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ABSTRACT

As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional
to a spectral density matrix at frequency zero and can be consistently estimated by such popular kernel
methods as those of Andrews-Newey-West. In practice, it is di¢cult to estimate the spectral density
matrix if it has a peak at frequency zero, which can arise when there is strong autocorrelation, as
often encountered in economic and ..nancial time series. Kernels, as a local averaging method, tend
to underestimate the peak, thus leading to strong overrejection in testing and overly narrow con..dence
intervals in estimation.

As a new mathematical tool generalizing Fourier transform, wavelet transform is a powerful tool to
investigate such local properties as peaks and spikes, and thus is suitable for estimating covariance ma-
trices. In this paper, we propose a class of wavelet estimators for the covariance matrices of econometric
parameter estimators. We show the consistency of the wavelet-based covariance estimators and derive
their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet esti-
mation. We propose a data-driven method to select the ..nest scale—the smoothing parameter in wavelet
estimation, making the wavelet estimators operational in practice. A simulation study compares the ..nite
sample performances of the wavelet estimators and the kernel counterparts. As expected, the wavelet
method outperforms the kernel method when there exists relatively strong autocorrelation in the data.

Key Words: Data-driven methods, Heteroskedasticity and autocorrelation consistent covariance matrices,
Kernel estimation, Spectral density matrix, Wavelet analysis, Time series



1. INTRODUCTION

Estimation of heteroskedasticity and autocorrelation consistent covariance matrices is a long-standing
problem in time series econometrics. Leading examples are estimation of asymptotic covariance matrices
of least square estimators in linear, nonlinear and unit root regression models, of two-stage least squares,
three-stage least squares, quasi-maximum likelihood, and generalized method of moment estimators. Such
covariance matrix estimation is important for con..dence interval estimation, inference and hypothesis
testing in dynamic contexts.

To represent a covariance matrix by a spectral density matrix at frequency zero and to estimate it by
nonparametric kernel methods was suggested by Brillinger (1975, p.184; 1979), Hansen (1982, p.1047),
and Phillips and Ouliaris (1988) among others. Various kernel-based covariance estimators have been
proposed. These include Domowitz and White (1982), Levine (1983), White (1984), White and Domowitz
(1984), Newey and West (1987, 1994), Gallant (1987), Gallant and White (1988), Kool (1988), Andrews
(1991), Andrews and Monahan (1992), and Hansen (1992). Andrews (1991) and Newey and West (1994)
propose some data-driven bandwidth choices suitable for covariance matrix estimation, making the kernel
methods operational in practice. Andrews (1991) derives the optimal kernel—the Quadratic-Spectral
(QS) kernel over a class of kernels that generate positive semi-de..nite covariance estimators. denn Haan
and Levin (1998) also propose an autoregression-based covariance estimator.

It is well-known that kernel-based covariance estimators do not perform well in ..nite samples when
there is strong autocorrelation in data (e.g., Schwert 1989, Keener, Kmenta and Weber 1991, Andrews
1991, Andrews and Monahan 1992, Christiano and den Haan 1995, Newey and West 1994, den Haan and
Levin 1997). They often lead to strong overrejection in testing and overly narrow con..dence intervals
in estimation. In the context of the generalized method of moments, for example, the sizes of Wald
tests that use kernel-based covariance estimators overreject and they become worse as the dimension
of the estimated parameters increases (e.g., Christiano and den Haan 1995). It makes little dicerence
how exactly a bandwidth or a kernel is chosen. Indeed, as Andrews (1991) points out, kernel estimators
perform poorly in an absolute sense when autocorrelation is strong, and this is so even if the ..nite sample
optimal bandwidth is used.

The bulk of the problem is the di¢culty in estimating a spectral density matrix at frequency zero
when it has a peak there, which can arise due to strong dependence. To reduce the downward bias, one
has to choose a very large lag order, and consequently, the sample size n would have to be very large to
keep the variance reasonable. Alternatively, if both the sample size and the lag order are ..xed, the bias
would be substantial near the peak. It is well-known that positive autocorrelation is apt to entail a mode
in the spectral density at frequency zero, and strong autocorrelation yields a peak at frequency zero.
Kernel estimators often tend to underestimate the peak, leading to overly narrow con..dence intervals
and liberal tests. In fact, Priestley (1981, pp.547-556) shows that the modes of the spectral densities of
some low order AR and ARMA processes, whose autocorrelations decay to zero at an exponential rate,
are still underestimated even if some undersmoothing bandwidths are used. Spectral peaks often arise in
economic time series, due to seasonalities, business cycle periodicities, and strong dependence. Cochrane



(1988), for example, argues that for economic data, low order ARMA procedures tend to yield poor
estimates of in..nite sums of autocorrelations (i.e., the long-run variance), because the autocorrelation
function often is positive and decays slowly. Granger (1969) points out that the typical spectral shape of
many economic time series is that it has a sharp peak at frequency zero and decays to zero as frequency
increases. For such time series, kernel methods may not work well.

Because of the unsatisfactory ..nite sample performances of the kernel-based covariance estimators, it
has been emphasized in the literature (e.g., Newey and West 1994, p.632) that extensions or re..nements
to the existing kernel methods should be a priority for further work. More reliable sampling distribution
theory and better covariance estimators are required for the statistics used in economic and ..nancial
time series analysis. To our knowledge, however, few progress has been made so far. The most noticeable
progress is Andrews and Monahan’s (1992) prewhitening procedure. Prewhitening is a technique aimed to
improve the accuracy of spectral density estimators by making certain transformations to the data before
applying spectral estimation procedures. The idea is to “Fatten” the spectral density by passing the
original series through a ..Iter so that its output has a relatively fat spectrum. A fat spectrum is much
easier to estimate and the corresponding kernel estimator is less sensible to the choice of a bandwidth.
Andrews and Monahan’s (1992) prewhitening kernel estimator is eaective in reducing the bias, and leads
to considerably better sizes for related test statistics. In the meantime, it is also found that prewhitening
intates the variance, and may lead to a larger mean squared error (MSE) than the kernel estimator
without prewhitening (see Andrews and Monahan 1992, Newey and West 1994, p.634).

The recently developed wavelet analysis provides an approach to construct a possibly better estima-
tor for covariance matrices when autocorrelation is strong. As a new mathematical tool generalizing
Fourier transform, Wavelets fundamentally dicers from Fourier bases and Gabor bases (i.e., windowed
Fourier bases). With spatially varying orthonormal bases, wavelets can ecectively capture the peaks of
an unknown function (cf. Donoho and Johnstone 1994, 1995, 1996, Donoho et al. 1996), and therefore
are natural tools to investigate the local properties of the function of interest. In particular, when there
are signi..cant spatially inhomogeneous features like peaks in the unknown function, wavelet estimators
are expected to outperform kernel estimators. In this paper we propose a new class of wavelet-based
covariance estimators.

It should be noted that in such situations as hypothesis testing in a regression context, there exists
some alternative approach (e.g., Kiefer et al. 1999) that avoid estimation of heteroskedasticity and
autocorrelation consistent covariance matrices. We shall compare our method with this procedure via
simulation.

In Section 2, we describe the framework in which estimation of heteroskedasticity and autocorrelation
consistent covariance matrices is of interest. In Section 3, we introduce wavelet analysis and propose
a class of wavelet-based covariance estimators. In Section 4 we show the consistency of the wavelet
estimators and derive their asymptotic mean squared errors, which provide insight into the smoothing
nature of the wavelet estimators. In Section 5, we propose a data-driven choice of the ..nest scale—the
smoothing parameter for the wavelet estimators. In Section 6, we conduct a simulation experiment to
compare the wavelet estimators with the kernel counterparts. Section 7 provides a concluding remark
and directions for further research. The mathematical proofs are collected in the appendix. Throughout,



Z = f0; 81; 82; :::g denotes the set of integers, Z* = f0; 1;2;:::g the set of nonnegative integers, A® the
complex conjugate of A; Re(A) the real part of A; jjAjj = tr(A’A) the usual Euclidean norm, and C a
generic bounded constant. Unless indicated, all convergencies are taken as the sample sizen ¥ 1:

2. FRAMEWORK

To motivate, we ..rst consider a linear time series regression model with a possibly heteroskedastic
and autocorrelated disturbance error

Ye =X + Uy,  t=1;:n; (2.1)

where Y is a dependent variable, X; a p £ 1 vector consisting of explanatory variables, and o ap£1
unknown parameter vector, p 2 Z*. The ordinary least square (OLS) estimator of g is

A LI
A X X
Ih= nit XX nit XY (2.2)
t=1 t=1
Its asymptotic covariance matrix is
h 1A i 3 g i]_ 3 - il
AVAR n2(ln § Ho) = nIl!m1 Mn nIl!m1 -n nIl!m1 Mn ; (2.3)

P P, P
where M, = nit" L E(XX{) and —, =nit T " E[X{U(UsXs)"]: To estimate (2.3), one can

estimate M,, by its sample analog M,, = ni? ?:1 X¢X{; but —, is more challenging to estimate.
More generally, we have

(Mn=nM2)itn2 (i i Ho) ¥ N(O; 1,); r2z*; (2.4)

where My, is a nonstochastic r £ p matrix, I is a r £ r identity matrix, and

KX
-n=nit E [V (Ho)Vs(Ho)'] (2.5)
t=1s=1
for some stochastic p £ 1 vector process Vi(lg): The function V(o) can be the product of the distur-
bance with the gradient of the regression function in nonlinear regression estimation, the product of the
disturbance with instrumental variables in two-stage least squares estimation, the score function in quasi-
maximum likelihood estimation, or the moment function in generalized method of moment estimation.
Usually, My, is relatively simple to estimate, often by its sample analog. It is more diCcult to estimate
—n; and this is the focus of this article:
When V(o) is a second order stationary process with mean zero, we have

e
lim - 2, (0); (2.6)

where
X
f(0) = (2™ i)
I=;j 1
is the p £ p spectral density matrix of Vy(lo) at frequency zero, with j(I) = E[V¢(Ho)Ve;1(Ho)']: Thus,
— can be consistently estimated by a nonparametric spectral density estimator at frequency zero, as



suggested in Brillinger (1975), Hansen (1982) and Phillips and Ouliaris (1988) among others. Newey and
West (1987) propose a convenient positive semi-de..nite kernel estimator for —
N X - AN
“Nw = K@G=Bn)in(); 2.7
I=iBn
where K(X) = (1 ijxj)1(xj - 1) is the Bartlett kernel, 1(¢) is the indicator function, By, is a lag truncation
parameter depending on the sample size n,

P
nit ?=I+1 Vt(ﬁn)vtil(ﬁn)o; 1.0

AN (l) —
In - _
nit ?zlilvt+l(ﬁn)vt(ﬁn)0; <0

(2.8)
is the sample autocovariance matrix of Vt(ﬁn); and ﬁn is a consistent estimator of yp: Andrews (1991)
consider a class of estimators

N N - AN
A= K(G=Bn)in(l); (2.9)
I=1ijn

where K : R ¥ [§1;1] is a general kernel, and B, a bandwidth. Examples of K(¢) include Bartlett,
Parzen, QS, Tukey-Hanning, and truncated kernels. When K(¢) has in..nite support, B, is no longer
a lag truncation parameter. Andrews derives the optimal kernel —the QS kernel, that minimizes an
asymptotic MSE; he also proposes a parametric “plug-in” data-driven bandwidth choice for B,: Newey
and West (1994) propose a nonparametric “plug-in” data-driven choice of By, for their Bartlett kernel-

based estimator 2y : Andrews and Monahan (1992) further propose a prewhitening kernel estimator

R ™ R
—am = 1 i G(n) K@{=Bn)in() 1 i G(in) ; (2.10)

I=1ijn

where G(ﬁn) is a ..Iter based on a Vector AutoRegression (VAR) approximation for th(ﬁn)g with residuals

Ve(fl) and ¢ o
mm= " tn:‘*lvt@;)vti.(ﬁn)% 1.0
ntt ?:“'Vtil(“n)vtn(l-ln)oi I<0:

Extensive simulation experiments in the literature show that kernel estimators perform poorly in
..nite samples when there is strong autocorrelation. They often lead to strong overrejection in testing
and too narrow con..dence intervals in estimation. This is true even if the ..nite sample optimal bandwidth
parameter is used. It appears that it is the very nature of the kernel method, rather than the choice of
a bandwidth or a kernel, that attributes its poor performance in ..nite samples when the data display
strong dependence.

In our opinion, the main reason for the poor performance of the kernel estimators is that the spectral
density has a peak at frequency zero when there exists strong autocorrelation, but the kernel method is
relatively ineCcient to estimate the peak. As a local averaging method, kernels tend to underestimate
T(0) when there is a mode at zero: Andrews and Monahan’s (1992) prewhitening procedure alleviates
this downward bias substantially and thus gives better test sizes. Of course, it infates the variance, and
thus may not dominate the same procedure applied to the original series in terms of MSE criteria.

The recent development of wavelet analysis provides a plausible approach to estimating inhomogeneous
functions such as the spectral density with a peak at frequency zero. In a series of papers (e.g., Donoho and



Johnstone 1994,1995,1996, and Donoho et al. 1996), Donoho and his coworkers show that in the regression
and probability density estimation contexts, some wavelet methods, with no prior information about the
a priori degree or amount of regularity of the function, can nearly achieve the optimal convergence rate
that could be obtained by knowing such regularity. Gao (1993) and Neumann (1996) extend these results
to estimation of the spectral density function of univariate stationary Gaussian and non-Gaussian time
series respectively. Our aim here is to estimate — by using a dicerent wavelet estimation method.

3. WAVELET ESTIMATORS

3.1 Introduction to Wavelet Analysis

Recently, a growing and enthusiastic community of applied mathematicians has developed wavelet
transform as a tool for signal decomposition and analysis. It is a natural tool to investigate the local
properties of spatially inhomogeneous functions. Before wavelet analysis is given the status of a uni..ed
scienti..c ..eld in the late 1980s, it had been independently used in mathematics, physics, signal or image
processing, and numerical analysis. The ..eld is growing rapidly, both as a practical, algorithm-oriented
enterprise and as a ..eld of mathematical analysis. Daubechies (1992) features an algorithmic viewpoint
about the wavelet transform; Frazier et al. (1991) feature the functional space viewpoint. Donoho and
his coworkers (e.g., Donoho and Johnstone 1994,1995a,1995b, Donoho et al. 1995), feature the statistical
viewpoint of wavelet transform in combination with functional approximation theory.

For concreteness we shall consider multiresolution analysis, ..rst introduced by Mallat (1989) and
Meyer (1992). The idea is to express a function g(¢) in the L>(R) space as a linear superposition of
“elementary” functions or building blocks called wavelets, centered on a sequence of spatial points. These
wavelets are derived from a single function A : R ¥ R; called the mother wavelet, by translations and
dilations as explained below. The mother wavelet A(¢) satis..es the following condition:

x R1 . R ~
Assumption A.1: A: R_T R is an orthonormal wavelet such that ill A(X)dx = 0; ill JAX)jdx <
1; 1 AR(gdx =1 and 5 AGQA(x i k)dx =0 for all k 2 Z;k & O:
1 1

An orthonormal wavelet A(¢) is a function such that the doubly in..nite system fAjk(¢)g is an ortho-
normal basis for L?(R); where

A0 =22A@x i k), jik2Z: 3.1)

Cf. Mallat (1989) and Daubechies (1992). The integer j is called a scale parameter, representing a
resolution level; the integer Kk is called a translation parameter. Intuitively, j localizes analysis in frequency
and k localizes analysis in time or space. The simultaneous time-frequency localization of information is
the key feature of wavelet analysis.
The condition ill JA(X)jdx < A ensures that the Fourier transform of A(t)
YA 1
Rz)=(@wiz  A(x)eiizXdx; i= P71 (3.2)
il
exists, and is continuous in R almost everywhere: Note that A" (z) = A(j z) and A(0) = (2%)*-2 R ill A)dx =
0 under Assumption A.1l.



R4 . ~ ~
Because ill A(X)dx = 0; A(t) exhibits some oscillation. Usually, A(t) has a continuous wiggly
localized appearance, which motivates the label “wavelet”. Many A(t)’s have compact support. An

example is Haar wavelet s
3 1 0-x<%
A(X)=B il it -Xx<0 (3.3)
-0 otherwise,
whose Fourier transform 12(7=4
A@) =i ieizzz%; z2R: (3.4)
For this wavelet, the doubly in..nite sequence
8
) 3 1 K-x<X@+3i)y
Aj(x) = = il £@Li3)-x<3 (3.5)

- 0 otherwise,

which is nonzero only over an interval of width 2iJ centered at x = k=24: The compact support of A(t)
ensures that Ajk(¢) is well localized. Other examples of wavelets with compact support are Daubechies’
(1992) wavelets.

The mother wavelet A(¢) can have unbounded support, but it must decay to zero suCciently fast to
ensure its localization property. An example is Shannon (or Littlewood-Paley) Wavelet, de..ned in terms
of its Fourier transform

1 if % - jzj - 2Y%;

Az) = 3.6
() 0 otherwise. (36)

Assumption A.1 is a standard condition on A(t): We impose an additional condition.
Assumption A.2: jﬂ(z)j - Cmin[jzj%; (1 +jzj)i¢] for some g >0 and ¢ > 1:

This requires some regularity (i.e., smoothness) of f&(¢) at 0 and a sucCciently fast decay at A.: The
condition jﬂ(z)j - Cjzj? is emective when z ¥ 0: The constant g governs the degree of smoothness of
f&(¢) at zero, which is closely related to the tail behaviors of A(t). Suppose that A(¢) has ..rst A vanishing
moments, A 2 Z*; that is,

z 1
x"A(x)dx = 0; forr=0;1;:5A§ 1; 3.7
il
and Rill XAA(x)dx < 1, then f&(¢) is A-time dicerentiable in the neighborhood of zero, with

dr Za X
FA(O) =(ji)" x"A(X)dx = 0; forr=0;1;:5A§ 1, (3.8)

il
and jA(z)j - Cjzj*asz ¥ O

The condition jﬂ(z)j - C(A +jzj)¥¢ implies f&(z) T 0asz ¥ 1; the constant ¢ governs the rate
at which f&(z) ¥ Qasz ¥ 1: The condition ; > 1 rules out Haar wavelet (; = 1); but includes many
wavelets commonly used in multiresolution analysis.

Below are some other examples of wavelets:



2Franklin wavelet

iz=2 Sin*(z=4) ¢ 1 i 2cos?(z=4) 24

A@z) =72~ = 3 — Z2R: (3.9)

(z=4) [1§ Zsin®(z=2)][1 i 2sin®(z=4)]
2Meyer Wavelet:

8 . . E, o ) )
2 (@witsin 3v@Giziil) | ifF -z - g

A@) =5 (%)itcos v(Zizjil) if%<ijzj- % ; z2R (3.10)
-0 otherwise,

where v(t) is a regular function with v(x) + v(jx) = 1;v(X) = 0 for x < 0 and v(x) = 1 for x > 1
Examples are v(x) = x for x 2 (0; 1) and v(x) = x?(3 j 2x) for x 2 (0; 1):
23pline Wavelet of Order m 2 Z* :

8 -
11
2 _iz=2(sinz=4)>"*2 Pom+1[5z+3v] 2, . . .
A@) = e T PP 1 2R Ifm ls odd (3.12)
= s .
> Lo in 7=4)2m+2 1,41y, 2 . .
- jieizm26inz=a) Pomualg2*2% __ 2. ;2 R:  if mis even.

(z=4)m+1 Pom+1(2=2)P2m+1(2=4)

where Py, (z2) is the m-th order trigonometric polynomial. The ..rst ..ve polynomials are

P]_(Z) = 1

P>(z) = cos(2);

Ps(z) = 1ij g sin?(2);

Psz) = % cos®(z) + % cos(z);

Ps(z) = 3—10 cos?(2z) + % cos(2z) + %:

Note that Haar wavelet and Franklin are the zero-th and ..rst order spline wavelets. For more discussion
on these wavelets, see (e.g.) Hernandez and Weiss (1996).

Let A: R ¥ R be a non-zero function such that ill A(X)dx = 1: This function is called the father
wavelet or scale function. Given fA(¢); A(t)g; the doubly in..nite sequence A;, (€); Aj (6)g forms a complete
orthonormal basis for the L,(R) space (see, e.g., Mallat 1989, Daubechies 1992, p.129), where

Aj() = 22A@x j k), jik2Z: (3.12)

Any square-integrable function g(x) admits the representation

®x_ Xk
k=1 J=jok=1

where jo 2 Z* is a cut-o= resolution level, and the Fourier transforms
z a

gA;j Kk () dX; (3.14)
zit

gO)A; (X)dx: (3.15)

2
=
[



The ®jk is the wavelet coe@cient at level j and translation k. It is called the discrete wavelet transform
of g(¢): Intuitively, the ..rst sum of (3.13) will capture the smooth part of g(t); while the second sum of
(3.13) will capture the inhomogeneous part of g(¢t):

Because the mother wavelet A(¢) is well-localized, i.e., A(X) ¥ 0 quickly as x ¥ 1; ®;jk roughly
retects the local behavior of g(¢) in an interval of width 21J centered at x = k=2J; it is not signi..cantly
contaminated by the behavior of g(¢) outside the interval: This renders wavelet analysis a natural tool to
investigate the local properties of g(t): Large wavelet coe@cients arise only in the places where there exists
a signi..cant degree of inhomogeneity. A key feature of wavelet analysis is that wavelets, in an “automatic”
manner, evaluate high frequency components over short intervals and low frequency components over large
intervals. The wavelet method simultaneously increases the frequency of the wavelet oscillations and
shrinks the exective width of Ajk(¢); or simultaneously decreases the frequency of the wavelet oscillations
and enlarges the exective width of Ajk(¢). Consequently, it can capture the singular features of g(¢) with a
relatively small number of wavelet coe¢cients, leading to eCcient approximation. In contrast, the Fourier
transform depends on the global behavior of g(t); and consequently, the Fourier representation need more
coeCcients to represent singular features. It is well known, for example, that if g(t) has a discontinuity
point, one would require a large number of terms in its Fourier series to obtain an adequate approximation
of g(¢) in the region of the discontinuity. If g(¢) is smooth except at the discontinuity, however, we may
obtain quite good an approximation by using a relatively small number of wavelet coe@cients.

3.2 Spectral Wavelet Representation

Suppose that f(1); I 2 [j¥%; %]; is a spectral density matrix of the second order stationary vector
process V¢(lo): Then its Fourier representation is

X -
f(1) =@t i(het™; V2[5, (3.16)
I=;j 1
where, as before, j(I) = E[Ve(Ho)Vi;j(Ho)']: Because F(t) is 2%-periodic, it is not square-integrable on
R: We need a class of 2¥%-periodic wavelet bases. Given any wavelet bases fAjk(¢);Ajk(¢)g that form an
orthonormal basis of L2(R); we can construct the 2%-periodic functions via formula

X 2y 7
Op(l) = (it Aje 5+ (3.17)
|:|1
- G B
2,(1) = (24)it R 57+ (3.18)

I=i
The system Oy (¢); =k (©)g forms an orthonormal basis of Ly(1); the L,-space of 2¥-periodic functions
on | = [§%;%] (cf. Daubechies 1992, Ch. 9.3). When A(t) and A(¢) have bounded support, the sums in
(3.17) and (3.18) contain only a ..nite number of terms. On the other hand, if the Fourier transforms
g(z) = (2u)i1=2 ill A(x)eiizxdx and A(z) = (2v) 112
ill A(x)eiiz*dx have bounded support, it is more convenient to compute ©jk(t) and =4 (t) via their
Fourier transforms

" X AT}
Oj(1) = (w)iz O (De™*; (3.19)
I=j 1



=1 X il
k(1) = (@W'? By (he; (3.20)
I=j 1
R, . Ry :
where ©jk(l) = (21/4)i% i/“%©jk(!)ei'”d! and éjk(l) = (21/4)i% i/“%ajk(!)ei'”d! are the Fourier
transforms of ©;(¢) and =4 (¢): Given (3.17) and (3.18), we can obtain

Gp(l) = (WA (2nl) = #1240 (y=20) 3 R(21=2); (3.21)
A = ()R (2u1) = e1 202 (2y,=20) 2 R (21=2)) (3.22)
by the change of variable, where
Z a z a
Ri@) = @13 Aj(ei™dxand Aj(2) = @612 A (el Pdx
il il

are the Fourier transforms of Ajk(¢) and Ajk(¢):
Now, we can represent f(¢) via the wavelet basis ¥=,(¢)g: By choosing jo = 0; we obtain

_ X 3k
f(1) = 40©o0(!) + ®jkFjk(1): (3.23)
j=0k=1
where the wavelet transforms .
Ya
0 = (1O (1)d!; (3.24)
Zi1/4
Ya
®jk = (DS (1)dr: (3.25)
i%

The wavelet coedcients f®;,g depend only on the local behavior of f(1) in an interval with width 21
centered at x = k=21, By Parseval’s identity, we can write

. L, X
w0 = (2)iz i (NS50(1); (3.26)
I=j 1
L, X
®j = (2%)12 i (D25 ): (3.27)
I=;j 1

Thus, oo and ®;y are weighted averages of autocovariances fj (I)g: For convenience, we can choose the
scale function A(¢) such that its Fourier transform f&(¢) is continuous in R, or f&(z) = 0 if jzj > Y%; then
,’A\\(Z%I) = 0 for any nonzero integer | 2 Z (cf. Hernandez and Weiss, 1996, p.64, Proposition 2.17). This,
with A(0) = (2v) 112 511 A()dx = (2%)1172; (3.19), (3.21) and (3.26), implies ©go(1) = (2%)i% and
“oo = (2%) 12§ (0): It follows from (3.23) that

) X 3K
f(1) = (@)1 + ®jk 2k (1); V2 [ (3.28)
j=0k=1

H H =1/+1 Pl P2j 2 . H | H
If T(¢) is square-integrable on [ j %; %], we have j=0 k=1 ® <1, and S0 MaXo<k<2i J®jkj ¥ 0as j

¥ 1: Thus, wavelet coe€cients with succiently ..ne resolution levels are negligible in their contributions
to f(¢). This motivates us to consider the estimator

3
fo(1) = (2%) "170(0) + ®njkcj(1); 1 2 [V ; (3.29)
j=0 k=1



where J, 2 Z™ is called the ..nest scale parameter, depending on the sample size n, and

_a > A
®Bnjk = (24) 72 in(2 () (330)
I=1ijn
is an empirical wavelet coe@®cient. Note that we can also equivalently write
Z 4
®njk = L ()2k(1)d!;
il
where f},(1) is the periodogram of Vt(ﬁn); that is,
" ;
fh(1) = @un)its  Ve(lin)e'': :
t=1
Because the bias of f\n(¢) from £(¢) is mainly caused by the exclusion of nonzero wavelet coeCcients, we
expect that the bias will vanish as J, increases. Since the variance of i () increases with the number of
the empirical wavelet coe€cients, we should also control J,, not to grow too fast to ensure the variance
of f\n(¢) to vanish as n ¥ 1.: Proper conditions on J,, will be provided to ensure consistency of f\n(O) to
f(0):

The wavelet estimator (3.29) dicers from those of Gao (1993) and Neumann (1996), who consider
estimation of f(¢) over [ j%; %]. Gao (1993) and Neumann (1996) do not consider the ..nest scale J,, as the
smoothing parameter: Instead, they consider a dicerent smoothing parameter—the level of thresholding.
Neumann (1996) shows that the nonlinear thresholding wavelet estimators can attain a near (up to a
factor of log n) optimal convergence rate for any f(¢) in the balls of a rather general function space called

Besov space g 2 o ll:d3m g
Xas . X =

By =_f()in(328):  42°@° jgyj'A § <a_; (3.31)
- j=0 k=1 >

where s =q + % i %: For more discussion on Besov space, the reader is referred to Tribel (1990). When

d < 2; (3:31) contains functions with substantial spatial inhomogeneity. For these spatially inhomogeneous
functions, the wavelet coeCcients at a ..xed resolution level j will be of considerably diserent orders of
magnitude at dicerent locations and only those coe@cients corresponding to signi..cant spatial variability
will be large. Threshold shrinkage will emectively keep large coe®cients and kill small ones, leading to
eCcient estimation in terms of MSE. In contrast, linear estimators such as (3.29) cannot attain such a
rate if £(t) belongs to Bg;m with d < 2. Thus, one may expect that nonlinear estimators will perform
better than linear estimators in terms of MSE when there exist substantial spatial inhomogeneity of f(¢)
over [ ¥ %].

Nevertheless, for f(¢) in Bg;m with d _ 2; linear estimators attains the optimal convergence rate (cf.
Neumann 1996). In addition, because we are interested only in estimating f(¢) at frequency zero rather
than over the interval [ j¥%; %], the wavelet coe€cients of £(0) will have a certain degree of homogeneity
in order of magnitude. More importantly, the use of threshold shrinkage would increase the bias in
general whereas it is the bias rather than the variance that has bigger adverse impact on the test size
and con..dence interval estimation (see the simulation below). We thus expect that we will not lose much

10



by choosing simply between the inclusion and exclusion of each level. This heuristic leads us to consider
linear estimators (3.29). Another advantage of using (3.29) is that we can derive its MSE explicitly,
which was not previously available in the wavelet literature. The MSE formula shows insight into the
smoothing nature of wavelet estimation, and provide a basis to develop a data-driven method to select
Jn; the ..nest scale parameter.

4. CONSISTENCY

In this section, we ..rst show the consistency of the wavelet estimator

N N 3¢ 3K
~n(In) = Tn(0) + 2V BnjkZjk(0); (4.1
j=0k=1
and then derive its asymptotic MSE: To establish the consistency of Z,,(J,,) to —; we impose the following
conditions.

Assumption_A.3: V¢ 7 V(oo 4 is app £ 1 vector-valued zero-mean fourth order stationary
process with ,1:i1ki(l)k< 1 and Jl_ 1 k=il .1_,11 -abcd(J; K Dj < A; where Kapea(J; K; 1) s
the fourth cumulant of the joint distribution of Va¢; Vs j; Vet+k; Var+19; 1 - a;b;c;d - p:

Assumption A.4: n2({ln i Ho) = Op (1):

Assumption A.5: Esup,og, kirVe(WK® - C and Esup,,g kVe(WK® - C; where £o % RP is a small
neighborhood of po:

Assumptions A.3-A.5 are identical to those of Andrews (1991) and Newey and West (1987,1994)
for kernel estimation. In Assumption A.3, the absolute summability of j(l) ensures the existence and
continuity of F(¢) over [ j¥%;%]: However, f(t) may not be dicerentiable, thus permitting certain degrees of
inhomogeneity such as peaks and spikes. The fourth order cumulant condition is standard in time series
analysis (for the de..nition of - 55cq(J; K; 1), the reader is referred to, for example, Parzen (1957) or Andrews
1991, (3.1)). This condition holds trivially when V¢ is stationary Gaussian with ,1:i1 kibDk<1. It
also holds if V¢ is a fourth order stationary linear process with absolutely summable coe¢cients and i.i.d.
innovations whose fourth moments are ..nite (cf. Hannan 1970, p.211). Andrews (1991, Lemma 1) shows
that the cumulant condition holds if V is a mixing process with EjjV¢jj* - C and = =, 12@(1)CiD=" .
C for some © > 1. We note that Assumption A.3 allows for conditional heteroskedasticity, but not
unconditional heteroskedasticity. In Assumption A.4, we do not require any speci..c estimation method
for ﬁn; any n2-consistent estimator ﬁn su¢ces. This ensures that the emect of using ﬁn rather than Lo
when constructmg n(Jn) is asymptotically negligible. One can proceed as if o were known and were
equal to pn.

Theorem 4.1: Suppose that Assumptions A.1-A.5 hold, and J,, ¥ 1;229n=n ¥ 0: Then 2,(J,) ¥P —:

Thus, 2,(Jn) is consistent for — as long as 27» ¥ 1 but a rate slower than nt:
To gain insight into the smoothing nature of Z,,(Jn); we now consider the MSE of Z,,(J,); which is

de..ned as h i Mn o n ol
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where W is a preselected p? £ p? nonstochastic weight matrix, and vec(t) is a column by column vec-
torization operator. As will be shown below, MSE contains two conticting factors—asymptotic variance
and asymptotic bias squared. The asymptotic bias of the wavelet estimators depends on the smoothness
of f(¢) at zero and the smoothness of A(¢) at zero: To characterize the smoothness of the wavelet, we
de..ne a function , : R ¥ R by

a X
.(2) = 2%A (2) Az + 2vim): (4.3)
m=j1
Given Assumptions A.1-A.2, _(z) is continuous at 0 and is symmetric about 0, with _(0) = 0: Suppose
for some q 2 [0; 1);
)4
RGN OR
1j2idzr0 jzjd

-4 (4.4)

exists, and is nonzero and ..nite. Obviously, the smoother is _(¢) at 0, the larger is the value of q for
which _ 4 is nonzero and ..nite. If g is an even integer, then

_ (@K 1d9,(0)
=07 1§ 2iaq! dzd

and ,q < A if and only if _ (¢) is g-time dicerentiable at 0. For Meyer and Shannon (or Littlewood-
Parley) wavelets, .4 = 0 for all ¢ < 1: These are analogous to the truncated kernel. For Haar wavelet,
160 . q=0forq<1;and ,q = 1 if g > 1: This is analogous to Bartlett kernel. (As noted earlier,
Assumption A.2 rules out Harr wavelet.) For Franklin wavelet, ., & 0; ¢ =0forg<2;and ,q = 1
for g > 2: This is analogous to the QS kernel. For the m-th order spline wavelet, | n+1 & 0; .4 = 0 for
g<m+1; 4 =21 for g > m+1:In general, if the mother wavelet A(t) has and only has ..rst A vanishing
moments (cf. (3.7)), then .o =0forq<A; =1 forq>A;and A &0:
The smoothness of f(t) at zero can be characterized by its generalized derivative at zero

1 X
@) = o i : (4.5)
=31

i
If g is an even integer and T(¢) is g-time dicerentiable at zero, then

CIOR LIS

However, there is no simple relationship between the two for a general g:
We impose the following conditions.

Assumption A.6: For A(t); there exists a largest number g 2 [0; 1) such that .q Is nonzero and ..nite.

P
Assumption A.7: iiljqujji(l)jj < 1; where g is as in Assumption A.6.

Assumption A.8: Put V¢ = fVi(lo)’vec[ryVe(to) i EryVe(lo)’s®: Then (i) fig is a p(1 +p) £1
\II:e)CtOI’-VaI|:L)Jed zercl):) mean fourth order stationary process with absolutely summable autocovariances and
i1 iei1 D advancaiki )i < A where ~apcq(i; k; 1) s the fourth cumulant of the joint dis-

tribution of FVar; Vorrj; Verrk: Varng; 1 - a;b;c;d - p(L+p); (ii) sup,ze, EfjriVe(w)iji? < 1:
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Assumption A.7 ensures the existence of the generalized derivative f®(0). For q 2 (0;1); f(t) is
continuous but not dicerentiable at 0. Spectral peaks are thus allowed. Assumption A.8 is used to obtain
the sharp convergence rate for £(J,); which is necessary to derive its MSE.

To state our theorem below, we de..ne

_ z 21/45 x 52 .
Da= = Az + 2mi%)- dz: (4.6)
0 m=j 1

This integral exists and is ..nite given Assumption A.2.

Theorem 4.2: Suppose that Assumptions A.1-A.8 hold. (i) Let 2’»=n ¥ 0;J, ¥ 1: Then ﬁn(Jn) LY

(ii) Let 2In+l=nz+ ¥ ¢ 2 (0; 1): Then
h i

n|i_m1n%|v|sE 2.@n)i— = 42CDAtrW (I + Kyp)F(0) — F(0)
a2 2 7 ip h i
+ ngq vecF@©0) W vecfF@(0)

where tr(A) is the trace operator, — is the tensor (or Kronecker) product cl)gerator Kopp denotes the p? £p?
communication matrix that transforms vec(A) into vec(A%); i.e., Kpp = b, -_1e e} —ejef; and e; is
the i-th elementary p-vector.

In Theorem 4.2(i), 2,,(Jn) ¥P — under the condition on J,, that J, ¥ A at a rate slower than the
sample size n; which is weaker than that of Theorem 4.1. This is of theoretical interest, but perhaps of
little practical importance, because the optimal rate for 270 is slower than n% for wavelets with q> %
Also, the weaker condition on J,, is achieved under a stronger condition on the process V¢(l): Theorem
4.2(ii) delivers an asymptotic MSE, which contains the variance and biased squared components. Note

that the asymptotic covariance between the (a; b) and (c; d) elements of Z,,(Jn)
h

23,71 2 nab(In); Fncd (Jn) ¥ 442 DA[fac(0)foa(0) + Faa(0)Foc(O)]; 4.7)

where f4,(0) denotes the (a;b) element of the spectral density matrix (0): When 27*1 (or 27n) grows
at a rate n2q+1; the variance and the bias squared are of the same order, yielding the best convergence
rate for MSE. As will be discussed in Section 5, Theorem 4.2(ii) provides a basis to develop a data-driven
method to select ..nest scale Jp,.

5. DATA-DRIVEN FINEST SCALE

Like the choice of a bandwidth in kernel estimation, the choice of the ..nest scale J, is important
both in theory and practice. Applied workers always prefer a speci..c and complete rule for the choice of
Jn given a sample size n: Before discussing speci..c rules to choose J,; we ..rst provide a condition on a
data-driven ..nest scale J;, (say) under which the estimator Z,,(J},) is consistent for —.

Theorem 5.1: Suppose that Assumptions A.1-A.5 hold. (i) If Jnisa data-dependent ..nest scale such
that 29n=29n + 2In=23n = O (1); for some nonstochastic J,, such that 229n=n ¥ 0:J, ¥ 1; then
ﬁn(\j\n) n(J ) IPO; and n(j\) - PO
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(ii) If in addition Assumptions A.6-A.8 hold, and 29n=2In =1 + op (2i7n) where the nonstochastic
Jo ¥ 1:2%=n ¥ 0; then 2,(3h) i 2n(3n) TP 0; 2,(Jh) i — ¥P O: Furthermore, if 20n+i=nzt ¥ ¢ 2

©;1);
h

i i
lim Nz T MSE 20 (Jh): -

. _29 AN -
Jim nZ=TMSE =0 (Jn);
= 4Y2cDatrW (1 + Kpp)F(0) — F(0)
w2 2 7 _

ip, h
% vecF@(©0) W vecf@(0)

i%

Theorem 5.1 implies that under proper conditions, the erect of using 34 rather than J,, has asymp-
totically negligible impact on 2,(Jn) and its MSE. The conditions on J;, are weak. Often, Jy, and J,,
have the forms of 29n+1 = ¢,n° and 22~*1 = cn®; where ¢ 2 (0; 1) is a tuning constant, and €&, is its
estimator: In Theorem 5.1(i), the condition on J;, implies &,=c = Op (1): Here, &, need not be consistent
for c: In Theorem 5.1(ii), the condition on n implies ¢, = ¢+ op (2i7n): This rate condition is weak.
In many cases 2iJn / niTlﬂ; which is slower than ni? if q=> %: For the parametric plug-in method
considered below, ¢,=c =1+ Op(ni %), thus satisfying the condition on J, for all wavelets with q > %:

So far there are very few data-driven methods to choose J, in the wavelet literature. To our knowledge,
only Walter (1994) proposes a data-driven method to choose J,, based on an integrated MSE criterion.
This method is legitimate but not very suitable in the present context, because it explores information
of F(¢) over [j%;%] rather than at zero: Here, a more appropriate data-driven method should explore the
information of f(t) at zero only.

The MSE criterion provides a criteria to choose an optimal J,: By Theorem 4.2(ii), the optimal
convergence rate for MSE can be attained by setting the derivative of the MSE with respect to tuning
constant ¢ to zero. This yields the optimal tuning constant

£ 2 O_a1
Co = (.4®@)=Da ***; (5.1)
where £ 5 £ o
o) = 2 vecf®(0) W vecf®(0) 5.2)
V= W+ Kop)F(0) — T(0) '
Thus, the asymptotically optimal ..nest scale JQ can be obtained by
29°*1 = conzar: (5.3)

This optimal ..nest scale J2 is infeasible because ®(q) involves the unknown f(0). Nevertheless, we can
use a “plug-in” method. Plug-in methods are characterized by the use of an asymptotic formula such as
(5.3) for an optimal ..nest scale in which estimators are “plugged-in” in place of various unknowns in the
formula. Various “plug-in” methods have been used for the choice of bandwidth in kernel estimation (cf.
Andrews 1991, Newey and West 1994). Suppose that ®,(q) is an estimator for ®(q); then a “plug-in”
data-driven ..nest scale Jj, can be given by

2901 = gz (5.4)
where the tuning constant estimator

£ 2 a_a1_
th = 0.¢®(q)=Da = (5.5)
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Note that J\n must be an integer for each n.

Corollary 5.2: Suppose that Assumptions A.1-A.5 hold, and I be given as in (5.4). (i) If ®,(q) +

®i1(q) = Op(1); then Zn(Jh) i - TP O:
(it) If in addition Assumptions A.6-A.8 hold, and ®,(q) = ®, + 0p (niTil) for some constant ®, 2

AN

(0; 1); then 2,,(Jn) i — ¥P 0;and

h i
nli_manqﬁi‘lMSE 2.@h)i- = a2e,DAtW (I + Kpp)F(0) — F(0)
y2 2h i, h i
% vecF@©0) W vecF@(0) ;

»
— 2@ = ot -
where ¢, = (7, 4®,=Dx)Z+T:

In Corollary 5.2(i), ®n(q) need not converge to some constant in probability. In Corollary 5.2(ii), we
require that ®,(q) ¥ P ®, at a rate faster than n! Z5+1: This ensures that the use of ®,(q) rather than ®,
has no impact on the MSE asymptotically.

Plug-in methods can be parametric (cf. Andrews 1991) or nonparametric (Newey and West 1994).
These methods have their own merits. Parametric plug-in methods use an approximating model (e.g.,
ARMA) to estimate ®,(q): It yields a less variable smoothing parameter, but when the approximating
model is misspeci..ed, it will not attain the asymptotic minimum MSE, although this has no impact
on the consistency of 2,(Jn). On the other hand, nonparametric plug-in methods use a nonparametric
method to estimate ®,(q): It attains the minimum MSE asymptotically but still involves the choice of a
preliminary smoothing parameter.

Both parametric and nonparametric plug-in methods can be used here. Below, we consider a paramet-
ric “plug-in” method in spirit similar to that of Andrews (1991). For simplicity, we can use p univariate
approximating parametric models. We use a diagonal weight matrix W = diagfws; ::3; Wp; &3 W 123 Wp0;

and consequently, h

X i, X 5
@ = wa fPO) = wafZ(0) (5.6)
a=1 a=1
where fég)(O) and f,4(0) denotes the ath diagonal elements of £ (0) and f(0) respectively. The usual
choice of w, is 1 for a = 1; ::;; p; or 1 for all a except that which corresponds to an intercept parameter and
zero for the latter. An estimator ®,(q) can be obtained by using appropriate approximating parametric
models for fV,.g: For example, we can consider univariate ARMA(1,1) models for V4.g; namely,

Vat = ¥%aVar + " 5"ati1 + "at; a=1;:5p; 5.7

where var("ar) = %2 . Let (#,;",;%#2)°_, be a quasi-maximum likelihood estimator for (%,; " ,;%2)P_,:
Then an estimator for ®(2) is given as:
K@ +p, )20, + M )nd K+ )l
®n(2)= Wa ( a a? ( 38 a) a: Wa( - a) 43:
(1 1 1%a) a=1 (1 1 1%a)

a=1

(5.8)

Cf. Andrews (1991) for more discussion. It could be shown that under proper conditions, ®,(2) = ®, +
Op(nt %) where ®, = plimg x 1 ®n(2); thus satisfying the conditions in Corollary 5.2: When ARMA(1,1)
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is correctly speci..ed for fV4g; we have ®, = ®(2); and ¢, = co + Op (ni%)' In this case, we attain
the asymptotic minimal MSE, with the asymptotic variance and bias squared accounting for 2—1—1 and
2q+l of the MSE respectively. In general, ®, & ®(2); and so ¢, does not converge to the optimal tuning
constant co: Nevertheless, this does not acect the convergence rate of —n(J\n).

We describe the wavelet estimator as follows:

1) Use a VAR(1) model to prewhiten the series f\’)t(ﬁn)g: That is, to regress Vt(ﬁn) on its ..rst lagged
Vtil(ﬁn); and obtain the p£p VAR(1) autoregression coe€cient matrix A (say). Save the resulting p£1
residual vector V.

2) Estimate p univariate zero-mean ARMA(L; 1) models to each of the p components of ¥;: Obtain
the parameter estimates 2,; A, ; n2gh_,:

3) Use f%a;ﬁa; %ggg:l to compute the estimator ®,(2) in (5.8).

4) Compute the data-driven ..nest scale Jn via (5.4). For Franklin wavelet, PALRERES é.n% and
&, = 0:8287 [®n(2)]* :

5) Compute the covariance estimator Z,(Jy) via (4.1).

A GAUSS code consisting of the above steps is available from the authors.
6. MONTE CARLO EVIDENCE

We now compare the ..nite sample performances of wavelet- and kernel-based covariance estimators,
as well as Kiefer et al.’s (KVB, 1999) test that does not require estimation of a covariance matrix .
The simulation designs basically follow those of Andrews (1991) and Andrews and Monahan (1992). We
consider the linear regression model

Yt = Hoo + H10X1t + HooXaot + UzoXat + UaoXar + Uy (7.1)

We ..rst consider three conditionally homoskedastic processes for fUg, respectively:

AR(]-)'HOMO Ut ]/ZUt 1 +' t:
MA(1)-HOMO: Up=""e;1+ "
ARMA(]"]')-HOMO Ut ]/ZUt 1 + " il -+ "t;

where f"+g is i.i.d. N(0;%2): The four regressor series fX;:g and fUg are mutually independent. Each
of the £X;tg follows the same process as fUg with the same AR and MA coeCcients (%;): We consider
two cases: (i) E(Xit) = 0; and (ii) E(Xit) = 1: Zero-mean random regressors are considered in Andrews
(199I1:g and Andrews and Monahan (1992). Following Andrews (1991), we transform fX;.g such that
nit™ & XX = Is; where X¢ = (1; X1¢; Xot; Xat; Xar)": This simpli..es the computation of the covari-
ance estimand and its estimators. On the other hand, the use of non zero-mean random regressors is to
strengthen serial dependence for V¢ = XUy: In this case, we use ni? ?:1 X¢X! directly to compute the
covariance estimand and its estimators.

As in Andrews (1991) and Andrews and Monahan (1992), we also consider conditionally heteroskedas-
tic disturbances for fUig. Here, we ..rst generate X¢; UigfL; by AR(1)-HOMO, MA(1)-HOMO, and
ARMA(1,1)-HOMO, respectively. Then we use Xy; U:gfL, as regressors and disturbance, where Uy =
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iX&jUs. Two types of conditional heteroskedastic disturbances are considered: (i) HET1, where » =
(1;0;0;0)% and (ii) HET2, where » = (0:5;0:5; 0:5; 0:5)":

We compare the following covariance estimators: the wavelet estimator (4.1) using Franklin wavelet
(FR), Andrews’ (1991) QS estimator, and Newey and West’s (NW, 1994) Bartlett kernel based estimator.
For NW, we select the bandwidth by Newey and West’s (1994, pp.637) nonparametric plug-in method.
For QS, we select the bandwidth by Andrews’ (1991) parametric plug-in method based on individual
ARMA(1,1) models. Similarly, for FR, we use the parametric plug-in method (5.8) to select the ..nest
scale parameter. We also apply a prewhitening procedure to NW, QS and FR, respectively: we ..t
a VAR(1) model for th(ﬁn)g, use the resulting residual vector series to construct NW, QS and FR
estimators and then recolor them. The resulting variance estimators are denoted as PW-NW, PW-QS,
and PW-FR.

We set the true parameter po = (loo; H1o; H2o; H3o; Hao)® = (0;0;0;0;0)’; and estimate it by the OLS
estimator ﬁn: We examine various estimators for the asymptotic variance of ﬁlo; the parameter estimator
for X1¢: We shall examine their biases, variances and MSE’s.

We also examine the size and power of a t-test for Hig and F-tests for Hyo and Hszp, where

Hio: Hp0o=0 vs.  Hia: Hio =4
Hzo @ Mo =20 =0 Vs, Hoa: Hio = oo =
Hso : Hjo = 0; j =1,2,3;4 V.S. Hza : Hjo = +: j =1:2:3;4:

These tests are constructed using the OLS estimator ﬁn and various covariance estimators. In testing
these hypotheses, we include the KVB test that does not require estimation of the covariance matrix.

We ..rst consider the case with zero-mean random regressors. Table 1 reports the bias, variance,
MSE, and the size of the t-test and F-tests under AR(1)-HOMO, MA(1)-HOMO, and ARMA(1,1)-
HOMO, respectively. First consider AR(1)-HOMO in Table 1(a). Among NW, QS and FR, FR has the
smallest downward bias, followed by QS and NW. This is consistent with theoretical expectation that the
wavelet estimators are more ecective to capture peaks. However, FR has the largest variance, followed
by QS, and then by NW. When % = 0;5; which implies rather weak serial dependence, NW has the
smallest MSE, while FR has the largest one. The order is reversed, however, when % = 0:9;0:95: This
suggests that when data has relatively strong dependence, reduction in bias of FR will overwhelmingly
compensate increase in variance, leading to a smaller MSE. For the test size, FR is the best, followed
by QS and then by NW, although the dicerences seem small, especially for the t-test. It appears that
reduction in bias is more important than reduction in variance in improving the test size.

We now consider the prewhitening procedures PW-NW, PW-QS, and PW-FR in Table 1(a): PW-FR
has the smallest downward bias, followed by PW-QS, and then by PW-NW. However, PW-FR has the
largest MSE, while PW-NW has the smallest MSE. For the test size, PW-FR, PW-QS and PW-NW are
better than FR, QS and NW respectively. Moreover, their sizes are rather similar, suggesting no clear
gain using wavelets here. This, however, should be expected because fV,gfollows an AR(1) process, and
after prewhitened by VAR(1), its residuals are approximately white noise. Consequently, wavelet and
kernel estimators will perform similarly, as the spectrum is fat. Note that KVVB has slightly better size
than PW-FR and PW-QS in terms of the t and F tests, but not for F4 when % = 0:95.
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Next, we turn to MA(1)-HOMO in Table 1(b). Here, fVig follows an MA(1), a very short memory
process. For all © = 0:5;0:9;0:95 and among NW, QS and FR, FR has the smallest downward bias, the
largest variance and MSE, while NW has the largest downward bias, the smallest variance and smallest
MSE. For the test size, FR is slightly better than QS, which in turn is slightly better than NW, especially
for F4. The prewhitening procedures have slightly better sizes their non-prewhitening counterparts. Both
PW-FR and PW-QS have similar sizes and they have slightly better sizes than PW-NW. There is no
clear gain of favoring PW-FR over PW-QS here. This is because MA(1) is a very short memory. Note
that KVB perform similarly to PW-FR and PW-QS here.

We now turn to ARMA(1,1)-HOMO in Table 1(c), which exhibits stronger dependence than the
previous two cases. Again, FR has the smallest downward bias, and the largest variance, while NW
has the largest downward bias and smallest variance. When (%; ") = (0:5;0:5); QS has the smallest
MSE, followed by FR, and then by NW. For (%; ") = (0:9;0:9) and (0:95; 0:95); FR has the smallest MSE,
followed by QS, and then by NW. For the test size, FR is better than QS, which is in turn better than NW.
Among the prewhitening procedures, PW-FR has the largest MSE, and PW-NW has the smallest MSE.
However, the prewhitening procedures have much better sizes than their non-prewhitening counterparts.
Among PW-FR, PW-QS and PW-NW, PW-FR has the best size, followed by PW-QS, and then by
PW-NW. For all the parameter values here, KVB has worse sizes than PW-FR and PW-QS, especially
for (%;7) = (0:9; 0:9) and (0:95; 0:95); which display relatively strong dependence.

We now turn to Table 2, the case with nonzero-mean random regressors. Here fVig exhibits stronger
dependence than it was with zero mean random regressors. Under AR(1)-HOMO in Table 2(a), FR
has the smallest downward bias, and it has the smallest MSE when % = 0:9; 0:95: It has slightly better
sizes than QS and NW. Among the prewhitening procedures, PW-FR has better sizes than PW-QS and
PW-NW, although the VAR(1)-prewhitened residuals behave like a white noise process. Note that unlike
AR(1)-HOMO with zero-mean random regressors in Table 1(a), KVB now has worse sizes than PW-FR
and PW-QS for the F-tests when % = 0:9 and 0:95:

Under MA(1)-HOMO in Table 2(b), FR has the smallest bias, but the largest MSE. Contrary to Table
1(b), QS now has the smallest MSE for all the three parameter values. For the test size, FR is the best,
followed by QS, and then by NW. The prewhitening procedures improve sizes, but only slightly. KVB
has similar sizes to PW-FR and PW-QS.

Under ARMA(1,1)-HOMO in Table 2(c), FR has the smallest MSE when (%; ") = (0:9;0:9) and
(0:95; 0:95): It has the best size, followed by QS, and then by NW. The prewhitening procedures improve
the size substantially, and PW-FR is the best, followed by PW-QS and then by PW-NW. KVB has
similar sizes to PW-FR when (%; 7) = (0:5; 0:5); but it has much worse sizes than PW-FR and PW-QS
when (%; ") = (0:9;0:9) and (0:95; 0:95):

Finally, we turn to the power. Table 3(a) and 4(a) report the power when the deviation from the null
hypotheses is relatively small (£ = 0:2). The power is based on the empirical critical values at the 5%
level. Here, FR, QS and NW have better power than PW-FR, PW-QS and PW-NW, which in turn have
better power than KVVB. On the other hand, when the deviation parameter is relatively large (z = 0:5;
see Table 3(b), 4(b)), FR, QS and NW still have better power than PW-FR, PW-QS, PW-NW, and
KVB, but KVB now becomes more powerful than PW-FR, PW-QS and NW-PW. These rankings remain
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unchanged no matter whether the random regressors have zero-mean.

We also conduct simulation experiments with a larger sample size n = 256; and with conditional
heteroskedastic errors (AR(1)-, MA(1)-, and ARMA(1,1)-HET1 and HET?2). The relative rankings remain
largely the same as those in Tables 1-3, so we do not report them for the sake of space.

In summary, we observe the following:

1) Wavelet estimators have a smaller bias and a larger variance than kernel estimators. The MSE of
wavelet estimators is larger than that of kernel estimators when serial dependence is weak, and becomes
smaller when serial dependence is relatively strong.

2) In terms of the test size, wavelet estimators outperform kernel estimators in all except the case
where the prewhitened series is a white noise process and the random regressors have zero-mean (in
this case the wavelet and kernel estimators perform similarly). The degree of improvement of wavelet
estimators over kernel estimators depends on the degree of serial dependence, and the dimension of the
parameter under test. The stronger serial dependence and/or the larger the parameter dimension, the
larger improvement.

3) The prewhitening procedure enlarges MSE for both wavelet and kernel estimators, but it improves
the test size substantially. The degree of improvement depends on the degree of serial dependence, and the
dimension of the parameter under test. The stronger serial dependence and/or the larger the parameter
dimension, the larger improvement.

4) Both wavelet and kernel estimators have similar size-adjusted power. Prewhitening procedures
have smaller size-corrected power than non-prewhitening procedures.

5) KVB has sizes slightly better than or comparable to those of wavelet and kernel estimators when se-
rial dependence is very weak. For relatively strong dependent processes, it has worse sizes than prewhiten-
ing wavelet and kernel estimators.

6) When the departure of the alternative from the null hypothesis is small, prewhitening wavelet
and kernel procedures are more powerful than KVVB. This ranking is reversed when the departure of the
alternative from the null hypothesis is relatively large. In both the cases, non-prewhitened wavelet and
kernel estimators always have better power than KVB.

It may be noted that our simulation designs, which follows from those of Andrews (1991), only focus
on AR(1), MA(1) and ARMA(1,1) processes for the regression error fU¢g: These models, as noted by
Cochrane (1988), may not be adequate for economic and ..nancial time series, which display stronger serial
dependence. It would be interesting to examine the ..nite sample performance of the wavelet estimators
using simulation designs that mimic the dependence structure of economic and ..nancial data. Newey and
West’s (1994) simulation designs will be very useful, but this is beyond the scope of the present paper.

7. CONCLUSION

As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional
to a spectral density matrix at frequency 0; and can be consistently estimated by the popular kernel
methods of Andrews-Newey-West. When the data displays strong dependence, the spectral density has
a peak at frequency zero: Kernels, as a local averaging method, tend to underestimate the peak. This
often leads to overrejection in testing and too narrow con..dence intervals in estimation. In this paper we
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have proposed a class of wavelet-based covariance estimators. As a new mathematical tool generalizing
Fourier transform, wavelet transform is a powerful tool to investigate such local properties as peaks and
spikes in the spectral function. We show the consistency of the wavelet-based covariance estimators and
derive their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet
estimation. \We propose a data-driven method to select the ..nest scale—the smoothing parameter in
wavelet estimation, making the wavelet estimation operational in practice. A simulation study compares
the ..nite sample performance of the wavelet and kernel estimators, as well as a test procedure that does
not require estimation of long-run covariance matrices. As expected, the wavelet estimators outperform
the kernel estimators when there is strong autocorrelation in the data.
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MATHEMATICAL APPENDIX

To prove Theorems, we ..rst prove an important lemma.
Lemma A.1: For I;J, 2 Z; de..ne

3 .
di, ()= . (2ul=2); Jn >0;

j=0
where _(z) as in (4.3). Then
(i) d;,(0) =0and d;,(il) =d;, () for all ;3,2 Z*;
(i) jd;,,(Dj - C uniformly in I;J, 2 Z*;
(iii) For any given 12 Z;160;d;, (1) ¥ 1as J, ¥ 1;
(iv) Forany r _ 1, UL jdy, (D" = O(2%) if Jp ¥
(v) 2iGn*D " Nl d5 (1) ¥ Da if J, ¥ 14; where Dg is de..ned in (4.6).

I=1in
Proof of Lemma A.1: (i) By Assumptions A.1, we have A(0) = 0 and A" (z) = A(i2): It follows from
(4.3) that _(0) =0and _(iz)=.(z): Hence, d;,(0) =0and d;, (il) =d;,.(D).
(i) Put m = [log,, I]; the integer part of log, I: By Assumption A.2, we have

o 1
x X )
i, i - @+ Aj. (2%1=2D)]
Jj=0 j=m+1

> o X _
- C  j2ul=2jic +C j2vl=21j4
i=0 j=m+1
X ) X .
- C 2icmid) 4 ¢ oiadim)
j=0 j=m+1
x i
- C (2Fd +2i%)

j=0
. C (A1)

(iii) We ..rst show d4 (I) =1 forany 1 2 Z;1 & 0 and then d;, (1) i do.(I) ¥ OasJ, ¥ 1: Consider a
spectral density at frequency 0

1 X
T0) =2, s i(1); (A2)
where j(I) is an arbitrary autocovariance function. We now obtain an alternative expression for £(0): By
(3.27) and (3.22), we have

=1 X i2vihk=2J iyl Al j
®jk = (24) 12 i (e M2 (21=20)2 A" (2h=21):
h=ij 1

Moreover, from (3.20) and (3.22), we obtain

=1 X = 191/ |k=2) LAl A H
2(0) = (%) iz e 1124K=2% (0y,=01 )2 A(2v:1=21):
I=;j 1

23



It follows from (3.28) that

1 X 3k
f0) = Z_%i(0)+ ®jk=jx(0)
Jj=0k=1 2 - 3
1 1 XK KKK minke iIVA iIVA® i
= 2—%;(0)+2—% 4 g'2%hiDk=2! oy oA (2vul=20)A " (21%h=21)5 j (1)
I=§j1 J=0h=jd1 k=1

1 1 X
= i@+ dai(); (A3)
a1

where the third equality follows because by the change of variable h = + m; we have

x x ¥ o . )
el i D=2 oy ol A (2u1=20)A " (24h=21)
j=0h=j 1 k=1

1
X X 3{ ) . . .of o

= 2, @2ii iZmk=2l AR (2y1=2)A" 24 (1 + m)=2
j=0 m=jl1 k=1

= L(@uI=22) T da () (Ad)
j=0

where we used the well-known identity that Pij:l eizémk=2! = oi jf m = 2ir;r 2 Z and Pf:l gizhmk=2! —
0 otherwise (e.g., Priestley 1981, p.392). Because (A2) and (A3) hold for any autocovariance function j(I)
and d4.(0) = 0;d4.(il) =d+(l); we_ have d4. (I) =1 for all | & O: It follows that dy, () ¥ 1asJ, ¥ 1
because jdj,, (1) i do.(1)j - 2sup;>z jlz;,n+lj=(2%|=21)j ¥ 0asJn ¥ 1A givensupsy jlzoj=(21/4|=21)j <
1 as shown in (Al).
(iv) First, we have
3C i < . #

i, (i - 2P 21 (@u=2h)j =0(2) (A5)
1=1 =0 1=1

>t

P .
where the inequality follows by Lemma A.1, and the equality follows because 21} ,”:'llj:(zl/‘;lzzJ )Jj - C
for any 0 - j - log, n; which holds because by Assumption A.2,

20 (u=2)j = 200@  + Aj, (2ul=2D)j
=1 I=1 |=2i+1

- 287 T C(ul=2)t + 21 C(L+ 2%l=2) ¢
|:l" |:2j+é

-'X TN =
- C+C 20 (1+2v=20)i¢

ZJ_I:l

- C 1+ (1+x)Tedx ; (A6)
0
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where the ..rst inequality follows by Assumption A.2 and the last one follows from the convexity of

(1 +jxj)i¢. Therefore, by (A5

jds, (1 - 2 max jdy, ()]
o<l<n

I=1ijn

as Jn 1.
(V) We ..rst write

d3,, ()

I=1jn

Put I, ¥ A such that 1,=J,

An

For the A1, term, we have

A

where for any j _ O;

I=1jn

using reasoning analogous to

Aon

by dominated convergence,

asj . Jdn 1

j.@ul=2)j? = 2@2i)

) and Lemma A.1(ii), we have that for any r _ 1;

srilmid
jds, (j = O(2°")
I=1

3¢ 3¢ D _ S
(2%1=2) P (2%1=2")

j=0j°=01=1jin
3¢ .
. (=212
Jj=0Il=1jin
3T D _ _
+2Re L (2ul1=21) " (2" 2v:1=21)
Jj=0 r=1 I=1jn

= An+2ReBy; say. (A7)
T 0asn ¥ 1:We decompose the ..rst term in (A7):
> o . )
j. (2ul=21)j% + j. (2ul=21)j?
i=0I=1in j=lh+11=1jn
" #
b _
ih- 2201 j.@ul=20)j2 =0(2'); (A9)
j=0 I=1jn
(@) 1 Loz, )
+211 Aj.@u=2hj?2 - C 1+ (1+x)i%d x
1=1 1=2i +1 0
(AB). For the A, term, we have thatas J, ¥ 1;
" #
2In(2y)it 2i0niD) (Qu=21)  j (2wl=2))j?
Jj=L+1 1=1
Y
A O LE j.(@5Pdz[L+o(D)]; (A10)
il
P21 28000 1 235 1, 1 13571, ¥ A and
z 1
(2v=21) j.ul=21)j? 1 j.(2)j%dz
il

I=1jn
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Next, we consider the second term in (A7). Decompose
1
3 3¢ X
B, = @ + A
Jj=0 j=In+1 r=11=1ijn
= By +Bon; say. (All)

L (2vl=21) " (2 2vi1=2)

Using reasoning analogous to those of A;, and A,,, we can obtain

Bin = O(2(In+In)=2) = g(27n) (A12)
given 1,=J, ¥ 0; and
*xZa
Bon = 270 *1(2y) it .(2).7(2"2)dz[1 + o(1)]: (A13)
r=1 i1
Combining (A7)-(Al3), we obtain
>l Z 4
2iOn+1) 3. () ¥ (@uit j.(2)jdz
I=1in il
x Za
+2Re  (2w)i! .(2).°(2"2)dz: (A14)
r=1 il

P
It remains to show that the right hand size of (A14) is equal to D: Put j(z) = |57 A(z + 2m¥s):
Then _(z) = 2%A"(2) i () by (4.3); and

Z a1 XZ 2%
.(2).7@7)dz = Lz +21%) (2" (z + 21%))dz
il 12z ©
2% a
= (2%)? R (z +21%) i (z + 21)A[2" (z + 21%)]§ °[2" (z + 21%)])dz
12z ©

Because j(z)is 2%-periodic, i.e., j(z + 2%l) = j(z) for all | 2 Z, we have

Z4 Z o, (X >
L(2).°@"2)dz = (2%)? Rz +20)AR" @z + 2% i(2)i°(Q"2)dz
il 0 12z
(21/R21/“"(z)'2dz ifr=0
— 40 Ji ] - - (A15)
0 ifr>0;

where the last equality follows from the well-known orthogonality condition that

R+ 2)AQ"(z + 21%)) =

(v it ifr=0
12z 0

ifr>0;

for z 2 R almost everywhere (cf. Hernandez and Weiss 1996, (1.4) and (1.5), p.332; note that the f&(¢)
there dizers from our f&(¢) by a factor of (2%)): The desired result follows from (Al4)-(Al5) and (4.6).
This completes the proof. B

Proof of Theorem 4.1: De..ne the pseudo covariance estimator

33k
=n(0) = 7n(0) + 2% ®jk =k (0); (A16)
j=0k=0
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L= i2Pnit - nas oy - ; ; A Ay
where ®k = (27%)'2 | 215, Tn(D)Z(); Tn(l) is de..ned in the same way as in(l) except that Vi(iin) is
replaced with V¢(lo): We write

N h,\ i h i h i
=n(@n) i —-= =n@@n)i =n@n) + =n(In) i E=n@n) + E=n@n) i - (A17)
where the ..rst term is the ezect of using ﬁn rather than |o; the second term is the variance ecect of
=n(Jn); and the third term is the bias of =,(J,) from —:
We ..rst show that the emect of using fi, is asymptotically negligible. Following reasoning analogous
to (A3), we can obtain the following representations:

N N % N
—n(@n) = Tin(0)+ dJn(I)in(I); (A18)
I=1jn
it
=n@n) = a0+ da, (DTn(): (AL9)
I=1ijn
It follows that
h i i h i
20@n) i =n@n) = Tn0) i Tn(0) +2 ds, () Ta() i Tn() : (A20)
I=1in

By the mean-value theorem, we obtain that for | _ O;

> h i
n)iin) = nit Ve(@n)Vesi@n)” i Ve(o)Ves (o)

t=I1+1

A X £ o
= (I i Mo)'ni? Ve @)V (1) + Ve(@in) ruVe; 1 (fn) (A21)

t=I1+1

where I, lies on the segment between I, and o such that jjfin i Hojj - jifln i Hojj: A similar result holds
for | < 0: It follows from (A21), Cauchy-Schwarz inequality and Assumptions A.3-A.5 that

o o o o " #; ' #;
on -~ (o N ..o ilX " o ilx . o
~max_°in() i in(D° - 2°niHo® N sup jiruVe(Wii n sup JjVe(Wij
in<l<n =1 U2£0 t=1 u2£o0
= Op(ni?).

This, Lemma A.1(iv) and dj,,(0) = 0 imply

o o o o o

o o g o o o %
°20@n) i =n@r)° - °Th(0) i Tn(0)°+2 max °Tn() i Tn(l)° jds, (D
o<jlj<n I=1in
= Op(2’=n2): (A22)

Next, we consider the second term in (Al7). Given Assumption A.3, we have max; n<i<n
Ejjin() i ETn(Djj?2 = O(nit): Cf. Hannan (1970). It follows from Lemma A.1(iv) that

o o

o o %
E°=0(n) § EZn(n)° - max Efiin() i ETa(Di?  jda,(Dj = Or (2=n):
1=1
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Therefore, by Markov’s inequality, we have
=n(@3n) i E=n(3n) = Op (27=n): (A23)

Finally, we consider the bias term in (A17). Because E7n(l) = (1 j jlj=n)i(l); we have

>l X
E=n@n)i- = da,(DETn(D) i i)
=1 =1

X
[ i jli=m)dy, (D) i 1i() i i)
jli=1 jli=n
10 (A24)

where the ..rst term in second equality vanishes by dominated convergence, j(1 § jlj=n)d;.,(1) i 1j - C
and (1 j jlj=n)dy,,(1) i1 ¥ Ogivenl 2 Zasn ¥ 1 by Lemma A.1(iii). Also, the second term in
the second equality vanishes given ,121 jji(Djj < L by Assumption A.3. Combining (A22)-(A24) and
29n=n ¥ 0;J, ¥ A then ensures 2,(Jn) i — ¥P 0. This completes the proof.

Proof of Theorem 4.2: We shall show (ii) only. The proof of (i) is simpler and is thus omitted. Consider
(A17) again. First, we show that the emect of using {i, rather than o is at most op (27r=2=n'=2): or its
square is op (277=n): By a second order Taylor series expansion, we have that for | > 0;

X
Tn) i i) = (@n i po)’ni? [ Ve(Ho) Ve 3 1(Ho)” + Ve(Ho) Ve 1 (10)']

t=I1+1

N = X £
+(fin i Ho)’(2n)it FaVe(n)Ve; 1) + Ve(n) r2Ve i (@n)

t=1+1

+ 2 Ve @) Ve @) (B i Ho); (A25)

where ﬂln lies on the segment between ﬁn and po: A similar result holds for | < 0: Put

P
ooy M pralMVeoVei (o) + Vi) Ve (o)l 1>,
n - -
nit 1 IruVen (o) Ve (o)’ + Vg1 (Ho) Ve (Ho)l; I -0
By the triangle inequality, Cauchy-Schwarz inequality and (A25), we have
° . _ ° o N o o, oo °
c>—n(Jn) i —n(Jn)o - c>in(o) i In(o)o"'OUn i UOOZ dJn(I)D(I)g
I=1jn

° o #" #1
oA o2 % A A _lx - ..o %

+2°ln i Ho® jdy,(Dj Nt sup jjVe(wij

I=1in t=1 H2£o0
Ha
-1X ii-2 ii2 ’
£ n! sup jjryVe(Wij
=125 # #
ZA o2 D ) ) _lx B .
+2°ln i Ho® jdy, (D nt sup jjruVe(ij
I=1in t=1 H2£o0
= Op(ni¥2+27=n) (A26)
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by Assumptions A.3-A.5 and Lemma A.1(iv), where we have made use of the fact that

il il h i
di,(DEn() = dy, (DEBA() + ds, () &n(l) i EBR(D)

I=1in I=1jn I=1in

= O(l) + Op (2’ =n2);

following reasoning analogous to (A24).
Next, we consider the second term =,(J,) § E=n(Jdn) in (Al7): Let A,, denotes the (a;b) element of
matrix A: Given Tnap(il) = Trwa(l) and Lemma A.1(i); we have

i h i
:nab(Jn) = Tnab(o) + dJn (l) Tnab(l) + Tnba(l) : (A27)
=1
De..ne
(h i ot h i)
Aabcd(n) = E Tnab(o) i ETnab(O) ) dJn(I) Tncd(l) i ETncd(I) ; (A28)
C P p)
>l it h i
Babcd(n) = dJn(I)dJn(m)COV Tnab(l);Tncd(l) . (A29)
I=1 m=1
By straightforward algebra, we have
h i
Cov :nab(Jn); :ncd(Jn) = Aabcd(n) + Aabdc(n) + Acdab(n) + Acdba(n)
+Babcd (I"I) + Babdc(n) + Bbacd(n) + Bbadc(n): (A30)
We ..rst consider the last four terms in (A20). From Hannan (1970, p. 313), we have
, , h i x
niDnhim -
QEDOIM oy Foap(l)i Tream = 117 Wil inaCu+m i 1
u=jl1
+iad(U+mM)ipc(U i I) + -apca(0; 1 u;u +m)];
where for m _ I; s
0; u-in+l
1i({+u)=n; in+l-u-0;
wh(u;Iim) = _ 1§ I=n; O-u-nijl
1i (m+u)=n; nijl-u-nijl
-0 u_njl

It follows that

(n=2"r"1)Bapca(n) = 2i<3n+1>%xld (1)d,, (M) > Wi (U; 15 M) f ac(U) jpa(u +m 1)
abcd In In n{4: 1, lac Ibd 1

I=1 m=1 u=jil1
+21On+pit dj,, (Ddg, (M) Wn(U; ;M) jag(U+m)inc(u i )
I=1 m=1 u=;1L
+21 G Dnit A3 (DA, (M) Wi (Ui ;M) -anca (0 1 U U + m)
I=1 m=1 u=;1L
= Blabcd (I"I) + BZabcd (I"I) + B3abcd (I"I)Z (A31)
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The role of dy,, (I) is similar to that of the kernel function K(j=Bn). Following reasoning analogous to
those for kernel-based spectral density estimators (cf. Parzen 1957, or Hannan 1970, Proof of Theorem

9, pp.313-318), we can obtain
" #" # #

. +1)9i(1 ) X X
Biapca(n) = 27%n d;, (D iac(U) iba(¢) [1+0(1)]
1=1 u=jl (=il
= 211D (2%)?Fac(0)Foa (O)[L + o(1)]; (A32)
P, P,.
where 21 On+D = NELG2 () = 28121 G+ T ML g2 (1) ¥ 2i1Dz by Lemma A.1(i,v). Moreover, we
have
BZabcd(n) ¥ 0 (A33)
by changes of variables, and
X X X )
B2anca(n) - C Jravca(l; m; ¢)j = O(1) (A34)

I=fj1Am=ijl1L:;=id

by Lemma A.1(ii) and Assumption A.3. It follows from (A31)-(A34) that
N=27""4[Babca () + Babdc(N) + Bbaca(N) + Boade(N)] ¥ 4%”Da[fac(0)foa(0) + Faa(0)foc(0)]:  (A35)
Moreover, by Cauchy-Schwarz inequality, V ar[jnhap(0)] = O(ni?) and (A35); we have
jAanca(n)j = O(2772=n) = 0(2’"=n): (A36)

Combining (A30) and (A35)-(A36) yields
h i
(n=2‘]”+l)COV :nab(Jn); :ncd(Jn) L] 41/42 DA[fac(O)fbd(O) + Taq (O)fbc(o)]: (A37)

Using the matrix notation, (A37) is equivalent to
7en ip h i

WE vec[=n(JIn) i E=n(In)] 0W vec[=n(In) i E=n(n)]

¥ 4Y2DxtrW (1 + Kpp)[vecf (0)]° — [vecf (0)]: (A38)

Now, we consider the bias term E=,(Jn) i — in (Al7): By the de..nition of =,(Jy) in (A19), we can
decompose

>l X
E=n(n)i- = SMOICE SUSDITON BN O
=1 =1

il it X
@ jljEn)[dy, (D) i 116D i (USOHON iH
jli=1 =1 jlj=n
= Bin i Bon i Ban; say. (A39)

P
Because j,lj:ljqujj i (Djj < 1 by Assumption A.3; we have

kBank - ni MO jij9jii (jj = O(n'# MnD); (A40)
ilji=1
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and
X i
kBsnk - 2n*9 jljfjji (1)jj = o(n*9):
jlji=n
Moreover, for the ..rst term in (A39), we have

X
Bin =[1+0(1)] [ds, (D) 1 1i(D:

jlj=1
P
Because dj,,(I) i 1 =dy, () i do.(I) = j j1:Jn+l . (2%1=3); we have
2 3
X X X .
[do ()i i) = 4j L (241=21)3 (1)

jj=1 jli=1 j=Jdn+1

X .

i=In+1 jlji=1 1 i 2i4 121/4|:2qu

iqu%f(q)(O)(l i 219) 2idi
J=In+1

N i (v (2%l=21)"

j=In+1 jlji=1
= §2890D_UFOO)[L +o(1)];

where the second term is 0(219) because

X @u |, @u=)"

— q. '
js>uJF2] sq 1 1 i 2iq (Z%I:Zj)q JIJ I(I) - 0

=1

(Q¥)d _(2Y1=2}). @i

- T
-0 1 T 121 (i=20)s i

(A41)

(A42)

(A43)

given Jn ¥ A;jjif@(0)jj < 1; continuity of _(¢) and ,q = [(2%)9=(1 i 2i9)]lim, x0 . (2)=jzj: Collecting

(A39)-(A43) and 27n=n ¥ 0;J, ¥ 1 implies
E=n(Di-=i ZiQ(Jn"'l):qu/Af(Q)(O) +0(21%n) + O(n i MnED):
Now, combing (Al7), (A26), (A38) and (A44), we obtain

Y3 - 3 s/

E  vec[2h(n) i -] 0W vee[“n(Jdn) i -l

= (27" 1=n)4U2DatrW (1 + Kpp)F(0) — F(0)

+21240n+ D gy.2 Zlvect @ (0)]'W [vecF @ (0)] + 0(27n=n + 2§ 24In):

The desired result follows by using 2dn=nz+1 ¥ ¢ This completes the proof. W
Proof of Theorem 5.1: Recall the representation of Z(J) in (A18). We can write

—n(j\n) i —n(In) = dg () i ds, (1) in(D)

I=1ijn
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o h I
= ds (1) i ds, (1) Ein(l)
I=1in
o h ih i
+ d\j\n(l) i Ao, (D Tn) i ETn(D)
I=1in
it h ihA i
+ ds, (1) i do () Ta(D) i Tn(D)
I=1in

= éln + éZn + é3n; say. (A46)

For the ..rst term in (A46), using the de..nition of dj_ (1) in Lemma A.1, we have

z z max§fq;In) - s
_dj\n(l) i dg () - (2%l=2)
j:min(j\n;-]n)

It follows from Assumptions A.2-A.3 that

° ° maxy’\(;Jn) el ]
°Bin° - ¢ jevil=21j9k i (Dk
j=min(\fé\1;‘]n)|:lin 3. #
max%;lln) ) %
= (2%)ic4 2145 i9ki(hk
j=min(dh;3n) I=1lin i
= 2i¥n Op2%=2) j 1)+ 0p =20 1) (A47)

Next, we consider the second term in (A46). Let m 2 Z such that 1 - m < n: By Assumption A.2,
and sup; n<i<n Eiiin(D) 1 ETn()ij* = O(nT*); we have

o o A ! - -o o
o o X x : :o o
°Bon® - 2 + dy (D i ds, () °7() i ETW)°
1=1 I=m+1
maxgledn) S S o e o
- C j2%1=2j9°7() 1 ET()° + jovl=2djic eg(l) § ET(1)°
j=min($h;Jn) =1 I=m+1
3~ #
max@i@In) 3% ° o M ° °
- c4 2195 2wl ey (1) § ET()° + juljic °3(1) § ETQ)°
j=min(Jh;3n) 1=1 I=m+1
= 2qun[OP (Z\j\n:ZJn i 1)+0p (2Jn:2\j\n i 1)]0p (mq+l:n% +ml“=n%)
= (2%=n?)[0p (29=27" § 1) + Op (27=29 § 1)]: (A48)

where the last equality follows by setting m = 27n:
Finally, for the last term in (A46), using the mean value expansion (A21), we have

o o o o" X # N : :
Bgn® - 2 i po° nil i Ve (Wif? Ay () § don (1)
3n Hn i Ho® N sup JjruVe(Wij M i da. (D
t=1 H2£0 I=tin .
= (2=n?) Op (29 =2% j 1) +0p(2=2% j 1) : (A49)
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where the equality follows by reasoning analogous to that of Bon: Combining (A46)-(A49), we obtain
h i
2a(@n) i Zn@n) = Op (2727 j 1) + 0p(27=2" i 1) Op (27=n? +2i%):

For case (i), given 223n=n ¥ 0;J,, ¥ 0 and 23n=23n +2In=23n = Op (1); we have 2n(J}) T 2n(Jn) TP O:
This, together with £,,(J,) P — from Theorem 4.1, ensures =,(J5) i — ¥P 0: For case (ii), given
29n=n 1 0;J, ¥ A and 290=23n = 1+ 0p (2i7n), we have 2n(Jh) i 2n(3n) = 0p (27F=n? + 2i0dn):
This, together with 2,(J,) ¥P — from Theorem 5.1, ensures that Z,(J,,) i — "7 0 and

h i h i
MSE Z2,(dh); = =MSE 2,(3n);— [1+0p(L)]: (A50)

The desired result follows immediately from Theorem 4.2(ii). This completes the proof. ll

Proof of Corollary 5.2: (i) Suppose J,, is a nonstochastic sequence such that 2dn+lznz W ¢ 2 (0; 1):
Given ®,(q) = Op (1), we have

$_nd 1E 2 Ut
2°n=2"n =€p=c =c¢'" q,4®n(q)=2Da > =0Op(1):

Similarly, we have 2In=29n = Op (2); given ®ri11(q) = Op (1): Thus, all the conditions of Theorem 5.1(i)
hold, and thus the desired results follow immediately.
(ii) Because ®,(q) = ®, +op(n? Til) implies that there exists a nonstochastic sequence J,, such that
1

2In+lonmsr ¥ ¢, 7 (0.5®,=2Dx) 7+ 2 (0;1) and 23h=03n = 1 + 0p (2i97): Thus, the conditions of
Theorem 5.1 hold, and the desired results follow immediately. This completes the proof. B
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Table 1(a): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
AR(1)-Homo Model: Zero-mean Random Regressors with n =128:

(%;7) = (0:5;0) t Fs Fa
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NW -0.385 0.181 033 18.0 11.3 21.3 133 26.1 18.2
QS -0.262 0.361 043 165 10.8 199 126 242 16.8
FR -0.138 0.558 057 159 97 183 118 214 15.0
PW-NW -0.211 0.532 057 172 120 185 122 232 16.7
PW-QS -0.237 1.384 144 169 120 16.1 10.7 186 132
PW-FR -0.241 2.122 218 172 123 154 111 191 126
KV B 135 81 139 76 173 9.1
(%) = (0:9;0)
NW -3.815 1.663 16.21 38.2 30.0 482 422 665 58.7
QS -3.420 2.942 1464 339 260 453 381 60.7 529
FR -3.068 4.171 13.58 309 240 419 335 552 46.9
PW-NW -1.977 26.76 30.67 28.2 216 348 271 479 399
PW-QS -2.009 30.0 34.04 275 20.6 337 252 440 36.6
PW-FR -1.915 37.12 40.78 279 217 343 263 438 36.8
KV B 252 17.0 322 237 46.3 359
(% ") = (0:95;0)
NW -5.322 1.556 29.88 46.4 373 60.8 522 804 749
QS -4.965 3.018 27.67 427 336 56.6 483 750 70.1
FR -4.677 4.222 26.10 404 320 517 444 716 66.0
PW-NW -2.990 55.96 64.90 338 265 43.8 36.1 612 536
PW-QS -3.123 54.05 63.80 34.2 263 40.0 335 57.1 510
PW-FR -2.999 65.68 74.67 346 268 39.6 329 547 485

KV B 314 225 416 324 610 518




Table 1(b): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
MA(1)-Homo Model: Zero-mean Random Regressors with n = 128:

(%;7) = (0;0:5) t Fs Fa
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NW -0.204 0.115 0.15 159 92 166 98 21.3 132
QS -0.132 0.238 025 161 93 169 109 216 144
FR -0.054 0.33 033 159 92 140 100 182 121
PW-NW -0.114 0.349 0.36 158 10.7 16.1 119 205 145
PW-QS -0.11 0.908 092 145 98 142 96 16.7 11.3
PW-FR -0.096 1.435 144 147 96 141 98 169 11.1
KV B 126 6.0 143 86 144 84
(") = (0;0:9)
NW -0.280 0.149 0.22 168 11.1 189 115 228 15.0
QS -0.174 0.248 0.27 157 94 160 10.2 199 121
FR -0.029 0.346 034 140 82 144 89 163 103
PW-NW -0.124 0.499 051 155 105 16.8 116 19.7 145
PW-QS -0.043 1.04 1.04 142 98 141 95 16.2 10.7
PW-FR 0.001 1.80 1.80 152 98 123 86 149 97
KV B 123 6.9 144 9.0 153 8.6
(% ") = (0;0:95)
NW -0.282 0.150 0.22 168 11.0 19.0 115 227 15.0
QS -0.174 0.234 0.26 157 93 159 101 194 11.8
FR -0.029 0.33 033 141 81 144 86 16.2 103
PW-NW -0.125 0.503 051 157 107 172 116 199 143
PW-QS -0.029 0.977 098 140 86 132 85 144 093
PW-FR 0.024 1.46 146 148 87 121 82 148 9.0

KV B 122 69 143 9.0 152 85




Table 1(c): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
ARMA(1)-Homo Model: Zero-mean Random Regressors with n = 128:

(%; ") = (0:5;0:5) t Fs Fs
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NwW -0.711 0.384 0.80 216 136 250 179 328 235
Qs -0.489 0.538 0.77 178 116 214 140 261 1738
FR -0.209 0.758 0.80 151 94 170 108 204 127
PW-NW -0.108 2.126 213 164 12.0 187 124 214 163
PW-QS 0.329 1.778 188 122 72 122 74 133 86
PW-FR 0.735 3.264 380 112 61 107 60 113 7.1
KV B 139 88 149 86 203 122
(%;7) = (0:9;0:9)
NWwW -4.283 2.040 20.38 38.7 30.8 49.4 436 67.7 60.4
Qs -3.869 3.546 1851 341 265 458 39.0 618 531
FR -3.494 4.868 17.08 315 245 43.0 34.0 56.2 47.7
PW-NW 0.523 94.51 9478 220 165 246 183 324 259
PW-QS 2.373 132.20 137.83 152 10.2 175 111 209 165
PW-FR 4418 22845 24797 128 85 141 87 17.6 132
KV B 26.2 183 333 245 483 36.9
(%;7) = (0:95; 0:95)
NWwW -5.663 1.775 3385 465 38.1 60.0 526 813 75.0
Qs -5.303 3.33 3145 433 341 570 499 765 70.6
FR -5.011 4.788 20.89 406 31.1 53.0 455 724 66.6
PW-NW -0.593 81.96 8231 234 178 30.2 23.0 410 354
PW-QS 0.791 110.2 110.82 18.8 12.6 246 185 340 28.2
PW-FR 2.753  203.12 21071 16.4 10.6 20.8 15.6 295 243

KV B 315 225 427 334 616 527




Table 2(a): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
AR(1)-Homo Models: Nonzero-mean Random Regressors with n = 128:

(%;7) = (0:5;0) t Fs Fa
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NW -0.359 0.298 0.42 171 115 198 127 240 154
QS -0.296 0.404 0.49 16.1 105 194 121 231 15.0
FR -0.211 0.564 0.60 16.7 10.2 179 128 215 14.6
PW-NW -0.167 0.644 0.67 169 9.8 17.0 10.7 20.7 139
PW-QS -0.079 2.016 2.02 156 94 166 104 19.2 129
PW-FR -0.058 3.352 3.35 158 104 16.0 11.0 20.3 13.8
KV B 135 81 139 76 173 91
(%) = (0:9;0)
NW -5.295 4.876 3291 36.8 285 46.8 40.0 62.6 555
QS -5.012 7.738 3286 36.3 28.3 483 40.1 63.0 54.2
FR -4.682 10.39 3232 336 279 442 36.8 59.5 50.3
PW-NW 1.43 817.7 819.7 286 23.0 331 274 424 364
PW-QS 1.169 1242 1244 266 19.8 247 205 31.7 26.1
PW-FR -0.067 1937 1937 244 193 213 172 269 225
KV B 252 17.0 322 237 46.3 359
(% ") = (0:95;0)
NW -10.23 10.85 11559 458 36.7 579 499 758 704
QS -9.949 13.01 112.01 433 358 56.1 481 741 67.9
FR -9.269 18.68 104.60 40.1 32.1 517 442 691 627
PW-NW 5.233 24174 24202 308 265 33.8 27.7 419 379
PW-QS 9.780 57562 57657 285 228 246 21.1 30.7 26.8
PW-FR 8.927 39843 39922 250 199 176 141 227 19.8

KV B 314 225 416 324 610 51.8




Table 2(b): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
MA(1)-Homo Models: Nonzero-mean Random Regressors with n =128:

(%;7) = (0;0:5) t Fs Fa
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NW -0.209 0.172 021 16.0 9.2 172 101 20.6 127
QS -0.147 0.194 021 153 82 161 95 184 113
FR -0.055 0.27 027 145 80 13.7 87 164 10.2
PW-NW -0.056 0.349 03 139 89 142 98 17.7 118
PW-QS -0.017 0.32 032 134 86 130 84 154 93
PW-FR -0.007 0.377 0377 137 85 134 81 157 9.6
KV B 126 6.0 143 86 144 84
(") = (0;0:9)
NW -0.293 0.231 031 165 108 198 111 219 144
QS -0.202 0.247 028 151 89 165 9.2 18.7 11.8
FR -0.038 0.339 034 134 76 136 80 147 84
PW-NW -0.026 0.55 055 146 86 149 89 175 107
PW-QS 0.034 0.45 045 124 76 124 80 140 8.0
PW-FR 0.06 0.50 050 123 73 127 7.6 139 8.0
KV B 123 69 144 90 153 8.6
(% ") = (0;0:95)
NW -0.294 0.233 032 165 108 199 111 221 144
QS -0.204 0.249 029 151 90 166 94 186 11.7
FR -0.037 0.34 034 135 76 136 79 148 84
PW-NW -0.024 0.55 055 145 85 145 87 17.0 10.3
PW-QS 0.037 0.46 046 127 74 126 7.7 142 8.2
PW-FR 0.062 0.51 051 124 75 127 76 143 8.0

KV B 122 69 143 90 152 85




Table 2(c): Bias, Variance, MSE of Variance Estimators, and Size of t- and F- tests Under
ARMA(1)-Homo Models: Nonzero-mean Random Regressors with n = 128:

(%; ") = (0:5;0:5) t Fs Fs
Bias Variance MSE 10% 5% 10% 5% 10% 5%
NwW -0.674 0.676 113 204 132 23.0 156 28.7 19.8
Qs -0.527 0.864 114 175 118 21.2 142 254 17.7
FR -0.287 1.163 124 158 98 181 115 211 15.0
PW-NW 0.326 4.392 449 145 8.7 132 89 161 101
PW-QS -0.103 1.674 168 144 89 17.0 100 195 124
PW-FR -0.357 2.478 260 17.0 116 20.0 143 246 175
KV B 139 88 149 86 203 122
(%;7) = (0:9;0:9)
NWwW -6.309 7.157 46.96 37,5 29.3 47.6 410 638 56.7
Qs -5.977 10.76 46.49 357 28.1 484 404 643 541
FR -5.685 13.39 4571 357 285 452 381 606 528
PW-NW 10.24 5163 5268 209 159 213 170 272 220
PW-QS 11.53 7975 8108 222 162 185 152 235 208
PW-FR 16.04 18755 19013 17.7 13.7 131 105 16.8 15.0
KV B 26.2 183 333 245 483 36.9
(%;7) = (0:95; 0:95)
NWwW -11.58 14.99 149.31 451 372 57.4 50.1 758 707
Qs -11.04 21.95 143.88 439 352 558 49.0 747 68.7
FR -10.48 29.57 139.58 415 325 527 450 70.2 62.7
PW-NW 16.21 38321 38584 26,5 20.9 23.0 18.7 258 214
PW-QS 19.12 57500 57866 21.9 17.1 16.1 131 199 180
PW-FR 22.86 101625 102148 16.6 119 105 87 132 114

KV B 315 225 427 334 616 527




Table 3(a): Size-corrected Powers at the 5% Level of t- and F- tests under AR(1)-, MA(1)-,
and ARMA(1,1)-Homo Models: Zero-mean Random Regressors with £ = 0:2; n = 128:

t F F t F, Fy t R Fs

(%) = (0:5;0) (% ") = (0;0:5) (% ") = (0:5;0:5)
NW 332 544 762 37.8 643 86.7 246 39.8 56.5
QS 345 498 746 327 56.0 79.4 248 40.7 55.6
FR 31.4 458 68.7 327 56.1 778 250 385 554

PW-NW 27.0 427 64.4 289 505 67.6 249 29.3 359
PW-QS 259 376 523 324 532 68.6 243 335 515
PW-FR 256 34.8 48.8 30.3 454 63.7 221 355 522

KVB 26.1 359 535 337 423 623 18.7 28.7 39.3

(%) = (0:9;0) (% ") = (0;0:9) (%) = (0:9;0:9)
NW 13.8 153 18.0 30.7 58.0 81.0 125 141 16.9
QS 143 153 17.1 31.8 574 79.0 124 142 157
FR 143 161 16.8 281 558 776 131 141 151

PW-NW 133 14.1 17.8 249 464 62.6 124 120 128
PW-QS 13.6 12.7 15.0 235 50.0 70.6 115 152 156
PW-FR 135 119 128 275 455 65.7 104 154 149

KV B 116 133 131 295 38.6 57.6 114 132 136

(%; ") = (0:95;0) (*%; ) = (0;0:95) (%;7) = (0:95; 0:95)
NwW 141 144 13.0 31.0 585 811 13.8 115 12.6
Qs 115 138 132 317 58.1 805 122 134 12.8
FR 123 128 146 32.0 556 77.6 145 114 133

PW-NW 10.7 117 122 254 471 66.2 9.8 109 111
PW-QS 10.9 133 10.3 261 504 733 114 132 129
PW-FR 122 127 111 26.3 458 69.1 109 120 144

KV B 111 132 116 294 385 57.8 10.1 116 105




Table 3(b): Size-corrected Powers at the 5% Level of t- and F- tests under AR(1)-, MA(1)-
and ARMA(1,1)-Homo Models: Zero-mean Random Regressors with £+ = 0:5; n = 128:

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

t F Fa

t F Fa

t F Fa

(%) = (0:5;0)
98.6 100 100
97.8 99.9 100
96.4 99.1 98.9

934 96.5 95.8
88.0 89.0 88.1
87.2 87.1 86.1

86.3 94.7 98.0

(% ") = (0;0:5)
99.8 100 100
98.6 100 100
97.8 98.6 97.6

96.2 959 94.5
915 90.1 894
89.2 878 87.8

93.0 96.6 99.0

(%; ") = (0:5;0:5)
91.8 99.4 100
91.0 99.6 100
90.4 99.6 100

852 918 934
90.3 978 994
86.2 97.1 98.8

735 865 952

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

(%) = (0:9;0)
54.4 685 79.7
52.1 67.0 782
51.9 66.5 76.2

50.6 618 744
48.3 58.1 66.4
47.2 512 587

425 524 593

(% ") = (0;0:9)
99.0 100 100
98.4 100 100
97.6 99.6 99.7

945 958 95.2
92,7 938 92.8
916 919 918

89.1 948 98.6

(%; ") = (0:9;0:9)
493 624 755
46.3 63.0 745
46.4 60.1 73.4

416 50.0 56.5
425 58.1 68.8
39.6 57.7 66.0

395 49.0 54.9

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

(% ") = (0:95;0)
525 61.2 63.1
456 59.7 62.4
46.7 558 60.9

41.8 501 573
417 516 49.2
415 491 477

37.7 477 473

(") = (0;0:95)

99.0 100 100
100 100 100
982 99.6 99.7

948 958 95.3
93.0 945 94.0
915 925 93.0

88.9 949 98.6

(%;7) = (0:95; 0:95)
50.2 56.2 59.8
51.8 57.5 59.4
48.4 53.8 56.9

354 456 458
40.0 50.3 55.8
36.9 46.1 554

35.2 423 421




Table 4(a): Size-corrected Powers at the 5% Level of t- and F- tests under AR(1)-, MA(1)-,
and ARMA(1,1)-Homo Models: Nonzero-mean Random Regressors with £ = 0:2; n = 128:

t F F t F, Fy t R Fs
(%) = (0:5;0) (% ") = (0;0:5) (% ") = (0:5;0:5)
NW 29.7 492 741 348 612 84.7 234 357 524
QS 31.0 502 721 36.4 61.6 845 236 358 533
FR 259 473 654 355 60.0 82.6 231 340 524

PW-NW 328 456 64.9 31.8 59.3 811 235 30.2 422
PW-QS 28.7 429 604 38.0 576 79.8 23.8 354 505
PW-FR 25.0 40.7 59.2 364 582 77.8 23.0 34.0 420

KVB 250 351 506 327 419 614 17.4 265 37.2

(%) = (0:9;0) (% ") = (0;0:9) (%) = (0:9;0:9)
NW 11.8 134 15.3 303 57.1 783 9.9 127 134
QS 11.4 133 15.2 322 569 784 10.3 120 13.3
FR 124 130 155 320 57.3 796 10.7 120 123

PW-NW 101 106 9.9 28.8 50.8 73.5 79 8.0 8.7
PW-QS 91 94 80 30.2 53.2 76.0 76 8.6 9.2
PW-FR 79 98 97 314 520 76.2 74 79 7.9

KV B 9.1 110 120 27.8 37.0 56.6 88 108 119
(%; ") = (0:95;0) (*%; ) = (0;0:95) (%;7) = (0:95; 0:95)
NwW 9.0 11.2 109 30.1 57.1 783 89 114 87
Qs 9.0 11.0 11.0 322 56.8 78.6 86 99 10.2
FR 79 91 110 317 57.2 795 81 94 103

PW-NW 70 96 8.9 293 520 73.7 74 8.0 7.5
PW-QS 59 69 47 285 54.7 78.7 6.2 6.7 7.0
PW-FR 74 81 58 295 536 76.2 5.0 6.3 6.3

KV B 79 89 094 28.0 36.7 56.6 73 73 8.8




Table 4(b): Size-corrected Powers at the 5% Level of t- and F- tests under AR(1)-, MA(1)-,
and ARMA(1,1)-Homo Models: Nonzero-mean Random Regressors with £ = 0:5; n = 128:

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

t F Fa

t F Fa

t F Fa

(%) = (0:5;0)
97.1 99.8 100
96.3 99.8 100
94.0 994 99.1

96.3 98.3 97.8
923 958 951
87.3 920 93.0

84.1 934 98.2

(% ") = (0;0:5)
99.1 100 100
99.1 100 100
98.8 99.7 99.6

98.1 993 994
98.7 99.7 99.7
98.3 994 99.6

90.7 959 98.9

(%; ") = (0:5;0:5)
87.9 98.7 100
87.5 98.8 100
87.0 98.4 99.9

83.0 934 943
86.6 97.6 99.3
80.8 93.6 94.7

711 842 931

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

(%) = (0:9;0)
39.6 54.7 727
37.8 557 718
40.1 509 67.4

27.7 355 40.0
25.0 277 25.6
19.3 256 27.0

31.1 393 50.9

(% ") = (0;0:9)
98.1 100 100
98.3 100 100
985 100 100

96.8 99.1 99.0
97.4 99.9 99.8
97.9 99.9 99.9

86.9 940 98.4

(%; ") = (0:9;0:9)
340 495 635
348 50.4 65.7
335 452 58.6

253 253 301
16.8 223 25.2
195 194 20.1

29.2 357 481

NW

QS
FR

PW-NW
PW-QS
PW-FR

KV B

(% ") = (0:95;0)
285 394 47.0
274 378 4713
259 359 471

16.3 22,6 23.7
135 155 124
171 299 165

21.8 293 34.8

(") = (0;0:95)
98.0 100 100
983 100 100
985 100 100

96.9 99.1 98.8
97.4 99.9 99.9
97.9 99.9 100

86.9 941 98.4

(%;7) = (0:95; 0:95)
269 36.7 43.2
244 358 453
236 323 412

15,7 19.0 19.0
11.7 144 15.1
104 144 131

199 255 316




