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Abstract
The Lorenz curve relates the cumulative proportion of income to the cumulative
proportion of population. When a particular functional form of the Lorenz curve
is specified it is typically estimated by linear or nonlinear least squares assuming
that the error terms are independently and normally distributed. Observations on
cumulative proportions are clearly neither independent nor normally distributed.
This paper proposes and applies a new methodology which recognizes the
cumulative proportional nature of the Lorenz curve data by assuming that the
proportion of income is distributed as a Dirichlet distribution. Five Lorenz-curve
specifications were used to demonstrate the technique. Once a likelihood function
and the posterior probability density function for each specification are derived
we can use maximum likelihood or Bayesian estimation to estimate the
parameters. Maximum likelihood estimates and Bayesian posterior probability
density functions for the Gini coefficient are also obtained for each Lorenz-curve
specification.

Keywords: posterior distribution; Metropolis-Hastings algorithm; Gini
coefficient;
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1. Introduction

The Lorenz curve is one of the most important tools upon which the measurement

of income inequality is based. For a given economy or region, it relates the

cumulative proportion of income to the cumulative proportion of population, after

ordering the population according to increasing level of income. Two general

approaches to Lorenz curve estimation have been adopted. In the first, a

particular assumption about the statistical distribution of income is made, the

parameters of this income distribution are estimated, and a Lorenz curve

consistent with the distributional assumption, and consistent with the parameter

estimates for that distribution, is obtained. See, for example, McDonald (1984)

and McDonald and Xu (1995). In the second approach, a particular functional

form for the Lorenz curve is specified and estimated directly. It is this second

approach which is the focus of this paper.

Early breakthroughs on Lorenz curve estimation were those of Gastwirth (1972)

and Kakwani and Podder (1973, 1976). Kakwani and Podder recognized the

multinomial nature of grouped data and used a Lorenz curve specification that,

after transformation, could be placed in an approximate linear model framework.

Other specifications have typically been estimated by linear or nonlinear least

squares without any regard for the fact that the assumption of independent

normally distributed errors is unrealistic (Kakwani 1980, Basmann et al 1990,

Chotikapanich 1993). Clearly, observations on cumulative proportions, or even

their logarithms if such a transformation is convenient, will be neither

independent nor normally distributed. Sarabia et al (1999) overcome this problem
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by suggesting a distribution-free method of estimation. Suppose that a Lorenz

curve has n unknown parameters, and that M observations on the cumulative

proportions are available. They find a set of parameter estimates for each of the




= n
MK  subsets of n observations. Since each of the subsets yields n equations

in n unknown parameters, a set of parameter estimates is obtained by solving

these equations. The medians of the sets of parameter estimates are recommended

as the final set of estimates. No distribution theory is available for this procedure,

but the authors do provide some bootstrap standard errors.

An alternative way to proceed, and the approach adopted in this paper, is to

choose a distributional assumption that is consistent with the proportional nature

of the data and to pursue maximum likelihood or Bayesian estimation. Maximum

likelihood estimators have well known statistical properties, and Bayesian

estimation provides a framework for finite sample inference with several well

recognized advantages. See, for example, Poirier (1995). One multivariate

distribution which has shares which sum to one as its vector of random variables

is the Dirichlet distribution. By relating the parameters of the Dirichlet

distribution to Lorenz curve differences, we can allow for the cumulative

proportional nature of the Lorenz curve data, and set up a likelihood function

dependent on the unknown parameters of the Lorenz curve. A similar approach

was adopted by Woodland (1979) for estimation of share equations that arise in

demand and production theory. Although our discussion and examples relate to

the use of grouped data, our methodology could also be applied to unit recorded

data.
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In Section 2, we outline the distributional assumptions and how they relate to

Lorenz curve estimation. The likelihood function and a general posterior

probability density function (pdf) for a set of unknown Lorenz curve parameters

are derived. A Metropolis-Hastings algorithm that can be used to estimate

marginal posterior pdfs for the parameters and their moments is described. To

illustrate our suggested techniques we use data on Sweden and Brazil considered

earlier by Shorrocks (1983) and revisited by Sarabia et al (1999). These data are

described in Section 3; five different Lorenz functions that we use in the

empirical work are presented. The results are given and discussed in Section 4.

Several questions are investigated. To examine whether the results are sensitive

to the chosen estimation technique we compare our estimates and their standard

errors (and posterior standard deviations) to those obtained by Sarabia et al

(1999), and those obtained using least squares (after taking logarithms where

relevant). Since Lorenz-curve estimation is usually a first step towards estimating

inequality, maximum likelihood (ML) estimates and Bayesian posterior pdfs for

the Gini coefficient are obtained for each Lorenz-curve specification. A

comparison of the ML and Bayesian results gives an indication of any differences

between asymptotic and finite sample inferences. Finally, we examine whether

functional form preference is sensitive to the chosen estimation technique and

form of inference.

2. Models, Assumptions and Estimation

Suppose we have available observations on cumulative proportions of population

( Mπππ ,,, 21 K  with 1=π M ) and corresponding cumulative proportions of

income ( Mηηη ,,, 21 K  with 1=ηM ) obtained after ordering population units
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according to increasing income. We wish to use these observations to estimate a

parametric version of a Lorenz curve that we write as );( βπ=η L  where β  is an

)1( ×n  vector of unknown parameters. Clearly, one would not expect all data

points to lie exactly on the curve );( βπ=η ii L . It seems reasonable to assume,

however, that conditional on the population proportions iπ , the income shares

1−η−η= iiiq  are random variables with means

);();()()()( 11 βπ−βπ=η−η= −− iiiii LLEEqE (1)

Our proposal is to also assume )',,,( 21 Mqqqq K=  follows a Dirichlet

distribution which is a distribution consistent with the share nature of the random

vector q. The probability density function (pdf) for the Dirichlet distribution is

given by

11
2
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where )',,,( 21 Mααα=α K  are the parameters of the pdf and (.)Γ  is the gamma

function. By relating the iα  to the Lorenz function, we can find a pdf for q which

has the mean given in equation (1) and which is a function of the Lorenz curve

parameters. Working in this direction, we set

[ ]);();( 1 βπ−βπλ=α −iii LL (3)

where λ  is an additional unknown parameter. This definition for iα  gives the

desired result because the mean of the Dirichlet distribution is given by
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since 1);( =βπML  and 0);( 0 =βπL . We can now write the pdf for q as

∏
= −

−βπ−βπλ
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where '),'( λβ=θ .

The variances and covariances between the shares are given by

1
)](1)[(

)var(
+λ
−= ii

i
qEqE

q (6)

1

)()(
),cov(

+λ
−= ji

ji
qEqE

qq (7)

Thus, the income shares are correlated, with correlations given by

2/1

)](1)][(1[

)()(

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







−−

−=
ji

ji
ij qEqE

qEqE
r (8)

Since the variances depend on )( iqE , the shares are also heteroskedastic. The

parameter λ  acts as an inverse variance parameter. The larger the value of λ , the

better the fit of the Lorenz curve to the data.
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The maximum likelihood estimate for θ  can be found by maximizing the log-

likelihood function

∑

∑

=
−

=
−

βπ−βπλΓ−

−βπ−βπλ+λΓ=θ

M

i
ii

M

i
iii

LL

qLLqf

1
1

1
1

)]);();([(log

log)1)];();([()(log)]|(log[

(9)

For Bayesian estimation we use uniform priors on the elements of β , over the

feasible ranges for those parameters. Since ( 1+λ ) is like an inverse variance

parameter, we use a uniform prior for )1log( +λ . Also, assuming a priori

independence of β  and λ , yields the prior pdf

1
)(

),()(
+λ
β∝λβ=θ I

ff 0>λ (10)

where )(βI  is am indicator function equal to unity for feasible values of β  and

zero if β  falls outside the region that defines );( βπL  as a Lorenz curve.

Application of Bayes theorem involves multiplying together equations (5) and

(10) to obtain the kernel of the posterior pdf for θ

)|()()|( θθ∝θ qffqf (11)

For all the Lorenz-curve specifications that we estimate, the posterior pdf in (11)

is analytically intractable in the sense that we cannot carry out the necessary

integration to obtain marginal posterior pdfs for individual parameters and the

posterior moments of these parameters. These quantities can be estimated,

however, by using a Metropolis-Hastings algorithm to draw observations on θ

from the posterior pdf )|( qf θ . See, for example, Albert and Chib (1996) and

Geweke (1999). We used the following random-walk algorithm with the
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maximum likelihood covariance θV  used as a covariance matrix for the random-

walk generator function. The steps for drawing the )1( +m th observation )1( +θ m

are:

1. Draw a candidate value *θ  from a ),( )( θθ cVN m  distribution where c  is a

scalar set such that *θ  is accepted approximately 40-50% of the time.

2. Compute

)|(
)|(

)(

*

qf
qf

r
mθ

θ=

Note that this ratio can be computed without knowledge of the

normalising constant for )|( qf θ . Also, if any of the elements of *θ  fall

outside the feasible parameter region, then 0)|( * =θ qf .

3. Draw a value u  for a uniform random variable on the interval (0,1).

4. If ru ≤ , set *
)1( θ=θ +m .

If ru > , set )()1( mm θ=θ + .

5. Return to step 1, with m  set to 1+m .

Observations generated in this way can be placed in histograms to estimate

marginal posterior pdfs, and sample means and standard deviations can be used to

estimate posterior means and standard deviations.

3. Data and Lorenz Curves

To illustrate our suggested techniques we use income distribution data on

national samples of income recipients for a year close to 1970, for two countries:

Sweden and Brazil. These data were used by Sarabia et al (1999). They were

derived from Jain (1975) and first published in Shorrocks (1983). The data are in

the form of decile cumulative income shares. Shorrocks used the data on these

two countries as part of a group of twenty countries to examine the ranking of

income distributions given different social states. Sarabia et al (1999) used the

data to illustrate their proposed method for the estimation of Lorenz curves. The
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data on these two countries were chosen because of their differences in the degree

of inequality in income distributions.

A large number of functional forms have been suggested in the literature for

modelling the Lorenz curve. For details of the various alternatives, see Sarabia et

al (1999), and references therein. To keep our study manageable, we chose only

5, ranging from one simple function with only one unknown parameter, to two

three-parameter functions which are more flexible, but also harder to estimate

precisely. The 5 different Lorenz functions to which we applied the two data sets

are:

1
1

);(1 −
−=π

π

k

k

e
e

kL 0>k (12)

])1(1[),;(2
δα π−−π=δαπL 10,0 ≤δ<≥α (13)

γδπ−−=γδπ ])1(1[),;(3L 10,1 ≤δ<≥γ (14)

γδα π−−π=γδαπ ])1(1[),,;(4L 10,1,0 ≤δ<≥γ≥α (15)

bdadbaL )1(),,;(5 π−π−π=π 10,10,0 ≤<≤<> bda (16)

The function 1L  is the relatively simple one-parameter function suggested by

Chotikapanich (1993); 2L  coincides with the proposal of Ortega et al (1991). 3L

is a well-known form of Lorenz curve suggested by Rasche et al (1980) and 4L  is

an extension of 3L  and 2L  introduced by Sarabia et al (1999). Note that 4L  nests

both 2L  and 3L , with 2L  being 4L  with 1=γ  and 3L  being 4L  with 0=α .

Setting both 1=γ  and 0=α  yields the Lorenz curve δπ−−= )1(1L  which

originates from the classical Pareto distribution. The function 5L  is the “beta

function” proposed by Kakwani (1980). It is considered one of the best

performers among a number of different functional forms for Lorenz curves. See,

for example, Datt (1998). Note that, when 1=a  and 1=d , 5L  is the same as 2L

with 1=α .
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Once a Lorenz curve has been estimated, one is usually interested in various

inequality measures that are related to it. As an example, we compute maximum

likelihood estimates and posterior pdfs for the Gini coefficients that can be

derived from each of the Lorenz functions. In each case the Gini coefficient is

defined as

∫ πβπ−=
1

0

);(21 dLG (17)

Alternative expressions for G can be found for some of the Lorenz curves.

However, with the exception of 1L , they still generally involve a numerical

integral. We obtain ML and Bayesian estimates by numerically evaluating (17) in

each case. For ML estimation, numerical integration is performed with β

replaced by the ML estimate β̂ . For Bayesian estimation, the integral is evaluated

for each draw of β  from the posterior pdf of β .

4. Results

In addition to ML and Bayesian estimation using the assumption of a Dirichlet

distribution, we also estimated each function using nonlinear least squares.

Nonlinear least squares is “optimal” under the assumption that the iη  are

independent normally distributed random variables with mean ),( βπ iL  and

constant variance. Although this assumption is not realistic for data which are

cumulative proportions, nonlinear least squares is a popular estimation technique,

and so the sensitivity of parameter estimates to the choice of technique is useful

information.

Point estimates of the Lorenz curve parameters and the corresponding Gini

coefficients for Sweden and Brazil are presented in Tables 1 and 2, respectively.

The Bayesian point estimates are the posterior means estimated from 75,000
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draws using the random-walk Metropolis algorithm, after discarding the first

10,000 draws as a “burn in”. The estimates obtained by Sarabia et al (1999),

using their proposed technique, are also given for 32 , LL  and 4L .

[Table 1 near here]

Table 1 provides the estimates for Sweden. For 321 ,, LLL  and 5L  the estimates of

the Lorenz parameters and the Gini coefficients are not sensitive to the estimation

techniques. For 4L  different estimation techniques give very different Lorenz

parameter estimates. Despite these differences, the estimates for the Gini

coefficient are very similar across all functional forms and estimation techniques.

An exception is the one obtained from 4L  using Sarabia’s method. Reasons for

the atypical outcomes from 4L  are addressed later.

[Table 2 near here]

The remarks made about Sweden also hold for the estimates for Brazil given in

Table 2. One difference is the Gini coefficient estimates obtained from ML and

Bayes, when using 1L . They are 0.50 and 0.52, when all other estimates are

approximately 0.63. When we discuss goodness of fit, we discover that this

difference can be attributable to a poor fit. Tables 1 and 2 also reveal the

difference in inequality in Sweden and Brazil, with Sweden exhibiting the lower

level of inequality.

Standard errors for the ML and nonlinear least squares estimates, and posterior

standard deviations for the parameters from Bayesian estimation, are presented in

Tables 3 and 4 for Sweden and Brazil, respectively. The posterior standard

deviations are estimated from the 75,000 Metropolis draws, and corresponding
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values of the Gini coefficient. The standard errors for the Gini coefficient for ML

and nonlinear least squares were calculated using the asymptotic approximation

β∂
∂

β∂
∂= β

G
V

G
G ')ˆvar( (18)

where βV  is the asymptotic covariance matrix for the ML (or nonlinear least

squares) estimator for β . Expressions derived using (18) for each of the Lorenz

curves are given in the Appendix.

[Tables 3 and 4 near here]

From Tables 3 and 4, we make the following observations:

1. With the exception of 4L , to which special attention is devoted later, the

Bayesian posterior standard deviations are larger than the ML standard

errors. Since the ML standard errors are large-sample approximations,

whereas the posterior standard deviations reflect finite sample uncertainty,

this comparison reveals the extent to which misleading inferences can be

made from a large-sample approximation. To illustrate this point further, we

plotted the estimated posterior pdfs for (i) α  in the function 2L  for Sweden

(Figure 1), (ii) the Gini coefficient from 4L  for Sweden (Figure 2), and (iii)

the Gini coefficient from 5L  for Brazil (Figure 3). Normal pdfs, centred at

the ML estimates, and with standard deviations equal to the ML standard

errors, were also drawn on these figures. When viewed through Bayesian

eyes, these are the pdfs typically used to make large sample inferences. In all

three figures, the Bayesian pdfs have fatter tails, suggesting that ML

estimation understates the uncertainty about these quantities.
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2. The bootstrap standard errors computed by Sarabia et al (1999) are vastly

different from those provided by the other approaches. The difference is

sufficiently great to cast doubt on their validity, particularly when the

distribution theory for the Sarabia et al technique is not available.

3. The standard errors for nonlinear least squares (which is optimal when the

cumulative income proportions are normally distributed) are also quite

different. Thus, although the point estimates of the Lorenz parameters and

the Gini coefficient are quite insensitive to the chosen estimation technique,

interval estimates, and the assessment of estimation precision, depend

heavily on the distributional assumption and related method of estimation.

4. Overall, point estimates of the Gini coefficient are insensitive to the Lorenz

curve specification. (Those for 1L  from ML and Bayes, using the Brazilian

data, are exceptions.) There is, however, considerable variation in the

standard errors and posterior standard deviations. Thus, our knowledge or

degree of uncertainty about the value of the Gini coefficient does depend on

the functional form chosen for the Lorenz curve. This fact is clearly depicted

by the posterior pdfs that are graphed in Figures 4 and 5. Figure 4 contains

the posterior pdfs for Sweden’s Gini coefficient, obtained using 41 ,LL  and

5L . The 3-parameter Lorenz curves 4L  and 5L  suggest relatively precise

information about the Gini coefficient. The 1-parameter function 1L  exhibits

considerable uncertainty. Figure 5 contains the posterior pdfs for Brazil’s

Gini coefficient, obtained using 42 , LL  and 5L . Here, the story is similar,

except that the precision in estimation implied by 5L  is much greater than

that implied by 2L  and 4L .
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We turn now to the question of goodness of fit. Which of the Lorenz functions

best fits the data? As we will see, the answer to this question has a bearing on

precision of estimation that we discussed under the last point (4). The problem of

choosing between the alternative functions can be addressed in a number of ways.

For a straight goodness-of-fit comparison, we compare values of information

inaccuracy (Theil 1967, 1975). For testing nested functional forms we use

likelihood ratio tests for the ML estimates; from a Bayesian perspective, we

assess whether various parametric restrictions are true by examining the posterior

probability in the region near the restrictions.

Let iq̂  denote the predicted income shares obtained from an estimated model.

Theil’s (1967) measure of information inaccuracy is defined as

∑
=







=

M

i i

i
i q

q
qI

1 ˆ
log (19)

Functions with smaller values of I are better fits than those with larger values. If

the iq  are similar to the iq̂ , then knowing their values provides little information

relative to knowledge of the predictions. The function is a good fit. On the other

hand, iq  quite different from the iq̂  convey considerable information, leading to

a large value of I and a poor fit.

The information inaccuracy measure was computed using predictions from the

ML estimates, and predictions from the Bayesian posterior means. The outcomes

are presented in Table 5. In both countries, 5L  is the best fit, 4L  and 3L  are

approximately the same in terms of fit, and are preferred to 2L , which, in turn, is

preferred to 1L . There is virtually no difference in the measures obtained from the
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ML estimates and those obtained from the Bayesian estimates. There is a

difference between Sweden and Brazil, however. For Brazil, the fit of the best

function 5L  is much better, and the fit of the worse function 1L , is worse. Also,

for Sweden, the function 2L  is only marginally worse than 3L  and 4L . In the

case of Brazil it is noticeably inferior.

It is interesting that the precision with which the Gini coefficient is estimated is

directly related to how well the function fits the data. The relative magnitudes of

the posterior standard deviations for the Gini coefficients (Tables 3 and 4) reflect

the relative magnitudes of the information inaccuracy measures. These relativities

are also conveyed by the posterior pdfs in Figures 4 and 5.

The second way that we investigated choice of functional form was by examining

whether nested versions of 4L  and 5L  would be adequate. Given the results on

goodness of fit, one would expect that at least 3L  would be an acceptable

restricted version of 4L . Table 6 contains 2χ  values for likelihood ratio tests for

various hypotheses. These results confirm our conjecture about the relationship

between 3L  and 4L  for both Sweden and Brazil. Also, 2L  is an acceptable

restricted version of 4L  for Sweden, but not for Brazil, a conclusion consistent

with goodness-of-fit results. Finally, a restricted version of 2L , obtained by

setting 1=α , is clearly rejected relative to the best-fitting 5L .

The likelihood ratio test is a large-sample approximate test whose properties can

be questionable in small samples, particularly in our case, where there are only 10
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observations. An alternative procedure, valid in finite samples, is to examine the

posterior probability mass in the region where the restrictions hold. Proceeding in

this direction, we obtained scatter plots of the Markov-Chain Monte-Carlo

observations for a and d in 5L . These scatter plots appear in Figures 6 and 7, for

Sweden and Brazil, respectively. Setting 1=a  and 1=d  in 5L , and 1=α  in 2L ,

gives the same restricted version of a Lorenz function. Both plots show no

probability in the vicinity of 1=a  and 1=d . For Brazil there is a concentration

of probability around 1=d , but this concentration does not extend beyond a=

0.92, indicating no support for both restrictions.

The posterior pdfs for α  from 4L  were plotted ( Figures 8 and 9) to see if 3L  is

an acceptable restricted version of 4L  from a Bayesian perspective. For both

Brazil and Sweden, these pdfs have modes near zero. The Swedish one declines

very slowly – it is almost uniform – from zero to 0.5, then sharply to 0.7. That for

Brazil declines almost linearly from zero to 0.6. Both suggest 0=α  is an

acceptable value and hence there is nothing to gain by moving from the 2-

parameter function 3L  to the 3-parameter function .4L  Figures 8 and 9 also

explain why, for 4L , the estimates of α  were very sensitive to estimation

technique (Tables 1 and 2). The ML estimate is approximately equal to the mode

of the pdf which is near zero. The Bayesian estimate is the posterior mean which

is near the centre of the distribution in each case.

The above exercise was repeated for the parameter γ  from 4L . See Figures 10

and 11. Interestingly, there was a symmetry between the pdfs for α  and γ . For
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Sweden, the pdf for γ  was gradually increasing, but almost uniform, from 1 to

1.55. For Brazil it increased linearly from 1 to 1.35. After the increasing part of

the functions, there was a sharp decline at the right side of the distributions. The

reason that a hypothesis test suggested 2L  was an acceptable restricted version of

4L  for Sweden, but not for Brazil, is clear. There is substantial probability mass

at 1 for the former, but not for the latter.

A remaining puzzle is: Why is the Gini coefficient from 4L  estimated relatively

accurately, as reflected by the standard errors and standard deviations in Tables 3

and 4, and posterior pdfs in Figures 4 and 5, when the parameters α  and γ  from

4L  are estimated with little precision? We shed light on this question by

examining scatter plots of the Markov Chain Monte Carlo observations on α  and

γ . See Figures 12 and 13. The cigar-shaped nature of these plots indicates a very

high correlation between the parameters. Thus, although we cannot estimate the

parameters accurately individually, we can estimate combinations of the

parameters very accurately. It appears that the data does not discriminate between

large γ  with small α  and small γ  with large α , and that these combinations

have similar implications for the value of the Gini coefficient. Also, we observe

in the Swedish case that, although the hypotheses 0=α  and 1=γ  are reasonable

when considered separately, the joint hypothesis ( 1,0 =γ=α ) is clearly rejected.
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Conclusions and Summary

One way of estimating a Lorenz curve is to assume a particular distribution for

income, estimate the parameters of that distribution, and derive the corresponding

Lorenz curve. Another way is to assume a particular Lorenz curve, and estimate

its parameters. For this second approach we have suggested a distributional

assumption and corresponding estimation techniques which are consistent with

the proportional nature of Lorenz-curve data, can be employed with any Lorenz-

curve specification and can be used with grouped data or unit-record data.

Our model and estimation techniques were applied to two data sets that have been

the subject of past analyses, one for Sweden, a country with relatively low

inequality, and one for Brazil, a country with relatively high inequality. Results

were obtained for 5 different Lorenz-curve specifications. Our findings suggest

that point estimation of the Gini coefficient is generally insensitive to choice of

distributional assumption, estimation technique and Lorenz-curve specification.

There were two exceptions to this conclusion. One was for the function 1L

applied to the Brazilian data, using the Dirichlet distribution. In this case, the

different estimates were attributable to a poor fit. The second exception was the

estimate from 4L  with the Swedish data and the estimation technique of Sarabia

et al. This discrepancy is likely to be a consequence of estimation instability

associated with the overparameterized function 4L .

Although point estimation of the Gini coefficient was robust, assessment of the

precision of estimation was not. It depended heavily on choice of functional form

and the distributional assumption, and, to a lesser extent, on whether ML or
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Bayesian inference was adopted. With respect to choice of functional form, we

found that 5L  provided the best fit, 4L  tends to be an unnecessary

overparameterisation, and 1L  can fit poorly. With respect to tools of analysis, we

showed how Bayesian posterior pdfs can be an effective means for conveying

knowledge about unknown parameters and inequality measures, and how they

can be used to assess the validity of parametric restrictions on Lorenz functions.
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Appendix: Expressions for variances of the Gini coefficient.
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Table 1
Estimates for Lorenz Parameters and Gini Coefficients

Sweden

α δ γ Gini

2L
NL 0.5954 0.6352 0.3880
ML 0.6068 0.6412 0.3872

Bayes 0.6073 0.6418 0.3870
Sarabia 0.5960 0.6400 0.3850

3L
NL 0.7269 1.5602 0.3871
ML 0.7335 1.5767 0.3877

Bayes 0.7337 1.5766 0.3875
Sarabia 0.7300 1.5620 0.3860

4L
NL -0.7550 0.7931 2.2891 0.3864
ML 0.0048 0.7330 1.5721 0.3876

Bayes 0.2753 0.6970 1.3141 0.3872
Sarabia 0.0769 0.6490 1.1740 0.3210

1L k Gini
NL 2.5029 0.3792
ML 2.5313 0.3828

Bayes 2.5256 0.3814

5L a d b Gini

NL 0.7664 0.9397 0.5929 0.3876
ML 0.7492 0.9199 0.5862 0.3870

Bayes 0.7490 0.9201 0.5865 0.3866
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Table 2
Estimates for Lorenz Parameters and Gini Coefficients

Brazil

α δ γ Gini

2L
NL 0.5727 0.2876 0.6361
ML 0.5270 0.2857 0.6326

Bayes 0.5284 0.2861 0.6324
Sarabia 0.4900 0.2780 0.6350

3L
NL 0.3782 1.4357 0.6328
ML 0.3721 1.4160 0.6325

Bayes 0.3721 1.4153 0.6322
Sarabia 0.3640 1.3960 0.6340

4L
NL 0.2169 0.3467 1.2674 0.6339
ML 0.0262 0.3683 1.3950 0.6325

Bayes 0.1850 0.3446 1.2717 0.6327
Sarabia 0.0770 0.6170 1.1740 0.6440

1L k Gini
NL 5.3685 0.6368
ML 3.8438 0.5234

Bayes 3.7277 0.5063

5L a d b Gini

NL 0.9151 1.0001 0.2698 0.6349
ML 0.9131 0.9990 0.2685 0.6349

Bayes 0.9102 0.9970 0.2671 0.6348
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Table 3
Standard Errors (Deviations) for Lorenz Parameters and Gini Coefficients

Sweden

α δ γ Gini

2L
NL 0.0100 0.0037 0.0010
ML 0.0206 0.0085 0.0041

Bayes 0.0279 0.0112 0.0054
Sarabia 0.0018 0.0303

3L
NL 0.0028 0.0066 0.0007
ML 0.0072 0.0176 0.0038

Bayes 0.0107 0.0251 0.0050
Sarabia 0.0263 0.0022

4L
NL 0.4822 0.0322 0.4696 0.0000
ML 0.6612 0.0756 0.6369 0.0036

Bayes 0.1700 0.0267 0.1601 0.0053
Sarabia 0.0003 0.0977 0.0002

1L k Gini
NL 0.0621 0.0219
ML 0.1831 0.0228

Bayes 0.2284 0.0286

5L a d b Gini

NL 0.0101 0.0096 0.0075 0.0009
ML 0.0143 0.0093 0.0109 0.0031

Bayes 0.0216 0.0137 0.0164 0.0046
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Table 4
Standard Errors (Deviations) for Lorenz Parameters and Gini Coefficients

Brazil

α δ γ Gini

2L
NL 0.0163 0.0019 0.0011
ML 0.0383 0.0053 0.0052

Bayes 0.0515 0.0072 0.0072
Sarabia 0.0038 0.0662

3L
NL 0.0033 0.0107 0.0009
ML 0.0068 0.0225 0.0040

Bayes 0.0093 0.0304 0.0050
Sarabia 0.0713 0.0004

4L
NL 0.1322 0.0203 0.1015 0.0019
ML 0.2148 0.0318 0.1734 0.0039

Bayes 0.1307 0.0221 0.1041 0.0054
Sarabia 0.0001 0.1041 0.0091

1L k Gini
NL 0.4865 0.1192
ML 0.8237 0.0747

Bayes 0.8702 0.0883

5L a d b Gini

NL 0.0025 0.0023 0.0014 0.0003
ML 0.0038 0.0024 0.0021 0.0013

Bayes 0.0044 0.0023 0.0027 0.0018
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Table 5
Information Inaccuracy Measure

Sweden Brazil
ML Bayes ML Bayes

1L 0.00888 0.00888 0.10851 0.11382

2L 0.00029 0.00029 0.00056 0.00056

3L 0.00025 0.00025 0.00031 0.00031

4L 0.00025 0.00026 0.00031 0.00033

5L 0.00017 0.00017 0.00003 0.00003

Table 6
The Likelihood Ratio Test

Sweden Brazil Critical Value

4L  VS 2L 1.351 5.333 3.841

4L  VS 3L 0.000 0.015 3.841

5L  VS 2L 36.907 31.355 5.991
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Figure 1: Pdfs for α  for 2L  and Sweden

Figure 2: Pdfs for Gini coefficient for 4L  and Sweden.
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Figure 3: Pdfs for Gini coefficient for 5L  and Brazil

Figure 4: Posterior pdfs for the Gini coefficient for Sweden.
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Figure 5: Posterior pdfs for the Gini coefficient for Brazil
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Figure 6: Joint scatter plot (a, d) for 5L , Sweden
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Figure 7: Joint scatter plot ( da, ) for 5L , Brazil
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Figure8: Posterior pdf for α  for 4L , Sweden

Figure 9: Posterior pdf for α  for 4L , Brazil
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Figure 10 : Posterior pdf for γ  for 4L , Sweden

Figure11: Posterior pdf for γ  for 4L , Brazil
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Figure 12: Joint scatter plot ( γα, ) for 4L , Sweden
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Figure 13: Joint scatter plot ( γα, ) for 4L , Brazil


