5 22.5 42.7 33.4 61.6 52.7



Table 2(a): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

AR(1)-Homo Models: Nonzero-mean Random Regressors with n = 128:

(½; ´) = (0:5; 0) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.359 0.298 0.42 17.1 11.5 19.8 12.7 24.0 15.4

QS -0.296 0.404 0.49 16.1 10.5 19.4 12.1 23.1 15.0

FR -0.211 0.564 0.60 16.7 10.2 17.9 12.8 21.5 14.6

PW -NW -0.167 0.644 0.67 16.9 9.8 17.0 10.7 20.7 13.9

PW -QS -0.079 2.016 2.02 15.6 9.4 16.6 10.4 19.2 12.9

PW -FR -0.058 3.352 3.35 15.8 10.4 16.0 11.0 20.3 13.8

KV B 13.5 8.1 13.9 7.6 17.3 9.1

(½; ´) = (0:9; 0)

NW -5.295 4.876 32.91 36.8 28.5 46.8 40.0 62.6 55.5

QS -5.012 7.738 32.86 36.3 28.3 48.3 40.1 63.0 54.2

FR -4.682 10.39 32.32 33.6 27.9 44.2 36.8 59.5 50.3

PW -NW 1.43 817.7 819.7 28.6 23.0 33.1 27.4 42.4 36.4

PW -QS 1.169 1242 1244 26.6 19.8 24.7 20.5 31.7 26.1

PW -FR -0.067 1937 1937 24.4 19.3 21.3 17.2 26.9 22.5

KV B 25.2 17.0 32.2 23.7 46.3 35.9

(½; ´) = (0:95; 0)

NW -10.23 10.85 115.59 45.8 36.7 57.9 49.9 75.8 70.4

QS -9.949 13.01 112.01 43.3 35.8 56.1 48.1 74.1 67.9

FR -9.269 18.68 104.60 40.1 32.1 51.7 44.2 69.1 62.7

PW -NW 5.233 24174 24202 30.8 26.5 33.8 27.7 41.9 37.9

PW -QS 9.780 57562 57657 28.5 22.8 24.6 21.1 30.7 26.8

PW -FR 8.927 39843 39922 25.0 19.9 17.6 14.1 22.7 19.8

KV B 31.4 22.5 41.6 32.4 61.0 51.8



Table 2(b): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

MA(1)-Homo Models: Nonzero-mean Random Regressors with n = 128:

(½; ´) = (0; 0:5) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.209 0.172 0.21 16.0 9.2 17.2 10.1 20.6 12.7

QS -0.147 0.194 0.21 15.3 8.2 16.1 9.5 18.4 11.3

FR -0.055 0.27 0.27 14.5 8.0 13.7 8.7 16.4 10.2

PW -NW -0.056 0.349 0.35 13.9 8.9 14.2 9.8 17.7 11.8

PW -QS -0.017 0.32 0.32 13.4 8.6 13.0 8.4 15.4 9.3

PW -FR -0.007 0.377 0.377 13.7 8.5 13.4 8.1 15.7 9.6

KV B 12.6 6.0 14.3 8.6 14.4 8.4

(½; ´) = (0; 0:9)

NW -0.293 0.231 0.31 16.5 10.8 19.8 11.1 21.9 14.4

QS -0.202 0.247 0.28 15.1 8.9 16.5 9.2 18.7 11.8

FR -0.038 0.339 0.34 13.4 7.6 13.6 8.0 14.7 8.4

PW -NW -0.026 0.55 0.55 14.6 8.6 14.9 8.9 17.5 10.7

PW -QS 0.034 0.45 0.45 12.4 7.6 12.4 8.0 14.0 8.0

PW -FR 0.06 0.50 0.50 12.3 7.3 12.7 7.6 13.9 8.0

KV B 12.3 6.9 14.4 9.0 15.3 8.6

(½; ´) = (0; 0:95)

NW -0.294 0.233 0.32 16.5 10.8 19.9 11.1 22.1 14.4

QS -0.204 0.249 0.29 15.1 9.0 16.6 9.4 18.6 11.7

FR -0.037 0.34 0.34 13.5 7.6 13.6 7.9 14.8 8.4

PW -NW -0.024 0.55 0.55 14.5 8.5 14.5 8.7 17.0 10.3

PW -QS 0.037 0.46 0.46 12.7 7.4 12.6 7.7 14.2 8.2

PW -FR 0.062 0.51 0.51 12.4 7.5 12.7 7.6 14.3 8.0

KV B 12.2 6.9 14.3 9.0 15.2 8.5



Table 2(c): Bias, Variance, MSE of Variance Estimators, and Size of t- and F - tests Under

ARMA(1)-Homo Models: Nonzero-mean Random Regressors with n = 128:

(½; ´) = (0:5; 0:5) t F2 F4

Bias Variance MSE 10% 5% 10% 5% 10% 5%

NW -0.674 0.676 1.13 20.4 13.2 23.0 15.6 28.7 19.8

QS -0.527 0.864 1.14 17.5 11.8 21.2 14.2 25.4 17.7

FR -0.287 1.163 1.24 15.8 9.8 18.1 11.5 21.1 15.0

PW -NW 0.326 4.392 4.49 14.5 8.7 13.2 8.9 16.1 10.1

PW -QS -0.103 1.674 1.68 14.4 8.9 17.0 10.0 19.5 12.4

PW -FR -0.357 2.478 2.60 17.0 11.6 20.0 14.3 24.6 17.5

KV B 13.9 8.8 14.9 8.6 20.3 12.2

(½; ´) = (0:9; 0:9)

NW -6.309 7.157 46.96 37.5 29.3 47.6 41.0 63.8 56.7

QS -5.977 10.76 46.49 35.7 28.1 48.4 40.4 64.3 54.1

FR -5.685 13.39 45.71 35.7 28.5 45.2 38.1 60.6 52.8

PW -NW 10.24 5163 5268 20.9 15.9 21.3 17.0 27.2 22.0

PW -QS 11.53 7975 8108 22.2 16.2 18.5 15.2 23.5 20.8

PW -FR 16.04 18755 19013 17.7 13.7 13.1 10.5 16.8 15.0

KV B 26.2 18.3 33.3 24.5 48.3 36.9

(½; ´) = (0:95; 0:95)

NW -11.58 14.99 149.31 45.1 37.2 57.4 50.1 75.8 70.7

QS -11.04 21.95 143.88 43.9 35.2 55.8 49.0 74.7 68.7

FR -10.48 29.57 139.58 41.5 32.5 52.7 45.0 70.2 62.7

PW -NW 16.21 38321 38584 26.5 20.9 23.0 18.7 25.8 21.4

PW -QS 19.12 57500 57866 21.9 17.1 16.1 13.1 19.9 18.0

PW -FR 22.86 101625 102148 16.6 11.9 10.5 8.7 13.2 11.4

KV B 31.5 22.5 42.7 33.4 61.6 52.7



Table 3(a): Size-corrected Powers at the 5% Level of t- and F - tests under AR(1)-, MA(1)-,

and ARMA(1,1)-Homo Models: Zero-mean Random Regressors with ± = 0:2; n = 128:

t F2 F4 t F2 F4 t F2 F4

(½; ´) = (0:5; 0) (½; ´) = (0; 0:5) (½; ´) = (0:5; 0:5)

NW 33.2 54.4 76.2 37.8 64.3 86.7 24.6 39.8 56.5

QS 34.5 49.8 74.6 32.7 56.0 79.4 24.8 40.7 55.6

FR 31.4 45.8 68.7 32.7 56.1 77.8 25.0 38.5 55.4

PW -NW 27.0 42.7 64.4 28.9 50.5 67.6 24.9 29.3 35.9

PW -QS 25.9 37.6 52.3 32.4 53.2 68.6 24.3 33.5 51.5

PW -FR 25.6 34.8 48.8 30.3 45.4 63.7 22.1 35.5 52.2

KV B 26.1 35.9 53.5 33.7 42.3 62.3 18.7 28.7 39.3

(½; ´) = (0:9; 0) (½; ´) = (0; 0:9) (½; ´) = (0:9; 0:9)

NW 13.8 15.3 18.0 30.7 58.0 81.0 12.5 14.1 16.9

QS 14.3 15.3 17.1 31.8 57.4 79.0 12.4 14.2 15.7

FR 14.3 16.1 16.8 28.1 55.8 77.6 13.1 14.1 15.1

PW -NW 13.3 14.1 17.8 24.9 46.4 62.6 12.4 12.0 12.8

PW -QS 13.6 12.7 15.0 23.5 50.0 70.6 11.5 15.2 15.6

PW -FR 13.5 11.9 12.8 27.5 45.5 65.7 10.4 15.4 14.9

KV B 11.6 13.3 13.1 29.5 38.6 57.6 11.4 13.2 13.6

(½; ´) = (0:95; 0) (½; ´) = (0; 0:95) (½; ´) = (0:95; 0:95)

NW 14.1 14.4 13.0 31.0 58.5 81.1 13.8 11.5 12.6

QS 11.5 13.8 13.2 31.7 58.1 80.5 12.2 13.4 12.8

FR 12.3 12.8 14.6 32.0 55.6 77.6 14.5 11.4 13.3

PW -NW 10.7 11.7 12.2 25.4 47.1 66.2 9.8 10.9 11.1

PW -QS 10.9 13.3 10.3 26.1 50.4 73.3 11.4 13.2 12.9

PW -FR 12.2 12.7 11.1 26.3 45.8 69.1 10.9 12.0 14.4

KV B 11.1 13.2 11.6 29.4 38.5 57.8 10.1 11.6 10.5



Table 3(b): Size-corrected Powers at the 5% Level of t- and F - tests under AR(1)-, MA(1)-

and ARMA(1,1)-Homo Models: Zero-mean Random Regressors with ± = 0:5; n = 128:

t F2 F4 t F2 F4 t F2 F4

(½; ´) = (0:5; 0) (½; ´) = (0; 0:5) (½; ´) = (0:5; 0:5)

NW 98.6 100 100 99.8 100 100 91.8 99.4 100

QS 97.8 99.9 100 98.6 100 100 91.0 99.6 100

FR 96.4 99.1 98.9 97.8 98.6 97.6 90.4 99.6 100

PW -NW 93.4 96.5 95.8 96.2 95.9 94.5 85.2 91.8 93.4

PW -QS 88.0 89.0 88.1 91.5 90.1 89.4 90.3 97.8 99.4

PW -FR 87.2 87.1 86.1 89.2 87.8 87.8 86.2 97.1 98.8

KV B 86.3 94.7 98.0 93.0 96.6 99.0 73.5 86.5 95.2

(½; ´) = (0:9; 0) (½; ´) = (0; 0:9) (½; ´) = (0:9; 0:9)

NW 54.4 68.5 79.7 99.0 100 100 49.3 62.4 75.5

QS 52.1 67.0 78.2 98.4 100 100 46.3 63.0 74.5

FR 51.9 66.5 76.2 97.6 99.6 99.7 46.4 60.1 73.4

PW -NW 50.6 61.8 74.4 94.5 95.8 95.2 41.6 50.0 56.5

PW -QS 48.3 58.1 66.4 92.7 93.8 92.8 42.5 58.1 68.8

PW -FR 47.2 51.2 58.7 91.6 91.9 91.8 39.6 57.7 66.0

KV B 42.5 52.4 59.3 89.1 94.8 98.6 39.5 49.0 54.9

(½; ´) = (0:95; 0) (½; ´) = (0; 0:95) (½; ´) = (0:95; 0:95)

NW 52.5 61.2 63.1 99.0 100 100 50.2 56.2 59.8

QS 45.6 59.7 62.4 100 100 100 51.8 57.5 59.4

FR 46.7 55.8 60.9 98.2 99.6 99.7 48.4 53.8 56.9

PW -NW 41.8 50.1 57.3 94.8 95.8 95.3 35.4 45.6 45.8

PW -QS 41.7 51.6 49.2 93.0 94.5 94.0 40.0 50.3 55.8

PW -FR 41.5 49.1 47.7 91.5 92.5 93.0 36.9 46.1 55.4

KV B 37.7 47.7 47.3 88.9 94.9 98.6 35.2 42.3 42.1



Table 4(a): Size-corrected Powers at the 5% Level of t- and F - tests under AR(1)-, MA(1)-,

and ARMA(1,1)-Homo Models: Nonzero-mean Random Regressors with ± = 0:2; n = 128:

t F2 F4 t F2 F4 t F2 F4

(½; ´) = (0:5; 0) (½; ´) = (0; 0:5) (½; ´) = (0:5; 0:5)

NW 29.7 49.2 74.1 34.8 61.2 84.7 23.4 35.7 52.4

QS 31.0 50.2 72.1 36.4 61.6 84.5 23.6 35.8 53.3

FR 25.9 47.3 65.4 35.5 60.0 82.6 23.1 34.0 52.4

PW -NW 32.8 45.6 64.9 31.8 59.3 81.1 23.5 30.2 42.2

PW -QS 28.7 42.9 60.4 38.0 57.6 79.8 23.8 35.4 50.5

PW -FR 25.0 40.7 59.2 36.4 58.2 77.8 23.0 34.0 42.0

KV B 25.0 35.1 50.6 32.7 41.9 61.4 17.4 26.5 37.2

(½; ´) = (0:9; 0) (½; ´) = (0; 0:9) (½; ´) = (0:9; 0:9)

NW 11.8 13.4 15.3 30.3 57.1 78.3 9.9 12.7 13.4

QS 11.4 13.3 15.2 32.2 56.9 78.4 10.3 12.0 13.3

FR 12.4 13.0 15.5 32.0 57.3 79.6 10.7 12.0 12.3

PW -NW 10.1 10.6 9.9 28.8 50.8 73.5 7.9 8.0 8.7

PW -QS 9.1 9.4 8.0 30.2 53.2 76.0 7.6 8.6 9.2

PW -FR 7.9 9.8 9.7 31.4 52.0 76.2 7.4 7.9 7.9

KV B 9.1 11.0 12.0 27.8 37.0 56.6 8.8 10.8 11.9

(½; ´) = (0:95; 0) (½; ´) = (0; 0:95) (½; ´) = (0:95; 0:95)

NW 9.0 11.2 10.9 30.1 57.1 78.3 8.9 11.4 8.7

QS 9.0 11.0 11.0 32.2 56.8 78.6 8.6 9.9 10.2

FR 7.9 9.1 11.0 31.7 57.2 79.5 8.1 9.4 10.3

PW -NW 7.0 9.6 8.9 29.3 52.0 73.7 7.4 8.0 7.5

PW -QS 5.9 6.9 4.7 28.5 54.7 78.7 6.2 6.7 7.0

PW -FR 7.4 8.1 5.8 29.5 53.6 76.2 5.0 6.3 6.3

KV B 7.9 8.9 9.4 28.0 36.7 56.6 7.3 7.3 8.8



Table 4(b): Size-corrected Powers at the 5% Level of t- and F - tests under AR(1)-, MA(1)-,

and ARMA(1,1)-Homo Models: Nonzero-mean Random Regressors with ± = 0:5; n = 128:

t F2 F4 t F2 F4 t F2 F4

(½; ´) = (0:5; 0) (½; ´) = (0; 0:5) (½; ´) = (0:5; 0:5)

NW 97.1 99.8 100 99.1 100 100 87.9 98.7 100

QS 96.3 99.8 100 99.1 100 100 87.5 98.8 100

FR 94.0 99.4 99.1 98.8 99.7 99.6 87.0 98.4 99.9

PW -NW 96.3 98.3 97.8 98.1 99.3 99.4 83.0 93.4 94.3

PW -QS 92.3 95.8 95.1 98.7 99.7 99.7 86.6 97.6 99.3

PW -FR 87.3 92.0 93.0 98.3 99.4 99.6 80.8 93.6 94.7

KV B 84.1 93.4 98.2 90.7 95.9 98.9 71.1 84.2 93.1

(½; ´) = (0:9; 0) (½; ´) = (0; 0:9) (½; ´) = (0:9; 0:9)

NW 39.6 54.7 72.7 98.1 100 100 34.0 49.5 63.5

QS 37.8 55.7 71.8 98.3 100 100 34.8 50.4 65.7

FR 40.1 50.9 67.4 98.5 100 100 33.5 45.2 58.6

PW -NW 27.7 35.5 40.0 96.8 99.1 99.0 25.3 25.3 30.1

PW -QS 25.0 27.7 25.6 97.4 99.9 99.8 16.8 22.3 25.2

PW -FR 19.3 25.6 27.0 97.9 99.9 99.9 19.5 19.4 20.1

KV B 31.1 39.3 50.9 86.9 94.0 98.4 29.2 35.7 48.1

(½; ´) = (0:95; 0) (½; ´) = (0; 0:95) (½; ´) = (0:95; 0:95)

NW 28.5 39.4 47.0 98.0 100 100 26.9 36.7 43.2

QS 27.4 37.8 47.3 98.3 100 100 24.4 35.8 45.3

FR 25.9 35.9 47.1 98.5 100 100 23.6 32.3 41.2

PW -NW 16.3 22.6 23.7 96.9 99.1 98.8 15.7 19.0 19.0

PW -QS 13.5 15.5 12.4 97.4 99.9 99.9 11.7 14.4 15.1

PW -FR 17.1 29.9 16.5 97.9 99.9 100 10.4 14.4 13.1

KV B 21.8 29.3 34.8 86.9 94.1 98.4 19.9 25.5 31.6


