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ABSTRACT

This paper investigates the presence of bull and bear market states in stock price dy-

namics. A new definition of bull and bear market states based on sequences of stopping

times tracing local peaks and troughs in stock prices is proposed. Duration dependence in

stock prices is investigated through posterior mode estimates of the hazard function in bull

and bear markets. We find that the longer a bull market has lasted, the lower is the prob-

ability that it will come to a termination. In contrast, the longer a bear market has lasted,

the higher is its termination probability. Interest rates are also found to have an important

effect on cumulated changes in stock prices: increasing interest rates are associated with

an increase in bull market hazard rates and a decrease in bear market hazard rates.

Journal of Economic LiteratureClassification Numbers: C41, G1.
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1. INTRODUCTION

The bull and bear market terminology is widely used by financial analysts and stock market

commentators to characterize the evolution in stock prices. Some early academic studies inves-

tigated simple definitions of bull and bear states. Fabozzi & Francis (1977), Kim & Zumwalt

(1979) and Chen (1982) all consider definitions of bull markets based simply on returns in a

given month exceeding a certain threshold value.1

Since the emergence of these initial studies, little progress has been made on formally

modelling and estimating the evolution in bull and bear states. In this paper we attempt to

rigorously define these concepts in terms of sequences of stopping times and we systematically

investigate properties of returns in bull and bear states. Earlier definitions do not reflect long-

run dependencies in stock prices and ignore information about the trend in stock price levels.

We propose a definition of bull and bear markets that emphasizes movements in stock prices

betweenlocal peaks and troughs. This definition essentially implies that the stock market

switches from a bull to a bear state if stock prices have declined by a certain percentage since

their previous (local) peak within that bull state. Likewise, the stock market switches from a

bear to a bull state if stock prices experience a similar percentage increase since their previous

local minimum within that bear state. This definition does not rule out sequences of negative

(positive) price movements in stock prices during a bull (bear) market as long as their cumulated

value does not exceed a certain threshold.

Application of these definitions to US stock prices generates a set of durations of bull and

bear markets. These form the basis of our analysis and allow us to characterize the duration

profile of bull and bear markets as well as their cumulated return distribution. We also model

bull and bear hazard rates, i.e. the conditional probability that a bull or bear market will ter-

minate given that it has lasted for a certain period. Inspection of these yields important new

insights into long-run dependencies and deviations from the simple random walk model with a

constant drift which is often treated as the natural ’null’ model in studies of stock prices. We

find evidence of very different duration dependence in bull and bear states. The longer a bull

market has lasted, the lower is the hazard rate and hence the lower the probability that the bull

state will terminate. In contrast, the longer a bear market has lasted, the higher is the probabil-

ity that it will come to an end. We also find that interest rates can have an important effect on

the cumulated movements in stock prices. Higher interest rates are associated with an increase

in the probability of termination of bull markets but also with a decline in the probability that a

bear market terminates.

Our paper is closely related to earlier work on deviations from simple random walk models

and long-run correlations in stock returns. Lo & MacKinlay (1988), Fama & french (1988),

Poterba & Summers (1988) and Richardson & Stock (1989) all find some evidence of slow
1Fabozzi & Francis (1977) considers an alternative definition of bull markets based on ’substantial’ up and

down movements. In this definition, a substantial move in stock prices occurs whenever the absolute value of

stock returns in a given month exceeds half of one standard deviation of the return distribution.
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mean reversion in stock prices. Although these papers make important progress towards un-

derstanding long-run correlations in asset returns, none of them has attempted to characterize

long-run dependencies in terms of the duration profile of bull and bear markets or to link the

autocorrelation estimates to bull and bear market states.

Some studies in the literature on long memory in asset prices are also closely related to

our paper. Granger & Joyeux (1980) found long memory in absolute returns, while Bollerslev

& Mikkelsen (1996) studied hyperbolic decay rates in volatility. Our paper studies long-run

dependencies revealed in cumulated returns. Compared with long-run dependencies in the

volatility or absolute value of returns, the type of dependence that we study accounts for the

sign of returns and hence reflects the long-run direction of the market.

The plan of the paper is as follows. Section 2 presents our definition of bull and bear market

states. Section 3 characterizes the unconditional distribution of the duration and returns in bull

and bear market states using more than a century of daily stock prices from the US. Section

4 discusses our models of bull and bear hazard rates, while Section 5 presents our estimation

methods. Finally Section 6 reports empirical results from estimation of the hazard models

using US stock prices and Section 7 concludes.

2. DEFINITION OF BULL AND BEAR MARKETS

There is no generally accepted formal definition of bull and bear markets in the finance litera-

ture. This is surprising given how often these terms are used to describe the state of the stock

market. One of the few sources that attempts a definition of bull and bear markets is Sperandeo

(1990) who defines bull and bear markets as follows:

”Bull market: A long-term ... upward price movement characterized by a series of higher

intermediate ... highs interrupted by a series of higher intermediate lows.

Bear market: A long-term downtrend characterized by lower intermediate lows interrupted

by lower intermediate highs”. (p. 102).

To formalize the idea of a series of increasing highs interrupted by a series of higher inter-

mediate lows, letIt be a bull market indicator variable taking the value 1 if the stock market

is in a bull market at timet , and zero otherwise. We assume that time is measured on a dis-

crete scale. Suppose that att0 the stock market is at a local maximum and define the stochastic

processPmax = P[t0], whereP[t0] is the stock price at timet0. Let c be a scalar defining

the threshold of the movements in stock prices that triggers a switch between bull and bear

markets. Also letτ ≥ 1 be a stopping time variable defined by the following condition:

τ = min
i =1,...

{P[t0 + i ] ≥ Pmax ∨ P[t0 + i ] < (1 − c)Pmax}. (1)

If the first condition is satisfied, we update the local maximum in the current bull market state:

Pmax = P[t0 + τ ], tmax = t0 + τ (2)

and the bull market is said to have continued betweent0 andt0 + τ : It0 = ...... = It0+τ = 1.
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Conversely, if the second condition is satisfied so that the stock price att0 + τ has declined

by a fractionc since its local peak

P[t0 + τ ] < (1 − c)Pmax,

then the bull market is said to have switched to a bear market and the bear market prevailed

from time t0 to t0 + τ : Itmax = ....... = It0+τ = 0. Parallel to the bull market definition, in the

latter case we setPmin = P[t0 + τ ], tmin = t0 + τ .

If the starting point is a bear market state, by symmetry the stopping time is defined as

follows:

τ = min
i =1,...

{P[tmin + i ] ≤ Pmin ∨ P[tmin + i ] > (1 + c)Pmin}. (3)

Notice that our definition of bull and bear markets partitions the full data sample into exclu-

sive and mutually exhaustive bull and bear market subsets and also accounts for the underlying

upward trend in real stock prices.

The stochastic process comprising the sequence of indicator variables gives rise to a random

variable,T, measuring the duration of a particular bull or bear market. This variable is simply

given as the time between successive switches in the indicator variable,It .2

3. DURATIONS OF BULL AND BEAR MARKETS

To investigate the properties of bull and bear market states, we construct a data set of daily

US stock prices from 2/17/1885 to 12/31/1997. From 2/17/1885 to 2/7/1962 the nominal stock

price index is based on the daily returns provided by Schwert (1990). These returns include

dividends. From 3/7/1962 to 12/31/1997 the price index was constructed from daily returns

on the Standard & Poors price index, again including dividends and obtained from the CRSP

tapes. Combining these series generates a time series of 31,412 daily nominal stock prices.

Inflation has varied considerably over the sample period and the drift in nominal prices does

not have the same interpretation during low and high inflation periods. To deal with this issue,

we constructed a daily inflation index as follows. From 1885 to 1913 our source for prices was

chapter 26 in Shiller (1989). From January 1913 to December 1997, we used the Consumer

Price Index (all urban consumers, not seasonally adjusted) from the Bureau of Labor Statistics.

These series were converted into daily inflation rates by solving for the daily inflation rate

such that the daily price index grows smoothly - and at the same rate - between subsequent
2Notice that the indicator variable need not be measurable with respect to the filtration generated by the se-

quence of stock prices�t = {P0, P1, ..., Pt }. This is because the current state may also depend on cumulated

future changes in stock prices. To see this, suppose that stock prices have risen by two percent since the most

recent local trough. This does not necessarily mean that the stock market is now in a bull market state if prices

drop by more than two percent in the near future. However, if prices continue to rise beyond the trigger point

determined byPmin andc, then a switch to a bull market will indeed have occurred.
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monthly price indexes.3 Finally we divided the nominal stock price (cum dividend) index by

the consumer price index to get a daily index for real stock prices. This is the time-series we

analyze in the following.

Several aspects of our data format are worth dwelling on before proceeding further. First,

since our data sample terminates in 1997, we are dealing with right-censored data, although

only a single data point is censored. Each duration spell thus consists of the length spent

in the state and an indicator of whether this is an event time or a censoring time. Second,

much of standard survival analysis in economics and finance assumes continuously measured

data. However, since we use daily data and do not follow price movements continuously, our

data is interval censored and the termination or censoring of our durations are only known to

lie between consecutive follow ups.4 Suppose that the measurement ofT is divided into A

intervals

[a0, a1), [a1, a2), . . . , [aq−1, aq), [aq, ∞) where q = A − 1.

Only the discrete time durationT ∈ {1, . . . , A} is observed, whereT = t denotes termination

within the interval[at−1, at). Although we shall be drawing on approaches from the literature

on economic duration data (see, eg, Kiefer (1988), Kalbfleisch & Prentice (1980) and Lan-

caster (1990)) this also means that we have to be careful in modifying the standard tools from

continuous time analysis.

Insights into how our definition partitions real stock prices into bull and bear spells are

gained from Figures 1a and 1b which show the sequence of consecutive bull and bear market

durations over the full sample period 1885-1997. The 10 percent filter split the sample into 114

bull markets and 114 bear markets. As a means of better illustrating the individual episodes,

we plot in eight separate windows the natural logarithm of the real stock price cum dividend

index. Many of the bull markets are very long and it is clear that the bull market during the

1990s (lasting over seven years from 1990 to 1997) is in fact an outlier by historical standards.

Table 1 presents some basic descriptive statistics for the distribution of the time spent in

bull and bear market states and Figures 2 and 3 show histograms of the unconditional durations

of bull and bear markets, respectively. All results are based on a threshold value,c, of 10

percent. To facilitate interpretation of the results, we report properties of bull and bear market

states in weeks although it should be recalled that our analysis was carried out using daily

data. The mean bull market duration is 37 weeks against 19 weeks for bear market durations.

The corresponding median values are 18 and 12 weeks for bull and bear markets, respectively.

While the shortest bull and bear markets each lasted for only a week, the longest bull market,

at 354 weeks or seven years, lasted four times longer than the longest bear market (88 weeks
3Since the volatility of daily inflation rates is likely to be only a fraction of that of daily stock returns, normal-

izing by the inflation rate has the effect of a time-varying drift adjustment and lack of access to daily inflation data

is unlikely to affect our results in any important way.
4The possibility of ties for such data can cause problems in applications of partial likelihood methods for

continuous time models
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or a year and a half). Partly as a result of this, the dispersion of bull market durations is about

two and a half times greater than that of bear markets.

Mean returns in bull markets are around 2.8 percent per week and -3.3 percent per week in

bear markets. An even larger difference shows up in the median return per week which is 1.0

and -1.5 percent per week for bull and bear markets, respectively. This suggests that although

bear markets last much shorter than bull markets, the rate of decline in bear markets proceeds

more rapidly than the rate of increase during bull markets.

4. DISCRETE TIME MODELS OF BULL AND BEAR HAZARD RATES

The previous analysis characterized the unconditional distribution of bull and bear market

spells. However, during the long bull market of the mid-1990s, the concern was often ex-

pressed that the bull market would come to an end simply because it had lasted ’too long’ by

historical standards. Translated into statistical terms, this indicates a belief that the bull market

termination probability depends positively on the duration of the bull market: Conditional on

having lasted for a certain length of time, the probability that a bull market will terminate is

believed to be an increasing function of time. The opposite view is that bull markets gain mo-

mentum: the longer a bull market has lasted for, the more robust it is, and hence the lower the

hazard rate.

Testing these opposite hypotheses requires that we go beyond inspecting the unconditional

probability that a bull market terminates in a particular interval. Instead we need to characterize

the duration data in terms of the conditional probability that the bull or bear market ends in a

short time interval following some periodt , given that the bull market lasted up to periodt .

This is measured by the discrete hazard function

λ(t |x) = Pr(T = t |T ≥ t, x), t = 1, . . . , A, (4)

which is the conditional probability of termination in interval[at−1, at) given that the interval

was reached in the first place.5 x is a vector of additional conditioning information. Hypotheses

concerning the probability that a bull or bear market is terminated as a function of its age are

naturally expressed in terms of the shape of this hazard function.

Natural interest also lies in estimating the probability that a bull market lasts beyond a

certain time horizon, that is, in estimating the discrete survivor function, defined as

S(t |x) = Pr(T > t |x) =
t∏

j =1

(1 − λ( j |x)), t = 1, . . . , A. (5)

5This is distinct from theunconditional probability of terminationwhich is given by

Pr(T = t|x) = λ(t|x)

t−1∏
j =1

(1 − λ( j |x)) = λ(t|x)S̃(t|x), t = 1, . . . , A.
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This gives the probability of surviving on the interval[at−1, at). Likewise, the probability of

reaching this interval can be regarded as a survivor function, that is

S̃(t |x) = Pr(T ≥ t |x) =
t−1∏
j =1

(1 − λ( j |x)), t = 1, . . . , A,

and hencẽS(t |x) = S(t − 1|x).

The hazard models we are interested in estimating are all assumed to take the form

λ(t |xi ) = F(z′
i t β), (6)

whereβ comprises the parameters of interest andzit is a (possibly time-varying) covariate that

affects the hazard rate. The functionF(·) is called theLink-function. This function must have

the properties of a distribution function. Common choices are the Probit, the Logit and the

Double Exponential link. Thoughout the paper we use a Logit-link.

4.1. Static Models

In this section we characterize hazard models when the underlying parameters linking the co-

variates to the hazard rate do not vary over time.

4.1.1. Constant covariates

Initially we characterize the baseline hazard rate of bull and bear market durations by consid-

ering the simple case with constant covariates. For this case the explanatory variables are fixed

from the point of entry in the state. Some time-variation in the hazard rate is still possible,

however, since the regression parameters are allowed to vary freely through the duration. The

advantage of initially not considering any exogenous covariates is that our results are directly

comparable to the large literature on univariate dynamics in stock prices.6

The data takes the form of{ti , xi , δi ; i = 1, . . . , n}, whereti = min{Ti , Ci } is the mini-

mum of the survival time and the censoring timeCi , xi is a covariate observed at the beginning

of the interval[ati−1, ati ) andδi is a censoring indicator:δi = 1 means termination in[ati−1, ati ),

while δi = 0 means censoring in[ati−1, ati ). Since the only censoring point occurs during the

terminal intervalTi andCi are independent and our data is randomly censored. This means

that the probability of observing the termination of a duration is given by

Pr(Ti = ti , δi = 1) = Pr(Ti = ti )Pr(Ci > ti ), (7)

while the probability of censoring at timeti is given by7

Pr(Ti = ti , δi = 0) = Pr(Ti ≥ ti )Pr(Ci = ti ), (8)

6For a survey of this literature, see Campbell, Lo & MacKinlay (1997), chapter 2.
7In (7) and (8) it is assumed that censoring occurs at the beginning of the interval. If it is assumed to occur at the

end then (7) and (8) must be changed to Pr(Ti = ti , δi = 1) = Pr(Ti = ti)Pr(Ci ≥ ti ) and Pr(Ti = ti , δi = 0) =
Pr(Ti > ti)Pr(Ci = ti ).
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Combining (7) and (8) with the assumption of non-informative censoring, we get the likelihood

contribution of observationi :8

Li = Pr(Ti = ti )
δi Pr(Ti ≥ ti )

1−δi Pr(Ci > ti )
δi Pr(Ci = ti )

1−δi︸ ︷︷ ︸
= ci

= ci Pr(Ti = ti )
δi Pr(Ti ≥ ti )

1−δi

= ci λ(t |xi )
δi

ti −1∏
j =1

(1 − λ( j |xi )). (9)

Before proceeding further, it is convenient to set up equation (9) using notation similar to that

used from the literature on discrete choice models. For this purpose we construct the following

discrete indicator variable:

yi j =
{

1, bull or bear market terminates in[aj −1, aj )

0, bull or bear market survives through[aj −1, aj )
j = 1, . . . , ti .

An observation censored atti will thus be represented byyi = (yi 1, . . . , yiti −1) = (0, . . . , 0),

whereas failure atti means that the observation is represented byyi = (yi 1, . . . , yiti ) =
(0, . . . , 0, 1). Using this notation, the contribution to the likelihood function from thei ′th
observation is

Li ∝
ti −(1−δi )∏

j =1

λ( j |xi )
yi j (1 − λ( j |xi ))

1−yi j . (10)

Summing across duration spells, the total log-likelihood for the modelλ(t |xi ) = F(z′
i t β) is

given by9

lnL ∝
n∑

i =1

ti −(1−δi )∑
j =1

yi j ln(λ( j |xi )) + (1 − yi j ) ln(1 − λ( j |xi )). (11)

Recalling that censoring occurs for the final bull or bear state, this equation needs to be modified

slightly to

lnL ∝
n∑

i =1

ti∑
j =1

yi j ln(λ( j |xi )) + (1 − yi j ) ln(1 − λ( j |xi )). (12)

where

yi j = (yi 1, . . . , yit ) =
{

(0, . . . , 0), δi = 0

(0, . . . , 1), δi = 1
j = 1, . . . , ti .

8It follows from the definition of the discrete hazard function that the last two terms in (9) do not depend on

the parameters determining the survival time.
9This is identical to the log-likelihood of

∑
i (ti − 1 + δi ) observations from the binary response model which

is given by Pr (yi j = 1 | xi ) = F(z′
i j β).
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4.1.2. Time-varying covariates

One could reasonably expect that switches between bull and bear markets occur due to changes

in the underlying economic environment. For example, the drift in stock prices may turn from

positive to negative as a result of increased interest rates or worsening economic prospects. To

account for such effects, we need to extend the setup from the previous section and allowzi t to

be a vector that incorporates time-varying covariates. Now the data for thei ′th duration spell

take the form

{ ti︸︷︷︸
duration

,

≡ x i : time-varying covariates︷ ︸︸ ︷
xi (a0), xi (a1), . . . xi (aq−1), xi (aq), δi︸︷︷︸

censoring

}.

Given the discreteness of our data, the covariates follow a step function with jumps at the

follow-up times. We will be usingxi 1, xi 2, . . . , xi t as short-hand notation for the sequence of

observations of covariates for thei th duration spell preceding timet . Hencexi t is assumed to

be a vector observed at the beginning of interval[at−1, at ). Within this interval the history of

covariates

X i (t) = (xi 1, xi 2, . . . , xi t ),

is allowed to influence the hazard rate:

λ(t |X i (t)) = Pr(T = t |T ≥ t, X i (t)) = F(z′
i t β).

Several specifications are possible for the functional form of the covariate effect (z
′
i t β). If

the parameters are allowed to vary over (duration) time, an attractively simple specification is

z′
i t β = γ0t + x′

i t γ t ,

where
z′
i t = (0, . . . , 1, . . . , 0, 0, . . . , x′

i t , . . . , 0)

β ′ = (γ01, . . . , γ0q, γ ′
1, . . . , γ ′

q).

This can be extended to include several time lags,

z′
i t β = γ0t + x′

i t γ 0 + . . . + x′
i t−r γ −r ,

where
z′
i t = (0, . . . , 1, . . . , 0, x′

i t , x′
i t−1, . . . , x′

i t−r )

β ′ = (γ01, . . . , γ0q, γ ′
0, γ ′−1, . . . , γ ′−r ),.

For the case with time-varying covariates, the log-likelihood function is constructed from

the extended data set(ti , δi , X i (ti )), i = 1, . . . , n:

lnL ∝
n∑

i =1

ti −(1−δi )∑
j =1

yi j ln(λ( j |X i ( j ))) + (1 − yi j ) ln(1 − λ( j |X i ( j ))). (13)

For further details on the construction of this log-likelihood function, and for a discussion of

external and internal covariates see Fahrmeir & Tutz (1994, p. 327-330).
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4.2. Dynamic models of bull and bear market durations

The models in the previous section arestaticin the sense that they treat baseline hazard coeffi-

cients and covariate parameters asfixed effects.As such they are appropriate if the number of

intervals is relatively small. However, in applications such as ours with many intervals, but not

enough to apply continuous time techniques, such unrestricted models and estimation of hazard

functions can lead to nonexistence and divergence of maximum likelihood estimates due to the

large number of parameters.

To get around these problems, we follow Fahrmeir (1994) and adopt state space techniques.

An advantage of this approach is that simultaneous estimation and smoothing of the baseline

and covariate effects becomes possible. The general framework and notation follows the pre-

vious section. However, we also need to define risk indicatorsri t (i, t ≥ 1) by

ri t =
{

1, if the i ′th bull or bear market is at risk in[at−1, at)

0, otherwise.

Furthermore, we define the risk vectorr t = (ri t , i ≥ 1), and the risk setRt = {i : t ≤
ti − (1− δi )} at timet , i.e., the set of duration spells that are at risk in the interval[at−1, at).

10

Covariates and failure indicators for alli ∈ Rt in [at−1, at) are collected in the vectors

xt = (xit , i ∈ Rt )

yt = (yit , i ∈ Rt ).

Finally we denote the histories of covariates, failure and risk indicators up to periodt by

x∗
t = (x1, . . . , xt−1)

y∗
t = (y1, . . . , yt−1)

r ∗
t = (r 1, . . . , r t−1).

In the presence of time-varying covariates, the general hazard rate model (6) can be stated

as follows

λ(t |X i (t)) = F(z′
i t αt ). (14)

In the usual state space terminology, this is themeasurement equation. The components of the

state vectorαt comprise both the baseline parameter and the covariate effects and the design

vectorzi t is a function of the covariates. In the simplest case we setzi t = (1, xi t ) andαt =
10Using this notation the log-likelihood function can be written as

lnL ∝
q∑

t=1

∑
i∈Rt

yit ln(λ(t|X i (t))) + (1 − yit ) ln(1 − λ(t|X i (t))), .

11
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(γ0t , γt), and use the first-order random walk as our choice oftransition equation

αt = 8αt−1 + ξ t , ⇔
(

γ0t

γ t

)
=
(

1 0

0 1

)(
γ0t−1

γ t−1

)
+
(

ξ0t

ξ1t

)
,

where

(
ξ0t

ξ1t

)
∼ N (0, diag(σ 2

0 , σ 2
1 , . . . , σ 2

p)), p = dim(γ t), (15)

and α0 ∼ N (a0, Q0).

The random walk model has the advantage of not imposing mean reversion on the parameters

and allows the parameters to differ at various durations (although neighboring points cannot be

too far from each other) if the data supports such variation.

5. ESTIMATION

The following set of standard assumptions are sufficient to guarantee that the models are fully

specified in terms of their likelihoods:

(A1) Conditional onαt , y∗
t−1, andx∗

t , currentyt is independent ofα∗
t−1 = (α1, . . . , αt−1):11

p(yt |α∗
t , y∗

t−1, x∗
t ) = p(yt |αt , y∗

t−1, x∗
t ), t = 1, 2, . . . (16)

(A2) Given y∗
t−1, r ∗

t−1 andx∗
t−1, the covariatext and risk vectorr t are independent ofα∗

t−1:12

p(xt , r t |α∗
t−1, y∗

t−1, x∗
t−1) = p(xt , r t |y∗

t−1, x∗
t−1), t = 1, 2, . . . (17)

(A3) The parameter process is Markovian:13

p(αt |α∗
t−1, y∗

t−1, x∗
t ) = p(αt |αt−1), t = 1, 2, . . . (18)

(A4) Given αt , y∗
t−1, and x∗

t , individual responsesyit within yt are conditionally indepen-

dent:14

p(yt |α∗
t , y∗

t−1, x∗
t ) =

n∏
i ∈Rt

p(yit |αt , y∗
t−1, x∗

t ), t = 1, 2, . . . (19)

11This assumption is standard in state space modelling. It simply states that the conditional information inyt

aboutα∗
t is exclusively contained in the current parameterαt .

12Thus we assume that the covariate and censoring processes contain no information on the parameter process.

This assumption holds for non-informative random censoring and for fixed or external covariates.
13This assumption is implied by the transition model and the assumption on the error sequence.
14This is weaker than the usual unconditional independence assumption, since it allows for interaction via the

common history. It is likely to hold if a common cause is incorporated in the covariate process.
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In practice, the error variances,σ 2
0 , σ 2

1 , . . . , σ 2
p, and the initial values,a0, Q0, in the tran-

sition equation are typically unknown hyper-parameters. They can be treated as nuisance pa-

rameters which appear only in the transition equation, and may be interpreted as smoothing

constants, all of which can be either subjectively chosen or estimated from the data.

5.1. Posterior mode smoothing and penalized likelihood estimation

We first consider estimation ofα∗ = (α1, . . . , αq) when the hyper-parametersa0, Q0, and Q

are assumed to be either known or given. An optimal (Bayesian) solution relies on determining

the posterior density,

p(α∗|y∗, x∗, r ∗) = p(α1, . . . , αq|y1, . . . , yq, x1, . . . , xq, r 1, . . . , r q), (20)

Since our measurement equation is non-normal, solving for the posterior generally requires

using numerical or Monte Carlo integration. A simpler strategy, advocated by Fahrmeir (1992),

is to base estimation on posterior modes and to use filtering and smoothing algorithms. By

repeated application of Bayes theorem we have

p(α∗|y∗, x∗, r ∗) =
q∏

t=1

p(yt |y∗
t−1, x∗

t , r ∗
t ; α∗

t )

q∏
t=1

p(αt |α∗
t−1, y∗

t−1, x∗
t , r ∗

t )

·
q∏

t=1

p(xt , r t |α∗
t−1, y∗

t−1, x∗
t−1, r ∗

t−1)
p(α0)

p(y∗, x∗, r ∗)
.

Under assumptions (A1)-(A4), we get

p(α∗|y∗, x∗, r ∗) ∝
q∏

t=1

∏
i ∈Rt

p(yit |y∗
t−1, x∗

t , r ∗
t ; α∗

t )

q∏
t=1

p(αt |α∗
t−1) · p(α0). (21)

Taking logarithms and using (14) and (15), estimation ofα∗ by posterior modes, that is

maximization of posterior densities, is equivalent to maximizing the followingpenalized log-

likelihood function:15

lnL(α∗) =
q∑

t=1

∑
i ∈Rt

l i t (αt) − 1

2
(α0 − a0)

′ Q−1
0 (α0 − a0)

−1

2

q∑
t=1

(αt − αt−1)
′ Q−1(αt − αt−1), (22)

where

l i t (αt ) = yit ln(F(z′
i t αt )) + (1 − yit ) ln(1 − F(z′

i t αt )) (23)

is the log-likelihood contribution of thei ’th observation.

For the general case Appendix A provides additional details on the numerical optimization

of the penalized likelihood function.
15The first term measures the goodness of fit of the model, while the second and third terms - both of which

are introduced by the smoothness prior specified by the transition model - penalize large deviations between

successive parameters and lead to smoothed estimates.
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5.1.1. A Simple Example

Intuition for the method is perhaps furthered by considering the simplest case which only re-

quires estimating the baseline hazard. The measurement equation simplifies to

λ(t |X i (t)) = F(γ0t ) = exp(γ0t )

1 + exp(γ0t )
, (24)

and the transition equation for the baseline hazard is the first-order random walk

γ0t = γ0t−1 + ξ0t , ξ0t ∼ N (0, σ 2
1 ), and γ00 ∼ N (g0, σ 2

0 ).

For this case the penalized log-likelihood function becomes

lnL(γ0t ) =
q∑

t=1

∑
i ∈Rt

{yit ln(F(γ0t )) + (1 − yit ) ln(1 − F(γ0t ))}

− 1

2σ 2
1

q∑
t=1

(γ0t − γ0t−1)
2 − 1

2σ 2
0

q∑
t=1

(γ00 − g0)
2. (25)

It is easily seen that the contribution of the failure indicatoryit to the score is given by

ui t (γ0t ) = yit − exp(γ0t )

1 + exp(γ0t )
, and ut (γ0t ) =

∑
i ∈Rt

ui t (γ0t ), (26)

while the contribution of the expected information matrix is:

U i t (γ0t ) = − exp(γ0t )

{1 + exp(γ0t )}2
, and U t(γ0t) =

∑
i∈Rt

U it(γ0t). (27)

6. THE HAZARD RATE OF US BULL AND BEAR MARKETS

Using the estimation techniques and hazard models described in Sections 4 and 5, we first esti-

mated the hazard function for bull and bear markets in a model without time-varying covariates.

The outcome of this exercise is, in the form of the baseline hazard, plotted in Figures 4 (bull

market) and 5 (bear market). The baseline hazard in bull markets is initially slighly above four

percent per week but it quickly drops to under two percent (for bull markets that have lasted a

year and a half) only to increase to almost four percent again for bull markets whose age exceed

three years. For bear markets, there is weaker evidence of duration dependence in the baseline

hazard. Only for very old bear markets is there some evidence of an increasing hazard rate.

However, at these long durations the standard error bands are also much wider than at shorter

durations, so this evidence should be interpreted cautiously.

Figure 6 plots the difference between the baseline hazard rate in bear and bull markets es-

timated from a bivariate random walk model with a logit link function. This setup allows us

to directly evaluate differences in bear and bull market hazards since we can compute standard

errors for the difference in hazard rates. Such standard errors are plotted along the point esti-

mates. The figure shows that bear markets are associated with a higher hazard rate across all

14
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durations. At any length of time, a bear market has a higher probability of termination than a

bull market of the same duration. In fact, the excess hazard rate of bear over bull markets ap-

pears to be increasing as a function of duration and is about four times higher for long durations

compared with shorter ones. This of course is a key determinant of the historically high mean

returns on US stocks. Our findings suggest that it is the absence of very long bull markets that

account for these high mean returns not differences between bull and bear markets at the short

end of the duration distribution.

To shed light on how the hazard rates depend on the underlying state of the economy,

we next included interest rates as a time-varying covariate. Interest rates have been widely

documented to be one of the most precise indicators of the state of the business cycle and

appears to be a key determinant of monthly stock returns.16 For post-world war data, the level

of interest rates tracks the business cycle very well. However, because we have such a long

sample in which the inflation rate has varied considerably, we also include changes in interest

rates. Interest ratelevelsmay not contain the same information over the sample, while interest

ratechangesare more likely to track changes in the business cycle across the full sample. Our

set of covariates is thusz
′
i t = (1, i t , 1i t), wherei t is the interest rate level and1i t is the interest

rate change. The hazard specification is

λ(t |zi (t)) = F(γ0t + γ1t i t + γ2t1i t). (28)

There is no continuous data series on daily interest rates from 1885 to 1997, so we con-

structed our data from four separate sources. From 1885 to 1889 the source is Chapter 26 in

Shiller (1989). From 1890 to 1925, we use the interest rate for 90-day stock exchange time

loans as reported in Banking and Monetary Statistics, Board of Governors of the Federal Re-

serve System (1943). These rates are reported on a monthly basis and we convert them into a

daily series by simply applying the interest rate reported for a given month to each day of that

month. From 1926 to 1954, we use the one-month T-bill rates from the Fama/Bliss risk-free

rates CRSP file, again reported on a monthly basis and converted into a daily series. Finally,

from July 1954 to 1997, we use the daily Federal Funds rate. These three sets of interest rates

are concatenated to form one time series.

Figure 7 presents the baseline hazard for bull markets after controlling for interest rate and

interest rate change effects. Comparing Figure 7 to Figure 4, it is clear that controlling for

interest rates has a significant effect on the shape of the baseline hazard. In contrast with the

U−shaped pattern from the model without interest rate effects, now the baseline hazard rapidly

drops from six to two percent per week as the bull market duration is extended to half a year and

remains constant for longer durations. This suggests that young bull markets are substantially

more at risk of termination than bull markets that have lasted for a minimum of six months.

Figure 8 shows that higher interest rates are associated with a lower bull market hazard rate

for very short durations, but that the sign of this covariate parameter switches and later is asso-

ciated with a higher hazard rate. We believe that the initial negative sign should be interpreted
16See, e.g., Fama & French (n.d.), Jagannathan & Runkle (1993) and Pesaran & Timmermann (1995).
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with caution: interest rates tend to be high towards the beginning of a new business cycle ex-

pansion and this is often the beginning of a bull market in stock prices.17 More importantly,

perhaps, positive interest rate changes are associated with large increases in hazard rates: a one

percentage point increase in the interest rate is associated with an increase in the hazard rate by

three percentage points. This represents more than a doubling of the hazard rate for durations

that exceed half a year.

Turning next to the bear markets and comparing Figures 5 and 10, it is clear that the shape

of the baseline hazard does not change as a result of including interest rate effects. However,

interest rate effects appear to have a large effect on the hazard rate of bear markets: the hazard

rate is lower, the higher is the level of interest rates (Figure 11) and the larger the change in

interest rates (Figure 12). Hence a bear market tends to last longer in an environment with high

and increasing interest rates. Interestingly, the size of the covariate effects is smaller in bear

markets than in bull markets.

7. CONCLUSION

This paper has investigated a new type of long-run dependence in stock prices based on the

distribution of time spent in markets where cumulated returns exceed some positive threshold

value (bull states) or fall below some negative threshold value (bear states). Our measure

of dependence is based on cumulated prices and hence is different from the long memory

properties of absolute returns or volatility of returns found in earlier studies. We find strong

evidence contradicting standard models for the underlying stock price process. Bull market

hazard rates decline for low durations while they increase for long bear market durations.

Several additional points need to be addressed in future analysis. Earlier studies have found

some evidence of negative autocorrelation in long-horizon stock returns but have mostly failed

to formally reject the random walk model. We conjecture that duration-based tests of violations

of the random walk model for asset prices may have power in directions where standard tests

based on autocorrelations fail to be powerful. It is true that converting stock returns into a se-

quence of bull and bear market states and considering duration spells instead of prices discards

information that is present in the full sequence of price changes. However, to the extent that the

long-run dependence in bull and bear markets takes the form of a duration dependent hazard

function, our method is likely to be more powerful in detecting deviations from the random

walk model than methods based on the autocorrelogram. We intend to investigate this point

further in future work.

Another point of obvious interest from an asset pricing point of view is whether long run

portfolio performance can be improved by accounting for the duration dependence reported in

this paper. The finding that bull markets are particularly fragile when they are relatively young,

while bear market hazard rates increase as a function of duration should be useful information
17However, the variation in the sign of the parameter for this covariate, and its steep slope as a function of the

duration, indicate the advantage of using a flexible approach such as ours which can detect for such variation.
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for stock market investors.

Third, we intend to use the distribution of the length and size of bull and bear markets as

a diagnostic for standard processes for the underlying stock prices. For instance, one may rea-

sonably expect that ARCH effects can account for some of the shorter bull and bear durations,

but that such effects cannot account for the longer end of the duration distribution. Although

the bull and bear state terminology is meant to identify long-run dependencies in the drift in

stock prices, it is clear that periods with clustering of high volatility can trigger a switch in the

state. For example, the one-day drop in stock prices on October 19, 1987 would in itself be

sufficient to trigger a bear market even if it were subsequently followed by positive returns. In

future work we intend to use simulation experiments of a GARCH model to shed light on the

extent to which our bull and bear market findings are driven by ARCH effects.

APPENDIX A: NUMERICAL MAXIMIZATION FOR THE GENERALIZED

KALMAN FILTER AND SMOOTHER

This appendix briefly explains some of the details of the numerical optimizations. To per-

form numerical optimization of the penalized log-likelihood function, we use the generalized

extended Kalman filter and smoother suggested by Fahrmeir (1992). Denote bydit (αt ) the first

derivate∂ F(η)/∂η of the response functionF(η) evaluated atη = z′
i t αt . The contribution to

the score of the failure indicatoryit is given by

ui t (αt ) = ∂l i t (αt)

∂αt
= zi t

di t (αt )

F(z′
i t αt ){1 − F(z′

i t αt )}{yit − F(z′
i t αt )},

and the contribution of the expected information matrix is

U i t (αt ) = ∂2l i t (αt )

∂α′
t∂αt

= zi t z′
i t

(dit (αt ))
2

F(z′
i t αt ){1 − F(z′

i t αt )} .

The sumsut (αt ) = ∑
i ∈Rt

ui t (αt ) andU t(αt ) = ∑
i ∈Rt

U i t (αt ) are then contributions of the

risk set to the score vector and the information matrix in the interval[at−1, at).

Smoothing estimatesat |q (t = 0, . . . , q) of αt can now be obtained as numerical approx-

imations to posterior modes given all the data(y∗, x∗, r ∗) up toq. Approximate error covari-

ance matricesV t |q are obtained as the corresponding numerical approximations to curvatures,

i.e. inverses of expected negative second derivatives of lnL(α∗), evaluated at the mode.

Finally at |t−1 andat |t are the prediction and filter estimates forαt given the data up tot −1

andt, with corresponding error matricesV t |t−1 andV t |t .
Filtering and smoothing of our sample data proceed in the following steps:

1. INITIALIZATION :

a0|0 = a0,

V 0|0 = Q0.

17



Lunde, A. and A. Timmermann: Duration Dependence in Stock Prices

2. FILTER PREDICTION STEPS:

For t = 1, . . . , q:

at |t−1 = 8at−1|t−1,

V t |t−1 = 8V t−1|t−18 + Q.

3. FILTER CORRECTION STEPS:

For t = 1, . . . , q:

at |t = at |t−1 + V t |t ut ,

V t |t = (V−1
t |t−1 + U t )

−1.

4. BACKWARD SMOOTHING STEPS:

For t = 1, . . . , q:

at−1|q = at−1|t−1 + Bt(at |q − at |t−1),

V t−1|q = V t−1|t−1 + Bt (V t |q − V t |t−1)B′
t ,

where

Bt = V t−1|t−18
′V−1

t |t−1.

The algorithm requires that initial valuesa0, Q0 and error covariancesQ of the transition

equation are known or given. The hyper-parametersα0, . . . αd, a0, Q0 and Q can be jointly

estimated by anEM-type algorithm which can be summarized as follows:

1. Choose starting valuesa(0)
0 , Q(0)

0 and Q(0).

Iterate the following step 2 and 3 forp = 1, 2, . . .

2. SMOOTHING:

Computea(p)
t |q andV (p)

t |q (t = 1, . . . , q) by the generalized Kalman filter and smoothing,

with unknown parameters replaced by their current estimatesa(p)

0 , Q(p)

0 and Q(p).

3. EM STEP:

Computea(p+1)

0 , Q(p+1)

0 and Q(p+1) by

a(p+1)

0 = a(p)

0|q
Q(p+1)

0 = V (p)

0|q

Q(p+1) = 1

q

q∑
t=1

{(a(p)
t |q − 8a(p)

t−1|q)(a(p)
t |q − 8a(p)

t−1|q)′ + V (p)
t |q

−8B(p)
t V (p)

t |q − V (p)′
t |q B(p)′

t 8 + 8V (p)

t−1|q8′}

with B(p)
t defined as in the smoothing steps.

4. Stop when some termination criterion is reached.
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APPENDIX: TABLES AND FIGURES

Table 1: Summary Statistics. The 10 percent filter split the sample into 114 bull markets and 114 bear

markets.

Series Mean Median Standard
deviation

Minimun Maximum

Bull market
durations(weeks)

36.83 18 50.2 1 354

Bear market
durations(weeks)

19 12 19.01 1 88

Log-return(%)
bull markets

2.77 0.98 5.7 0.23 42.5

Log-return(%)
bear markets

-3.3 -1.54 6 -46 -0.23
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FIGURE SUMMARY

Figure 1 Bull and Bear market classifications.

Figure 2 Histogram of Bull market durations.

Figure 3 Histogram of Bull market durations.

Figure 4 Unconditional hazard rates of Bull market durations.

Figure 5 Unconditional hazard rates of Bear market durations.

Figure 6 Parameter reflecting the difference in unconditional hazard rates between Bear and

Bull market durations.

Figure 7 Baseline hazard rates for Bull markets, controlling for interest rates and interest rate

change effects.

Figure 8 Parameter reflecting the interest rate effect on Bull markets.

Figure 9 Parameter reflecting the effect of interest rate change over the duration of Bear mar-

kets.

Figure 10 Baseline hazard rates for Bear markets, controlling for interest rates and interest

rate change effects.

Figure 11 Parameter reflecting the interest rate effect on Bear markets.

Figure 12 Parameter reflecting the effect of interest rate change over the duration of Bull mar-

kets.
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Figure 1a: Bull and Bear markets defined from real S&P-500 stock index with a stopping rule of 10%.
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Figure 1b: Bull and Bear markets defined from real S&P-500 stock index with a stopping rule of 10%.
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Histograms of Bull and Bear market durations
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Figure 2: Histogram of Bull market durations. The confidence bands are±1 standard error. Defined

from S&P-500 stock index with a stopping rule of 10%.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

Fr
ac

tio
n 

of
 to

ta
l

Duration of Bear markets in weeks, binwidth=2

Figure 3: Histogram of Bear market durations. The confidence bands are±1 standard error. Defined

from S&P-500 stock index with a stopping rule of 10%.
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Unconditional hazard rates
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Figure 4: Unconditional hazard rates of Bull market durations. The confidence bands are±1 standard

error. Defined from S&P-500 stock index with a stopping rule of 10%. The model is the simple random

walk hazard rate with a logit link function. That isλ(t|X i (t)) = F(z′
it αt), wherez′

it = 1 andαt = γ0t,

with γ0t = γ0t−1 + ξ0t , ξ0t ∼ N(0,σ 2
1 ), andγ00 ∼ N(g0, σ

2
0 ).
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Figure 5: Unconditional hazard rates of Bear market durations. The confidence bands are±1 standard

error. Defined from S&P-500 stock index with a stopping rule of 10%. The model is the simple random

walk hazard rate with a logit link function. That isλ(t|X i (t)) = F(z′
it αt), wherez′

it = 1 andα′
t =

γ0t , with γ0t = γ0t−1 + ξ0t, ξ0t ∼ N(0,σ 2
1 ), and γ00 ∼ N(g0, σ

2
0 ).
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Figure 6: Parameter reflecting the difference in hazard rates between Bear and Bull market durations.

The confidence bands are±1 standard error. Defined from S&P-500 stock index with a stopping rule

of 10%. The model is a bivariate simple random walk hazard rate with a logit link function. That is

λ(t|X i (t)) = F(z′
it αt), wherez′

it = (1, wit ) andα′
t = (γ0t , βt ), with αt = αt−1 + ξ t , ξ t ∼ N(0, Q),

and α0 ∼ N(g0, Q0). βt gives the difference between Bull markets(wit = 1), and Bear markets

(wit = 0).
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Interest rate effects for Bull markets
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Figure 7: Baseline hazard rates for Bull markets, controlling for interest rate and interest rate change

effect. The confidence bands are± 1 standard error. Defined from the real S&P-500 stock index with

a stopping rule of 10%. The model is the random walk model with a logit link function. That is

λ(t|X i (t)) = F(z′
it αt), wherez′

it = (1, i it ,1i it ) andα′
t = (γ0t,β t ), with αt = αt−1 + ξ t , ξ0t ∼

N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate at the begining of the week in question,1i it is

the change in the interest rate from the duration origin to the begining of the week in question.β t gives

the covariate effect on the hazard rate of Bull markets.
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Figure 8: Parameter reflecting the interest rate effect on Bull markets. The confidence bands are± 1
standard error. Defined from the real S&P-500 stock index with a stopping rule of 10%. The model is the
random walk model with a logit link function. That isλ(t|X i (t)) = F(z′

it αt), wherez′
it = (1, i it ,1i it )

andα′
t = (γ0t ,β t ), with αt = αt−1 + ξ t , ξ0t ∼ N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate

at the begining of the week in question,1i it is the change in the interest rate from the duration origin to
the begining of the week in question.β t gives the covariate effect on the hazard rate of Bull markets.
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Figure 9: Parameter reflecting the effect of interest rate change on Bull markets. The confidence bands
are± 1 standard error. Defined from S&P-500 stock index with a stopping rule of 10%. The model is the
random walk model with a logit link function. That isλ(t|X i (t)) = F(z′

it αt), wherez′
it = (1, i it ,1i it )

andα′
t = (γ0t ,β t ), with αt = αt−1 + ξ t , ξ0t ∼ N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate

at the begining of the week in question,1i it is the change in the interest rate from the duration origin to
the begining of the week in question.β t gives the covariate effect on the hazard rate of Bull markets.
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Interest rate effects for Bear markets
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Figure 10: Baseline hazard rates for Bear markets, controlling for interest rate and interest rate change

effect. The confidence bands are± 1 standard error. Defined from the real S&P-500 stock index with

a stopping rule of 10%. The model is the random walk model with a logit link function. That is

λ(t|X i (t)) = F(z′
it αt), wherez′

it = (1, i it ,1i it ) andα′
t = (γ0t,β t ), with αt = αt−1 + ξ t , ξ0t ∼

N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate at the begining of the week in question,1i it is

the change in the interest rate from the duration origin to the begining of the week in question.β t gives

the covariate effect on the hazard rate of Bear markets.

30



Lunde, A. and A. Timmermann: Duration Dependence in Stock Prices

Weeks of Bear market
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Figure 11: Parameter reflecting the interest rate effect on Bear markets. The confidence bands are± 1
standard error. Defined from the real S&P-500 stock index with a stopping rule of 10%. The model is the
random walk model with a logit link function. That isλ(t|X i (t)) = F(z′

it αt), wherez′
it = (1, i it ,1i it )

andα′
t = (γ0t ,β t ), with αt = αt−1 + ξ t , ξ0t ∼ N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate

at the begining of the week in question,1i it is the change in the interest rate from the duration origin to
the begining of the week in question.β t gives the covariate effect on the hazard rate of Bear markets.
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Figure 12: Parameter reflecting the effect of interest rate change on Bear markets. The confidence bands
are± 1 standard error. Defined from S&P-500 stock index with a stopping rule of 10%. The model is the
random walk model with a logit link function. That isλ(t|X i (t)) = F(z′

it αt), wherez′
it = (1, i it ,1i it )

andα′
t = (γ0t ,β t ), with αt = αt−1 + ξ t , ξ0t ∼ N (0,Q), and α0 ∼ N (g0, Q0). i it is the interest rate

at the begining of the week in question,1i it is the change in the interest rate from the duration origin to
the begining of the week in question.β t gives the covariate effect on the hazard rate of Bear markets.
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