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Abstract

One of the main practical problems of nonparametric regression estimation is the curse of
dimensionality. The curse of dimensionality arises because nonparametric regression estimates
are dependent variable averages local to the point at which the regression function is to be
estimated. The number of observations ‘local’ to the point of estimation decreases exponen-
tially with the number of dimensions. The consequence is that the variance of unconstrained
nonparametric regression estimators of multivariate regression functions is often so great that
the unconstrained nonparametric regression estimates are of no practical use.
In this paper I propose a new estimation method of weakly separable multivariate nonpara-
metric regression functions. Weak separability is a weaker condition than required by other
dimension–reduction techniques, although similar asymptotic variance reductions obtain. In-
deed, weak separability is weaker than generalized additivity (see Härdle and Linton, 1996 and
Horowitz, 1998). The proposed estimator is relatively easy to compute. Theoretical results
in this paper include (i) a uniform law of large numbers for marginal integration estimators,
(ii) a uniform law of large numbers for marginal summation estimators, (iii) a uniform law of
large numbers for my new nonparametric regression estimator for weakly separable regression
functions, (iv) both a uniform strong and weak law of large numbers for U–statistics, and (v)
three central limit theorems for my nonparametric regression estimator for weakly separable
regression functions.
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London, the University of Bristol, Yale University and the University of Groningen for useful suggestions.
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1 Introduction

One of the main practical problems of nonparametric regression estimation is the curse of dimension-

ality. The curse of dimensionality arises because nonparametric regression estimators are dependent

variable averages local to the point at which the regression function is to be estimated. The number

of observations ‘local’ to the point of estimation decreases exponentially with the number of dimen-

sions. The consequence is that the variance of unconstrained nonparametric regression estimators of

multivariate regression functions is often so great that the unconstrained nonparametric regression

estimates are of no practical use.

In this paper I propose a new estimation method of weakly separable multivariate nonparametric

regression functions. Weak separability is a weaker condition than required by other dimension–

reduction techniques, although similar asymptotic variance reductions obtain. Indeed, weak sepa-

rability is weaker than generalized additivity (see Härdle and Linton, 1996 and Horowitz, 1998). In

section 2 I give an example related to returns of education which highlights the differences between

additive and weak separability. The proposed estimator is relatively easy to compute. Theoretical

results in this paper include (i) a uniform law of large numbers for marginal integration estimators,

(ii) a uniform law of large numbers for marginal summation estimators, (iii) a uniform law of large

numbers for my new nonparametric regression estimator for weakly separable regression functions,

(iv) both a uniform strong and weak law of large numbers for U–statistics, and (v) three central

limit theorems for my nonparametric regression estimator for weakly separable regression functions..

Some of these results are applicable outside the direct context of this paper. The marginal sum-

mation estimator is an alternative to the marginal integration estimator; it is easier to compute

and requires less computer time particularly when the number of dimensions is large. The marginal

summation estimator can equally be used to facilitate the computation of estimators under gen-

eralized additivity (Härdle and Linton, 1996, or Horowitz, 1998) or indeed additivity (Linton and

Nielsen, 1995). The uniform strong and weak laws of large numbers of U–statistics have appli-

cability far beyond the context of this paper. Indeed, many commonly encountered statistics are

U–statistics including average derivative estimators (Powell et al., 1989) and various nonparametric

test statistics.

Many authors have addressed the curse of dimensionality by imposing a structure on the re-

gression function which allows for more efficient estimation. Robinson’s (1988) partial linear model
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additively separates the regression function into a linear parametric part and a low–dimensional

nonparametric part. The regression coefficients can be estimated
√
n–consistently and the nonpara-

metric regression function is estimated at a faster rate of convergence than if the entire regression

function were estimated by multivariate nonparametric regression. Others have assumed the regres-

sion function to be additively separable, i.e. to be the summation over nonparametric regression

functions (usually univariate), where the regressors that appear in any one of these functions does

not appear in any of the others.

In the context of series estimation, imposing additive separability is straightforward since both

additive parts can be expanded separately. The general results of Andrews (1991) can then be

applied to ensure asymptotic normality of the series estimator.

For kernel estimators, the backfitting method of Friedman and Stützle (1981), see also Hastie and

Tibshirani (1990), is one example. Alternatively, one can use a two–step procedure in which the first

step consists of computing the usual multivariate nonparametric regression estimator where in the

second step the estimator of each term is determined from the multivariate estimator by integrating

over all regressors which do not enter as arguments. The gain is that the (large sample) variance of

this estimator is smaller than that of the multivariate nonparametric regression estimator. This idea

was put forward by Linton and Nielsen (1995) and it and variants have been studied in depth. Nielsen

and Linton (1997) have studied the relationship between the backfitting algorithm and the marginal

integration estimator under additive separability. They found that the asymptotic properties of the

backfitting method are generally better than those obtainable by marginal integration.

One variant is the generalized additive model in which the unknown regression function is a (link)

function of a summation over univariate regression functions. For known link functions, Linton and

Härdle (1996) have shown that similar results obtain and Horowitz (1998) has obtained similar

results for when the link function is unknown.

Rilstone (1996) proposed an estimator for a nonparametric regression function where one of its

arguments is itself an estimable conditional mean. In the first step the conditional mean is estimated,

and the estimates are used as regressors in the second step estimator of the nonparametric regression

function of interest. This procedure is again asymptotically more efficient than full multivariate

nonparametric regression estimation because the nonparametric regression function is separated

into two functions with fewer arguments. Another, less related but no less interesting, example of
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generated regressors in a nonparametric context is Ahn (1997).

Section 2 introduces the concept of weak separability. Section 3 discusses identification con-

ditions. The estimation method is outlined in section 4. Section 5 contains the main results of

the paper, in section 6 I discuss the choice of input parameters, section 7 discusses tests for weak

separability of a nonparametric regression function and in section 8 I discuss computational issues.

Section 9 outlines some avenues yet to be explored and section 10 contains some modest Monte

Carlo simulations. Section 11 concludes. All proofs are in the appendix.

2 Weak Separability

Let {(Xi, Zi, Yi)} be an independent and identically distributed (i.i.d.) sequence of random vectors

for which a(x, z) = E(Y1|X1 = x,Z1 = z). I assume that Xi and Zi have continuous distributions,

though this assumption could potentially be relaxed (see for instance Delgado and Mora, 1995). Let

d$ denote the dimension of any variable $, and suppose that a is weakly separable.

Definition 1 The function a is weakly separable (x, z) if two functions m, g exist such that for all

values of (x, z),

a(x, z) = m {x, g(z)} , (1)

where dg = 1, dz ≥ 2 and m is monotonic in g.

The above definition of weak separability is the simplest form. More general forms are discussed

in section 9.

Weak separability is an assumption that has been frequently used in the context of demand

systems and production functions. In demand theory, weak separability is imposed on the utility

function. If a in (1) were a utility function, then demand for zi only depends on total expenditure

on goods in the z–vector and prices of goods in the z–vector. Similarly, if a production function is

assumed weakly separable then the input demand function for zi depends only on total expenditure

on inputs in the z–vector and prices of goods in the z–vector. In both instances, the gain is a

considerable reduction in the dimensionality of the demand or input demand functions, the objects

of estimation.1

1Note that it is often possible to estimate a production function directly, if one is willing to assume away any

endogeneity concerns relating to the choice of inputs.
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Here, the focus is on the estimation of the weakly separable function a itself instead of on

functions derived thereof. Nevertheless, the consequences of the weak separability assumption are

similar, albeit that in the general case no direct conclusions relating to economic theory can be

drawn. The most important limitation of weak separability is that the ratio ∂a
∂zi
/ ∂a∂zj = ∂g

∂zi
/ ∂g∂zj

cannot depend on x for any i, j.

Weak separability nests the generalized additive model with unknown link function of Horowitz

(1998), and is hence also more general than any of the specifications encompassed by the Horowitz

estimator, including those mentioned in the introduction. The generalized additive specification has

a (x, z) = mL

{
dx∑
i=1

gxi (xi) +
dz∑
i=1

gzi (zi)

}
,

wheremL and the gxi ’s and gzi ’s are unknown functions with scalar argument. Generalized additivity

imposes that for any (i, j), ∂a
∂xi

/ ∂a∂xj ,
∂a
∂xi

/ ∂a∂zj ,
∂a
∂zi
/ ∂a∂zj only depend on (xi, xj) , (xi, zj) and (zi, zj)

respectively. Generalized additivity is hence a stronger assumption than weak separability, which

can be seen if one chooses g (z) =
∑dz
i=1 gzi (zi).2

One example which illustrates the difference between the (generalized) additivity and weak sep-

arability assumptions relates to returns to education.3 In the most narrow model (Mincer, 1974,

chapter 2) the difference in expected log earnings between two individuals with the same level of

experience depends only on the differences in schooling and other characteristics, not on the expe-

rience level itself. Hence, the model can be described by an additively separable specification with

experience level in one term and all other characteristics in the other.4 If differences in expected log

earnings between different groups do depend on the experience level, then a weakly separable spec-

ification is more appropriate. Expected log earnings of two groups (high and low schooling) diverge

as a function of the experience level if the amount of time spent on “post–schooling” is positively

Some useful further references in these areas are Blackorby, Davidson and Schworm (1991), Blackorby and Schworm

(1988), Blackorby, Schworm and Fisher (1986), Blundell (1988), Diewert and Wales (1987,1988,1992) and Woodland

(1978). An application of weak separability in the context of monetary aggregation is Barnett (1980).

2Note that Horowitz (1998) also allows for a (x, z) = mL

{∑dx
i=1 gxi (xi) +

∑dz
i=1 gzi (zi) , gw (wi)

}
for scalar wi.

Horowitz concentrates on estimation of the gzi ’s and gxi ’s and does not use the weakly separable structure further.

Further use would indeed require an extension of the model since the gzi ’s, gxi ’s and gw are scalar–valued.
3I thank David Green for this example.
4Note however that most results for additively separable functions require each nonparametric function to have

scalar argument.
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correlated with the amount of time spent on schooling (Mincer, 1974, p.31). They converge if the

correlation is negative. An additive specification thus assumes the correlation to be zero.

The definition of weak separability (Definition 1) can be generalized in many ways. Weak sepa-

rability can be nested or m{x, g(z)} can be replaced with m{gx(x), gz(z), . . .}. Some generalizations

are discussed in section 9.1. The main results of this paper apply to Definition 1.

3 Identification

For any separable function a there are many functions m and g which satisfy (1). For instance,

if κ is any monotonic function, then a(x, z) = m{x, g(z)} = m∗{x, g∗(z)} with g∗ = κ
−1(g) and

m∗(x, g) = m {x,κ(g)} , and hence (m, g) and (m∗, g∗) can not be separately identified. It is assumed

here that m and g are not of separate interest, and hence one can impose any identification condition

on m and g.5 An identification condition guarantees that any weakly separable function a can be

reproduced by one and only one combination of m and g that satisfies the identification condition.

One commonly used identification condition is g(z) = m{0, g(z)}. This identification condition

does not allow for increased efficiency since it does not involve any averaging. Instead, my identi-

fication condition allows for g to be estimated by marginal integration, thereby ensuring that a is

estimated more efficiently than if it were estimated by an unconstrained multivariate nonparametric

regression estimator â.

Let λ be some practitioner–chosen nonnegative function for which 0 <
∫
X λ(x)dx <∞,where X

is the support of the density fX of X1.

Theorem 1 Once the practitioner has chosen λ, setting g(z) =
∫
X a(x, z)λ(x)dx uniquely identifies

(g,m).

All proofs are in an appendix. A discussion on the choice of λ follows in section 6.

4 Estimation Method

My estimation method consists of three steps. In the first step, an unconstrained nonparametric

regression estimator â of a is computed. The second step consists of finding an estimator ĝ of g,
5If m and g are of separate interest, then the application should provide appropriate identification conditions.
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which converges at a faster rate than â converges to a. In the third step ĝ is used to regress Yi on

{Xi, ĝ (Zi)} nonparametrically, giving an estimate of m. Since dx + 1, the dimension of {Xi, ĝ (Zi)}

is less than dx + dz, the resulting estimator of m also generally converges at a faster rate than does

â.

All nonparametric regression estimators used are nonparametric (Nadaraya–Watson, see Nadaraya,

1964, and Watson, 1964) kernel regression estimators. The unconstrained Nadaraya–Watson esti-

mator of a is

â(x, z) =

1

nh
db
g

∑n
i=1 khg (x−Xi)khg (z − Zi)Yi

1

nh
db
g

∑n
i=1 khg (x−Xi)khg (z − Zi)

, (2)

with db = dx + dz, hg the practitioner–chosen bandwidth, khg (u) = k(u/hg), with k the kernel. I

use the symbol k as a generic symbol for kernel, its exact form being determined by the dimension

of its argument. So the functions k used on (x − Xi) and (z − Zi) in (2) are different unless the

dimensions of Xi and Zi are the same.

It is the choice of functional form rather than the choice of estimation method which allows the

dimension reduction result. The Nadaraya–Watson kernel regression estimator is but one choice.

In section 9 I discuss potential alternatives. The trade–offs between local nonparametric methods

like kernel regression estimation and local polynomial estimation and global nonparametric methods

like series estimation and artificial neural networks are well–known. My reason for opting for kernel

regression estimation instead of local polynomial estimation is simplicity of proofs and arguments.

I expect that similar results can be obtained for local polynomial estimators.

The natural estimator of g is the marginal integration estimator

ĝ(z) =
∫
X
â(x, z)λ(x)dx (3)

for a judiciously chosen function λ, and some unconstrained multivariate nonparametric regression

estimator ĝ. Note that ĝ has exactly the same form as the Linton and Nielsen (1995) estimator.

There are two differences: ĝ is only the first stage of my estimation procedure and g is a function of

one scalar variable in Linton and Nielsen (1995), and of at least two variables in this paper.

There are many ways λ can be chosen and the choice can affect the asymptotic variance matrix

(see section 6). One particular choice is λ (x) = fX (x) I (x ∈ BX), with I the indicator function, f$

the density of $1 for any random variable $1, and BX some compact subset of X , on which I will
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impose conditions in Assumption A. Since fX is not observed, one could instead use the marginal

summation estimator

ĝΣ(z) = n−1
n∑
i=1

â−i (Xi, z) I (Xi ∈ BX) ,

where the subscript −i denotes that observation i is not used in the determination of â−i (leave

one out). ĝΣ can be preferable to ĝ for reasons of computational ease (see section 8). Although

the results for the marginal summation estimator in my paper are for λ = fX , other choices can be

incorporated; see section 9.

Once g is estimated using (3), its estimates can be used to obtain a more efficient estimator of

a, namely

âS(x, z) =
1

nhdx+1
m

∑n
i=1 khm(x−Xi)khm {ĝ(z)− ĝ−i(Zi)}Yi

1

nhdx+1
m

∑n
i=1 khm(x−Xi)khm {ĝ(z)− ĝ−i(Zi)}

,

where hm is again a bandwidth and ĝ−i is ĝ when observation i is omitted in its estimation.

5 Main Results

The main results are divided into two separate subsections. In section 5.1, I study the properties

of the marginal integration estimator ĝ and the marginal summation estimator ĝΣ. In particular,

I prove that ĝ and ĝΣ converge uniformly to g (Theorems 2 and 4). In doing so, I also prove

(Theorem 3) both a uniform strong law of large numbers and a uniform weak law of large numbers

for U–statistics.

In section 5.2, I establish the limiting distribution of âS . Depending on the dimensions of X1

and Z1, the results are in Theorems 5, 6 and 7. In Theorem 8 I show that âS converges uniformly

to a.

5.1 Estimating g

I first state the assumptions and then discuss them all at once.

Assumption A There is a Cartesian product of intervals B = BX×BZ ⊂ Rdb for which infb∈B fXZ(b) >

0 and for which
∫
X λ(x)dx =

∫
BX λ(x)dx > 0.
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Assumption B For some p > 2, supx∈BX ,z∈BZ E (|Y1|p |X1 = x,Z1 = z) < ∞ and σ2
XZ(x, z) =

E
(
Y 2

1 |X1 = x,Z1 = z
)

is continuous at all (x, z) ∈ B.

Assumption C Both fXZ(x, z) and a(x, z) are at least r ≥ 2 times boundedly differentiable on the

interior of B.

Assumption D The kernels used in the nonparametric kernel regression estimator are products of

even univariate r–th order kernels k(1) with bounded support, i.e. they are bounded functions k such

that k(u) =
∏du
i=1 k(1)(ui),

∫
k(1)(t)dt = 1,

∫
k(1)(t)t`dt = 0, ` = 1, . . . , r − 1,

∫ ∣∣k(1)(t)tr
∣∣ dt <∞.

Assumption E For some ε > 1− 2/p, n1−εhdbg →∞ and hg → 0, as n→∞.

Since â contains a denominator term, stronger results obtain when â is integrated only over a

bounded set. Assumption A says that λ should be chosen positive only over a set on which the joint

density of (Xi, Zi) is known to be bounded away from zero. I do not assume anywhere that any

density has bounded support.

Assumption B contains a mild moment condition and a continuity condition on the conditional

variance. Assumption C is a smoothness condition, where smoothness is measured in terms of the

number of existing (bounded) derivatives.

Assumptions D and E do not impose conditions on the data. Instead, they restrict the set of

kernels and bandwidths the practitioner can use. Kernels of order r = 2 are standard. Higher order

kernels are a theoretical tool and are useful to increase the rate at which the bias disappears with

an increase in the sample size. For small and moderate samples the increase in the variance is such

that second order kernels often work better in practice. Higher order kernels take negative values.

An example of a fourth order kernel is k(1)(u) =
{

(3− u2)/ (4π)
}

exp(−u2/2), but kernels of any

order, including infinite order, can be constructed.

Finally, Assumption E contains a weak restriction on the way the bandwidth choice should change

with the sample size in the limit. Like Assumption F further on, it is merely a technical construct

and provides no guidance on how to choose bandwidths for a sample of finite size. See section 6 for

a discussion of the choice of input parameters.

The first result is a uniform convergence result for ĝ.
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Theorem 2 Under Assumptions A, B, C, D and E, then for Z a strict subset of BZ ,

sup
z∈Z
|ĝ(z)− g(z)| = op(n−1/2h−dz/2g log n+ n−1h−dbg log n) +Op(hrg). (4)

In particular, when hg ∼ n−1/{r+dz+max(r,dx)}, as n→∞, then

sup
z∈Z
|ĝ(z)− g(z)| = op

{
n−r/{r+dz+max(r,dx)} log n

}
.

Theorem 2 establishes that when r can be chosen greater than dx, i.e. when a is more than dx

times differentiable, then the uniform convergence rate of ĝ is the same as the best attainable for

dz–variate nonparametric kernel regression estimators using r–th order kernels.

For the marginal summation estimator ĝΣ the proof is a little more complicated. Instead of

proving directly that ĝΣ converges to g at a particular rate I establish that ĝΣ − ĝ converges no

slower than ĝ − g, where ĝ, g are defined in terms of λ = fX . Since ĝΣ involves a double–sum,

U–statistic theory applies (Hoeffding, 1948). To my knowledge there are no uniform laws of large

numbers for U–statistics which apply in the current scenario. Since a uniform law of large numbers

for U–statistics is of interest in its own right I present it in the text.

Let {ξi} be an independent and identically distributed sequence of random variables and consider

the U-statistic S̃n (t) =
∑n
s=1

∑s−1
i=1 Ũnsi (t) with Ũnsi = Ũn (t, ξs, ξi) with Ũn a function symmetric

in its last two arguments.

Theorem 3 If t indexes a function class F =
{
Ũn (t, ·, ·) , t ∈ T

}
with polynomial discrimination

(see Pollard, 1984, Definition II.13) and if in addition for some pU > 0,

lim supn→∞ supt∈T E
∣∣∣E {Ũn12 (t) |ξ1

}∣∣∣pU < ∞, and if for all n, supt∈T V
{
Ũn12 (t)

}
≤ σ2

Un and

supt∈T V
[
E
{
Ũn12 (t) |ξ1

}]
≤ σ2

UCn such that for some ι > 0, n1/2−1/pUσUCn (log n)ι/2 → ∞ as

n→∞, then

n−2 sup
t∈T

∣∣∣S̃n (t)− E
{
S̃n (t)

}∣∣∣ = op

(
n−1/2σUCn log n+ n−1σUn log n

)
.

If in addition n1/2−2/pUσUCn (log n)ι/2 →∞ as n→∞ then

n−2 sup
t∈T

∣∣∣S̃n (t)− E
{
S̃n (t)

}∣∣∣ = oa.s.
(
n−1/2σUCn log n+ n−1σUn log n

)
The only difference between the uniform strong law and uniform weak law in Theorem 3 is that

the uniform strong law imposes a stronger moment condition. If σ2
UCn and σ2

Un do not depend on
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the sample size, then pU > 2 suffices for the uniform weak law and pU > 4 for the uniform strong

law. With Theorem 3, Theorem 4 is relatively easy to prove.

Theorem 4 Under Assumptions A, B, C, D and E, then

sup
z∈BZ

|ĝΣ(z)− g̃fX (z)| = op(n−1h−db/2g log n) +Op(hrg), (5)

where g̃fX is the g̃ estimator with choice λ (x) = fX (x) I (x ∈ BX).

Note that the Op(hrg) term in (5) also occurs in (4). Note also that since hg → 0 as n → ∞

by Assumption E, n−1h
−db/2
g log n is of smaller order than n−1h−dbg log n. Hence the marginal

summation and marginal integration estimator (with choice λ = fX) are asymptotically equivalent.

5.2 Properties of âS

Two further assumptions are required to obtain results for âS . The first assumption, Assumption

F, is like Assumption E a technical restriction on the rate at which the bandwidths should decrease

with an increase in the sample size. Hence. there is little to be learnt from Assumption F in terms

of the optimal choice of bandwidth in a sample of finite size. The discussion below is hence limited

to demonstrating that, given sufficient smoothness, bandwidth sequences satisfying Assumption F

indeed exist.

Let Φ > 1 denote the number of bounded derivatives of k and set Γ = Iz/ (Iz + Ix), where Iz =

I (dz ≥ dx + 1) and Ix = I (dz ≤ dx + 1) such that Γ = 1, 1/2, 0 according to whether dz > dx + 1,

dz = dx + 1, and dz < dx + 1, respectively. Let Π1,Π2 denote some finite positive constants.

Assumption F The bandwidth sequences satisfy

(
hmh

−1
g

)2Γ−1 → Π1Γ (1− Γ) , n−1h−dzg h
2(Φ+1)/(1−Φ)
m (log n)2 → 0,(

hdzg h
−dx−1
m

)2Γ−1 → Π2Γ (1− Γ) , n−1h−dz−dxg h
(Φ+1)/(1−Φ)
m log n→ 0,

hrgh
{2+(1−Γ)r}/(Γ−2)
m → 0, n−1h

dz(Γ−2)
g h

{(dx+1)(1−Γ)−4}
m (log n)4 → 0,

hrgh
(Φ+1)/(1−Φ)
m → 0, n−1h

{dz(Γ−4)−4dx}/3
g h

{(dx+1)(1−Γ)−4}/3
m (log n)4/3 → 0,

(6)

all as n→∞.

The last (three) condition(s) in Assumption F are the most restrictive. Sometimes higher order

kernels are required. Regardless of the values of dz and dx, (sufficiently large) values of Φ, r can
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be found such that Assumption F holds. For the case Γ = 1, all conditions are satisfied for hg =

n−1/(2r+dz), hm = n−1/(2r+dx+1), provided r and Φ are chosen sufficiently large. Indeed, for fixed

Φ sufficient conditions on r for the left column conditions in (6) to hold are r ≥
√
dz + I (dx < 3)

for the third left column condition and r ≥
√
RΦdz/2 + I (dx < 2RΦ − 1) {2RΦ − dx − 1} /2, for the

fourth left column condition, where RΦ = (Φ + 1) / (Φ− 1). The first two left column conditions

are satisfied for all r ≥ 2 and all Φ. Sufficient conditions for the right column are r ≥
√
RΦdz/2 +

I (dx < 2RΦ − 1) {RΦ − (dx + 1) /2}, r ≥ (dx + 1) /2+
√
RΦdz/2+(RΦ − 1) /2, r ≥

√
dz+I (dx < 3),

and r ≥
√
dx (dx + dz + 1) /3+I (5dx > 3dz + 3) (5dx − 3dz − 3) /6. Specifically, for dz = 3, dx = 1,

one can choose Φ = 5 (RΦ = 3/2) and r = 3.

The second condition imposes a restriction on the function g. Let (x, z),the point at which a is

to be estimated, be an interior point of B.

Assumption G g is monotonically increasing in its first argument in a neighborhood of z.

Assumption G is more fundamental than Assumption F. Since m is monotonically increasing in

g, it asks that a is monotonically increasing in at least one element of z. Without Assumption G,

g(z) could be on the boundary of the support of g (Z1), and boundary behavior of nonparametric

kernel regression estimators is poor.

I am now in a position to posit three theorems which establish asymptotic normality and an

optimal convergence rate for âS under varying conditions on dx and dz. Let κ2 =
∫
k2

(1)(u)du.

Theorem 5 Under Assumptions A–F, if dz < dx + 1, then (i) when hm ∼ n−1/(2r+dx+1),

nr/(2r+dx+1) {âS(x, z)− a(x, z)} = Op(1),

and (ii) ∃ε > 0 such that for hm ∼ n−1/(2r+dx+1)−ε,

nr/(2r+dx+1)−ε(dx+1)/2 {âS(x, z)− a(x, z)} L→ N

[
0,
σ2
XG{x, g(z)}κdx+1

2

fXG(x, g(z))

]
,

with σ2
XG{x, g(z)} = V {Y1|X1 = x, g(Z1) = g(z)} .

Theorem 6 Under Assumptions A–F, if dz > dx + 1,then (i) when hg ∼ n−1/(2r+dz),

nr/(2r+dz) {âS(x, z)− a(x, z)} = Op(1),
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and (ii) ∃ε > 0 such that for hg ∼ n−1/(2r+dz)−ε,

nr/(2r+dz)−εdz/2 [âS(x, z)− a(x, z)] L→ N

[
0,
[
∂m

∂g
{x, g(z)}

]2

σ2
J(z)κdz2

]
, (7)

with σ2
J(z) =

∫
X σ

2
XZ(x, z)λ2(x)f−1

XZ(x, z)dx.

Theorem 7 Under Assumptions A–F, if dz = dx + 1,then (i) when hg, hm ∼ n−1/(2r+dz),

nr/(2r+dz) {âS(x, z)− a(x, z)} = Op(1),

and (ii) ∃ε > 0 such that for hg = hm ∼ n−1/(2r+dz)−ε,

nr/(2r+dz)−εdz/2 [âS(x, z)− a(x, z)] L→ N (0,V) ,

where V is the sum of the variance matrices in the previous two theorems.

There are a number of remarks to be made here. First, from Theorems 5,6 and 7, it follows

that the optimal convergence rate of âS is n−r/{2r+max(dz,dx+1)} when hg ∼ n−1/(2r+dz) and hm ∼

n−1/(2r+dx+1). Theorem 5 implies that under the conditions in the theorem, there is no (asymptotic)

penalty for not knowing g. Under the conditions of Theorem 6, the convergence rate of âS is identical

to that of ĝ, which is the same as that of a nonparametric kernel regression estimator of a dz–variate

regression function. Theorems 5–7 say that the convergence rate of âS is the slowest of the estimator

of m (with g known) and ĝ.

Like other nonparametric kernel regression estimators, the convergence rate can be made arbi-

trarily close to n−1/2 by choosing r large, provided a is very smooth. Theorems 5,6 and 7 are similar

to the theorem in Rilstone (1996) in the sense that nonparametric generated regressors are used.6

Second, like in nonparametric kernel regression estimation, asymptotic normality only obtains

under undersmoothing, i.e. when the bandwidth goes to zero at a faster rate than the rate at which

the asymptotic mean square error is minimized. When the bandwidth goes to zero fast, the squared
6Rilstone’s (1996) proof is incorrect and stronger assumptions are needed to obtain the stated results. I will outline

the problem in my notation. While Rilstone shows that m̃ {x, ĝ (z)} − m̃ {x, g (z)} has a limiting normal distribution

where m̃ is the nonparametric kernel regression estimator of Yi on {Xi, g (Zi)} and ĝ is his estimator (quite different

from mine) of his function g, Rilstone ignores the fact that the g (Zi)’s are themselves estimated, also. This is the

most difficult part of the proof. For another, correct, proof of a nonparametric generated regressor result, see Ahn

(1997).
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bias decreases faster than the variance with an increase in the sample size and hence does not impact

the asymptotic distribution. In small or moderate samples, the bias can still be large and unless

the bandwidth is chosen very small, bias reduction techniques like the bootstrap or jackknife may be

appropriate.

Finally, the variance matrices in Theorems 5,6 and 7 can be estimated using nonparametric

regression and density estimation.

Aside from the pointwise asymptotic normality results of Theorems 5, 6 and 7, it is also possible

to establish a uniform convergence result for the estimator under weak separability. The rate of

convergence is slower, particularly when dx is small relative to dz. Let Ψgn = n−1/2h
−dz/2
g log n +

n−1h−dbg log n+ hrg denote the uniform convergence rate of ĝ.

Theorem 8 Under Assumptions A, B, C, D and E,

sup
b∈B
|âS (b)− a (b)| = Op

(
Ψgnh

−1
m + Ψ2

gnh
−3
m + n−1/2h−(dx+1)/2

m log n+ hrm

)
.

In particular, when hg ∼ n−1/(2r+dz), hm ∼ n−1/(2r+dx+1),

sup
b∈B
|âS (b)− a (b)| = Op

(
n−νa log2 n

)
,

where

νa =
min

{
2r2 − (1− dx) r − dz, 4r2 − (4− dx) r − 3dz, 4r2 + 2dzr

}
(2r + dz) (2r + dx + 1)

.

A sufficient condition for νa > 0, i.e. for convergence, is r ≥
√

3dz/2 + I (dx < 4) . For dx =

1, dz = 2, r ≥ 3, νa = (r − 1) / {2 (r + 1)} and the (nonuniform) convergence rate of âS for the same

bandwidth choice is n−r/{2(r+1)}. So, for uniform convergence, a kernel of one order higher is needed

to get the same approximate convergence rate for âS when dx = 1, dz = 2, r ≥ 3.

6 Choice of Input Parameters

In the proposed estimation method, the practitioner chooses four input parameters, i.e. a kernel,

two bandwidths and the function λ. The choice of kernel shape is generally less important than the

choice of bandwidth.
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The choice of the bandwidth hm is likely determined by similar concerns as the choice of the

bandwidth in an ordinary nonparametric kernel regression problem. A second generation bandwidth

choice algorithm which has been found to have good properties is Sheather and Jones (1991).

The other bandwidth hg should primarily be chosen such as to maximize the accuracy of ĝ.

Work on bandwidth choice for marginal integration estimators can be found in a number of sources

including Horowitz (1998).

Now the choice of λ. Linton and Nielsen (1995) have studied the optimal choice of λ within

the context of their estimator. Optimality in Linton and Nielsen (1995) is defined in terms of the

density–weighted integrated mean square error. I allow the optimal choice of λ to depend on the

point (x, z) at which a is to be estimated.

Allowing λ to depend on the point of estimation (x, z) leads to an asymptotic variance which

is less than or equal to the asymptotic variance when λ is chosen the same for the whole range.

Unfortunately, it also increases the computational burden if a is to be estimated at multiple points

since the optimal λ needs to be determined for each individual point and for each λ all ĝ (Zi)’s need

to be recomputed. See section 8 for a discussion. I have failed to find an explicit solution for the

function λ which, like in Linton and Nielsen (1995), minimizes some global measure of dispersion.

In Theorem 5, the choice of λ does affect the asymptotic variance. Although σ2
XG {x, g (z)} is not

affected by the choice of λ, the choice of λ does affect fXG {x, g (z)}. Indeed, if g (z) = χ
λ
{g0 (z)},

with χ a monotonically increasing differentiable transformation and g0 one fixed choice for g, then

fXG {x, g (z)} = fXG0 {x, g0 (z)} /χ′
λ
{g0 (z)}. Note however, that the only reason the asymptotic

variance is affected is that choosing λ amounts to transforming one of the explanatory variables in

the nonparametric kernel regression of Yi on {Xi, g (Zi)}; it is effectively a bandwidth choice. For

Theorem 6, the situation is more interesting.

Theorem 9 The limiting variance in Theorem 6 is minimized for

λ (t) =
∂a
∂z1

(t, z) fXZ (t, z)
σ2
XZ (t, z)

.

The optimal choice of λ is intuitive. For g to be estimated accurately, more weight should be

put at points at which the unconstrained estimator of a is the most accurate, i.e. at those points

around which there are relatively many data points (large fXZ) and small error variance σ2
XZ .
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The additional ∂a
∂z1

factor is caused by the ∂m/∂g factor in (7). Note that ∂m
∂g = ∂a

∂z1
/ ∂g∂z1 ; ∂a

∂z1

does not depend on λ but ∂g
∂z1

(z) =
∫

∂a
∂z1

(t, z)λ (t) dt does depend on λ. Note that ∂a
∂z1

could be

equally replaced with ∂a
∂zi

for any i for which ∂a
∂zi

is everywhere positive. The only effect is a scale

change in λ (z is fixed).

The optimal choice λ (x) = ∂a
∂z1

(x, z) fXZ (x, z)σ−2
XZ (x, z) depends on unknown quantities. λ can

be estimated by first estimating ∂a
∂z1

, fXZ , σ
2
XZ and then setting λ̂ (x) = ∂â

∂z1
(x, z) f̂XZ (x, z) σ̂−2

XZ (x, z).

There are two problems with using an estimated weight function. The first is the computational

problem mentioned earlier. The second concern is that the small sample performance of the estimator

with estimated weight function may in fact be poorer than for a prudently chosen weight function,

which does not depend on the data, in the same way that the feasible generalized least squares

estimator can in practice be worse than the ordinary least squares estimator in the context of a

linear regression model.

7 Testing for Weak Separability

Since âS only estimates a consistently when a is weakly separable, it is important to establish

whether a is indeed weakly separable, unless there is prior information that weak separability is

indeed a reasonable assumption. There are many ways in which this can be done.

One possibility is to use the property of weakly separable functions that (∂a/∂zi) / (∂a/∂zj) does

not depend on x for any i, j. One could then test the hypothesis
∫
V
{
∂a
∂z2

(X1, z) / ∂a∂z1 (X1, z)
}
λτ (z) dz =

0 for some nonnegative weight function λτ (unrelated to λ) which ensures that the integral exists.

I have not pursued this possibility because nonparametric derivative estimation is generally less

accurate than nonparametric kernel regression estimation and the denominator of the integrand can

be small.

Instead, it is preferable to use the test for additive separability of Gozalo and Linton (1997).

Since the uniform convergence rate of âS is faster than the pointwise convergence rate of â, their

results should carry over to the case of weak separability.

An alternative possibility is to use the test of independence of Pinkse (1999). If a is weakly

separable and the errors are homoskedastic, then Y1 − âS(X1, Z1) is asymptotically independent of

X1, Z1.
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8 Computation

The proposed estimator âS is computationally considerably more demanding than the unconstrained

estimator â. The way in which the computational burden increases with an increase in the sample

size and the dimensionality of Xi differs depending on whether the marginal integration or the

marginal summation estimator is used.

First the case of marginal integration. For the computation of ĝ at each Zi, one needs to

marginally integrate â in dx directions. This can be accomplished by most quadrature–based routines.

To compute â takes O(n) operations (assuming no binning or fast Fourier transforms are used). The

time it takes to marginally integrate a function increases exponentially in the number of integration

dimensions, so to compute ĝ at a single point takes O
(
nΠdx

3

)
operations, with Π3 > 1 some positive

constant. Suppose that a is to be estimated at na points (x, z) with different z. Then, ĝ needs to be

computed at n+na different points. The last estimation step involves a number of steps which is of

lower order. Hence, the number of operations required is O
{

(n+ na)nΠdx
3

}
, compared to O (nna)

for the unconstrained estimator. Particularly when dx is large, the computational burden can be

substantial, although in my experience it takes less than an hour on a 200 MHz Pentium running

NextStep for a single data set when dx = 4 and n = 500.

When λ is unknown and needs to be estimated, or indeed is chosen differently for each z, the

whole procedure needs to be repeated for each choice of z, and hence the total number of operations

is O
{
nan

2Πdx
3

}
, compared to O (nna) for â. z–dependent λ could still be feasible for individual

data sets when n, na and dx are small, but for the simulation study in section 10 it is too demanding.

In the case of marginal summation, it takes O
(
n2
)

operations to compute ĝ at a single point.

The total number of operations is hence O
{

(n+ na)n2
}

. So marginal summation is preferable when

n is relatively small and dx is relatively large. Marginal summation is in this paper limited to the

choice λ = fX , but see section 9 for possible extensions.

9 Extensions

There are many ways in which the ideas put forward in this paper can be extended. Section 9.1

discusses extensions to the model (1). In section 9.2 I discuss a way in which different choices of λ

can be implemented in the context of the marginal summation estimator and section 9.3 looks at
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alternative nonparametric regression estimation techniques that could be used.

9.1 Convenient Forms of Weak Separability

It is possible to extend the model (1) to say,

a(υ) = Υ0 [Υ1 {Υ11(υ11),Υ12(υ12), . . .} ,Υ2 {·} , . . .] . (8)

One could allow for an arbitrarily high level of nesting, but despite the asymptotic results that

obtain, small sample performance is likely to deteriorate with both dυ and the level of nesting. Υ1j

can be identified by Υ1j(υ1j) =
∫
a(υ)λ(υ−1j)dυ−1j where υ−1j denotes all elements of υ which

are not in υ1j . Intermediate functions can be estimated by repeated use of the estimation methods

described in Sections 4 and 5 using say
∫
â(υ)λ(υ−1)dυ−1as the dependent variable and Υ̂1j(υ1j) for

various values of j as explanatory variables.

Although the results in this paper are for (1), some preliminary explorations have shown that

extensions like (8) follow relatively easily, albeit under stronger conditions. In principle, then, if

I knew that the regression function a had a particularly convenient (i.e. nested) weakly separable

form, I could estimate a with an estimator which had the same convergence rate as that of a

bivariate nonparametric kernel regression estimator, regardless of the number of arguments. Under

generalized additive separability the convergence rate of the Linton and Härdle (1996) and Horowitz

(1998) estimators compare to that of a univariate nonparametric kernel regression estimator.

Even if a has the convenient form mentioned above, the above–described estimator which uses it

is not likely to be very good in even fairly large samples in view of the compounded approximation

errors.

9.2 Marginal Summation

The marginal summation estimator ĝΣ assumes λ = fX . Other choices of λ could be implemented

by replacing ĝΣ with a weighted equivalent, say

ĝΣw (z) = n−1
n∑
i=1

â (Xi, z) I (Xi ∈ BX)λw (Xi) ,

which uses λ = fXλw as the weight function.
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9.3 Other Nonparametric Estimation Techniques

It is possible to obtain results similar to those discussed here for other nonparametric estimation

methods. I discuss three here: local polynomial estimation, K–nearest neighbor estimation and

series estimation.

The potential benefits of local polynomial estimation over kernel regression estimation are well–

documented (see Fan and Gijbels, 1996, for an overview). They include improved estimation of

peaks and troughs and, in some circumstances, at boundaries.

Similar results to those obtained in this paper can be obtained for local polynomial estimators at

the expense of some complications in and lengthening of the proofs. There is no essential difference

in the current context between asymptotics for kernel regression estimators and local polynomial

estimators.

K–nearest neighbor estimators (Fix and Hodges, 1951; see Stone, 1977, for some fundamental

results) could be used in both steps. Because of discontinuities the use of generated regressors is

considerably more complex and it is unclear whether similar results obtain. For marginal integration

K–nearest regression estimation could in fact be simpler since there is no denominator term to

contend with. I have experimented a little with both but failed to get comparable results to that

for the kernel regression estimation method employed here.

One can impose weak separability on a series expansion of a regression function. Except for the

fact that the number of terms is allowed to increase with the sample size this is similar to parametric

specifications used in the past.

It is also possible to use series estimation only in the determination of ĝ. One particularly conve-

nient way this can be accomplished is by letting a(x, z) = ζS(x)
∑∞
j=1 αjej(z)+

∑∞
i=2

∑∞
j=1 α

∗
ijeXi(x)ej(z).

The functions ζ, ej , eXi, i = 2, . . .∞, j = 1, . . .∞ are chosen by the practitioner so that they form a

basis for the function class a belongs to. ζS can be chosen such that
∫
ζS(x)eXi(x)dx = 0 for all i.

Then set λ = ζS and employ the normalization
∫
λ2(x)dx = 1 to obtain g(z) =

∑∞
j=1 αjej(z).

From Andrews (1991), it follows that g can be estimated more efficiently than a. The estimate

of g thus obtained can then be used as a generated regressor in the last step of my estimation

procedure.
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10 Simulations

The simulation study in this section has three goals. To find out in which type of models âS performs

well relative to â, how the sample size affects the relative performs and how performance is affected

by a change in dimensionality. My study therefore includes several combinations of model structure,

sample size and dimensions (dx and dz).

Except where indicated, 100 data sets are drawn for each specification, sample size, dimension

combination and the regression functions are estimated at 50 randomly selected points
(
X̃ji, Z̃ji

)
(each of which is independently drawn from the same distribution as the (Xji, Zji) pair used in the

data). While 100 is a relatively small number, what is of interest here is a comparison of means

or distributions, which takes far fewer replications then say, determining the rejection rate of a test

statistic under the null hypothesis, i.e. a tail probability.

A pseudo–RMSE figure is then computed for each data set, using

RMSEâj =

√√√√ 1
50

50∑
i=1

{
â
(
X̃ji, Z̃ji

)
− a

(
X̃ji, Z̃ji

)}2

.

A lower RMSE number is better. The RMSE results are ordered (by increasing magnitude) and

plotted against the RMSE results of other specifications/estimation methods. So in each case the

lowest RMSE number of one specification is matched with the lowest RMSE number of another, the

next lowest with the next lowest and so on. The results are in the figures which I discuss further

below.

In all cases the regressors have a joint normal distribution with moderate correlations. The errors

are drawn from a normal distribution and independently from the regressors; I do not study the

effects of heteroskedasticity here. No truncation was used, which violates the compactness condition

of Assumption B.

In all scenarios a standard normal kernel was used, all regressors were normalized by dividing

through by their standard deviations and bandwidths were chosen by setting h = n−1/(4+d), where d

denotes the dimension of the entire regressor vector used in that particular nonparametric regression.

While not satisfying Assumption F for all choices of dx, dz, typically lower order kernels give more

accurate resuts in small to moderate samples. Unless otherwise specified, λ is positive and constant

on [−2, 2] and zero elsewhere. All simulations were carried out in the programming language C on
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a 200 Mhz Pentium running NeXTSteP 3.3.

The specifications used were the following.

Model 1. m (x, g) =
∑dx
i=1 xi + g, g (z) =

∑dz
i=1 zi.

Model 2. m (x, g) = x1g + x2g
2, g (z) = z1 (z2 + 1).

Model 3. m (x, g) = x1g + x2g
2, g (z) = z1 + z2.

Model 4. m (x, g) =
√
g
√
x2

1 + 1 + x2
√
g, g (z) =

√√
z2

1 + 1 +
√
z2

2 + 1,

Model 5. m (x, g) = log
[
{(x1 + x2)− g}2 + 1

]
, g (z) = z1 + z2.

All specifications studied are weakly separable. The different specifications were chosen to determine

which functional forms lead to the best performance. The functional forms chosen are not necessarily

models one would ever encounter in reality.

Figures 1 and 2 show how changes in sample size affect the performance of â and âS in model

1 using marginal integration. The figures are the same except that in figure 2, dx = 2 instead of

dx = 1. On the horizontal axis are the RMSE numbers for â and âS for n = 100. On the vertical axis

are the same numbers for n = 200 and n = 500. Figures 1 and 2 show how performance varies with

n; they contain no information about the relative performance of âS vis–a–vis â. In figure 1, the

performance improvement of â and âS for a sample of size 200 over one of size 100 appears roughly

the same. For n = 500 the improvement for âS appears greater than that for â, suggesting that the

asymptotically superior performance of âS starts becoming noticeable at a sample size between 200

and 500.

For the data set of figure 2, âS has the convergence rate of a nonparametric regression estimator

with three regressors instead of two and â is now a four–dimensional nonparametric regression

estimator, as opposed to three–dimensional as in figure 1. The improvement in performance is now

noticeable at n = 200. These results suggest that the smaller is max {dx + 1, dz} / (dx + dz), the

earlier are the gains of âS realized.

Figures 3, 4 and 5 compare the performance of âS using marginal summation (MS) and marginal

integration (MI) for model 1 for sample sizes 100, 200 and 500 and dx = 1, dz = 2. With MI,

λ (x) = 1 and with MS λ (x) = fX (x). The optimal choice of λ is here λ (x) = fXZ (x, z), more in

line with MS, and my expectation is that MS will do better. In each case, the horizontal axis shows
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the RMSE of â and the vertical axis the RMSE of both variants of âS . To facilitate a comparison,

the three graphs also contain shaded bars; the closer the bars are together, the more often the RMSE

of â takes values in that region.

In all three figures, both variants of âS have RMSE graphs which are below the 45–degree line.

Hence, both MI and MS outperform â, even at n = 100. MI and MS perform similarly at n = 100

but at n = 200 and n = 500 MS appears to do a little better, although the difference is negligible

compared to the difference between either MS or MI and â. These conclusions are also borne out

by figure 6, the equivalent of figure 2 for the marginal summation estimator.

Figures 7 and 8 contain a comparison of âS and â for the five models. In each case the sample

size is 100 and dx = dz = 2. In all cases MS is used. The graphs show that âS does better for

models 1 and 4, slightly worse for model 5 and worse for models 2 and 3. These results suggest

that the greater the degree of nonlinearity, the greater the sample size at which âS starts becoming

preferable over â. Further experiments (not graphed) have shown that even at n = 500, â performs

better than âS .

Part of the problem is the choice of λ. In figure 9, I have plotted the results where the experiments

with models 2 and 3 are carried out again but λ is chosen equal to fX∂a/∂z1.7 This choice of λ

ignores the dependence of the optimal choice on fXZ but nonetheless demonstrates the dependence

of performance on the choice of λ. For model 2, the perfomance of â and âS are very similar. For

model 3 âS still does worse than â but performance appears somewhat better. Not graphed is a

comparison of the performance of âS and â in model 2 with λ = fX∂a/∂z1 and n = 200 (instead of

n = 100); âS does a little better than â.

Finally, a comparison across dx + dz. Figures 10 and 11 are identical except that figure 10 has

n = 100 and figure 11 has n = 200. In both cases MS is used and both figures apply to model 1. As

expected, accuracy decreases with an increase in the number of dimensions. Clearly, 16–dimensional

nonparametric regression using a sample of size 100 is not advisable, whether weak separability

is imposed or not. Asymptotically, âS with dx = dz = 8 should do a little worse than â with

dx = dz = 4, but asymptotics appear to have little bearing on figure 10. The conclusion re figure

10 must be that âS does better than â but not as much as asymptotics has one believe. Figure 11

suggests that asymptotics have still not taken full effect at n = 200 but that a dimension reduction
7The graphs are a little jerkier because the number of replications was smaller here.
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appears attainable in samples of a few hundred observations.

11 Conclusions

I have proposed a nonparametric kernel regression estimator under weak separability. The estimator

uses marginal integration to obtain dimension reduction like estimation methods using the stronger

concept of (generalized) additive separability.

Weak separability is a considerably weaker condition than additive separability because it allows

for more interaction between regressors. The downside is that because of the very nature of the

weak separability condition the dimensionality can at best be reduced to that of a two–dimensional

problem instead of a one–dimensional problem as is the case under additive separability.

Simulation results suggest that the proposed estimator generally does better than the uncon-

strained estimator, even in small samples, provided that the weight function λ is chosen appropri-

ately. However, the degree of dimension reduction promised by asymptotics is not generally realized

in small samples.
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A Proofs

Proof of Theorem 1

I need to show that (i) any weakly separable function a can be written as m{x, g(z)} with the

identification condition imposed and that (ii) the identification condition uniquely identifies m, g.

From the definition of weak separability it follows that unknown functions m∗, g∗ exist such that

for all x, z, a(x, z) = m∗{x, g∗(z)} with m∗ monotonic in g∗. Thus,

g(z) =
∫
X
a(x, z)λ(x)dx =

∫
X
m∗{x, g∗(z)}λ(x)dx = ϑ{g∗(z)},

for some function ϑ which is monotonic because of the monotonicity of m∗ with respect to g∗. Hence

g is a monotonic transformation of g∗. Thus, a(x, z) = m{x, g(z)} with m(x, g) = m∗{x, ϑ−1(g)}.

Hence both (i) and (ii) hold. �

Lemma 1 If for some pζ > 0, lim supn→∞max1≤i≤nE |Ani|pA ≤ CA, then P (max1≤i≤n |Ani| > Mn) ≤

nCAM
−pA
n .

Proof: Note that P (max1≤i≤n |Ani| > Mn) ≤
∑n
i=1 P (|ζni| > Mn). Apply the Markov inequality.

�

Lemma 2 Let G = {ζnt : t ∈ T } be a class of functions with polynomial discrimination. Let {ξi} be

a sequence of i.i.d. random variables and set σ2
ζn = supt∈T V {ζnt (ξ1)} <∞.. If a pζ > 0 exists such

that lim supn→∞E {supt∈T |ζnt (ξ1)|pζ} <∞ and for some fixed 1/2 < ι < 1, n1/2−1/pζσζn (log n)ι/2 →

∞ as n→∞ then supt∈T
∣∣n−1

∑n
i=1 ζnt (ξi)− E {ζnt (ξ1)}

∣∣ = op
{
n−1/2σζn (log n)ι

}
and if

n1/2−2/pζσζn (log n)ι/2 →∞ as n→∞ then

supt∈T
∣∣n−1

∑n
i=1 ζnt (ξi)− E {ζnt (ξ1)}

∣∣ = oa.s.
{
n−1/2σζn (log n)ι

}
.

Proof: This fixes a minor oversight in Horowitz, Lemma 1, at the expense of the loss of a.s. con-

vergence in lieu of convergence in probability. The problem is in the choice of δn = σf/n and

αn = n−1/2δ−1
n log n = σ−1

f n1/2 log n, which violates Pollard’s (1984, Theorem II.37)8 condition

that αn be non–increasing. Instead, for any ι > 1/2 choose δn = n−1/2 (log n)ι after multiplying

all f (Zi)’s (Horowitz notation) by σ−1
f n−1/2 (log n)ι instead of by n−1 as in Horowitz. For the

convergence in probability result, replace the treatment of Tn2 in Horowitz with Lemma 1 with
8Other results on uniform convergence, whose conditions are often easier to verify, are Andrews (1987,1992), Newey

(1991) and Pötscher and Prucha (1989).
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Ani = supf∈Jn |f (Zi)| and Mn = n1/2σf (log n)−ι (Horowitz’s notation) or Ani = supt∈T |ζnt (ξi)|

and Mn = n1/2σζn (log n)−ι (my notation). For a.s. convergence, (similar to Horowitz) use the fact

that
∑∞
n=1 P (max1≤i≤n |Ani| > Mn) <∞. Apply Borel–Cantelli.�

Proof of Theorem 2

In the proof I omit arguments wherever possible without causing confusion. Let N̂a and D̂a be

the numerator and denominator of â respectively. Then at all b ∈ B,

â− a =
(N̂a −Na)Da −Na(D̂a −Da)

D2
a

∞∑
i=0

(
Da − D̂a

Da

)i
. (9)

The expansion is allowed because of the well–established uniform convergence of kernel density

estimators (denominator) and the fact that the joint density is assumed bounded away from zero in

Assumption A. From Pollard (1984), Theorem 2.37 and my adaptation (Lemma 2 observing that

σζn = O
(
h
db/2
g

)
and pζ = p) of Horowitz (1998), Lemma 1 and a standard kernel bias expansion,

it follows that

sup
b∈B
|N̂a −Na|+ sup

b∈B
|D̂a −Da| = op(n−1/2h−db/2g log n) +Op(hrg).

Thus,

sup
b∈B

∣∣∣∣∣â− a− N̂aDa −NaD̂a

D2
a

∣∣∣∣∣ = op(n−1h−dbg log n) +Op(h2r
g ).

But,

∫
N̂a(x, z)Da(x, z)−Na(x, z)D̂a(x, z)

D2
a(x, z)

λ(x)dx = n−1h−dzg

n∑
i=1

khg (z − Zi)Jni(z) = g̃(z), (10)

where Jni(z) = h−dxg

∫
khg (x − Xi) {Yi − a(x, z)}λ(x)/fXZ(x, z)dx. Finally, apply Lemma 2 again

to the right hand side in (10). �

Proof of Theorem 3

Let Sn (t) =
∑n
s=1

∑s−1
i=1 Usi (t) with Usi (t) = Ũsi (t)−E

{
Ũsi (t) |ξi

}
−E

{
Ũsi (t) |ξs

}
+E

{
Ũsi (t)

}
.

I first show that supt∈T
∣∣∣S̃n (t)− Sn (t)

∣∣∣ = op
(
n3/2σUCn log n

)
and that under the stronger moment

condition, supt∈T
∣∣∣S̃n (t)− Sn (t)

∣∣∣ = oa.s.
(
n3/2σUCn log n

)
. Note that

S̃n (t) − Sn (t) = (n− 1)
∑n
s=1

[
E
{
Ũsi (t) |ξs

}
− E

{
Ũsi (t)

}]
(with i implicitly different from s).

Apply Lemma 2.
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I now show that supt∈T |Sn (t)| = oa.s. {nσUn log n}. Set εn = nσUn log n. Since F is of poly-

nomial discrimination I need to show that for any fixed t, P (|Sn (t)| > 2εn) decreases faster with

n than any power of n. Choose arbitrary t. I omit the dependence on t in my notation from

hereon. Let Ts =
∑s−1
i=1 Usi and set Is = I

(∑s−1
i=1 T

2
i < δn

)
with δn = n2σ2

Un (log n)ι. Thus,

P (|Sn| > 2εn) ≤ P (|
∑n
s=1 TsIs| > εn) + P {|

∑n
s=1 Ts (1− Is)| > εn}.

I first deal with the second majorant term. By the Markov and Schwarz inequalities

εnP

{∣∣∣∣∣
n∑
s=1

Ts (1− Is)

∣∣∣∣∣ > εn

}
≤ E

∣∣∣∣∣
n∑
s=1

Ts (1− Is)

∣∣∣∣∣ ≤
n∑
s=1

E |Ts (1− Is)|

≤
n∑
s=1

√√√√E (T 2
s )P

(
s−1∑
i=1

T 2
i > δn

)
≤

√√√√nP

(
n∑
s=1

T 2
s > δn

)
n∑
s=1

E (T 2
s ).

Since
∑n
s=1E

(
T 2
s

)
and εn increase no faster than a power of n, it suffices to show that P

(∑n
s=1 T

2
s > δn

)
decreases faster than any power of n. Note that

P

(
n∑
s=1

T 2
s > δn

)
= P

{∑n
s=1

(∑s−1
i=1 Usi

)2

> δn

}
≤ nP

(∣∣∣n−1
∑s−1
i=1 Usi

∣∣∣ >√ δn
n3

)
= nP

{∣∣∣n−1
∑s−1
i=1 Usi

∣∣∣ > n−1/2σUn (log n)ι
}
.

Use the fact that the right hand side probability decreases faster than any power of n by Lemma 2

in conjunction with Theorem II.37 of Pollard (1984).

Now consider P (|
∑n
s=1 TsIs| > εn). Set Šn =

∑n
s=1 TsIs. Now,

P
(∣∣Šn∣∣ > εn

)
= P

(
Šn > εn

)
+ P

(
−Šn > εn

)
≤ e−ε

2
n/(2δn)

[
E
{
eεnŠn/(2δn)

}
+ E

{
e−εnŠn/(2δn)

}]
.

But, by the Burkholder inequality (Burkholder, 1973, Hall and Heyde, 1980 and Davidson, 1994),

E
{
eεnŠn/(2δn)

}
+ E

{
e−εnŠn/(2δn)

}
≤ 2

∑∞
j=0

{εn/(2δn)}2jE(Š2j
n )

(2j)! ≤ 2
∑∞
j=0

Cj
(2j)!/j!

{ε2n/(4δ2
n)}jE(Q̌jn)
j!

≤ KE
{
eε

2
nQ̌n/(4δ2

n)
}
,

with {Cj} the Burkholder constants, K = 2 supj Cj (j!) / (2j)! and Q̌n =
∑n
s=1 T

2
s Is ≤ δn by con-

struction. Hence P
(∣∣Šn∣∣ > εn

)
≤ Ke−ε2n/(2δn)eε

2
n/(4δn) = Ke−ε2n/(4δn) = Ke−ε2n/(4δn) = Kn−(log n)1−ι/4 →

0 faster than any power of n. �

Proof of Theorem 4

Instead of the integral on the left hand side in (10) I need to look at (making the implicit

30



assumption that Xs’s outside BX are omitted in the sum),

n−2
n∑
s=1

n∑
i 6=s

h−dbg khg (z − Zi)
[
khg (Xs −Xi)

{
Yi − a (Xs, z)
fXZ (Xs, z)

}
−
∫
BX

khg (x−Xi)
{
Yi − a (x, z)
fXZ (x, z)

}
fX(x)dx

]
.

(11)

Expression (11) is almost in the required form to apply Theorem 3. The only problem is that the U–

statistic in (11) is not symmetric in ξi, ξs with ξi = (Xi, Zi). Denote the summand in (11) by Ǔnsi (z)

and set Ūnsi (z) = Ǔnsi (z) + Ǔnis (z) , Ũnsi (z) = Ūnsi (z) − E
{
Ūnsi (z) |ξi

}
− E

{
Ūnsi (z) |ξs

}
+

E
{
Ūnsi (z)

}
. Then (11) is n−2

∑n
s=1

∑s−1
i=1 Ũnsi (z) + n−1

∑n
s=1

[
E
{
Ūnsi (z) |ξs

}
− E

{
Ūnsi (z)

}]
.

The second right hand side term is Op
(
hrg
)
. Apply Theorem 3 to the first right hand side term,

noting that σUn = h
−db/2
g and σUCn = 0. �

Lemma 3 For t = 2, . . . ,Φ− 1,

n−1h−dx−1−t
m

n∑
i=1

khm (x−Xi) k
(t)
hm
{g (z)− g (Zi)}

Yi − a(x, z)
fXG(x, g(z))

{ĝ(z)− g(z)} − {ĝ(Zi)− g(Zi)}t

= op

{
h−tm

(
n−1h−dbg log n+ n−1.2h−dzg log n

)t}
+Op

(
h−tm hrtg

)
.

Proof: Use Theorem 2 to get uniform convergence results on the ĝ’s. Take absolute values of

the remainder of the summand and take expectations, making the substitution s = (t − x)/hm,

sg = {tg − g (z)} /hm, where t, tg are the integration variables. �

Lemma 4 n−1h−dx−1−Φ
m

∑n
i=1 khm (x−Xi) k

(Φ)
hm
{·} Yi−a(x,z)

fXG(x,g(z)) [{ĝ(z)− g(z)} − {ĝ(Zi)− g(Zi)}]Φ

= op

{
h−Φ−1
m

(
n−1h−dbg log n+ n−1/2h−dzg log n

)Φ}
+Op

(
h−1−Φ
m hrΦg

)
.

Proof: Like Lemma 3 with t = Φ, but using the fact that k(Φ)
hm

is bounded instead of integrating in

that direction. �

Lemma 5 Let Φi = Φ(Ωi),Ψij = Ψ(Ωi,Ωj) be such that E(Φ1) = 0. Then if E
{

(Φ1Ψ12)2
}
<∞,

E

 n∑
i=1

n∑
j 6=i

{ΦiΨij − E (ΦiΨij |Ωj)}

2

≤ n(n− 1)
4

E
{

(Ξ12 + Ξ21)2
}
, (12)

with Ξ12 = Φ1Ψ12 − E (Φ1Ψ12|Ω2)− E (Φ1Ψ12|Ω1) + E (Φ1Ψ12) .

Proof: Observe that the double sum in (12) is an asymmetric U–statistic (See Hoeffding, 1948, and

Serfling, 1980). The stated result follows immediately from projecting onto the basic observations

(Serfling, 1980).�
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Lemma 6 Let

ψn(s, t) = [m{s, g(t)} −m{x, g(z)}] [{g̃(z)− g(z)} − {g̃(t)− g(t)}] .

Then

n−1
∑n
i=1 h

−dx−2
m khm(x−Xi)k′hm{g(z)− g(Zi)}Yi−m{x,g(z)}

fXG{x,g(z)} [{g̃−i(z)− g(z)} − {g̃−i(Zi)− g(Zi)}](13)

= E∗
{

∂ψn
∂t1

(X1,Z1)
∂g
∂z1

(Z1)
|X1 = x, g(Z1) = g(z)

}
+Op

{
hrm + n−1/2h

−(dx+3)/2
m

(
n−1/2h

−dz/2
g + hrg

)}
,

where E∗ {ω(X1, Z1)} =
∫
ω(x, z)fXZ(x, z)dxdz even if ω itself is a random function.

Proof: Define ψ̃n(x, g) = E {ψn(X1, Z1)|X1 = x, g(Z1) = g} . Denote the summand in expression

(13) by ςn(Xi, Zi, Yi). From Lemma 5 it follows that n−1
∑n
i=1 ςn(Xi, Zi, Yi) = E∗ {ςn(X1, Z1, Y1)}+

Op

{
n−1/2h

−(dx+3)/2
m

(
n−1/2h

−dz/2
g + hrg

)}
. But using a standard kernel bias expansion one obtains

that

E∗ {ςn(X1, Z1, Y1)} =
∂ψ̃n
∂g
{x, g(z)}+Op(hrm). (14)

Now, since ψn(t, x) = 0 for all t for which g(t) = g(z),

∂ψ̃n
∂g
{x, g(z)} = E∗

{
∂ψn
∂t1

(X1, Z1)
∂g
∂z1

(Z1)
|X1 = x, g(Z1) = g(z)

}
�

Lemma 7 n−1h−dzg

∑n
j=1 khg (z − Zj)

{
Jnj(z)− Yj−a(Xj ,z)

fXZ(Xj ,z)
λ(Xj)

}
= Op(hrg).

Proof: Follows from a Taylor series expansion with residual on the first term in curly brackets

about the second term. �

Lemma 8 When nhdz+2r
g → 0 and nhdzg →∞ as n→∞,

√
nhdzg E

∗

{
∂ψn
∂t1

(X1, Z1)
∂g
∂z1

(Z1)
|X1 = x, g(Z1) = g(z)

}
L→ N

[
0,
[
∂m

∂g
{x, g(z)}

]2 ∫
k2(s)dsσ2

J(z)

]
.

Proof: Since

E∗
{

∂ψn
∂t1

(X1,Z1)
∂g
∂z1

(Z1)
|X1 = x, g(Z1) = g(z)

}
= ∂m

∂g {x, g(z)} [g̃(z)− E∗ {g̃(Z1)|X1 = x, g(Z1) = g(z)}] , need

to consider
√
nhdzg [g̃(z)− E∗ {g̃(Z1)|X1 = x, g(Z1) = g(z)}] . Its bias is O(hrg), again by a standard

kernel bias expansion. But by Lemma 7 and the bandwidth condition in the lemma statement, g̃(z)
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is asymptotically equivalent with g̃∗(z) = n−1h−dzg

∑n
j=1 khg (z−Zj)Yj−a(Xj ,z)

fXZ(Xj ,z)
λ(Xj). Since the vari-

ance of E∗ {g̃(Z1)|g(Z1) = g(z)} is of lower order than the variance of g̃∗(z), the asymptotic variance

of the left hand side in the lemma statement is
[
∂m
∂g {x, g(z)}

]2
times the variance of

√
nhdzg g̃∗(z).�

Lemma 9 Let {Wi} be a sequence of i.i.d. random variables with E |W1|pW <∞ for some pW > 2.

Then

sup
b∈B

∣∣∣∣∣n−1h−dx−1
m

n∑
i=1

khm (x−Xi) [khm {ĝ (z)− ĝ (Zi)} − khm {g (z)− g (Zi)}]Wi

∣∣∣∣∣
= op

(
h−1
m Ψgn + h−3

m Ψ2
gn

)
,

where Ψgn = n−1/2h
−dz/2
g log n+ n−1h−dbg log n+ hrg, the uniform convergence rate of ĝ.

Proof: Let ∆gni (z) = {ĝ (z)− g (z)} − {ĝ (Zi)− g (Zi)}. Bound the left hand side by

sup
b∈B

n−1h−dx−2
m

n∑
i=1

∣∣khm (x−Xi) k′hm {g (z)− g (Zi)}Wi

∣∣max
i≤n

sup
z∈BZ

|∆gni (z)| (15)

+ sup
b∈B

n−1h−dx−3
m

n∑
i=1

∣∣khm (x−Xi) k′′hm {·}Wi

∣∣max
i≤n

sup
z∈BZ

|∆gni (z)|2 . (16)

Note first that maxi≤n supz∈BZ |∆gni (z)| = op (Ψgn). I first deal with (16). Note that k′′ is bounded

by assumption. But supb∈B n−1h−dx−3
m

∑n
i=1 |khm (x−Xi)Wi| = h−dx−3

m supb∈B E |khm (x−X1)W1|+

op

(
n−1/2h

−3−dx/2
m

)
by Lemma 2. But n−1/2h

−3−dx/2
m = O

(
h−3
m

)
by Assumption F and

h−dx−3
m supb∈B E |khm (x−X1)W1| = O

(
h−3
m

)
by substitution in the integral. Now (16). Note that

supb∈B n−1h−dx−2
m

∑n
i=1

∣∣khm (x−Xi) k′hm {g (z)− g (Zi)}Wi

∣∣ =

h−dx−2
m supb∈B E

∣∣khm (x−X1) k′hm {g (z)− g (Z1)}W1

∣∣ + op

(
n−1/2h

−dx−3/2
m

)
by Lemma 2. But

n−1/2h
−dx−3/2
m = O

(
h−1
m

)
and h−dx−2

m supb∈B E
∣∣khm (x−X1) k′hm {g (z)− g (Z1)}W1

∣∣ = O
(
h−1
m

)
.

�

Proof of Theorem 5.

Note that analogous to (9),

âs − a =
(N̂as −Nas)Das −Nas(D̂as −Das)

D2
as

∞∑
i=0

(
Das − D̂as

Das

)i
.

Since D̂aS converges uniformly to Das in a neighborhood of {x, g(z)} by Lemma 9 and Assumption

F, all terms except i = 0 in the expansion can be ignored. Now take a second order Taylor expansion
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on the remainder to obtain T0n + T1n +
∑Φ−1
t=2 T2nt + T3n, with

T0n = n−1h−dx−1
m

∑n
i=1 khm(x−Xi)khm {g(z)− g(Zi)} Yi−a(x,z)

fXG{x,g(z)} ,

T1n = n−1h−dx−2
m

∑n
i=1 khm(x−Xi)k′hm {g(z)− g(Zi)} Yi−a(x,z)

fXG{x,g(z)} {ĝ(z)− g(z)− ĝ−i(Zi) + g(Zi)} ,

T2nt = n−1h−dx−1−t
m

∑n
i=1 khm(x−Xi)k

(t)
hm
{g(z)− g(Zi)} Yi−a(x,z)

fXG{x,g(z)} {ĝ(z)− g(z)− ĝ−i(Zi) + g(Zi)}t ,

T3n = n−1h−dx−1−Φ
m

∑n
i=1 khm(x−Xi)k

(Φ)
hm
{·} Yi−a(x,z)

fXG{x,g(z)} {ĝ(z)− g(z)− ĝ−i(Zi) + g(Zi)}Φ .

Standard kernel regression estimation theory implies that T0n has the properties ascribed to âS in

the statement of Theorem 5. I hence need to show that T1n, T2nt, T3n for t = 2, . . . ,Φ − 1 are of

lower order than T0n under the conditions of (ii) and of lower or equal order under (i). The result for

T2nt is proved in Lemma 3 using the bandwidth conditions of Assumption F and T3n is dealt with

in Lemma 4 again using Assumption F (for T3n, note that it suffices to show that h−Φ−1
m ΨΦ

n goes

to zero faster than Ψn where Ψn is the convergence rate of ĝ; the bandwidth conditions guarantee

that h−(Φ+1)/(Φ−1)
m Ψn → 0 as n→∞).

Now T1n. Apply Lemmas 6, 7 and 8 to obtain that T1n = Op(hrm+hrg +n−1/2h
−dz/2
g ). The result

now follows immediately with Assumption F. �

Proof of Theorem 6

The steps are virtually identical to those of the proof of Theorem 5, albeit that T0n and T2n are

now dominated by T1n, which by Lemmas 6, 7 and 8 has the properties described in the theorem

statement. �

Proof of Theorem 7

Again, the proof is almost identical to those of Theorems 5 and 6. Part (i) follows trivially from the

proofs of Theorems 5 and 6. Now (ii). By Assumption F and Lemmas 6, 7 and 8 both T0n and T1n

are asymptotically identical to two partial sums having the limiting normal distributions derived in

Theorems 5 and 6. Their sum has hence again a normal distribution with mean zero and variance

the sum of the variances plus twice the covariance. But

n−2h−dzg h−dx−1
m

∑n
i=1

∑n
j=1

Cov
{
khg (z − Zj)Yj−a(Xj ,z)

fXZ(Xj ,z)
λ(Xj), khm(x−Xi)khm {g(z)− g(Zi)} Yi−a(x,z)

fXG{x,g(z)}

}
is O(n−1h−1

m ) and is hence of lower order than the variance terms. �

Proof of Theorem 8.
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Follows from Lemma 9.�

Proof of Theorem 9

Follows immediately from Lagrangean optimization. �
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