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Abstract

The nonparametric censored regression model, with a fixed, known censoring point (nor-
malized to zero), is y = max[0,m(z) + e], where both the regression function m(z) and
the distribution of the error e are unknown. This paper provides consistent estimators of
m(z) and its derivatives. The convergence rate is the same as for an uncensored nonpara-
metric regression and its derivatives. We also provide root n estimates of weighted average
derivatives of m(x), which equal the coefficients in linear or partly linear specifications for
m(z). An extension permits estimation in the presence of a general form of heteroscedas-
ticity. We also extend the estimator to the nonparametric truncated regression model, in
which only uncensored data points are observed. The estimators are based on the relation-
ship OE(y*I(y > 0)|x)/0m(x) = kE[y*~'I(y > 0)|z], which we show holds for positive integers
k.
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1 Introduction

Consider the censored regression model Y; = max[c, m(X;) — e;], where X; is an observed d vector
of regressors Xy; for k = 1,...,d, and e; is an unobserved mean zero error that is independent of
X; (writing the model as m — e instead of the more usual m + e simplifies later results). Here, the
censoring point ¢ is a known constant, which we can take to be zero without loss of generality, by
subtracting ¢ from Y; and m(X;).

A common economic example of fixed censoring is where Y; is observed purchases, which may
either be censored from above by rationing, or censored from below by zero if consumers can only
buy but not sell the product.

Both the regression function m(-) and the distribution F(-) of the error e is unknown. The
errors are not assumed to be symmetric. This paper provides a simple consistent estimator of m(z),
which equals the conditional mean function for the uncensored population. Also, we show that the
distribution function of the errors can be estimated given m(x).

The proposed estimator is extended to deal with the truncated regression model, where Y; is
only observed when it is not censored. We also describe extensions to deal with a general form
of heteroscedasticity, in which the distribution of e could depend in unknown ways on all but one
element of z.

For any continuously distributed element xj of z, let my(x) = Om(z)/0x,. This paper also
provides direct estimators of the derivatives my(x) in both the censored and truncated regression
models. These derivatives are interpretable as the marginal effect of a change in z on the underlying
uncensored population. They can also be used to test or estimate parametric or semiparametric
specifications of m(z). For example, my(x) is constant if m(z) is linear in xj , and my(z) depends
only on zy if m(z) is additive in a function of z.

Parametric and semiparametric estimators of censored regression models include Amemiya (1973),
seminal Heckman (1976), Buckley and James (1979), Koul, Suslara, and Van Ryzin (1981), Powell
(1984), (1986a), (1986b), Duncan (1986), Fernandez (1986), Horowitz (1986,1988), Moon (1989),
Powell, Stock and Stoker (1989), Nawata (1990), Ritov (1990) Ichimura (1993), Honoré and Powell
(1994), Lewbel (1998a, 1998b), and Buchinsky and Hahn (1998). Unlike the present paper, most
of these models either assume m(zr) = 'z or some other parametric form, or they provide esti-
mates of average derivatives only up to an unknown scale. The fully nonparametric m(x) model we
consider is important because of the sensitivity of the parametric and semiparametric estimators to

misspecification of functional form.



A small number of estimators exist for nonparametric censored regression models, in most cases
focusing on the case where c is a random censoring point independent of X (which is a model adopted
in many medical applications). We do not know of any other estimator for the nonparametric
truncated regression model.

Fan and Gijbels (1994) proposed a nonparametric censored regression estimator based on a local
version of Buckley and James (1979). While this estimator is consistent when the censoring point is
drawn from a continuous distribution, we show that it is inconsistent in our situation of fixed censor-
ing. We do not know if any other nonparametric version of Buckley and James can be constructed
that would not, for similar reasons, be inconsistent under fixed censoring.

Other possible nonparametric censored regression estimators are based on quantile methods, e.g.,
Dabrowska (1995). As we will later demonstrate, the main advantage of our estimator over quantile
regression estimators is that consistent quantile estimators require some a priori information about
the degree of censoring at each point, and our estimator does not. Also, our estimator can be
extended to handle nonparametric truncated regression.

The estimators we propose are functions of nonparametric regressions. While these estimators
remain consistent when ordinary kernel regressions are used in these functions, we instead employ
local polynomials which have some advantages over ordinary kernels (see, e.g., Fan and Gijbels 1996)
that we will exploit. We show that the uniform convergence rate of the estimators is the same as for
an uncensored regression. We also construct root n consistent and asymptotically normal estimators
of weighted averages of the derivatives my(x), which equal the coefficients in partly linear censored

or truncated regression models.

2 The Censored Regression Function and its Derivatives

Let Y;* be an unobserved latent variable with E|Y*| < oo, and define m(x) = E(Y*|X = z) and
e = Y* —m(X). The random vector X can contain both discrete and continuously distributed
elements. The unknown function m is continuous and differentiable with respect to the continuously
distributed elements of X. For each continuously distributed element X, of X define
my(x) = 8?—15(:)

Assume that the mean zero error e; is independent of X;, and is continuously distributed with
unknown distribution function F'(e) and probability density function f(e) (the model will later be
extended to let the distribution of e depend on z in some general ways). The observed dependent
variable Y; equals the latent variable censored at zero, so Y; = I(Y;* > 0)Y;*, where [ is the indicator
function that equals one if its argument is true and zero otherwise. We assume throughout that
our observed data are independent, identically distributed observations (Y;, X;) for i = 1,... n,
although our main results, Theorems 1-4, under reasonable conditions hold as stated when {Y;, X;}

is a stationary mixing process with {e;} independent of {X;}, as in Robinson (1982).
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Define the following functions:

So(m) = F<1T)
Su(m) = /_ Se_1(e)de, k=1,2,...
§(m) = Fi(m)

Theorem 1 For any nonnegative integer k, if §[m(x)] exists and lim,_,_, e"F(e) = 0, then
EYRI(Y > 0)|X = 2| = slF[m(x)]. (1)

Proor. E[Y*I(Y > 0)|X =z] = E[Y*I(Y > 0)|m(X) = m(x)]. For > 0

DEYSI(Y > 0)m(X) = m(x)] _ 0" [m(x) = e]"f(e)de
om(x) om(x)
= /_ k[m(x) — e]* ' f(e)de

= RE[Y* (Y > 0)|m(X) = m(z)],

and lim,_,_o E[Y*I(Y > 0)jm(X) = €] = 0, so E[Y*I(Y > 0)jm(X) =¢] = [*__cEY* (Y >
0)|m(X) = e]de. The result can now be proved by induction For k = 0 we have E[I(Y > 0)|X =

z] = Prle < m(x)] = Fim(z)] = Folm(z)], and assuming that the theorem holds for k — 1, we
have E[Y"I(Y > 0)jm(X) =] = [*__cE[Y" (Y > 0)|m(X) = elde = [*__ k(k — 1)1Fn_1(e)de =
k!S.(e). |

For the special case of m(x) = 3’z and x = 1, the fact that equation (1) holds has long been known.
See, e.g., Rosett and Nelson (1975), Heckman (1976), McDonald and Moffitt (1980), and Horowitz
(1986). Theorem 1 shows that this expression holds for arbitrary m, F', and integers «, and so can
be exploited for nonparametric estimation of m(x).

Define the following functions:

r(z) = BE(Y|X =g), rlz)= agg(;::)
s(r) = E[I(Y >0)|X =1, si(z)= 8;;?
t(r) = B(Y?)2lX =2z), t(z)= a;z)

qlr(z)] = EIY >0)r(X) =r(2)],

where z;, is the k’th element of x.



ASSUMPTION Al. Assume Y* =m(X) —e and Y = I(Y* > 0)Y*. Let Q be a compact subset
of the support of the d x 1 wvector x. The function m is differentiable and has finite derivatives
mg(z) = Om(x)/0xy with respect to the elements xy of x that are continuously distributed, for all
x € Q. The error e has mean zero, is continuously distributed, independent of x, with probability
distribution function F(e) and probability density function f(e). Fo[m(x)] exists for all x € Q. The
function § is invertible, and lim,_, ., €*F(e) = 0. Let §! denote the inverse function of §, let 2,

denote the support of e, and let A\ = sup(§2,).

Theorem 2 Let Assumption A.1 hold. Then for all z € Q, r(z) = F[m(x)], s(x) = Flm(z)],
t(x) = F2[m(x)], and q[r(z)] = F (F[r(x)]). Also, for all x € Q having F|m(z)] # 0,

A
m(x) = A —T({E) mdr, (2)

and for each continuously distributed element X of X,

mg(z) = i (3)

PROOF. The equations for r, s, ¢, and ¢ follow from Theorem 1. For m(x), use the change
of variables r = F(m), dr = F(m)dm, and q(r) = F (FF(m)]) = F(m) to get f,%‘(m)[l/q(r)]dr =
fg 1(3 1/F( ) F(m)dm = fi;)()‘) ldm = F71(\) — m(z). Next, using an integration by parts,
E(e) = O = [* ef(e)de = — [ [F(e) — I(e > 0)]de = —F(N\) + A, so 1(A) = \, which com-
pletes the derivation of the expression for m(z). Finally, ri(z) = 0F[m(z)]/0z, = Fm(z)|my(x) =
s(x)my(x).

|

Let 7(z) be a kernel or other nonparametric regression of y on z, let 5(x) be a nonparametric
regression of I(Y > 0) on X, let q(r) be a nonparametric regression of I(Y > 0) on 7(X), and let
»T(X;). Note that m(z) = A, — fr(m Zimydr for any A, > A It is a standard result that

nT(X5). Furthermore, under our assumptions, A, > \. Therefore,

.....

)\,, —p )\,,, where \, = max;—;
based on the above theorem, we will show that A, — fqﬁ‘(;)[l /q(r)]dr (which can be evaluated using
numerical integration) and r(x)/s(z) are consistent estimator of m(z) and my(z), respectively, and

we will provide their limit normal distributions

2.1 Average Derivatives and Partly Linear Models

Given any weighting function w(x), define the average regression function derivative
Owr = Elw(X)mg(X)]/E[w(X)]. Since my(z) = ri(z)/s(z), this d,x can be estimated at rate root
n by replacing the expectations with sample averages and substituting in nonparametric regression

based estimates of () and s(x).



Taking w(x) = 1 results in unweighted average derivatives. Taking w(z) to equal s(x) times the
density of x yields a particularly simple form for 6,y if kernel regressions are used to estimate ry(x)
and s(x), since then 6, will equal the Powell, Stock, and Stoker’s (1989) weighted average derivative
divided by the mean of a kernel regression numerator (see, e.g., Lewbel 1995).

If the latent regression function is linear or partly linear, that is, if for some j < d, m(z) =
Brr1 + ... + Bx5 + m(xq1,. .., 1), then for 1 < k < j, B, = Our. Root n estimation of the
coefficients in uncensored partly linear regression models is described in Robinson (1988), among
others. In contrast, what is provided here is estimation of the same parameters when the partly
linear model is censored. For small amounts of censoring, Chaudhuri, Doksum and Samarov (1997)
might be a useful alternative. As an estimator of 3, 6, has the advantage that if m(x) turns out
to not be linear or partly linear, ¢, will still equal the usual interpretation of (3, as a measure of

the average effect on the latent variable of a marginal change in zy.

2.2 The Error Distribution

For any e*, E[I(Y > 0)|m(X) = e*] = F(e*), where F' is the distribution function of the errors e.
Therefore, given the estimated regression function m(z), the distribution function F' can be estimated
as a nonparametric regression of I(Y; > 0) on m(X;). In addition, if m(z) can take on any value
in the support of e, then Lemma 1 in Lewbel (1997) can be used to directly estimate the variance
and other moments of e. An alternative estimate of F' is the Kaplan-Meier estimate based on the
residuals e; = Y; — m(X;). Let e(; be the ith largest residual and 6(;) is an indicator for censoring,

i.e., 6(;; = 0 when observation Y;) is censored, and ;) = 1 otherwise. Then let

Fley=1- ] <ni—;+i1)6(i).

1@(2) Se

2.3 Comparison With Alternative Estimators

Consider first the Buckley and James (1979) censored regression estimator, which consists of trans-
forming the dependent variable so as to make it have the right conditional expectation. This method
is usually presented in random censoring models, but for finitely parameterized censored regression
functions such estimators may work given fixed censoring as well. If m and F' were known, then the

ideal Buckley-James transform would be

f:;Xi) edF (e)
fni(in) dF(e)’

where 6; is an indicator for censoring, i.e., §; = 0 when observation Y; is censored, and §; = 1

otherwise. It follows that
E(YP'|X; = x) = m(z).



In practice, both m and F' are unknown and have to be replaced by estimators. When m(z) = 8’z
we can use standard semiparametric profiling techniques as in Klein and Spady (1993)) to estimate
(. Specifically, we can estimate F' by the Kaplan-Meier estimator constructed from the residuals
Y; — 3 X;, where the resulting ‘estimator’ depends on 3. We then find a zero of the resulting score
function. See Breiman, Tsur and Zemel (1993) for a simple version. Ritov (1990) provides a rigorous
treatment and discussion of more general score functions and efficiency.

It is not known if Buckley-James type estimators can consistently estimate a nonparametric
m(z) with fixed censoring. Fan and Gijbels (1994) present a local Buckley-James estimator for
nonparametric m(x) that is consistent given random censoring. Fan and Gijbels do not explicitly
consider what happens to their estimator under fixed censoring (they refer to the case where the
censoring density is not continuous as a technicality to be ignored for simplicity). However, it turns
out that their estimator is inconsistent under fixed censoring. This is because it relies on the existence
of uncensored observations which are smaller than a given censored observation. This can not happen
when censored observations always take the same value [zero in our case]. We suggest an alternative
implementation of the Buckley-James algorithm below, which makes use of our consistent estimates
of m and F.

Other nonparametric censored regression estimators are based on quantile regressions. See, e.g.,
Fan and Gijbels (1996, pp 200-203) for definitions and references, Dabrowska (1995) for combining
quantiles, or Chaudhuri (1991) for local polynomial quantile regression. To demonstrate the advan-
tage of our proposed estimator over quantile regression methods, let p(z) denote the proportion of
observations that are censored at point X = z, and let a, = 6,(e|X = z) denote the ¢’th condi-
tional quantile of e, which is a constant given our assumption that e is independent of X. Then
0,(Y|X = z) =m(z)+ a4 if ¢ < 1— p(x), and therefore a ¢’th quantile regression of y on x can used
to estimate m(x) (up to a constant ay) but only if ¢ < 1 — p(z).

The problem with using quantile methods to estimate m(x) is that they require a priori knowledge
about the amount of censoring at each point z, specifically, only quantiles ¢ that are less than the
unknown function p(x) can be used to estimate m(z). Notice that quantiles at different values of x
(such as those where there is little censoring) provide information about ¢, but, unlike for parametric
models, cannot be used or combined to help estimate m(x). For example, if for a given z, p(z) = 0.6
(sixty percent censoring), then only quantiles ¢ < 0.4 can be used to estimate the function m at that
point z. If some other point z* has less than fifty percent censoring then median regression can be
used to estimate m(z*) 4+ a5, but that does not help to estimate m(z) for x not in the neighborhood
of x*. The problem is not imprecision, but rather that consistency of the quantile estimator requires
either knowing a priori some bound on the amount of censoring p(x) at each x, or requires some
mechanism, presumably based on an estimate of p(z), to choose an appropriate quantile or set of
quantiles for estimation. It is not clear how any such quantile selection procedure would work, or
how it would affect the limiting distribution of the estimator.

Our estimator of m(z) converges at the same rate as nonparametric quantile estimators. Whether
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our estimator or nonparametric quantile estimation is more efficient depends on the application,
though we show later that our estimator is more efficient in a simple normal example. However, the
main advantage of our estimator over quantiles is that ours does not require knowledge about the

degree of censoring at each point x for consistency.

3 Nonparametric Truncated Regression

This section shows how m(x) and its derivatives my(x) can be estimated in a nonparametric truncated
regression model. The nonparametric truncated regression model is identical to the nonparametric
censored regression model, except that data are only observed when Y > 0.

Define the following functions:

R(z) = E(Y|X=2Y >0), Ryz)= 8(];—3@
T(z) = EY?2JX =2Y >0), Tilz)= 85?
UlR(x)] = E[(Y?/2)|R(X) =R(x),Y > 0], U'(R)= alé;R)

R(m) = §(m)/F(m),

where z;, is the k’th element of x.

ASSUMPTION Al*. Assume Y* =m(X) —e and Y = Y*|Y* > 0. Let Q be a compact subset
of the support of the d x 1 vector x. The function m is differentiable and has finite derivatives
mg(z) = Om(x)/0xy with respect to the elements xy of x that are continuously distributed, for all
x € Q. The error e has mean zero, is continuously distributed, independent of x, with probability
distribution function F(e) and probability density function f(e). Fo[m(x)] exists and F[m(z)] > 0
for all x € Q. The function E(m) is invertible, and lim._,_ . €*F(e) = 0. Let R~* denote the inverse

function of E, let Q. denote the support of e, and let X\ = sup,cq_ |e|.

Theorem 3 Let Assumption A.1* hold. Then for all = € Q, R(z) = Rm(z)], and U[R(z)] = T(z) =
Sa[m(z)]/Flm(z)]. Also, for all x € ,

B A U(R)— RU'(R)
m(z) —)\—R(fm) U(R) — 2

dR, (4)

and for each continuously distributed element X of X,

_ R(x)Ty(x) — T(x) Ri(z)
me(x) = R)? = T(x) : (5)




PROOF. For positive k, BE(Y*/k|X = 2) = EY*/k|X = 2,V > 0)F[m(z)] + E(Y*/k|X =
z,Y = 0)(1— F[m(x)]). The equations for R, U, and T then follow from Theorem 1. To de-
rive the expressmn for m(z), apply the change of variables R = R(m), so the claim is that m(z)
equals A — f 1[R( : (U[E(m)] — é(m)U’[E(m)]) / (U[E(m)] - ]Bb(m)2> [OR(m)/dm]dm. To simplify
this expression, observe that OR(m)/0m = [1 — R(m) f(m)/F(m)]dm, U[R(m)] = F2(m)/F(m), and
U'[R(m)] = (d[§a(m)/F(m)]dm) dm/dR(m) = (R(m) — URm)]f(m)/F(m)) /[1—R(m)f (m)/F(m)].
Substituting each of these expressions into the integral, the claimed expression for m(x), simplifies to
)\—fj(;l)()‘) 1dm = A—[R~*(\)—m(x)]. It was shown in the proof of Theorem 1 that F(A) = A. By defin-
ition, F(A) = A, so R(\) = A, and therefore A = R~!()), which completes the derivation of the expres-
sion for m(x). Finally, taking derivatives of the derived expressions for R(z) and T'(z) gives Ri(x) =
(1 = R(z) flm(x)l/ Flm(x)]) mi(z) and Ti(z) = (R(z) = T(z)f[m(x)]/Flm(z)]) mk(z), which when

substituted into the claimed expression for m(z) yields my(x). [

With truncated data, a nonparametric regression of Y on X will equal ﬁ(m), an estimator of
R(z). Similarly, nonparametrically regressing Y2/2 on X with truncated data will yield an estimator
T(x), and we have derivative estimators Ry (z) = OR(z)/0x), and Ty(z) = 0T (x) /0y, for continuously
distributed elements z, of z. Finally, nonparametrically regressing Y2 /2 on ﬁ(X ) with truncated data
will yield an estimator U (R), and U’ (R) = U (R)/OR. Given the above theorem, these nonparametric
regressions can be substituted into the above expression for m(x) and my(z) to yield semiparametric
plug-in estimators for these functions. As discussed earlier, we do not know of any other consistent

estimator for these functions in the nonparametric truncated regression model.

4 Estimation

For the remainder of the paper we will discuss estimation using local polynomials. We use local
polynomials instead of ordinary kernel or sieve estimators because of their attractive properties with

regard to boundary bias and design adaptiveness, see Fan and Gijbels (1996) for discussion and

references.
We shall use the following notation. For functions ¢ and vectors k = (ki,...,kq) and z =
(x1,...,2q), let

K! = k! x - x kgl k| = Zk,,x—xl Y

DR S DR ST A L

k kg

0<k|<p =0 k1=0 ka=0 Oy -+ Oyy'
kit +ka=j

To be consistent with our earlier usage of the subscript k, we will also use the special notation
ge(z) = D% g(x), where e, is the k' elementary vector, and ge(z) = D¢ g(x). We also stack the
first derivatives into a vector so that Dg(x) = (¢1(x), ..., ga(x))".
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4.1 Generic Nonparametric Regression Function and Derivatives

Given generic observations {Y;, X;}7_;, we shall estimate the regression function g(x) = E(Y;|X; = )
and its derivatives using the multivariate weighted least squares criterion

2
n

SV 2 hla)(X - )| KX~ 2)/ha). (6)

i=1 0<[kl<p

where KC(u) is a nonnegative weight function on R? and h,, is a bandwidth parameter, while p
is an integer with p > 2. Minimizing (6) with respect to each by gives an estimate by(z) such that
(D*¢)" () = klby () estimates (D*g)(z). Let also gy (z) = (D% gJ{x) and Dg(z) = (G1(2), . .., ga(z))".
4.2 The Censored Regression Function

Let 7(x) be the nonparametric regression of Y; on X;, constructed as in (6). We then let

m(z) = A —

7

ds, (7)

~
¥
=)
—~
»
N——r

where q(r) is the one-dimensional nonparametric regression of I(Y; > 0) on the generated regressor
7(X;) evaluated at 7(X;) = r, while A, = maxj<;<, 7(X;). The integral can be evaluated numerically
using quadrature. We later show that, under suitable regularity conditions, the limiting distribution

of m(x) takes the simple form

d(m(x) —m(x :(2) ?
VA (a) = i) — N (0, 7L )

with bandwidth h,, and kernel .

4.3 The Censored Regression Function Derivatives

Let 7x(z) and s(x) be nonparametric estimators of the functions r(x) and s(z) as defined above.
Specifically, for 7 (z) and 5(z) we take Y; = Y; and Y; = 1(Y; > 0) in (6), respectively, while X; are
the given covariates. We then let

mg(z) = kE=1,...,d. (8)

4.4 Censored Regression Weighted Average Derivatives

Given any weighting function w(x), the weighted average regression function derivative
Owr = Elw(X)mg(X)]/E[w(X)] is estimated by




Alternatively, the weighting function w(z) = w(x)/s(z) can be used, yielding the estimator

3 — D i W(xi) Tk (s)
T w(wi)3 ()

which can have a simpler limiting distribution.

If the latent regression function has the partly linear form m(z) = By21+...+8,x;+m(zj41, . .., k)
for some j < d, then for 1 < k < 7, ﬂk = 5wk Given regularity, 6, is root n consistent and

asymptotically normal.

4.5 The Truncated Regression Function

Let R(z) be the nonparametric regression of ¥; on X; constructed as in (6), but using only ob-
servations having Y; > 0, that is, truncated data. Let U (R) be a one-dimensional nonparametric
regression of Y;>/2 on the generated regressor ]?Z(Xi), again using only observations having Y; > 0.

Then ~
il )—/XR_ fR U(s)—sU(s)d

s, 9
R U(s)—s? )

~

where XR = MaxXji<i<n R(Xl)

5 Asymptotic Properties

5.1 Assumptions

We first give some general definitions for our local polynomial kernel nonparametric regression esti-

NZ:<€+d—1>
d—1

be the number of distinct d-tuples j with [j| = ¢. Arrange these N, d-tuples as a sequence in a

mators. Let

lexicographical order (with highest priority to last position so that (0,...,0,¢) is the first element
in the sequence and (¢,0,...,0) the last element) and let qzﬁ[l denote this one-to-one map. Arrange
the distinct values of (D¥)"(g), 0 < |k| < p, as a column vector of dimension N x 1, where N =

> 7_o Ne x 1, where the i element of that vector is obtained by the following relation

l7]—1

=050 3 N (10)

Similarly, arrange the vector (D¥)(g). For each j with 0 < |j| < 2p, let

)
1,(K) = /R K (u)du, vy(K) = /R WK (w)du,

11



and define the N x N dimensional matrices M and I' and N x 1 vector B by

Mo,o Mo,l ce MO,p I\0,0 FO,I T FO,p Mo,p+1
M. M. e M T r ... T M

M - .170 b .171” ) F = %70 o %713 ) B = 1ip+1 ) (11)
MP,O Mp,l T Mp,p FP,O Fp,l e Fp,p Mp,pﬂ

where M; ; and I'; ; are N; x N; dimensional matrices whose (¢, m) element are, respectively, 14 (o) +,(m)
and Vg, (¢)+¢,(m). Note that the elements of the matrices M and I' are simply multivariate moments of
the kernel K and K?, respectively. Finally, arrange the N, elements of the derivatives (1/5!)(D7g)(z)
for [j| = p+ 1 as a column vector D, 1(x; g) using the lexicographical order introduced earlier.

For each j with 0 < |j| < 2p + 1 define the function

H;(u) = v/ K(u).
We make the following assumptions on the kernel K.
ASSUMPTION A2

(a) The kernel K is symmetric about zero, bounded, and has compact support ((u) = 0 for
||ul[ > Ao).

(b) For all j with 0 < |j| < 2p + 1, there exists finite C4 such that

|Hj(u) — Hj(v)| < Cyllu —v]].

ASSUMPTION A3.

(a) The regression functions r and s are p + 1-times continuously differentiable.

(b) The conditional distribution G(y|u) of Y given X = u is continuous at the point u = z.

REMARK. By dominated convergence, Assumption A3(b) implies that for each L > 0, the
functions E[Y1(|Y| < L)|X = u|, E[Y?1(|Y] < L)|X = u], are continuous at the point z. Hence for
each L > 0, 6% (u) = var[Y - 1(|Y| > L)|X = u] is continuous at the point x provided m(-) and o(-)
are continuous at the point z. This is needed in the proof of Theorem 2 where a truncation argument

is employed and the continuity of 5% (u) at u = x is required.

ASSUMPTION B
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(a) For any k with |k| = p+ 1, there exists finite Cy such that
(D*r)(u) = (D*r)(v)],|(D*s)(u) — (D"s)(v)| < Cs|lu — v].
(b) E[|Y1]"] < oo for some t > 2.
(¢) The Lebesgue density f of X and the regression function s satisfy
;g)f(f(a:) >0 ; ;g}f{s(m) >0

on some compact subset X of R

5.2 Distribution of Censored Regression Function Derivatives

We are now ready to give the asymptotic properties of our estimate l/);l(m) of (Dm)(z) computed
using our estimates Dr(x) and 5(z). Define 0%(z) = var(Y|X = x) and o%(z) = var[1(Y > 0)| X = z].

Theorem 4 Suppose that Assumptions A1-A3 hold and that h, = O(n=Y/(@+2P+2)) Then, we have

_ M~'BD, 1 (z;7) o7 (z)
V/nhdt? |§ Dm(z) — D ! et N[0, ———~(M'TM!
R (D)~ Do} = T — o, 7 e
at continuity points x of {02, 02, f, s} whenever f(x),s(x) > 0. Here, (M 'TM 1)1 and (M 'BD,1(x;7))

are the corresponding [as in (11)] submatriz of M T M~* and subvector of M BD,1(z; 1), respectively.
Suppose in addition that Assumption B holds, and that the bandwidth h, — 0 slowly enough such
that the right hand side of (12) below is o(1). Then, we have with probability one

TeX

— Inn \?
sup |Dm(x) — (Dm)(z)| = O { <W) } + O(h?). (12)
The proof of this theorem involves a standard linearization argument.
REMARKS A.

1. The optimal bandwidth for estimating the j* derivative (D%m)(z) can be defined as the one

which minimizes the sum of the squared bias and “variance” above; it is asymptotically

1
2p < (M*13187&451(x;7"))1 ) 2 Zptdt2

(d+ D) (M TM ),

popt — p—1/(d+20+2)
n

The rate of “mean-square convergence” is then O(n~2"/(#+2r2)) which matches the optimal

rate given by Stone (1980,1982) in the i.i.d. regression setting.

2. The quantity s(x) measures the amount of censoring: when s(z) = 1 there is no censoring,
while when s(z) = 1/2 there is 50% censoring. Both variance and bias deteriorate as s(x)
decreases, but Dm is still consistent for any s(z) > 0 in contrast to any given nonparametric

quantile estimator.
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5.3 Distribution of The Censored Regression Function Estimator

We present this result for the local linear estimator [i.e., p = 1] with product kernels, i.e., we take
K(u) = [15_, K (us). We have the following theorem.

Theorem 5 Suppose that Assumptions A1-A3 and B hold except that r(x) has three continuous

derivatives, and that limsup nhét* < oco. Then

n—oo

A (71(x) = m(z) — h2bn(z) —> N (0, A HW) |

where by, (x) is a bounded continuous function.

Note that the bias term goes to zero provided nhdt* — 0.

5.4 Distribution of Censored Regression Function Averages Derivatives

5.5 Distribution of The Truncated Regression Function Estimator

6 Numerical Results

7 Extensions and Conclusions

We have a provided estimators for the nonparametric censored and truncated regression models with
fixed censoring. The estimators are based on the conditional means E(Y"|X = x) for low integers

k.. Higher moments of Y could also be employed. For example, for any integer x > 2,
OE(Y"*|X =x) /0x

mk(x) — ( | — )/_ k 7
RE[I(Y*1)|X = x]

The proof works in exactly the same way as Theorem 2. These higher moment based estimates

k=1,...,d (13)

could either be combined with estimators based on Theorem 2 to improved efficiency, or compared
to those estimators as a test of the (nonparametric) model specification.

We will end by listing some two other extensions of the estimators.

7.1 Heteroscedastic errors

Assume F'(e|z) = Fle|w(z)] and Elelw(x)] = 0 for some known, vector valued function w. Assume
supple|w(z)] = supp(e) C supp[m(z)|w(z)]. This allows for very general forms of heteroscedastic-

ity, for example, w(x) could equal the vector of all of the regressors except for one (continuously
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distributed one), so the errors could depend in an arbitrary, unknown way on all but one of the
regressors.

Let F(m|w) = [™_ F(elw)de. Assume the function § is invertible on its first element, and
define the function F! by F![F(m|w),w] = m. As before, let r(z) = E(y|r), and now define
qlr(z),w(x)] = E[I(Y > 0)|r(z), w(x)]. Then by Theorem 1, but now conditioning on w(z),

r(@) =§m@)|w@)] ; qr@)w@)]=FF @), w@)w@) .

Similarly, following the steps of Theorem 2 while conditioning on w(x) shows that, for all z € Q

having Fm(z)lw(x)] # 0,
A 1
m(z) =\— | ———dr (14)
r(z) Q[Ta w(mﬂ
The estimator based on this equation is identical to the homoscedastic estimator, except that ¢

will be a nonparametric regression on 7 and on w.

7.2 A Feasible Buckley-James Transform

For any ¢*, let F(e*) be the nonparametric regression of 1(Y; > 0) on m(X;) evaluated at the point

e*. We may then define a feasible B-J transform

X ~
A € dF(e)

}\\ ~
fﬁ@(Xi) dF(e)

and then apply local linear regression to the observations {}A/iBJ , X;}. The integration in (15) can be

VB = 8Yi+(1—6)

: (15)

done numerically. The revised estimate of m is denoted m?’. This process can be repeated until
some convergence criterion is satisfied or one can just take a finite number of steps; since the starting
point is a consistent estimate of m, F, only one-step should be required. See Rothenberg and Leenders
(1965) and Bickel (1975). Given the known advantages of parametric of Buckley-James estimators,

BJ

m~” may have better small sample or asymptotic properties than m.

A Appendix

We first give some facts about the generic local linear estimators g(x), gx(z) of a regression function
g(x) Jof Y|X] and its partial derivative gx(z), which will be needed in the proof of Theorem 4.
We write g(z) — g(x) = ey M, (2)U,(z) + ey M, (2) Bp(z) and gp(z) — gr(z) = e, M, (2)U, () +
e, M 1 (z)B,(z), where e, = (0,0,...,0,1,0,...,0) is the d + 1 vector with the one in the k + 1

15



position, while the (d + 1) x (d + 1) symmetric matrix M, (z) is

_ Kk (x;_j{l> K (w;_j{z) (m;—i{hl K (%) (“E—f"“) 7
M, (z) = ! i K <%> <%> K (ﬁf) <wlﬁf1> (md;;xdi)
=1 . :

nhd . : .
_ o (52) (22)” |

g “
The stochastic term U, (x) is

1 n z—X; .
L5 2= X | (=X |
hi Zi:llc( o ) ( o z) €

L K () () g | L Unil)

where €; = Y; — g(X;) is the mean zero error term, while the bias term is

ﬁ > i K <%> Ai(x)

. . Bio(z)
B,(x) = g 21 K <mh_> (“;—) Ailz) | _ Bnl.(m) |
k() () Ae) | L Bu)

where A;(z) = g(X;) — g(x) — 320, gr(#)(Xpi — 1), with
h & d%g Xji —x;\ [ Xu—
Ailw) = ?22 Oz ;0x; (z) < b, ) < b, )
ey P (Kem) (Ko (Xurm)
6 4 02;0x,02, o ho, ho, ho, otn)-

Here, the remainder is of the stated order on the set {X; : || X; — z|| < h,}. Furthermore, by the law

of large numbers and symmetry, we have

Buolt) = () g ()1 + 0,(1) (16)

d d d
Bu(w) = 23 2> / K (w)ugtjuimdu {3g;(2) fon() + gjim(@) f (@)} {1 + 0,(1)}. (17)
Denote the right hand side ‘probability limits’ by h2Bo(z) and k2 B;(z), j =1,... k.
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We have

uniformly in x.

A.1 Main Result

PrROOF OF THEOREM 5. The proof is based on the series of lemmas given below. Write g(s) =
q(s;71,...,7Ty), where7; = r(X,) and r; = r(X;). We let M,,, and M, denote the matrices M,, defined
in the previous section when the regression functions are r and ¢ respectively. In the local linear case,
these matrices are both diagonal. Similarly for U,,, Uynq, By, and By, etc. Then define ¢; =Y, — r;
and u; = 1(Y; > 0) — q(r;), where E(g;|X;) = 0 and E(u;|r;) = 0. Let Fx and F, be the sigma
algebras generated by X and r(X) respectively. Since Fx 2 F, we have E(g;|r;) = 0 by the tower
property of conditional expectations, see Billingsley (1986, Theorem 34.3). However, E(u;|X;) # 0.
Therefore, write u; = g,(X;) + 1;, where F(n;|X;) = 0 by construction. Let o,(X;) = E(n?|X;),
oen(Xi) = E(ein;] Xs), 02(X;) = E(e?]X;), and 02(X;) = E(u?|X;). Finally, denote by Ex and vary

the conditional expectation and variance given Xji,..., X, respectively; likewise let F, and var,
denote the conditional expectation and variance given rq, ..., r,, respectively.
We have
)~ (@) = R omds— (A - |
m(x)—m(z) = A\ — [ =—ds— |\ — [ —ds
#z) 4(8) r(z) 4(5)

_ 3 oA\ 1 Mo (q(s) = q(s)
N <AT - AT) - (?é) _r(ﬁ») ™ +?<{c> <ﬁ) o

By mean value expansions we obtain

Ar (6(8) — Q(S))2ds (19)
7 ' ’
i) —a(h) ¢ qr(2) — a7(2))
q(Ar)a(Ar)

(F(z) = r(z)), (20)

where X and 7(z) are intermediate values [they are not necessarily the same in the two expressions, but

we have adopted this for notational convenience|. The terms in (18) are all linear in the estimation
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error from a nonparametric regression, while the terms (19) and (20) are both quadratic in such
errors, and can thus be expected to be of smaller order. We shall first address the terms in (18).
Since g(A,) = 1, the first term in (18) is zero. The second term is just a constant times the estimation

error of 7(z). To analyze the third term we make another Taylor series expansion

Ar (a(s) B Q(S)) Ar (a\(sa T1,... ,7’”) B q<8)) - ~ Ar 86(87 Tiyen, rn) ds
————ds = ds + T; — T,
K 4 7 2, 05=m) [ =5 )
] e e . Mo 0%q(s;T, ..., Tn) ds
+§;;(Tj _Tj) (7“5 _Tl)r({g) 87“]‘87“1 q2(s>7 (21)

where 7; are intermediate values. Denote (21) by R,;, and the quadratic terms in (19)-(20) by
R,9-R,6, and let R,, = Z?Zl R, ;. We have obtained

m(z) —m(z) = 1 ) — r(x Mo(q(s;ry, ..oy mn) —q(s)) )
- P A 0q(s;ry, ..., rn) ds
—i—;(m j)r({c) 37”]- qz(s) +R,
= A, +B,+C,+R,. (22)

We first examine the terms A,,, B,,, and C,,, and then the remainder term R,,. Let §,, = max{1//nhd, h2}.

LEMMA 1. The term A, is just a constant times the error in the nonparametric regression
estimate of r; this term is Op(6y,).

We next consider the terms B,, and C,,. For this we need the following decomposition for g(s;rq, ..., 7ry)
and 7j: q(s;71, ..., 70) —q(s) = eg M, (8)Upp(s) +e4 My M (5) Bpr(s) and 75 —1; = e M, N X;) Ung(X;) +
eoM,. (X;)Brg(X;). Note that the matrices Myq(X;) and M,,(s) are just functions of Xi,..., X,.

LEMMA 2. As n — oo we have

Ar Boo(s)
B, = hi Y —
r(z) q2(8>

ds + o,(h2).
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We now turn to the term C,,. Note that

oq(s;r1, ...y Th) y o, OU(s) —,  O0Bp(9)
87”1' e0‘7\47”‘ (S) aT’i + eOMnr (S) 87”1'
M ) P ) U 5) + Bl
where

OM(s) _ 1 [ Ki(s) L)+ Ki(s) | 0Uw(s) _ 1 [ Ki(s) .

or; nhy | Li(s)+ Ki(s) Ji(s)+2Li(s) | = Ori ok} | Li(s)+ Ki(s) |
OB,(s) 1 [ Kl(s) o LG

or; ~ nh? I Li(s) + Ki(s) ] Ails) + nh2 [ Li(s) ] Ails),

where Ki(s) = K((s —7i)/hn), Ki(s) = K'((s = 7i)/hn), Li(s) = K((s =73)/hn)((s = 75) /), Li(s) =
/(5 = 12) /) (5 — 72) ha), and JI(s) = K/(5 — 12) /h) (5 — ) o, while Al(s) = () — '(s).
Now, substitute into the definition of C,, the three terms constituting 0q(s;r1,...,r,)/0r;, and write
OUpr(8)/0r; = 0UZ, (s)/0r;+0U! (s)/0r;, where OUZ,(s)/0r; is OU,,(s)/0r; with ¢, (X;) substituting
for w;, while U (s)/0r; is OUp,.(s)/0r; with 5, substituting for u;. We divide C,, into four pieces,
i.e., Cp, = Cp1 + Cpo + Cp3 + Cpy, where:

n B Ar - 8Ur€r S 1
C1 = Zeganl(Xj)Unq<Xj) J e{)Mm}(S)#
=1

r(x) 8’/“]' q2(3)
oUg.(s) 1

n A
+ Y eaM N(X;)Brg(X;) [ ey M, (s)—2——=
jz_; 0 q( J) q( J>r(m) 0 ( ) 87"]‘ q2(3)

= Cu +Chao,

and Cpa = Cpa1 + Cpag is like C,,1 but with 0U,!.(s)/0r; replacing OUY,.(s)/0r;, while Cp3 = Cn31 + Crso
is like C,,1 but with 0B,,,(s)/0r; replacing 0UZ, (s)/0r;. Finally,
- ~ Ao aMnr('S) -
Cn4 - Z (7"]‘ - 7”]‘) X f GOMnrl(s>a—rijﬂl(S> [UTLT(S) + BTN‘(S>] ds.

=1 r(z)

The properties of C,, and R,, are given in the following lemmas, which are proved below.

LEMMA 3. Then: (1) Cpin = Op(64); (2

)
_ 2 [E(Bp(X)gu(X) [r(X) = Ar)  E(Bp(X)gu(X) |r(X) =r(z)) o (1):
Criz = 70) F0r) o)
(3) Cra1 = Op(5n>; (4) Craz = Op(5n>; (5) Cnz1 = Op(5n>§ (6) Cnzz = Op(
LEMMA 4. R, = 0,(6,)-

)
6n); (7) Cra = 0p(0n);
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A.2 Proofs of Lemmas

PROOF OF LEMMA 2. We first write B, = B + By, where B,y = [ o 4 2(5)ey M 1 (8)Upy(s)ds
and B, = T(m “2(s)ey M.} (5) By (s)ds. The term B, is, conditionally on Xi,..., X, a sum of

mean zero independent random variables. We have FE,.(B,;) = 0, while

1y o[BG T LY
var, (Bn1 220 m(nr({g)q(> Mm()[Li(S)]d>.

Now note that there is some finite positive constant ¢ such that with probability tending to one

LN en M (s Kils) s ci i ; (s (s)]) ds
< o T K@+ L@

hn

where the last line follows by a change of variables s — t = (s —1;)/h,, and dominated convergence.
We use the fact that 1/¢?f,.(s) is bounded. The first inequality is because M,,.(s) converges uniformly
to a finite positive definite matrix. Therefore, B,; = O,(n~%/?).

The term B, just depends on X7, ..., X,,. We replace M, !(s) and B,,o(s) by their probability
limits [f,'(s)M ! and h2 B,o(s)], and obtain

e [ Bl s
an_h"/m)fr() (5% T orlhn):

This is justified by dominated convergence and the uniform convergence. [ |
ProOF OoF LEMMA 3.1. Let

1 A K! 1
Oni = = J eng(S)[ 1(8) ) ] ds
1 < X;—X; _
Znii = WZ“(T) PN (X0

where vj; = (1, (X1, — X11)/hn, - - -, (Xg — Xai) /hn)'. We can now write Cp11 = > 5| €iZni, where Zp;

depends only on Xj,...,X,. Therefore, conditionally on Xi,..., X, C,11 is a sum of independent
random variables with mean zero and vary (Cp11) = > .1, 02(X; )Z 2

We have with probability tending to one

-1
‘60 r:q Uﬂ‘ < (d+ 1) Apin(M) ™ (mln fx(X ))

1<5<n
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on the set where K((X; — X;)/h,, # 0. This is because M, (x) converges to fx(x)M uniformly in z,
while for any vectors a, b, and nonsingular symmetric matrix A, we have [a’ A~'b| < (/A a)/?(0 A~'b)'/? <
Amax (A~ (@'a)2(W'b)/2, and Apax (A1) = A1 (A). Also write

min

Kl<8*n') - i

o = o | st ) e <HMM@—ﬁwMHM*[K”) -

Li(s) + Ki(s) ] £r(8)@(s)
= op(ri) + oni-

Using integration by parts and change of variables, we can establish that

0 k(=) k(M) ] ey, Ly
R S Pwr e Rl s e ) LK ( o >< fr(s)q2(s)> ds. (23)

The last term is of smaller order, O, (h,,) for each i. We will also replace g}lj by an upper bound that

only depends on r; and n, thus for some constant c

s <e (| (52 o (52) (52| e (52) ) s = e

with probability tending to one. This uses the fact that M,,(s) converges uniformly to f,.(s)M with
rate no worse than h, and so the elements of M_1(s)[M,,(s) — f.(s)M] M~ are all bounded by

some constant times h,, with probability tending to one. Combining these relations and using the

triangle inequality, we have on a set whose probability tends to one,

Zag( < CZU 2+ (ZE), (24)

where Z0, = n~2hy, ¢ > IR = X3) /b))l |9u(X5) 100 (r5)], and Z,, is like Z); but with gj, (7))

replacing |02 (7).
Note that by the Markov inequality, for any ¢,, > 0,

Pr [Za 2> 6,

where 2 is an upper bound on 02(X;). We have E[n(Z7,)?] = E?[\/nZ?,|+var[\/nZ’,]. We first show
that EZ/. = O(n™') for each i. By the triangle inequality |Z%;| is bounded by some constant times
n=2h, @D Z;L=1 IK((X;—X3)/hn) || K (A —7;)/ hyy)| Plus two similar terms involving K ((r(z)—7;)/hy)

and the integral term. We have
elpe(F)l e C)l) - Jle )l Ca)
21

L E[SL AXNZ] 78 [n(Z)]

118 ni

On - On ’

fx(Xi) fx (X;)dXdX;




-t e (52

< c-h:i-/ (X)) [r(X) = o]

fx(X +hu)fx( ]>dUdX]

A — 8
K
(%)

fr(s)ds

= O(hy"),

where the second line follows from a change of variables X; — u = (X; —X;)/h,,, while the third line

follows from dominated convergence [using the bound on f X], and the law of iterated expectations
[ MX)fx(X)dX = Eh(X) = E[E[MX) = [ E[h( X) = s|f.(s)ds for any measurable

functlon h ] Because Z°; is a sum of 1I1dependent random Varlables conditional on X;, we have

e (2525 e ()| ] - ot

by the same arguments as above. Furthermore, var[Ei\/ﬁZgi] = O(n( (@D / h(d+1)) ) = O(1/n).

BEvar,[Z2] < d+1 ZE

Therefore, we have var[\/nZ%] = Evar;[\/nZ%] + var|E/nZ?] = O(1/n2hiY). We now conclude
that Y"1, 02(X;)(Z2,)* =0 (n’lh (d+1)/ ?). Similar arguments can be applied to Z.,. In conclusion,
Cort = Op(n he V7Y = 0,(8,). m

PROOF OF LEMMA 3.2. Substituting the leading terms of M, ' and M,'(s) and using the

representation (23) we have

Cz = = ZBnqo X)eh(r)(1 + 0,(1)
42 E(qu(X)gu( ) Ir(X) =A)  E(Bgp(X)gu(X) |[r(X) =r(z)) )
- 1 20) P(r(a) - orlt)
by the law of large numbers.
|
PrROOF OF LEMMA 3.3. Write
N o M=1(s Ki(s) ds 0 — A o f1(s) M1 Ki(s) ds
= T AN [ A ] S = T s [L; O ] o

Here, 7% (r;) is the probability limit of v,,;. Dividing into j = i and j # i terms, we get Cpa1 = Cpo1q +
Cna1p, Where Cpa1q = n2h, K (0) Z? 1€3M5€0 Mg HX; )€0Yn; and Cna1p = n~2hy Y > Zz;ﬁ] ((X5—
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Xi)/hn)ein; xe{)M,;ll(Xj)vjﬂnj. Taking expectations conditional on X7, ..., X,,, we find that Ex(Cpo14) =
n=2h, 2 IC(O) > i1 0en(X;) X epM, (Xj)eoy,;. This term is bounded by some constant times
n=2hy, 42 Z i1 79 (r;), as n — oo, which is a sum of independent random variables of order 1/nh? in

probability. The conditional variance of C,21, is of even smaller order. Therefore, Cpa1, = O,(n'h, ).

We turn to the double sum Cpayp. Let @, (Z;, Z;) = n~2h, 2 K((X; — Xi) [ hn)eg M, H(X5) vy i€6m;

where Z; = (X;,Y;). Then, Ex|p,(Zi, Z;)|Zi| = Ex|e,(Zi, Z;)|Z;] = 0, and

varx(Y Y 0,(Zi.Zy)) = Y. Exlei(Zi, Z;)) + 3Ex(,(Zi, Z;) 0,2, Z:)]
7j=1 =1 7j=1 =1
i#j i#£j
SN Bxle?(Zi Z)) + 3B (032, Z3) | EXP (922, Z;)]
7j=1 =1
i#j

n n

= 4ZZEX907L ZMZ ]

7j=1 =1
i#]

IN

where the inequality used Cauchy-Schwarz. We now show that Ex[¢2(Z;, Z;)] = O(n™*hs, (1)) which
implies that varx (> >, ¢.(Zi, Z;)] = Op(n_2h;(d+1)). Note that ¢2(X;)o7(X;) is a bounded se-
quence, while M,,(-) and M,,(-) are strictly positive definite with probability tending to one uni-
formly in their arguments. Furthermore, E[K2((X; — X;)/hn)K*((Ar — 1r;)/hn] = O(RI*1) by the

same arguments used above. Likewise,
2 T 7 T %
Bl (S (A2 (2)
() () () e

= hi/’C2 (U) K )\Th_ Tj) K <>\r — T(il(j + hnU)) fx(X]‘ + hn’u)f)((X])dUdX]

b,

(
- hi/ICZ (u) K (AT_”J') K <A"_”’ + Vrju + ot/ V2 (X (u) >fX(X + hou) fx (X;)dud X,
= hi/i@ (U)K(

Ar—rj) . <Ar 7 +w(xj)u) F2(X,)dudX;{1 + o(1)}.

Here, Vr(-) and V?r(-) are 1 x d and d x d matrices containing the first and second order partials of
the function r, Vr; = Vr(Xj), while X7(u) are intermediate values. The last two lines follow from

a mean value expansion and the Lipschitz continuity of the kernel, i.e., for any positive function ¢
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with integrable second moments,

X b, Ar — T
/‘K( i u)> —K<h—r]+V7“(Xj)u)‘g0(u)du < hp Ky - /|u V2 (X (u)u| ¢(u)

n

< hnKlipxn-/u’wp(u)du

= O(hy),
where Kj;, is the Lipschitz constant for the kernel and A, = sup, max{|A; max(V27(2))], | Ar min (V7 (2))|}.
Finally, [K?(u) K <)‘T;L—:(X)> K (N;—Z()Q + Vr(X)u) [2(X)dudX = O(h,) by the law of iterated

expectation and change of variables. In conclusion, Cpay = O,(n~'h;?) + O,(n=%2h, **)/?) 4
O, (n~thy @Iy = o (n*I/Qh;dﬂ) .
|

PROOF OF LEMMA 3.4. Substituting the leading terms of M,;Il and M '(s), we have Cpoo =
ntht ST Byo(X5)m;05(r5) x (14 0,(1)), which is Oy(h2n =1/, "/?).
[ |

PROOF OF LEMMA 3.5. Substituting the leading terms of M,;l(s), we have

v OBl Ly KA EEENE
L M O e m ™ = FOF B o)
L KW A - KA
= r(ms/;'r- EIERYAES dt x (1+0,(1)),

hn

by dominated convergence. Likewise substituting the leading terms of an , we have

noo "X =X\ 1 Tt K () D) + KA (r))
Con = SRSk (S e T Sy )

hn

_ s Ly X=X\ 1K) A(ry) + K(H)AY(ry)
— g;&n—hg;fx (Xj)/C( " >h_n# 20050 dt x (14 0,(1)).

Therefore, C,31 = O,(h2n~Y/2h=1/2). |
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PROOF OF LEMMA 3.6. Replacing M, ' and M,,! by their probability limits, we have

)\7»77‘2-
hn

= X5) ! (75 "(rs o
Cnz2 = e fo )f ) [ K () Aj(ry) + K(£)A](ry)]dt x (14 0,(1))

'r(z)frz-
hn

= 0P<h727,)7

where the last line follows from a weak law of large numbers and the magnitude of A;(r;) and A%(r;).
|

PROOF OF LEMMA 3.7. Replacing M, !(s) by its probability limit we have

Cutl < (max - rj|> ST Mt (6) 22 p ot () [0 (5) 4 B ()] ds

nr nr
1<jsn i (o) or;

_ ek o LU+E(S)
— (-l o g [ H0) ] )+ Bl

~+higher order terms.

A standard argument involving interchanging of order of summation and change of variables etc
provides a bound of O,(n"*/2h!) on the second term on the right hand side, so that

|Cn4| = (Op (H 2%) + Op(hi)> <Op ( #) + Op@i)) :
|

Proor oF LEMMA 4. We must show that R,; — R,s are small. We use the following uniform

sup [gls) —a(s)| = O, (,/k’if) +0, () (25)
sgp|?(a:)—r(a:)| = 0, <”10§;> + 0, (h2), (26)

where r, 7 are the lower and upper bounds of the random variable r(X). The result (26) is standard;

convergence results

it implies the same rate of convergence for A, — A,. The proof of (25) improves on Ahn (1995). The
two results (25) and (26) imply that the quadratic terms in (19) and (20) are all of smaller order.
|
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