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Abstract
This paper establishes the optimal bootstrap block lengths for coverage probabil-

ities when the bootstrap is applied to covariance stationary ergodic dependent data.
It is shown that the block lengths that minimize the error in coverage probabilities of
one- and two-sided block bootstrap confidence intervals of normalized and studentized
smooth functions of sample averages are proportional to n1/4. The minimum error
rates in coverage probabilities of one- and two-sided block bootstrap confidence inter-
vals are of order O(n−3/2) and O(n−5/4), respectively, for normalized and studentized
statistics. This constitutes a refinement over the asymptotic confidence intervals.

1. Introduction

The bootstrap is a statistical procedure for estimating the distribution of an estimator.
The distinguishing feature of the bootstrap is that it replaces the unknown population
distribution of the data by an estimate of it. This estimate of the unknown popula-
tion distribution is formed by resampling the original sample randomly with replacement.
There are several different resampling procedures available depending on whether the data
are dependent or independent. The block bootstrap is a bootstrap method applicable to
stationary dependent data. In the blocking procedure the original data set is divided
into blocks, and these blocks rather than the individual observations are sampled. The
intuitive argument for the resampling of the blocks consists in trying to account for the
dependence structure of the original data. For this reason the block length, l, has to
increase as the sample size, n, increases. There are several different ways to implement
the block bootstrap. The two most common methods were suggested in Hall (1985). Al-
though introduced in Hall (1985), in the literature they are known as ‘Carlstein’s rule’
(Carlstein, 1986) and ‘Künsch’s rule’ (Künsch, 1989). Carlstein’s rule consists of sampling
non-overlapping blocks, and Künsch’s rule samples overlapping blocks.1

∗Graduate student. I thank Professor Joel Horowitz for his indispensable comments and continued
support. All the errors are my own. E-mail: janis-zvingelis@uiowa.edu.

1Next section gives details on Carlstein’s block bootstrap rule.
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This paper is partly based on results in Hall, et al (1995) and Hall and Horowitz (1996).
The first paper derives, among other things, the block lengths that minimize the error made
by bootstrap estimator of the value of one- and two-sided distribution functions, evaluated
at a constant. Hall, et al (1995) show that the asymptotic formulae for the optimal block
lengths are l = C1n1/4 and l = C2n1/5, respectively.2 Hall and Horowitz (1996) give con-
ditions under which Carlstein’s block bootstrap provides asymptotic refinements3 through
O(n−1) for coverage probabilities, when bootstrap critical values are used for constructing
symmetrical, two-tailed confidence intervals for Generalized Method of Moments (GMM)
test statistics. In this paper we will use a slightly modified version of regularity conditions
of Hall and Horowitz (1996).

Related literature also includes Lahiri (1992), who provides conditions under which
asymptotic refinements through O(n−1/2) are obtained for estimating one-sided distribu-
tion functions of normalized statistics and for studentized statistics with m-dependent
data. The m-dependence condition was not imposed in Hall and Horowitz (1996). Götze
and Künsch (1996) apply Künsch’s block bootstrap to estimating one-sided distribution
functions. Among other things, they show that the block bootstrap provides asymptotic
refinement through O(n−1/2) for estimating one-sided distribution functions of studentized
statistics, provided the variance estimator is chosen appropriately. Lahiri (1996) gives a
proof of a similar result for studentized M -estimators in multiple linear regression models.

In this paper we find the block lengths, l, that minimize the error in the values of one-
and two-sided distribution functions of normalized and studentized smooth functions of
sample averages evaluated at bootstrap critical values. This amounts to estimating the
error in the coverage probabilities of one- and two-sided bootstrap confidence intervals of
normalized and studentized smooth functions of sample averages. It turns out that the
optimal block lengths are proportional to n1/4 for one- and two-sided confidence intervals
for both, normalized and studentized statistics. Furthermore, the errors made in the
coverage probabilities by the one- and two-sided block bootstrap confidence intervals are
O(n−3/4) and O(n−5/4), respectively, when optimal block lengths are used. This amounts
to refinement over the asymptotic confidence intervals, since the errors made by one- and
two-sided asymptotic confidence intervals in the dependent data setup are O(n−1/2) and
O(n−1), respectively. Note, however, that the improvement from using the bootstrap over
the asymptotics leaves much to be desired, especially in the two-sided confidence interval
case. As a comparison, the errors in coverage probability made by one- and two-sided
confidence intervals, when bootstrap critical values are used in an IID case, are O(n−1)
and O(n−2), respectively.

2For convenience and simplicity we will employ C and/or Ci, i = 1, 2, . . . to denote some finite constants
that depend on the specifics of the data generation process, but not on sample size, n. These constants
may assume different values at each appearance.

3By “refinement through O(n−r)” we mean that the estimated parameter of interest is correct up to
and including the term of order O(n−r), and the estimation error is of size o(n−r).
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The random variable of interest here is a standardized and studentized smooth function
of sample moments of X or sample moments of functions of X . GMM estimators, for
example, fall in this category, because they can be approximated by a smooth function of
sample moments with a negligible error. In the case of normalized statistic the assumption
is made that the appropriate variance is known. An important statistic that falls in this
category is the Durbin-Watson test statistic for serial correlation. The second case of
interest is a studentized random variable. Studentization introduces a new set of difficulties
when we are applying bootstrap methods to dependent data. The reason is that the exact
bootstrap variance of the demeaned random variable has a different functional form than
its population equivalent. This is because the dependence structure of the original sample
is not replicated exactly in the bootstrap sample. For example, if non-overlapping blocks
are used, the observations from different blocks in the bootstrap sample are independent
with respect to the probability measure induced by bootstrap sampling. Furthermore,
observations from the same block are deterministically related. This dependence structure
is unlikely to be present in the original sample.

To achieve asymptotic refinement, the Edgeworth expansions of the statistic of inter-
est and its bootstrap equivalent have to have the same structure apart from replacing
bootstrap cumulants with sample cumulants in the bootstrap expansion. Lahiri (1992)
and Hall and Horowitz (1996) proposed “corrected” bootstrap estimators that achieve
asymptotic refinement and partially account for the change in the dependence structure in
the bootstrap sample. The corrected versions of bootstrap test statistics are also used in
this paper. If, instead of using a correction factor, we used a bootstrap equivalent of the
consistent estimator of the population variance to studentize the bootstrap test statistic,
the exact variance of the leading term of the Taylor series expansion of the bootstrap
test statistic could not be made equal to one without introducing extra terms into the
bootstrap Edgeworth expansion4 that would not be present in the population expansion.
If, on the other hand, we used the exact bootstrap variance to studentize the bootstrap
test statistic, the exact variance of the leading term of the Taylor series expansion of the
test statistic would be equal to one, but again the structure of the population and the
bootstrap Edgeworth expansions would not be the same. Thus, the point of the correction
factor is to make the exact variance of the leading term of the Taylor series expansion of the
bootstrap test statistic equal to one and to do this without introducing new (bootstrap)
stochastic terms that would affect the structure of the Edgeworth expansion.

An enlightening fact to note is that one does not need correction factors in one-sided
4An Edgeworth expansion is an approximation to distribution function of a random variable. Under

certain assumptions Edgeworth expansion takes on the form of power series in n−r, where the first term
is the standard Normal distribution function and r depends on the type of a random variable. The power
series form of an Edgeworth expansion makes it a convenient tool for determining the size of the error
made by an estimator of a finite sample distribution function of a given random variable. See Hall (1992)
for detailed discussion of Edgeworth expansions.
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confidence interval case to achieve asymptotic refinement through O(n−1/2) (see, for exam-
ple, Lahiri (1992), Davison and Hall (1993), Götze and Künsch (1996), and Lahiri (1996)).
The reason for this is that the differences between the population and bootstrap variances
of higher order terms of the Taylor series expansions of the random variable of interest are
of order smaller than O(n−1/2).

The paper is organized as follows: section 2 looks at the regularity conditions and
introduces the test statistics of interest, section 3 lays out the theoretical results. This is
followed by the appendix containing the relevant mathematical derivations.

2. Regularity conditions and test statistics

Let us introduce the notation by explaining the Carlstein’s blocking rule. Notation will
largely follow that laid out in Hall, et al (1995) and Hall and Horowitz (1996). Denote the
sample by X = (X1, . . . , Xn), where Xi ∈ Rd is a d× 1 random variable. Let b, l denote
integers such that n = bl. Carlstein’s rule divides the sample X in b disjoint blocks, where
the kth block is Bk = (X(k−1)l+1, . . . , Xkl) for 1 ≤ k ≤ b. According to the Carlstein’s
rule bootstrap sample X ∗ is formed by choosing b blocks randomly with replacement out
of the set of blocks formed from the original sample and laying the chosen blocks side by
side in the order that they are chosen.

2.1. Regularity conditions

In this paper we have established the optimal bootstrap block lengths by minimizing
the error in the coverage probabilities of one- and two-sided block bootstrap confidence
intervals of normalized and studentized smooth functions of sample averages. Many test
statistics and estimators are smooth functions of sample averages or can be approximated
by such functions with negligible error. Test statistics based on GMM estimators constitute
an example of the latter case. To motivate the regularity conditions for the existence of the
Edgeworth and Cornish-Fisher expansions that are employed later, let the test statistic
of interest be equal to a GMM test statistic up to a negligibly small error. The following
regularity conditions are a slightly modified version of those in Hall and Horowitz (1996).

Let the GMM estimation be based on the moment condition Eg(X, θ) = 0, where g
is a Lg × 1 function, θ is a Lθ × 1 parameter vector whose true but unknown value is θ0,
and Lg ≥ Lθ. Assume that {Xi} is a covariance stationary, ergodic stochastic process and
that Eg(Xi, θ0)g(Xj , θ0)′ = 0 if |i − j| > k for some integer k < ∞. Also, assume that
Cov(Xi, Xj) = 0 if |i− j| > k. The assumptions then are:

Assumption 1 There is a sequence of iid vectors {εi : i = −∞, . . . ,∞} of dimension
Lε ≥ d and a d × 1 function h such that Xi = h(εi, εi−1, εi−2, . . .). There is a constant
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c > 0 such that for all n = 1, 2, . . . and all m > c−1

E‖h(εn, εn−1, εn−2, . . .)− h(εn, εn−1, εn−2, . . . , εn−m, 0, 0, . . .)‖ ≤ c−1exp(−cm).

Assumption 2 θ0 is an interior point of the compact parameter set Θ and is the unique
solution in Θ to the equation Eg(X, θ) = 0.

Assumption 3 (a) E‖g(X, θ)‖ < ∞ for all θ ∈ Θ, where ‖ · ‖ is the Euclidean norm.
(b) Eg(X1, θ0)g(X1+i, θ0) = 0 if i > k for some k < ∞. (c) E

∑k
i=0[g(X1, θ)g(X1+i, θ)′ +

g(X1+i, θ)g(X1, θ)′] exists for all θ ∈ Θ. Its smallest eigenvalue is bounded away from
zero uniformly over θ in an open sphere, N0, centered on θ0. (d) There is a function
Cg(x) such that ‖g(x, θ1)− g(x, θ2)‖ ≤ Cg(x)‖θ1− θ2‖ for any θ1, θ2 ∈ Θ. (e) g is 7-times
differentiable with respect to the components of θ everywhere in N0. (f) Let ḡ(x, θ) be a
vector containing the unique components of the derivatives of g(x, θ) through order 7 with
respect to θ. There is a function C∗(x) such that ‖ḡ(x, θ1)− ḡ(x, θ2)‖ ≤ C∗(x)‖θ1−θ2‖ for
any θ1, θ2 ∈ N0. (g) Let C denote Cg or C∗. Then P [C(X) > z] = O(z−49) as z →∞.

Let w(x̃1, θ) be a vector containing the unique components of g(X1, θ), g(X1, θ)g(Xj , θ)′ (1 ≤
j ≤ k + 1), and their derivatives through order 7 with respect to the components of θ.

Assumption 4 w(X̃1, θ0) is a Lipschitz continuous function of x̃. As z →∞, P [‖w(X̃1, θ0)‖ >
z] = O(z−49).

Assumption 5 X can be partitioned (X(c)′ , X(d)′)′, where X(c) ∈ Rc for some c > 0, the
distributions of X(c) and ∂g(X, θ0)/∂θ are absolutely continuous with respect to Lebesgue
measure, and the distribution of X(d) is discrete. There need not be any discrete compo-
nents of X, but there must be at least one continuous component.

Assumption 6 There exist r > 0 and δ > 0 such that for all integers m satisfying
δ−1 < m + 1 < n and all t ∈ Rdim(w) with ‖t‖ > δ

E

∣

∣

∣

∣

∣

∣

E







exp



it′
2m+1
∑

j=1

w(X̃j)





∣

∣

∣

∣

∣

∣

εk : r < |m + 1− k|







∣

∣

∣

∣

∣

∣

≤ exp(−δ).

2.2. Normalized statistic

The random variable of interest here is equal to (up to a negligible error5) the stan-
dardized/studentized rth component of the GMM estimator of vector θ. The GMM es-
timation can be carried out either with a fixed weight matrix or with an estimate of the

5Under the above assumptions one can extend Propositions 1 and 2 of Hall and Horowitz (1996) to a
case, where the GMM estimator and its bootstrap equivalent are approximated by smooth functions of
sample moments with an error of size o(n−2) in an appropriate sense.
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asymptotically optimal weight matrix. Let us denote the random variable of interest by
UN = (θ̂− θ)/s, where θ̂ = f(X̄), θ = f(E(X)), s = (V (θ̂− θ))1/2, where V (·) is an exact
variance, and f(·) : Rd → R is a smooth function of sample moments of X or sample
moments of functions of X .

Let U∗
N denote the bootstrap equivalent of UN , where U∗

N = (θ̂∗ − θ̂)/s̃, θ̂∗ = f(X̄∗),
and X̄∗ = n−1 ∑

X∗
i is the resample mean. Define s̃ = (V ′[θ̂∗ − θ̂])1/2, where V ′[θ̂∗ − θ̂] =

E′(θ̂∗ − E′[θ̂∗])2. Here E′[·] denotes the expectation induced by the bootstrap sampling,
conditional on X .

Next we define the Edgeworth expansions of UN and U∗
N :

sup
x

∣

∣

∣P (UN < x)− Φ(x)− n−1/2p1(x)− n−1p2(x)
∣

∣

∣ = o(n−1),

where p1(z) and p2(z) are even and odd functions, respectively, both of the functions are
polynomials with coefficients depending on cumulants6 of UN , and they are both of order
O(1).

sup
x

∣

∣

∣P ∗(U∗
N < x)− Φ(x)− n−1/2p̂1(x)− n−1p̂2(x)

∣

∣

∣ = o(n−1),

except, possibly, if X is contained in a set of probability o(n−1). Here p̂1(z) and p̂2(z)
are the same polynomials as above only the population cumulants of UN are replaced by
sample cumulants of U∗

N , and P ∗(·) is a distribution function (conditional on the sample)
induced by the bootstrap sampling. The expansions are asymptotic series, i.e., if the series
is stopped after a given number of terms then the remainder is of smaller order than the
last term that has been included (see, e.g., Hall (1992) for an extensive description of the
Edgeworth expansions and the bootstrap).

Define uα as P (UN < uα) = α. Inverting the Edgeworth expansion produces Cornish-
Fisher expansion:

sup
ε≤α≤1−ε

∣

∣

∣uα − zα − n−1/2p11(zα)− n−1p21(zα)
∣

∣

∣ = o(n−1),

where 0 < ε < 1/2.7 Similarly, define ûα as P (U∗
N < ûα) = α.8 Then for ε > 0,

sup
n−ε≤α≤1−n−ε

∣

∣

∣ûα − zα − n−1/2p̂11(zα)− n−1p̂21(zα)
∣

∣

∣ = o(n−1),

6Cumulants are defined as the coefficients of 1
j! (it)

j terms in a power series expansion of log χ(t), where
χ(t) is the characteristic function of a random variable and χ(t) = exp(k1it+ 1

2k2(it)2+. . .+ 1
j!kj(it)j+. . . +).

7In the notation pij(·) (and later qij(·)), i denotes the term in the Cornish-Fisher expansion and j
is equal to 1, if uα is a percentile of a one-sided distribution, and 2, if it is a percentile of a two-sided
distribution.

8To obtain an empirical estimate of ûα, one can carry out a Monte Carlo experiment that consists of
resampling the original sample X , calculating the bootstrap test statistic U∗N , and forming the empirical
distribution of U∗N . The αth quantile of the empirical distribution of the bootstrap test statistic is the
empirical estimate of ûα.
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except, possibly, if X is contained in a set of probability o(n−1). Let ki denote the ith
cumulant of UN . Then,

n−1/2p11(x) = −n−1/2p1(x)

n−1p21(x) = n−1/2p1(x)n−1/2p
′
1(x)− 1

2
xn−1p1(x)2 − n−1p2(x) (1)

n−1/2p1(x) = −k1 −
k3

6
(x2 − 1)

n−1p2(x) = −1
2
k2

1x +
(

k4

24
+

k1k3

6

)

(3x− x3)− k2
3

72
(x5 − 10x3 + 15x),

with obvious modifications for p̂11(x) and p̂21(x). First four cumulants of UN have the
following form (see Appendix):

k1 ≡ E(UN ) =
k1,2

n1/2 +
k1,3

n3/2 +O(n−5/2)

k2 ≡ E(UN − E(UN ))2 = 1

k3 ≡ E(UN − E(UN ))3 =
k3,1

n1/2 +
k3,2

n3/2 +O(n−5/2)

k4 ≡ E(UN − E(UN ))4 − 3(V (UN ))2 =
k4,1

n
+O(n−2),

where ki,j ’s are constants that do not depend on n and E(U2
N ) = O(1) +O(n−1).

Let us introduce also some notation for the two-sided distribution function of the
normalized test statistic. Noting that P (|UN | < x) = P (UN < x) − P (UN < −x) and
that p1(x) is an even polynomial, the Edgeworth expansions for |UN | and |U∗

N | take on
the following form:

sup
x

∣

∣

∣P (|UN | < x)− 2Φ(x) + 1− 2n−1p2(x)
∣

∣

∣ = o(n−2),

sup
x

∣

∣

∣P ∗(|U∗
N | < x)− 2Φ(x) + 1− 2n−1p̂2(x)

∣

∣

∣ = o(n−2),

where the latter equality holds except, possibly, if X is contained in a set of probability
o(n−2).

Define ξ = 1
2(1 + α), P (|UN | < wα) = α, and n−1p12(·) = −n−1p2(·). Inverting the

population Edgeworth expansion we obtain the following Cornish-Fisher expansion:

sup
ε≤α≤1−ε

∣

∣

∣wα − zξ − n−1p12(zξ)
∣

∣

∣ = o(n−2),

where 0 < ε < 1/2. Equivalently, define P (|U∗
N | < ŵα) = α and n−1p̂12(·) = −n−1p̂2(·),

where p̂2(·) is as p2(·) with population moments replaced by their sample equivalents.
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Then

sup
n−ε≤α≤1−n−ε

∣

∣

∣ŵα − zξ − n−1p̂12(zξ)
∣

∣

∣ = o(n−2),

except, possibly, if X is contained in a set of probability o(n−2).

2.3. Studentized statistic

The random variable of interest here is US = (θ̂ − θ)/ŝ, where ŝ2 is a consistent estimate
of s2. The functional forms of s2 and ŝ2 are:9

s2 ∼
d

∑

i=1

C2
i · V (X̄i) + 2

∑

1≤j<i≤d

∑

Ci · Cj · Cov(X̄i, X̄j),

where V (X̄i) = γ(0)/n+(2/n)
∑k

j=1 γ(j) · (1−n−1j), γ(j) is the jth autocovariance of X,
k is the highest lag for non-zero covariance, f(·) : Rd → R, and Ci’s are constants that
depend on function f(·), but not on n. Also, X̄i is a sample mean of the ith argument of
the function f(·). Note that Cov(X̄i, X̄j) is dominated by V (X̄i). A consistent estimator
of s2 is given by:

ŝ2 ∼
d

∑

i=1

C2
i · V̂ (X̄i) + 2

∑

1≤j<i≤d

∑

Ci · Cj · Ĉov(X̄i, X̄j),

where V̂ (X̄i) = n−2 ∑n
j=1(Xij−X̄i)2+(2/n)

∑k
l=1(1−n−1l)

∑n−l
j=1(Xij−X̄i)(Xi,j+l−X̄i)/n,

Ĉov(X̄i, X̄j) is dominated by V̂ (X̄i), and Xij is the jth element of the sample from the
ith argument .

The bootstrap statistic is U∗
S = (ŝ/s̃) ·(θ̂∗− θ̂)/ŝ∗, where ŝ∗2 is the bootstrap equivalent

of ŝ2:

ŝ∗2 ∼
d

∑

i=1

C2
i · V̂ (X̄∗

i ) + 2
∑

1≤j<i≤d

∑

Ci · Cj · Ĉov(X̄∗
i , X̄∗

j ).

Here V̂ (X̄∗
i ) = n−2 ∑n

j=1(X
∗
ij−X̄∗

i )2+(2/n)
∑k

l=1(1−n−1l)
∑n−l

j=1(X
∗
ij−X̄∗

i )(X∗
i,j+l−X̄∗

i )/n,
Ĉov(X̄∗

i , X̄∗
j ) is dominated by V̂ (X̄∗

i ), X∗
ij is the jth observation of the ith argument of

9The following variances are expressed in terms of being asymptotically equivalent to something, be-
cause, in general, the function f(·) in the random variable of interest, US , is not a linear function. To be
able to evaluate the variance of the random variable of interest, we have to linearize f(·) using Taylor’s
theorem.
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f(·) in the block bootstrap sample X ∗, and X̄∗
i is a sample mean of the block bootstrap

sample for the ith argument. The exact bootstrap variance of θ̂∗ − θ̂ is denoted by s̃2:

s̃2 ∼
d

∑

i=1

C2
i · V

′
(X̄∗

i − X̄i)

=
d

∑

i=1

C2
i
1
b

b
∑

j=1

(X̄ij − X̄i)2

b

=
d

∑

i=1

C2
i

1
n2

b
∑

j=1

l
∑

k1=1

l
∑

k2=1

(Xijk1 − X̄)(Xijk2 − X̄),

where V ′(·) is the variance induced by block bootstrap sampling, X̄ij is the sample mean
of the jth block of the ith argument, Xijkm is the kmth observation in the jth block of
the ith argument.

Note that the Taylor series expansions of US and U∗
S have the following forms:10

US =





d
∑

i=1

(Dif)(µ)(X̄i − µi)
s

+
1
2

d
∑

i=1

d
∑

j=1

(DiDjf)(µ)(X̄i − µi)(X̄j − µj)
s

+ op(n−1/2)





×



1− ŝ2 − s2

2s2 +
3
8

(

ŝ2 − s2

s2

)2

+ op(n−1)



 (2)

U∗
S =





d
∑

i=1

(Dif)(X̄)(X̄∗
i − X̄)

s̃
+

1
2

d
∑

i=1

d
∑

j=1

(DiDjf)(X̄)(X̄∗
i − X̄i)(X̄∗

j − X̄j)
s̃

+ op(b−1/2)





×



1− ŝ∗2 − ŝ2

2ŝ2 +
3
8

(

ŝ∗2 − ŝ2

ŝ2

)2

+ op(b−1)



 ,

where the error in the second expansion holds conditional on the sample X , Di is a partial
derivative with respect to the ith element of function f(·), µi is the population mean of
the ith random variable in the vector X. First brackets of the above two expressions
are exactly equal to UN and U∗

N , respectively. Therefore, the exact variances of the first
brackets in the above two equations are equal to one. Furthermore, first four cumulants of
US have the same expansions and rates as the cumulants of UN above with an exception
of the second cumulant. The second cumulant of US is equal to 1 + O(n−1). With this
change in the variance, the Edgeworth expansion, say, for US is:

sup
x

∣

∣

∣P (US < x)− Φ(x)− n−1/2q1(x)φ(x)− n−1q2(x)φ(x)
∣

∣

∣ = o(n−1),

10The expansion of US , of course, is a theoretical construct, since in the studentized case it is assumed
that we do not know s2.
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where

n−1/2q1(x) = −k
′
1 −

k
′
3

6
(x2 − 1)

n−1q2(x) =

(

−
k
′
2,2

2
− k

′2
1

2

)

x +

(

k
′
4

24
+

k
′
1k

′
3

6

)

(3x− x3) (3)

− k
′2
3

72
(x5 − 10x3 + 15x)

n−1/2q11(x) = −n−1/2q1(x)

n−1q21(x) = n−1/2q1(x)n−1/2q
′
1(x)− 1

2
xn−1q1(x)2 − n−1q2(x),

k
′
i is the ith population cumulant of US , and k

′
2 = 1+k

′
2,2/n+o(n−1). The functional forms

of n−1/2q̂11(·) and n−1q̂21(·) are the same as those of n−1/2q11(·) and n−1q21(·), respectively,
with population moments of US replaced by the sample cumulants of U∗

S . Also, define the
following polynomial for a two-sided confidence interval case: n−1q12(·) = −n−1q2(·).

Note the difference between n−1p2(·) (introduced earlier) and n−1q2(·). Although the
functional forms of the polynomials in the Edgeworth and Cornish-Fisher expansions for
the standardized and the studentized statistics are the same (as functions of cumulants),
some cancellations happen in the normalized case, when we replace the second cumulant
with its expansion. In the normalized case the second cumulant is exactly equal to one,
whereas it is equal to 1 +O(n−1) in the studentized case.

The regularity conditions for the existence of all the above Edgeworth and Cornish-
Fisher expansions are given in section 2.1.

3. Main results

The goal of this paper is to find the block length l that minimizes the coverage error of
one- and two-sided confidence intervals when bootstrap critical values are used in the
dependent data setting. Solution methods to the problems involving normalized and
studentized statistics are very similar. Section 3.1 deals with the normalized statistic,
while the details of the solution to the case of the studentized statistic are discussed in
section 3.2. Algebraic details of the important calculations can be found in the Appendix.

3.1. Normalized statistic

3.1.1. One-sided distribution function

Here we find the block length l that satisfies the following expression:

l∗ = arg min
l∈L

|P (UN < ûα)− α| ,

10



where L is the set of block lengths that are no larger than n and that go to infinity as the
sample size n goes to infinity.

Intuitively, the above probability should equal α plus some terms that disappear
asymptotically and are functions of l. The goal, therefore, is to find these approximating
terms. We start out by expanding the objective function from the above minimization
problem:

P (UN < ûα) = P
[

UN − n−1/2(p̂11(zα)− p11(zα))− n−1(p̂21(zα)− p21(zα))

≤
2

∑

j=1

n−j/2pj1(zα) + zα + rN



 ,

where rN = o(n−1), except, possibly, if X is contained in a set of probability o(n−1).
Let’s denote n−1/2∆N ≡ n−1/2(p̂11(zα)− p11(zα)), SN ≡ UN − n−1/2(p̂11(zα)− p11(zα))−
n−1(p̂21(zα)− p21(zα)), and pij(·)’s are as defined in equation 1. By the application of the
Delta method (see Appendix):

P (UN < ûα) = P (SN < x) + o(n−1),

where x ≡
∑2

j=1 n−j/2pj1(zα) + zα.
Now the objective is to develop first 4 cumulants of SN as functions of cumulants of

UN . Then, using cumulants of SN , derive an Edgeworth expansion of SN as an Edgeworth
expansion11 of UN plus some error terms. Lastly, evaluate the resulting expression at
x ≡

∑2
j=1 n−j/2pj1(zα) + zα.

Denote the cumulants of SN by kS
i . Then (see Appendix for details):

kS
1 = k1 − n−1/2E(∆N ) + o(n−1)

kS
2 = k2 − 2n−1/2E(UN∆N ) + o(n−1)

kS
3 = k3 − 3n−1/2E(U2

N∆N ) + 3n−1/2E(U2
N )E(∆N ) + o(n−1)

kS
4 = k4 − 4n−1/2E(U3

N∆N ) + 12n−1/2E(U2
N )E(UN∆N ) + o(n−1),

where we have used the result that UN = Op(1), n−1/2∆N = Op(A
1/2
1 ) and n−1(p̂21(zα)−

p21(zα)) = Op(A
1/2
2 ) (see Appendix), and A1 = C1n−1l−2 +C2n−2l2 and A2 = C3n−2l−2 +

C4n−3l3. The rates of A1 and A2 follow from Hall, et al (1995). Next, substitute these
cumulants in the Edgeworth expansion of SN . The resulting equation is:

P (UN ≤ ûα) = P (SN ≤ x) + o(n−1)

= P (UN ≤ x) + n−1/2E(∆N )φ(x) + n−1/2E(UN∆N )xφ(x)
11In this paper we have not derived the regularity conditions under which this expansion exists.
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+
(

1
2
n−1/2E(U2

N∆N )− 1
2
n−1/2E(U2

N )E(∆N )
)

(x2 − 1)φ(x)

+
(

1
2
n−1/2E(U2

N )E(UN∆N )− 1
6
n−1/2E(U3

N∆N )
)

(3x− x3)φ(x) + o(n−1).

The next step is to evaluate the above equation at x ≡
∑2

j=1 n−j/2pj1(zα) + zα:

P (UN < ûα)

= P



SN ≤
2

∑

j=1

n−j/2pj1(zα) + zα



 + o(n−1)

= P



UN ≤
2

∑

j=1

n−j/2pj1(zα) + zα



 + n−1/2E(∆N )φ(zα)

+ n−1/2E(UN∆N )zαφ(zα) +
(

1
2
n−1/2E(U2

N∆N )− 1
2
n−1/2E(U2

N )E(∆N )
)

(z2
α − 1)φ(zα)

+
(

1
2
n−1/2E(U2

N )E(UN∆N )− 1
6
n−1/2E(U3

N∆N )
)

(3zα − z3
α)φ(zα) + o(n−1).

Further, note that P
(

UN ≤
∑2

j=1 n−j/2pj1(zα) + zα

)

= α + O(n−1), i.e., it does not
depend on block length, l, and therefore can be dropped from the minimization function.
Now the objective function takes on the following form:

n−1/2E(∆N )C1 + n−1/2E(UN∆N )C2 + n−1/2E(U2
N∆N )C3 + n−1/2E(U2

N )E(∆N )C4

+n−1/2E(U3
N∆N )C5 + n−1/2E(U2

N )E(UN∆N )C6 + o(n−1).

Note that n−1/2E(∆N ) ∼ n−1/2E(U2
N )E(∆N ) and n−1/2E(UN∆N ) ∼ n−1/2E(U2

N )E(UN∆N ).
Also, note that terms n−1/2E(U2

N∆N ) and n−1/2E(U3
N∆N ) are dominated by n−1/2E(UN∆N ).

Thus, we are left with two terms: n−1/2E(∆N ) and n−1/2E(UN∆N ). Appendix shows that
these terms are of the following orders:

n−1/2E(∆N ) = O(n−3/2l) +O(n−1/2l−1)

n−1/2E(UN∆N ) = O(n−1l) +O(n−1l−1).

Therefore the error in the bootstrap coverage probability of a one-sided block bootstrap
confidence interval is: O(n−1/2l−1) + O(n−1l). The block length, l, that minimizes this
quantity is proportional to n1/4. Furthermore, the size of the coverage error is O(n−3/4),
when block lengths proportional to n1/4 are used.
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3.1.2. Two-sided distribution function

The solution methods in one- and two-sided distribution function cases are very similar.
Again, we are looking for the block length, l, that satisfies the following equation:

l∗ = min
l∈L

|P (|UN | < ŵα)− α| .

Note that ŵα − wα = n−1∆A
N + o(n−2), except, possibly, if X is contained in a set of

probability o(n−2), where n−1∆A
N = n−1(p̂12(zξ) − p12(zξ)) and n−1p12(·) = −n−1p2(·).

One can show (see Appendix) that n−1∆A
N = Op(A

1/2
2 ), where A2 = C1n−2l−2 + C2n−3l3

and the rate of A2 follows from Hall, et al (1995).
Then:

P (|UN | < ŵα) = P (|UN | < wα + n−1∆A
N + rA

N )

= P (|UN | < wα + n−1∆A
N ) + o(n−2)

= P (UN < wα + n−1∆A
N )− P (UN < −wα − n−1∆A

N ) + o(n−2),

where rA
N = o(n−2), except, possibly, if X is contained in a set of probability o(n−2) and

the second equality follows by the Delta method (see Appendix). The next task is to de-
velop cumulants of UN −n−1∆A

N and UN +n−1∆A
N and substitute them in the Edgeworth

expansion of P (UN − n−1∆A
N < wα)−P (UN + n−1∆A

N < −wα). The relevant error terms
are: n−1E(∆A

N ), n−1E(U2
N∆A

N ), and n−1E(UN∆A
N )E(UN ). Note that n−1E(U2

N∆A
N ) is

asymptotically equivalent to n−1E(UN∆A
N )E(UN ), which in turn is asymptotically equiv-

alent to n−3/2E(UN∆A
N ). Following the solution methods of one-sided distribution case

(see Appendix) one can show that these terms are of the following orders:

n−1E(∆A
N ) = O(n−1l−1) +O(n−3/2l)

n−3/2E(UN∆A
N ) = O(n−2l) +O(n−2l−1).

Thus, the error in the coverage probability of a two-sided block bootstrap confidence
interval is of order O(n−1l−1) +O(n−3/2l). The block length, l, that minimizes this error
is proportional to n1/4. The error is of size O(n−5/4).

3.2. Studentized statistic

It is intuitively clear that the error rates of the coverage probability in the studentized
case should be the same as in the normalized case. The reason for this is that the Taylor
series expansion of the studentized test statistic is equal to normalized test statistic plus
some higher order error terms (see equation 2).

The solution method for the studentized statistic case is very similar to that of the
normalized statistic. The derivation of the error terms is identical to the normalized
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statistic case for both, one- and two-sided distribution functions. The dominant error terms
are: n−1/2E(∆S) and n−1/2E(US∆S) for the one-sided case and n−1E(∆A

S ), n−1E(U2
S∆A

S ),
and n−1E(US∆A

S )E(US) for the two-sided case, where n−1/2∆S = n−1/2(q̂11(zα)−q11(zα))
and n−1∆A

S = n−1(q̂12(zξ)− q12(zξ)).
Let k

′
i and k̂

′
i denote the population and bootstrap cumulants of US and U∗

S , respec-
tively. Given the structure of the polynomials q1(·) and q2(·) in equations 3 we see that
the following error terms have to be bounded; for one- sided case: E[k̂

′
1 − k

′
1], E[k̂

′
3 − k

′
3],

E[US · (k̂
′
1 − k

′
1)], and E[US · (k̂

′
3 − k

′
3)], for two-sided case: E[k̂

′
2 − k

′
2], E[k̂

′2
1 − k

′2
1 ],

E[k̂
′
4−k

′
4], E[k̂

′
1k̂

′
3−k

′
1k

′
3], E[k̂

′2
3 −k

′2
3 ], E[US ·(k̂

′
2−k

′
2)], E[US ·(k̂

′2
1 −k

′2
1 )], E[US ·(k̂

′
4−k

′
4)],

E[US · (k̂
′
1k̂

′
3 − k

′
1k

′
3)], and E[US · (k̂

′2
3 − k

′2
3 )].

Notice that the above terms are dominated by their normalized statistic equivalents.
This is easy to see from equation 2, where we break down US and U∗

S in UN and U∗
N ,

respectively, times something that is asymptotically equal to one. The only exception
occurs in the case of the term E[k̂

′
2 − k

′
2]. In the normalized statistic case variances of

UN and U∗
N are both equal to one. Thus, the leading terms of k

′
2 and k̂

′
2 both cancel,

and E[k̂
′
2 − k

′
2] is dominated by the population and the bootstrap variances of the second

brackets in equation 2. However, one can show (see Appendix) that E(k̂
′
2−k

′
2) term is equal

to o(n−1l−1). Thus, the error rates in the coverage probabilities of one- and two- sided
block bootstrap confidence intervals of studentized statistics are O(n−1/2l−1) + O(n−1l)
and O(n−1l−1) + O(n−3/2l), respectively. The optimal block lengths and the coverage
error rates are the same for both, studentized and normalized cases.

Appendix

Result 1 Derivation of the probability bounds for n−1/2∆N , n−1∆A
N , and n−1(p̂21(x) −

p21(x)).

From Hall, et al (1995), we know that n−1E(p̂1(x) − p1(x))2 = O(A1), where A1 =
C1n−1l−2 + C2n−2l2. Also, note that the probability rate of n−1/2(p̂1(x) − p1(x)) is the
same as that of n−1/2(p̂11(x)− p11(x)), since n−1/2p11(·) = −n−1/2p1(·) with the obvious
modifications for n−1/2p̂11(·). Then by Chebyshev’s inequality:

P (A−1/2
1 n−1/2|∆N | > Mε) <

n−1E(∆N )2

A1M2
ε

≡ ε∗,

where Mε < ∞ and ε∗ can be made arbitrarily small. The latter statement is true, because
n−1E(∆N )2/A1 = O(1). Thus, A−1/2

1 n−1/2∆N = Op(1), i.e., it is bounded in probability.
To find the probability bound for n−1∆A

N we use the result from Hall, et al (1995):
n−2E(p̂2(x) − p2(x))2 = O(A2), where A2 = C1n−2l−2 + C2n−3l3. Also, the probability
rate of n−1(p̂2(x) − p2(x)) is the same as that of n−1(p̂12(x) − p12(x)), since n−1p12(·) =
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−n−1p2(·) with the obvious modifications for n−1p̂12(·). Then we follow the steps above
to establish that n−1∆A

N = Op(A
1/2
2 ).

Lastly, to establish the probability bound of n−1(p̂21(x) − p21(x)), we note that the
probability rate of n−1(p̂2(x)− p2(x)) is the same as that of n−1(p̂21(x)− p21(x)) (this is
not hard to show), and then proceed as in the case above.

Result 2 Derivation of the cumulants of UN , SN , and UN ± n−1∆A
N .

The derivation of the cumulants of UN depend on applying the Taylor series expansion to
the random variable of interest. We know that

UN =
n1/2(f(X̄)− f(µ))

√

V
[

n1/2(f(X̄)− f(µ))
]

.

Note that V
[

n1/2(f(X̄)− f(µ))
]

= O(1). Then using the Taylor expansion with respect
to X̄ around µ:

n1/2(f(X̄)− f(µ)) =
d

∑

i=1

(Dif)(µ)n1/2(X̄i − µi)

+
1
2

d
∑

i=1

d
∑

j=1

(DiDjf)(µ)n1/2(X̄i − µi)(X̄j − µj) + op(n−1/2),

where the notation is as in equation 2. Noting that nb(i+1)/2cE(X̄ −µ)i = O(1), where b·c
denotes the integer part function, we have

E(UN ) =
k1,2

n1/2 +
k1,3

n3/2 +O(n−5/2),

where ki,j are constants that do not depend on n.
To derive higher order cumulants, use the Taylor series expansion, taken to the appro-

priate power.
The method of derivation of cumulants of SN and UN ± n−1∆A

N is to derive them
as sums of cumulants of UN plus an error that is asymptotically equal to zero. Let’s
demonstrate this for the second cumulant of SN :

kS
2 = E(SN )2 − E2(SN )

= E(UN − n−1/2∆N − n−1(p̂21(zα)− p21(zα)))2

− E2(UN − n−1/2∆N − n−1(p̂21(zα)− p21(zα)))

= k2 − 2n−1/2E(UN∆N ) + n−1E(∆2
N ) + 2n−1/2E(UN )E(∆N )− n−1E2(∆N ) + o(n−1).
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Using this method it is straightforward to derive cumulants of higher orders.

Result 3 Derivations involving the Delta method.

Here we will demonstrate the derivation of equality P (UN < ûα) = P (SN < x) + o(n−1).
The derivation of other equalities involving applications of Delta method are similar.

P (UN < ûα) = P (SN ≤ x + rN ),

where rN = o(n−1), except, possibly, if X is contained in a set of probability o(n−1). That
is, P (rN > o(n−1)) = o(n−1). Therefore ∀n ≥ n0 and ∀ε > 0, P (n · |rN | > ε) = o(n−1).
Then,

P (SN ≤ x + rN ) = P (Sn ≤ x + rN , n · |rN | ≤ ε)

+ P (SN ≤ x + rN , n · |rN | > ε)

≤ P (SN ≤ x + rN , n · |rN | ≤ ε) + P (n · |rN | > ε)

≤ P (SN ≤ x + ε · n−1) + o(n−1)

= FSN (x) + fSN (x) · ε · n−1 + o(n−1)

= P (SN < x) + o(n−1).

Also,

P (SN ≥ x + rN ) = P (SN ≥ x + rN , n · |rN | ≤ ε)

+ P (SN ≥ x + rN , n · |rN | > ε)

≤ P (SN ≥ x + rN , n · |rN | ≤ ε) + P (n · |rN | > ε)

≤ P (SN ≥ x + rN , rN ≥ −ε · n−1) + o(n−1)

≤ P (SN ≥ x− ε · n−1) + o(n−1).

Then the following inequalities hold:

1− P (SN ≤ x + rN ) ≤ 1− P (SN ≤ x− ε · n−1) + o(n−1)

P (SN ≤ x + rN ) ≥ P (SN ≤ x− ε · n−1) + o(n−1)

= FSN (x)− fSN (x) · ε · n−1 + o(n−1)

= P (SN < x) + o(n−1).

It follows then that P (SN < x + rN ) = P (SN < x) + o(n−1).
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Result 4 Bounding of n−1/2E(∆N ) and n−1/2E(UN∆N ).

(i)

n−1/2E(∆N ) = n−1/2E(p̂1(x)− p1(x))

= E(k̂1 − k1) + C · E(k̂3 − k3).

Start with E(k̂1 − k1) and define β̂ ≡ E′(f(X̄∗) − f(X̄)), β ≡ E(f(X̄) − f(µ)), and
k̂1 ≡ β̂/s̃. Then

k̂1 =
β̂ − β + β

s



1− s̃2 − s2

2s2 +
3
8

(

s̃2 − s2

s2

)2

+ . . .





= k1 +
β̂ − β

s
− β

s
s̃2 − s2

2s2 +Op(n3/2A0),

where A0 = C1n−2l−2 + C2n−3l, s2 = O(n−1), β = O(n−1), β̂ − β = Op(A
1/2
0 ), s̃2 − s2 =

Op(A
1/2
0 ), E(β̂−β) ∼ C1n−1l−1 +C2n−2l, E(s̃2−s2) ∼ C1n−1l−1 +C2n−2l. The last four

bounds are from Hall, et al (1995). Then E(k̂1 − k1) ∼ C1n−1/2l−1 + C2n−3/2l.
Next bound E(k̂3 − k3):

k̂3 − k3 = E′





f(X̄∗)− f(X̄)
√

V ′(f(X̄∗))
−E′





f(X̄∗)− f(X̄)
√

V ′(f(X̄∗))









3

− E





f(X̄)− f(µ)
√

V (f(X̄))
− E





f(X̄)− f(µ)
√

V (f(X̄))









3

∼ E′(X̄∗ − X̄)3

(V ′(X̄∗ − X̄))3/2 · C − E(X̄ − µ)3

(V (X̄ − µ))3/2 · C.

By Hall, et al (1995), p. 573:

E

(

E′(X̄∗ − X̄)3

(V ′(X̄∗ − X̄))3/2 −
E(X̄ − µ)3

(V (X̄ − µ))3/2

)

= O(n−1/2l−1).

Therefore n−1/2E(∆N ) ∼ C1n−3/2l + C2n−1/2l−1.

(ii)

n−1/2E(UN∆N ) = E(UN k̂1)− k2
1 + C · (E(UN k̂3)− k1k3).
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Since k̂1 = k1 + (β̂ − β)/s− (β/s) · ((s̃2 − s2)/2s2) +Op(n3/2A0),

E(UN k̂1) = k2
1 +

1
s2 E

(

(f(X̄)− f(µ))(β̂ − β)
)

+ E

(

UN
β
s

s̃2 − s2

2s2

)

+ o(A3),

where A3 = C1n−1l+C2n−1l−1. The rate of the error o(A3) follows from the following two
considerations. First, the terms covered by the error are farther out in the Taylor series
expansion of k̂1 than the terms left in the expansion, and therefore their rates are smaller
than those of the terms left in the expansion. Second, the error of the term n−1/2E(UN∆N
turns out to be O(A3). Some algebra:

(f(X̄)− f(µ))(β̂ − β) ∼ f ′(µ)(X̄ − µ)

[

f ′′(µ)
2b

∑b
j=1(Xj − X̄)2

b
− f ′′(µ)

2
E(X̄ − µ)2

]

= C · (X̄ − µ)
1
b
(X̄(2) − X̄2)− C · (X̄ − µ)

1
b
(E(X̄(2))− µ2)

+ C · (X̄ − µ)
1
b
(E(X̄(2))− µ2)− C · (X̄ − µ)(E(X̄2)− µ2),

where Xj = (1/l)
∑l

i=1 X(j−1)·l+i, X̄(k) = (1/b)
∑b

j=1 Xk
j , and C = f ′(µ)f ′′(µ)/2.

E
[

(f(X̄)− f(µ))(β̂ − β)
]

∼ C
b

E
[

(X̄ − µ)(X̄(2) − X̄2)− (X̄ − µ)(E(X2)− µ2)
]

=
C
b

E
[

(X̄ − µ)(X̄(2) − E(X̄(2)))− 2µ(X̄ − µ)2 − (X̄ − µ)3
]

= O(b−1n−1),

where the second equality follows from Taylor’s theorem. By noting that E[UN ·(β̂−β)/s] ∼
E[UN · (β/s) · ((s̃2 − s2)/2s2)], it follows then that E(UN k̂1)− k2

1 = O(n−1l).
Let us examine E(UN k̂3) − k1k3. From Hall, et al (1995), k̂3 = k3 + (l1/2/n1/2)kl

3 −
k3 +Op(A

1/2
4 ), where A4 = C1n−1l−2 +C2n−2l2 and kl

3 is the third cumulant for a sample
with l observations. Then

E(UN k̂3)− k1k3 ∼ k1

(

l1/2

n1/2 kl
3 − k3

)

=
k1

n1/2 · O(l−1)

= O(n−1l−1),

where the second to last line follows from Hall, et al (1995).
Thus, n−1/2E(UN∆N ) = O(n−1l)+O(n−1l−1). Therefore n−1/2E(∆N )+n−1/2E(UN∆N ) =

O(n−1/2l−1) +O(n−1l).
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Result 5 Bounding of E [V ′(U∗
S)− V (US)].

E
[

V ′(U∗
S)− V (US)

]

≤ E

(

E′
(

C · (X̄∗ − X̄)3

s2

)

− E

(

C · (X̄ − µ)3

s2

))

∼ C · l2

n

b
∑

i=1

E(X̄i − µ)3

b
− C · nE(X̄ − µ)3

= C · l2

n
E(X̄ − µ)3 − C · nE(X̄ − µ)3,

where E′ (X̄∗ − X̄
)3 = (1/b2)

∑b
i=1(X̄i − X̄)3/b and s2 = O(n−1). Note:

n2E(X̄ − µ)3 = E(X3
1 ) + 3

k
∑

j=1

(1− n−1j)E(X0X2
j + X2

0Xj)

+ 6
∑

i,j≥1

∑

i+j≤k

(1− n−1(i + j))E(X0XiXi+j).

Then,

C · l2

n
E(X̄i − X̄)3 − C · nE(X̄ − µ)3

∼ 1
n







E(X3
1 ) + 3

k
∑

j=1

(1− l−1j)E(X0X2
j + X2

0Xj)

+ 6
∑

i,j≥1

∑

i+j≤k

(1− l−1(i + j))E(X0XiXi+j)







− 1
n







E(X3
1 ) + 3

k
∑

j=1

(1− n−1j)E(X0X2
j + X2

0Xj)

+ 6
∑

i,j≥1

∑

i+j≤k

(1− n−1(i + j))E(X0XiXi+j)







= o(n−1l−1)
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