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Abstract

In this paper I formulate and estimate an empirical dynamic oligopoly

model that incorporates consumer learning, consumer heterogeneity

and forward-looking �rms. I apply this model to explain the evolu-

tion of pharmaceutical markets after patent expiration, and to address

its related policy issues. I develop a practical method to estimate the

parameters of the model that does not require �nding instruments or

solving the equilibrium model. Using this new method and a data

set detailing the evolution of prices and market shares for 31 chem-

ical entities from 1984-1990, I estimate the distribution of consumer

preferences that determine how consumers evaluate risks, perceived

attribute levels, and prices when choosing among brand-name origi-

nals and generics.

I also design and program a backward induction algorithm to nu-

merically solve the equilibrium model with di�erent market structures.

This computer program, together with the estimated preference pa-

rameter values and calibrated cost parameter values, are used to se-

lect a market structure that best �ts the data, and the selected market

structure is applied to analyze the �rms' strategic behavior. According

to the preliminary estimate results based on data from two markets,


urazepam and temazepam, I �nd that learning plays an important

role in explaining the slow increase in market share for generic drugs. I

also demonstrate that consumer heterogeneity has the potential to ex-

plain the pricing pattern that brand-name prices increase in response

to generic entry.

Finally, the model will be used to quantify the bene�ts of intro-

ducing generic drugs and to simulate the impact of various new public

policies, including restricting the price for brand-name originals below

some arbitrary level, reducing the average approval time for marketing

generic drugs, and changing the cost of obtaining such approval.

2



1 Introduction

As expenditures on prescription medications continue to increase,1 the U.S.
Congress has been looking for ways to contain prescription drug costs. To
reduce in
ation in pharmaceutical costs, Congress passed legislation in 1984
(Waxman-Hatch Act) that allowed for fast marketing approval of low-cost
generic drugs.2 Since then, the Food and Drug Administration (FDA) has ap-
proved hundreds of generic drugs. The introduction of generics has not only
helped control health care costs, but also provided an unique opportunity to
study market evolution. Unlike other markets, de�ning the market opening
date is relatively easy, because the patent expiration dates are observed to
the researcher. The large number of products available in the pharmaceuti-
cal industry also provides a reasonable sample size for conducting empirical
analysis.

Two interesting observations on this industry are: (i) there has been a
slow di�usion of generic drugs into the market, though generics typically
cost from 50 to 75 percent less than the brand-name originals, (ii) many
brand-name originators actually increase their prices in response to generic
entry.

This paper argues that consumer learning is needed to explain the slow
di�usion, and consumer heterogeneity is needed to capture the pricing pat-
tern. However, in the current empirical Industrial Organization literature,
most of the existing models do not have these features. In particular, there
have been no studies to date that estimate a demand-side model with con-
sumer learning in combination with a dynamic oligopolistic supply-side model.
The computational burden of solving such a model has hindered the appli-
cation of full solution maximum likelihood, and the scarcity of appropriate
instruments has sometimes limited the application of generalized method of
moments.

In this paper I develop a practical method to handle this estimation prob-
lem. This new estimation method does not require solving the dynamic
oligopoly model or �nding instruments. The equilibrium model that I es-
timate is an extension of the individual level learning model developed by

1For example, \U.S. develops expensive habit," Wall Street Journal, November 16,
1998, p.1.

2A generic drug is essentially an imitation of an original brand-name drug. When the
patent protection on the original drug expires, other manufacturers can make copies and
reproductions of the drug.
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Erdem and Keane[16]. I extend their model to a market level demand sys-
tem, allowing for consumer heterogeneity with respect to price sensitivity,
and then combine this demand system with a forward-looking oligopolistic
supply-side model. In the model, consumers are risk-averse and imperfectly
informed about the qualities of generic drugs. A drug is an experienced good
and usage experience gives consumers noisy signals about generic qualities.
They use these signals to update their expectation of generic qualities in a
Bayesian manner.

My estimation approach is to specify a 
exible functional form for �rms'
pricing policy functions, expressing it as a polynomial in the state variables,
including both observed and unobserved product characteristics. I take the
endogeneity problem of price into account by estimating the consumer learn-
ing model jointly with this pseudo-policy function. Since some of the product
characteristics are latent to the econometrician, I obtain parameter estimates
by using simulated maximum likelihood. This method is computationally
feasible and does not impose strong assumptions about the process by which
the pricing policy functions are formed. As a result, the parameter estimates
of the preference distribution allow me to conduct model comparisons for the
supply side.

Using this framework and a data set detailing the evolution of prices
and market shares for 31 chemical entities from 1984-1990, I estimate the
distribution of consumer preferences that determine how consumers evaluate
risks, perceived attribute levels, and prices when choosing among brand-name
originals and generics. I also design and program a backward induction al-
gorithm, which numerically solves a dynamic oligopolistic equilibriummodel
with di�erent market structures. The computer program, together with the
estimated preference parameter values and calibrated cost parameter values,
is used to select a market structure that best �ts the data, and the selected
market structure is applied to analyze the �rms' strategic behavior.

According to the preliminary estimate results based on data from two
markets, 
urazepam and temazepam, I �nd that consumer learning is re-
sponsible for most of the initial slow di�usion of generic drugs. I show that
consumer heterogeneity has the potential to explain the pricing pattern that
brand-name prices rise in response to generic entry. I also demonstrate the
usefulness of the techniques that I develop in estimating and solving a dy-
namic oligopoly model of product di�erentiation with consumer learning.

Finally, the model will be used to quantify the bene�ts of introducing
generic drugs and to simulate the impact of various new public policies,
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including restricting the price for brand-name originals below some arbitrary
level, reducing the average approval time for marketing generic drugs, and
changing the cost of obtaining such approval.

The rest of the paper is organized as follows. The following section pro-
vides some background on the U.S. pharmaceutical industry. Section 3 de-
scribes the industry model. Section 4 discusses the model parameterization
and computation issues. Section 5 describes the data set, and section 6
explains the estimation strategy. Section 7 presents the results. The last
section concludes by discussing applications and extensions of the model.

2 Background

2.1 Equivalence between Brand-name and Generic?

The question of whether generic �rms supply as high quality a product as
the brand-name �rm is a hotly debated topic. Although generic drugs are
often certi�ed by the FDA to be \therapeutically equivalent" to the origi-
nator's product,3 they may still vary in characteristics such as shape, color,

avor, scoring, packaging, labeling and shelf life.4 These apparently trivial
factors may still in
uence the clinical e�ectiveness of the drug insofar as they
a�ect patients' abilities to distinguish between di�erent tablets and dosages,
or their readiness to take the medicine at the times and in the amounts
prescribed. Therapeutic-equivalence ratings also do not take into account
di�erences in stability under adverse storage conditions or possible reactions
by patients to coloring or preservative ingredients.

The \generic scandal" of 1989 further contributes to the public concern
regarding quality di�erence between brand-name drugs and generic drugs
(Gupta[19]). Investigations by the U.S. Attorney's o�ce during 1988-89 dis-

3Products certi�ed as \therapeutically equivalent" by the FDA are: (i) pharmaceuti-
cally equivalent, in that they contain the same active ingredient(s), are of the same dosage
form, are identical in strength and route of administration, and meet applicable standards
of purity, quality, and so forth; (ii) bioequivalent, in that in vivo or in vitro tests show
that a product meets statistical criteria for equivalence to the reference drug in the rate
and extent of absorption of the active ingredient and its availability at the site of ac-
tion; (iii) adequately labeled; and (iv) manufactured in compliance with Current Good
Manufacturing Practice regulations.

4Due to the trademark protection, the generic manufacturers may not be allowed to pro-
duce generic versions that have exactly the same appearance as the brand-name originals.
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covered that: (i) there were several cases of bribery in the generic drug ap-
proval process, (ii) some generic �rms obtained the FDA approval for mar-
keting new generic drugs by submitting false data, and (iii) some generic
�rms were found violating the good manufacturing practices. Therefore, it
is plausible that consumers (i.e. physicians, pharmacists and patients) may
be risk averse and uncertain about the quality of generic drugs. As a result,
they may prefer brand-name drugs to generic drugs if their prices are the
same. The fact that the brand-name drugs retain a substantial market share
despite the large price di�erentials between the brand-name drugs and the
generic drugs provides support for this hypothesis. This view is also shared
by other researchers (Caves et al.[8], Frank and Salkever[17], Griliches and
Cockburn[10]).

2.2 Slow Di�usion of generic drugs

One distinct feature of the U.S. prescription drug market is that new generic
drugs typically take several quarters to achieve signi�cant sales, even though
there is very little movement of the relative generic prices (sometimes even
upward movement) (Griliches and Cockburn[10], Berndt et al.[3], Ching[9]).

To illustrate this slow di�usion observation, I consider four markets:
cephradine (anti-infective), methyldopa (anti-hypertension), oxazepam (de-
pressant), thiothixene (anti-psychotic). Detail analysis of all of my samples
(31 markets) is available in Ching[9]. Figure 1 plots the market share of
generics (the ratio between the quantity sales of generics and that of the
brand-name original) and the relative price of generics (the ratio between
the average whole sale price of generics and that of the brand-name original)
versus time. The slow di�usion of generics is particularly clear for the initial
several quarters after the entry of the �rst generic product. The movement
of the relative generic prices is fairly small for the �rst four to six quarters.
In the case of cephradine, methyldopa and oxazepam, even some upward
movements of the relative generic prices are observed. However, the generic
market shares improve signi�cantly in all of these four markets during this
period. For cephradine, the generic market share increases from around 25
percent to 40 percent in four quarters after its entry. For methyldopa, the
generic market share increases from just above 0 percent to just below 30
percent in six quarters after its entry. For oxazepam, it increases from nearly
0 percent to more than 20 percent in six quarters. For thiothixene, it in-
creases from about 5 percent to more than 40 percent in �ve quarters. For
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the rest of the periods, the generic market share keeps increasing in all four
cases. However, it does not seem puzzling, because the relative generic prices
are also decreasing.

There could be several possible explanations for the slow di�usion of
generics: (i) it may take time for risk-averse physicians, pharmacists and
patients to acquire knowledge about the quality of generic drugs germane
to recommendation and purchasing decisions, (ii) it may take time for new
generic entrants to move through the distribution channels, (iii) it may take
time for physicians, pharmacists and patients to become aware of its avail-
ability. However, the last two factors, though generally reasonable, may not
seem to be applicable for the pharmaceutical markets. It should be noted
that the generic �rms that market the �rst generic products have typically
been active in the industry for years. It seems likely that they have already
developed their distribution channels to market their existing generic prod-
ucts for other drugs. Additionally, when they received approval of marketing
the new generic product, the FDA should presumably have ensured their
facilities were ready for production. Therefore, factor (ii) does not seem to
be very relevant here. In addition, the approval of the �rst generic prod-
uct is typically important news for the industry and is heavily reported in
newspapers, journals and magazines for the health professions. Pharmacists
are also frequently visited by the sales representatives from generic �rms.
Thus, factor (iii) also seems likely to be of minimal importance in explaining
pharmaceutical markets.

On the other hand, there is evidence to support the hypothesis that
learning with risk-aversion may be important in explaining the di�usion
observation. Several studies survey opinions from physicians, pharmacists,
and patients regarding the factors that determine their choices between the
brand-name drug and generic drugs (e.g., Strutton et al.[40], Carroll and
Wolfgang[6], and Mason and Bearden[28]). Their results indicate that physi-
cian, pharmacist, and patient perceptions of generic product quality and risk
concerns are the primary determinants of adopting generic drugs.

2.3 Pricing Pattern and Consumer Heterogeneity

Another surprising feature of the data is that many brand-name �rms keep
raising their prices even though the prices for generics decrease over time as
more generic �rms enter the market. This fact has been documented using
data during the 1970's and 1980's (Caves et al.[8], Grabowski and Vernon[18],
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Scott[35], Schondelmeyer[34], Suh et al.[41], Frank and Salkever[17]).
This is illustrated by the time series of the sales data on the market

of nine markets: 
urazepam, maprotiline, meclofenamic, methyldopa, hy-
drochlorothiazide methyldopa, oxazepam, propranolol, thiothixene, trazodone.
Figure 2 plots their average wholesale price per patient day (AWP) for the
brand-name drug and generic drugs against time. It is clear that in all these
cases, the brand-name prices keep increasing even though the generic prices
are decreasing over time. In Ching[9], I consider the pricing patterns of all
my samples (altogether 31 markets). It is found that 18 out of 31 markets
show the brand-name prices increase in response to generic entry. Nine mar-
kets show that brand-name prices remain relatively constant in response to
generic entry. Four markets show that the brand-name prices drop after
generic entry. The average generic prices are consistently decreasing over
time.

As mentioned above, the fact that only a portion of the patients switches
to generics suggests that their perceived qualities may be lower than the
originator's product even though the FDA certi�es that they are therapeu-
tically equivalent. The increase of brand-name price in response to generic
entry is conjectured to be a result of consumer heterogeneity (Caves et al.[8],
Grabowski and Vernon[18], Frank and Salkever[17]). It has been argued that
consumers are heterogeneous in terms of their price elasticity. When generics
enter the market, price-elastic consumers switch to low cost generics. Conse-
quently, the brand-name �rm faces a more price-inelastic demand and hence
can raise its price. The explanation using consumer heterogeneity is further
supported by an institutional fact that insurance plans in the U.S. are quite
diverse in terms of their coinsurance rate for the prescription drug coverage
(O�ce of Technology Assessment[42]). Although this explanation is popular
in the literature, it should be emphasized that the model presented here is
the �rst empirical behavioral equilibriummodel of the pharmaceutical indus-
try which has explicitly incorporated consumer heterogeneity with respect to
price sensitivity.

2.4 Demand for Prescription Drugs

The choice between brand-name and generic drugs is jointly determined by
physicians, pharmacists and patients. Patients, who are insu�ciently well-
informed to decide on the merits of products, consult physicians and phar-
macists on the e�cacy and safety of generic drugs. Taking their insurance
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coverage into consideration, patients then decide whether to choose brand-
name or generic, given the actual prices that they need to pay.

One may argue that due to the presence of health insurance, the de-
mand for pharmaceutical products is di�erent from other markets because
purchasers who need not pay the cost of drugs will not take prices into ac-
count when they choose among pharmaceuticals. However, this claim is not
warranted in the U.S. Although the majority of the U.S. population has pre-
scription drug coverage, it is uncommon for insurance plans to cover the drug
costs in full.5 In fact, about 60 percent of pharmaceutical spending is out-of-
pocket. Hence, even if many argue that physicians do not have the incentive
to learn the drug prices, it seems plausible that most of the patients, who are
partly responsible for the prescription drug cost, have the incentive to �nd
out the price di�erences between brand-name and generics.

In addition, health insurance plans also vary in terms of how much they
cover. Most of the health insurance providers have \major medical" plans
(60 percent of the non-elderly in 1989) with an overall annual deductible and
some coinsurance rate applied to all covered services, including prescription
expenses. The rest usually require a �xed copayment for prescription drugs
instead of including them in the overall deductible. Di�erent plans may
have di�erent coinsurance rates. This will probably increase the observed
heterogeneity in consumers' price sensitivity.

Learning from others seems to be particularly important in this indus-
try. Physicians or pharmacists who have contact with many patients serve
the function of information pooling. In addition to the private communica-
tions among physicians and pharmacists, there are institutions like HMO and
FDA's MedWatch which keep track of the past experiences of a drug product
and update the industry's perceived e�cacy and safety of drug products.

2.5 Literature Review

There is a growing interest in modeling the demand for prescription drugs.
Stern[38] estimates a two-level nested logit model using product level data
from four therapeutic classes (Minor Tranquilizers, Gout, Oral Diabetics and
Sedatives), where consumers choose among chemical entities of the same ther-
apeutic class at the �rst level, and then choose between brand-name drug and
generics at the second level. Ellison, Cockburn, Griliches and Hausman[15]

5For instance, Medicare does not provide any prescription drug coverage.
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estimate an Almost Ideal Demand System using product level data of four
anti-infective drugs. Berndt, Bui, Reiley and Urban[4] estimate the e�ect
of advertising for anti-ulcer drugs market. Hellerstein[22] estimates a physi-
cians' prescription choice model using individual level data. All these studies
ignore state dependence. However, if state dependence is present, estimating
a model without it could potentially lead to bias in the estimates and give
misleading policy implications (Heckman[20]). For example, when there is
positive state dependence, a price promotion will not only a�ect the quantity
sold in the current period, but also will have a long-term impact on demand.
A demand model without state dependence will not be able to predict such
a long-term e�ect.

Currie and Park[13] incorporates state dependence by estimating a Bayesian
learning model for anti-depressant drugs. In their model, quality is a con-
tinuous variable and agents observed quality signals. Coscelli and Shum[11]
use a similar framework to estimate an individual level physician's choice
problem for omeprazole. Crawford and Shum[12] use a multi-armed bandit
framework to estimate an individual level choice problem under uncertainty
for the anti-ulcer drug market. Currie and Park[13] use market level data,
Coscelli and Shum[11] and Crawford and Shum[12] use individual level panel
data. In three studies, price is exogenous. It should be noted that both Cur-
rie and Park[13] and Coscelli and Shum[11] impose the restriction that agents
are risk-neutral. My model is similar to their, but I will actually estimate the
risk-aversion parameter from the data. The risk-aversion parameter plays a
fundamental role in determining the �rm's strategic behavior. By getting
people to try its product, a �rm is able to lower the level of uncertainty that
consumers attach to its product. If consumers are risk-averse, everything
else the same, a �rm can gain advantage over its rivals by being the �rst
in the market. However, such advantage would not exist if consumers were
risk-neutral, because the level of uncertainty associated with the products
will not enter the utility function of risk-neutral consumers. In addition,
survey studies mentioned above also suggests that patients, physicians and
pharmacists are risk-averse.

Other than the shortcomings mentioned above, all the studies su�er from
another limitation: the supply side is either ignored or �rms are assumed
to be solving a static optimization problem. My research will overcome all
these limitations by developing a dynamic oligopoly model with consumer
learning. I next turn to the discussion of my model.
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3 The Model

As I argued in the previous sections, the stylized facts of slow di�usion and of
the pricing pattern hint that a structural model of pharmaceutical industry
should incorporate consumer learning and consumer heterogeneity. In this
section I extend the individual Bayesian learning demand model developed
by Erdem and Keane[16] to a market level demand system, where consumer
preferences are allowed to be heterogeneous with respect to to their price
sensitivities. And I combine this demand system with a forward-looking
oligopolistic supply-side model.

My industry model describes a �nite-horizon discrete-time industry start-
ing from the period right before the patent expires. Firms choose price to
maximize the expected discounted value of their net future pro�ts given their
information set.

In the model, the industry structures are represented by states that sum-
marize all currently available information relevant to current and future pay-
o�s. There are four types of agents: a representative physician, patients,
a brand-name �rm and generic �rms. There are two types of products: a
brand-name drug which is produced by the brand-name �rm and has patent
protection, and generic drugs which are produced by the generic �rms.

Product characteristics can be distinguished as pj , Aj, and �j, where pj
is the price of product j, Aj is the mean attribute level of product j, and �j
represents demand shocks due to the turnover of patients. All agents in the
model are perfectly informed about pj and �j , but are imperfectly informed
about each product's mean attribute levels, Aj.

At the beginning of each period patients and �rms consult the repre-
sentative physician about his perception of the products before they make
their purchase and pricing decisions. After taking the drugs, a fraction of
patients revisit the representative physician to report their experiences. The
representative physician then updates his information set of each product's
mean attribute levels. Notice that the objective function of the representative
physician is not modeled here. One could simply interpret the representative
physician as a database.

The equilibrium used here is Markov-Perfect Nash Equilibrium (MPNE),
where the strategy space includes entry and pricing decisions. MPNE, as
de�ned by Maskin and Tirole[27], restricts the subgame perfect equilibria to
those where actions are a function only of payo� relevant state variables, and
hence eliminates many of the vast multiplicity of subgame perfect equilibria
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that would normally exist in this type of model. Firms maximize their ex-
pected discounted value of pro�ts conditional on their expectations about the
evolution of the perceived mean attribute levels and the perceived variances
as well as the evolution of present and potential future rivals. Equilibrium
occurs when all �rms' expectations are consistent with the process generated
by the optimal policies of their rivals.

My model can usefully be broken up into three components: (1) learning
about product attributes, (2) demand, and (3) supply. I now describe these
in turn.

3.1 Learning about Product Attributes

A drug is an experienced good. Consumption of a drug by a patient provides
the representative physician with information. But patient i's experience of
the attribute of product j at time t ( ~Aijt) may di�er from its mean attribute
levelAj. The di�erence between ~Aijt and Aj could be due to the idiosyncratic
di�erences of human bodies in reacting to drugs. For instance, when di�erent
patients take the same pain-relief drug, the time that they need to wait
before their headache disappears may vary, simply because they have di�erent
metabolic rates. Even when a patient takes the same drug at di�erent points
of time, the waiting time may still change, as his body conditions may vary
(it may depend on how much sleep he had, how much he ate, how much
alcohol he drank, etc.). I refer to this variation in e�ectiveness as \experience
variability".

The experience variability may be expressed as

~Aijt = Aj + �ijt: (1)

AE stands for the attribute level that a patient actually receives; j indexes
products (j = b denotes the brand-name drug, j = 1; � � � ; ng denotes generic
drugs where ng is the number of generic incumbents); t indexes time (t =
1; � � � ; T ); i indexes the patients (i = 1; � � � ;M); The error term associated
with the experience variability (�ijt) is treated as an i:i:d: random variable,
with zero mean and a variance that is constant over time. Since I only
observe total generic sales and average generic prices, in this paper I assume
all generic drugs share the same mean product attribute level. Hence, I have
Aj = Ag;8j = 1; � � � ; ng. Equation (1) can be rewritten as,

~Ailt = Al + �ilt: (2)
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where l 2 fb; gg.
I assume that the representative physician learns about the mean at-

tribute levels in a Bayesian fashion. Since it is quite common that brand-
name products have already been on the market for around six to ten years
when their patents expire, and the initial period of my model is the period
before the patent expires, I assume that the representative physician has
already accumulated a su�cient number of experience signals to infer the
true mean attribute level of the brand-name drug. Hence, in the model the
representative physician and the patients only need to learn about the mean
attribute levels of generic drugs. In order to facilitate the construction of
Bayesian updating rules, I assume that the signal noise �ilt, and the repre-
sentative physician's prior on Ag are both normally distributed. Thus, letting
t = 0 be the initial period of the model, I have

�ilt � N(0; �2
� ); (3)

Ag � N(A;�2
Ag
(0)); (4)

where �2
Ag
(0) is the initial variance (at t = 0) or uncertainty about Ag.

According to (3) and (4), when a generic drug is �rst introduced, the repre-
sentative physician's prior is that its mean attribute level (Ag) is normally
distributed with initial prior mean A and initial prior variance �2

Ag
(0). Thus,

letting I(0) denote the representative physician's prior information about
generic drugs, I have E[AgjI(0)] = A.

The representative physician uses information he/she receives from pa-
tients over time to update his/her prior expectation of Ag. The updating
of the representative physician's information set will not occur until the end
of the period (i.e. until all patients consume the drugs). In each period t,
the representative physician updates his/her expected mean level of generic
attribute according to the Bayesian rule (DeGroot[14]) as follows:

E[AgjI(t+ 1)] = E[AgjI(t)] + �g(t)( �Agt � E[AgjI(t)]); (5)

where �Agt is the sample mean of all the experience signals for generic drugs
that are realized in period t.6 The �g(t) is a Kalman gain coe�cient, which is
a function of experience variability (��), representative physician's perceived
variance (�2

Ag
(t)), total quantity of generic drugs consumed at time t (qgt)

6Hence, �Agtj(�qgt; I(t)) � N (Ag ;
�2�
�qgt

).
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and the fraction of experience signals revealed to the representative physician
(�):

�g(t) =
�2
Ag
(t)

�2
Ag
(t) +

�2
�

�qgt

: (6)

�2
Ag
(t) is the variance of the representative physician's perception of Ag, given

the information available to the representative physician at the beginning of
time t. The �g coe�cient can be interpreted as the weights that the repre-
sentative physician attaches to the information source in updating his/her
expectation about the levels of Ag. Each time �2

Ag
(t) is updated, the �g

coe�cient will be updated accordingly.
The perception variance at the beginning of time t+1 is given by (DeGroot[14]):

�2
Ag
(t+ 1) =

1
1

�2
A
(0) +

�Qgt

�2
�

; (7)

where Qgt(=
Pt

�=1 qg�) is the cumulative consumption of generics, or,

�2
Ag
(t+ 1) =

1
1

�2
Ag

(t)
+ �qgt

�2
�

: (8)

Equations (7) and (8) suggest that the perceived variance associated with Ag

(and consequently the perceived variance ofAij) will be lower, ceteris paribus:
(a) the more precise the information gained via consumption experience (i.e.,
the lower the experience variability of the product); (b) the more experience
the representative physician has with generic drugs.

Equation (7) implies that, after the representative physician observes a
su�ciently large number of experience signals for a product, he/she will learn
about the true mean attribute level, Aj, at any arbitrary precise way (i.e.
�Aj

(t) ! 0 and E[AjjI(t)] ! Aj as the number of signals received grows
large). Since it is often true that the brand-name products have been on
the market for about ten years when their patents expire, I assume that the
representative physician has already learned about their true mean attribute
levels perfectly in the initial period (the period before patent expiration),
i.e., �Ab

(0) = 0 and E[AbjI(0)] = Ab.
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3.2 Demand

The demand for prescription drugs is complicated. The consumption deci-
sions are made not only by patients, but also by pharmacists, physicians or
hospitals. The existence of third-party payers also adds another complica-
tion. The principal-agent relationship among all these parties will certainly
play an important role in determining the demand in this market. However,
with only product level data (i.e. prices, quantities and measurable character-
istics of the products) available, it would be very di�cult, if not impossible,
to identify the parameters of a demand model with multiple decision makers.
Thus, my demand model will abstract away this multiple decisions making
process.

The demand system here is obtained by aggregating a discrete choice
model of individual patient's behavior. I assume that patients are uncertain
about the attributes of the drugs. In each period, they consult the repre-
sentative physician about his/her perceptions concerning the attributes for
the brand-name drug and the generic drugs. Based on these perceptions,
the patients then make their purchase decisions to maximize their expected
utility.

The discrete choice model described here is a modi�cation of the one pre-
sented in Erdem and Keane[16]. Erdem and Keane[16] consider both myopic
and forward-looking consumers. I consider patients who maximize their cur-
rent expected utility. In the model each patient i decides among J possible
alternatives in each of T discrete periods of time, where T is �nite. Alter-
natives are de�ned to be mutually exclusive, so that if dij(t) = 1 indicates
that alternative j is chosen by patient i at time t and dij(t) = 0 indicates
otherwise, then

P
j2J dij(t) = 1. The choice set J includes the generic drugs

(1; :::; ng), the brand-name drug (b), and an \outside" alternative (0) which
includes other non-bioequivalence drugs which could treat the same disease.
I assume that the preferences of the patients are heterogeneous.

Let I(t) denote the information set of the representative physician at the
beginning of time t. Associated with each choice i at time t is a current period
expected utility, E[Uij(t)jI(t)] where E[:] is the mathematical expectation
operator. The expected utility is known to each patient at time t. The
speci�c form of the expected utilities E[Uij(t)jI(t)] will be introduced in the
next section. Note that due to the heterogeneity of patients' preferences,
it could be that E[Ukj(t)jI(t)] 6= E[Ulj(t)jI(t)] for k 6= l. When patient i
makes his/her purchase decision, his/her objective is to maximize the current
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expected utility:

E[
X
j2J

Uij(t)dij(t)jI(t)]: (9)

In the model patients simply choose the alternative that gives the high-
est current period expected utility. However, it is generally plausible that
consumers may recognize that current choices would a�ect their informa-
tion set, and that may create an incentive for them to try new products
in order to learn about true mean attribute levels. Thus, in making the
current choice, consumers may consider the impact of the choice on the ex-
pected present value of utility over the lifetime or a planning horizon, rather
than maximizing immediate utility. However, in the context of purchasing
pharmaceuticals, some illnesses are very short-term and happen relatively
infrequently during one's lifetime (e.g., bacterial infection, insomnia, etc.).
In those cases, it seems plausible to assume that the incentive to experiment
is small. In addition, even for a long-term illness an individual patient's in-
centive to try generic drugs will be signi�cantly weakened if the normalized
experience variability (��=�) is large, because the marginal contribution of a
single experience signal to the information set will be very small.7 Since the
sales of generic is around thousand patient days per quarter even when the
generic product �rst entered the market, ��=� will need to be fairly large if
learning takes time. The initial slow di�usion of generic sales exhibited in
the data suggests that learning is not an instantaneous process. Hence, the
assumption of maximizing expected current utility seems to be a \good" ap-
proximation to the assumption of maximizing expected lifetime utility here.8

7It should be pointed out that there is an externality problem in the learning process.
Individual patient does not take into account the spillover bene�t of his/her experience
signals to other patients. Since the total number of patients for any particular illness
is typically very large (over a million), it may be socially optimal for the economy to
experiment generic drugs even though the normalized experience variability is large from
an individual viewpoint.

8Although it is also plausible that there is individual speci�c learning in reality(e.g.,
some patients may be allergic to the coating of some generic drugs, but others may have
no adverse reactions to the coating at all), I do not model this aspect of learning. Since
I only have market level data, modeling individual speci�c learning would mean that all
the individual speci�c state variables are latent to the econometrician. This is an obvious
problem for estimation. It is also infeasible to combine such a demand model with a
dynamic oligopolistic supply-side model because of the huge size of the state space. In
addition, there is no clear evidence about the relative importance of aggregate learning
and individual learning in the pharmaceutical markets.
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I assume that the utility of consuming a drug can be adequately approxi-
mated by an additive compensatory multi-attribute utilitymodel (Lancaster[24]).
Utility of purchasing a product is given by the following expression:

Uijt = ��ipjt + ! ~Aijt � !r ~A2
ijt + �jt + eijt; (10)

where Uijt is the utility for patient i conditional on choice of product j at time
t; pjt is the price for product j at time t; ! is patients' attribute weight on ~A;
r is the patient risk coe�cient; �i is the utility weight that patient i attaches
to price; �jt is the mean of patients' unobserved valuations of product j at
time t; eijt is the unobserved utility component that distribute about �jt. �i,
�jt and eijt are unobserved to the econometrician but observed to the patients
in the model when they make purchase decisions. It should be noted that
~Aijt is not observed to the patients when they make their purchase decisions.
It is observed to the patients only after they consume the drug, but remains
unobserved to the econometrician. And it should be emphasized that utility
is a function of experienced attribute levels ( ~Aijt) but not the actual mean
attribute levels (Aj).

Notice that �i is heterogeneous across the population. As I discussed
before, the actual price paid by patients may vary because of the variation
of health insurance coverage. Since I do not have the distribution of actual
prices paid by the patients, I allow �i to be heterogeneous in order to capture
this institutional feature. Moreover, the heterogeneity of �i is also crucial in
explaining the pattern that brand-name prices increase in response to generic
entry.9

One interpretation for eijt is that it captures the locational variation of
patients and the pharmacy stores that carry product j. �jt may change over
time due to the turnover of patients, or some promotion of generics caused
by the government or health maintainence organizations.

Equation (10) is an indirect utility function with the income term sup-
pressed (the income terms cancel out later in the logit formulation of choice
probabilities). This speci�cation suggests that utility is linear in p and �,
which implies that patients are risk neutral with respect to p and �. It is
assumed that agents in the model can measure drug attributes according to

9It should be noted that ! and r are assumed to be homogeneous. I make this assump-
tion because it is very di�cult, if not impossible, to identify the parameters of the model
if I allow all three coe�cients, (�; !; r) to be heterogeneous given the market level data I
have.
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a �xed scale. (For example, a patient can measure attribute as how long he
needs to wait before the drug becomes e�ective to relieve his headache. Or,
he can measure attribute as how long his stomach pain would be suppressed
after taking the drug.)10 Hence, one can represent patients' risk averse be-
havior with respect to ~A by modeling their utility functions to be concave
in ~A. As I argued above, risk-averse behavior could play an important role
in explaining the slow di�usion of generics observed in the data. Therefore,
I allow a quadratic term of ~A to enter the utility function. Given a strictly
positive !, the patients are risk averse, risk neutral or risk seeking as r > 0,
r = 0 or r < 0, respectively with respect to ~A.

Given Equation (10), the expected utility associated with generic drug j
is

E[UijtjI(t)] = ��ipjt + !E[ ~AijtjI(t)]� !rE[ ~AijtjI(t)]2
�!rE[( ~Aijt � E[ ~AijtjI(t)])2jI(t)] + �jt + eijt:

(11)

Patient i's expected utility of purchasing generic drug j at time t, given the
perception of the representative physician at the beginning of time t, is a
linear function of price, a concave (r > 0), linear (r = 0) or convex (r < 0)
function of the expected levels of ~Aijt, and a linear function of the perceived
\variance" in ~Aijt. Furthermore, the stochastic components of the utility
function (�i; �jt; eijt) reappear in the expected utility equation because they
are stochastic only from the econometrician's point of view.

Now note that in Equation (11), the term E[( ~Aijt � E[ ~AijtjI(t)])2jI(t)]
can be decomposed into �2

� + �2
Aj
(t) (see (1)). Note further that �ijt has

zero mean. Hence, the representative physician's expected mean generic
attribute and the patient's expected mean generic attribute at time t, given
the information available to the representative physician at the beginning of
time t, are equal; that is, E[AgjI(t)] = E[ ~AijtjI(t)];8i;8j = 1; � � � ; ng (see
(1)). I would also restrict �jt = �gt;8j = 1; � � � ; ng. Hence I obtain,

E[UijtjI(t)] = ��ipjt + !AE[AgjI(t)]� !ArE[AgjI(t)]2
�!r(�2

� + �2
Ag
(t)) + �gt + eijt: (12)

10Obviously, drug attributes are multi-dimension. Implicitly, I assume patients are able
to use a scoring rule to map all measurable attributes to a one-dimensional index. It is
the value of this one-dimensional index that enters the utility function.
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Since I assume that the representative physician has already learned
about the true mean attribute level of the brand-name drug, Ab, perfectly
(i.e. �Ab

(t) = 0 and E[AbjI(t)] = Ab;8t = 0; � � � ; T ), it follows from Equa-
tion (12) that the expected utility of purchasing a brand-name drug can be
written as:11

E[UibtjI(t)] = !Ab � !rA2
b � �ipbt � !r�2

� + �bt + eibt: (13)

Equations (10)-(11) apply only to the drugs under analysis. In each pe-
riod, patients may also choose an outside alternative that is not included
in my analysis (i.e. other non-bioequivalent drugs). It is the presence of
this outside alternative that allows us to model aggregate demand for the
brand-name drug and generic drugs as a function of prices and product char-
acteristics. In the absence of an outside alternative, patients are forced to
choose from the inside goods and demand depends only on di�erences in
prices. Therefore, a general increase in prices will not decrease aggregate
output. Furthermore, when there is only one �rm in the market (as it is the
case before any generic �rm entering the market), the monopolist can raise
its price to in�nity (or to its upper bound as allowed in the model) without
losing any patient. I assume the expected utility associated with the outside
alternative to be a time trend plus a stochastic error component:

E[Ui0tsjI(t)] = �0i + �0tit+ ei0t: (14)

My current data set does not have information on di�erences in the value
of the outside alternative (which could be due to the idiosyncratic di�erences

11It should be noted that there are a number of markets which show that the market
shares of brand-name drugs still keep at some reasonable levels, even though the mar-
kets seem to reach the long run equilibrium after their patent expired for several years.
Given the large price di�erentials between brand-name and generic prices, if I estimate
the parameter values for these markets, the parameter estimates will necessarily give that
the true mean attribute of the brand-name drug is higher than that of the generics, i.e.,
Ab > Ag. However, since the FDA has certi�ed the equivalence of generics, some people
may be uncomfortable with the result that the di�erence in market shares is because of
the inferior of the generic drugs in clinical e�cacy. In fact, it is plausible that physicians
and patients may value the reputation or the image of the brand-name drug. Hence, it is
tempted to include a intercept term in the utility of purchasing the brand-name drug in
order to capture this psychological bene�t. However, from the estimation point of view,
this intercept term cannot be jointly identi�ed with the value of Ab. Therefore I simply
normalize this intercept term to be zero. And it should be emphasized that when inter-
preting Ab, one should think of it as the mean attribute level of the brand-name drug plus
some psychological bene�t of consuming it.
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of human bodies: a patient may �nd one non-bioequivalence substitute to
be very e�ective for him, and another patient may �nd the same substitute
giving him more severe side-e�ects). Thus, to account for the possibility that
there is more unobserved variation in the valuation of the outside alternative,
I allow the outside good coe�cients (�0i; �0ti) to be heterogeneous.

In order to obtain simple expressions for patients' choice probabilities
conditional on I(t), I assume that the error term eijt in Equation (11) and
(14) are i:i:d: extreme value distributed. As in Heckman and Singer[21], I
specify the heterogeneity of price response coe�cient (�i) and the coe�cients
for the outside alternative (�0i; �0ti) as discrete multinomial. Accordingly,
we distinguish between K di�erent \types" of individuals, where each type
k = 1; :::;K is characterized by a di�erent triple (�k; �k0; �

k
0t). The population

proportions of each type are given by �k = Pr(�i = �k; �0i = �k0; �0ti = �k0t; ).
De�ne

�Ek[UjtjI(t)] = ��kpjt + !E[AgjI(t)]� !rE[AgjI(t)]2 (15)

�!r(�2
� + �2

Ag
(t)) + �jt;

�Ek[U0tjI(t)] = �k0 + �k0tt; (16)
�E[UtjI(t)] = f �E1[UjtjI(t)]; � � � ; �EK[UjtjI(t)]gj2J (17)

Condition on type k, the choice probability of choosing alternative j 2
f0; b; g1; :::; gngg is:

Pr(jj �Ek[UtjI(t)]) = e
�Ek[UjtjI(t)]P

l2J e
�Ek [UltjI(t)]

: (18)

Choice probabilities conditional only on product characteristics:

Pr(jj �E[UtjI(t)]; �) =
KX
k=1

�kPr(jj �Ek[UtjI(t)]; �): (19)

Aggregate choice probability of choosing generics:

Pr(gj �E[UtjI(t)]; �) =
gngX
j=g1

Pr(jj �E[UtjI(t)]; �): (20)

Expected quantity demanded for alternative l 2 f0; b; gg:
E[ql( �E[UtjI(t)]; �)] = MPr(lj �E[UtjI(t)]; �); (21)

where M is the total number of patients.
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3.3 Supply

The supply side of the prescription drug market is modeled as a dynamic
oligopoly problem. The equilibrium concept is Markov-Perfect Nash Equi-
librium. I assume that �rms do not observe Ag and they update their prior
of Ag from the representative physician, just like the patients do. This as-
sumption can at least be partially justi�ed because the FDA does not require
generic �rms to carry out any clinical testing to prove safety and e�cacy of
their products. Although a model which assumes there is asymmetric in-
formation between �rms and patients is more general than the setting here,
it will signi�cantly complicate the model by increasing the size of the state
space. In addition, if �rms possess more information about Ag, it raises the
issue that rational patients could infer Ag from the prices. Consequently,
�rms may rationally use price to signal Ag (Milgrom and Roberts[30]). Such
an equilibrium will probably be very complicated and I leave it for future
research.

The supply side of the model can be usefully divided into two parts: (1)
the initial entry decision before patent expiration, and (2) dynamic compe-
tition after patent expiration. I now detail them in reverse order.

3.3.1 Dynamic Competition After Patent Expiration

In this section I discuss the incumbent's problem after patent expiration. I
make several simplifying assumptions: (1) incumbents do not have an op-
tion of exiting the market, (2) generic �rms cannot submit applications to
the FDA after patent expiration, and (3) it is always pro�table for a poten-
tial generic entrant to enter the market when its application is approved.12

Certainly, an incumbent might choose to exit, a generic �rm might decide to
prepare an application after patent expiration, and a potential generic entrant
might choose not to enter the market when it receives an approval. However,
it is found that such decisions are fairly uncommon (Scott Morton[36], Scott

12One might think that a generic �rm may choose not to enter the market if the return
from entering a crowded market does not cover the opportunity cost. However, conversa-
tions with industry experts suggest that there exists a network externality in this industry.
Generic manufacturers have the incentive to keep a board product line as pharmacy stores
may prefer to buy most of the generics from one source to save the transaction costs. In
fact, according to the sample of 31 markets that I have, I observe that potential generic
entrants always enter when they receive approvals.
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Morton[37]), and to include them would drastically complicate the model.13

The model can be thought of as containing two stages every period, with
entry and production occurring in order. In the �rst stage, each potential
generic entrant receives a notice from the FDA regarding the status of its
application.

In the second stage, having observed the FDA's decision, the incumbents
(including the ones which have just entered the market) choose their strate-
gies to maximize the expected discounted value of their net future pro�ts. I
assume that the brand-name �rm acts as a leader and set its price �rst. Then,
taking the brand-name price as given, the generic incumbents simultaneously
set their prices.

Recall that ngt is the number of generic incumbents (after the disclosure
of the FDA approval decision) in period t. Let npt be the number of potential
generic entrants in period t (after the disclosure of the FDA's decision). I
denote St = fE[AgjI(t)]; �Ag(t); ngt; npt; �tg as the set of state variables that
are relevant to the decision of �rms. Let pe(k;npt�1; t) be the probability
that there are k potential generic entrants which are allowed to enter the
market in period t, conditional on npt.14 Let pbt be the brand-name price,
~pgt = (p1t; � � � ; png t) be a vector of generic prices, and et be the number of
potential generic entrants which receives approval in period t. Recall that
qgt is the total demand for generics. Then the generic incumbent's value
function is: for t < T , for j = 1; � � � ; ngt;
Vg(St) = sup

pjt�0
[�(St; pbt; ~pg�jt; pjt)

+�f
nptX
k=0

pe(k;npt; t+ 1)E[Vg(St+1)jSt; qgt(pbt; ~pg�jt; pjt); et = k]g];

(22)

Vg(ST ) = sup
pjT�0

[�(ST ; pbT ; ~pg�jT ; pjT )]:

where ~pg�jt denotes a vector of generic prices for all generic incumbents but

13It is possible to allow for exit without too many complications. However, exit is fairly
uncommon. Hence, it does not seem that adding this feature will improve the prediction
of the model much. But I will relax this assumption later and see if that will change the
results.

14Notice that pe(k;npt�1; t) depends only on (npt; t) but not (E[AgjI(t)]; �Ag
(t)). Hence,

endogenous entry does not create the standard selection biased problem (e.g., Olley and
Pakes[31]) in this model.
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�rm j. It should be noted that each generic �rm j explicitly takes into
account the e�ect of its pricing decision (pjt) on the next period expected
mean attribute (E[AgjI(t+ 1)]) and perceived variance (�Ag(t+ 1)) through
the total demand for generics (qgt).

Let ~p�gt(pbt) = (p�1t(pbt); � � � ; p�ng t(pbt)) be the optimal prices for generic
incumbents conditional on pbt. Since all generic incumbents are identical
with respect to (E[AgtjI(t)]; �Ag(t); �gt), I will only consider equilibria which
are symmetric across generic incumbents, that is, p�jt(pbt) = p�kt(pbt);8j; k =
1; � � � ; ngt.

Now I consider the brand-name �rm's problem. The di�erence between
the brand-name �rm's problem and the generic �rm's problem is that the
brand-name �rm recognize how the generic prices will react to its pricing
decision. The brand-name �rm's bellman equation is similar to the generic
�rm's except that the ~pgt is replaced with ~p�gt(pbt).

Vb(St) = sup
pbt�0

[�(St; pbt; ~p
�
gt(pbt))

+�f
nptX
k=0

pe(k;npt; t+ 1)E[Vb(St+1)jSt; qgt(pbt; ~p�gt(pbt)); et = k]g];

(23)

Vb(ST ) = sup
pbT�0

[�(ST ; pbT ; ~p
�
gt(pbT ))]:

Similarly, the brand-name �rm explicitly takes into account the e�ect of its
pricing decision (pbt) on the next period expected mean attribute (E[AgjI(t+
1)]) and perceived variance (�Ag(t+1)) through the total demand for generics
(qgt).

The expectations in (22) and (23) are taken over the distribution of the
random components of St+1 conditional on (St; qgt; et) (i.e., E[AgjI(t + 1)]
and �t). The number of incumbents and the number of potential generic
entrants evolve stochastically in a Markovian manner. The perception vari-
ance evolves deterministically in a Markovian manner that is (conditional on
qgt) independent of all the shocks. ngt+1 = ngt + et in the case of number of
generic incumbents, npt+1 = npt�et in the case of number of potential generic
entrants and �2

Ag
(t+ 1) = 1

1
�2
Ag

(t)
+

�qgt

�2
�

in the case of perception variance. Re-

call that the expected mean level of generic attribute evolves stochastically
according to Equation (5):

E[AgjI(t+ 1)] = E[AgjI(t)] + �g(t)( �Agt � E[AgjI(t)]):
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Conditional on the true mean attribute, Ag, the distribution of the expected
mean generic attribute is implied by (5). Let's denote this conditional distri-
bution as �(E[AgjI(t+1)]jI(t); Ag). The expected value function conditional
on Ag can be written as,

E[Vg(St+1)jSt; qgt; et = k;Ag] =Z
f
Z
Vg(St+1jSt; qgt; Ag)d�(E[AgjI(t+ 1)]jI(t); Ag)gdf�(�t+1);

(24)

where f� is the distribution for �.
Since �rms (including both brand-name �rms and generic �rms) do not

know the true Ag, they have to integrate out Ag to form the expected value
function. Hence,

E[Vg(St+1)jSt; qgt; et = k] =
Z
E[Vg(St+1)jSt; qgt; et = k;Ag]df

a
t (Ag); (25)

where fat is the representative physician's prior of Ag at time t. It should
be highlight that the computational burden of solving this model is mainly
due to the integrations in (24) and (25). Since there is no closed form ex-
pression for E[Vg(St+1)jSt; qgt; et = k], numerical methods will be used. The
numerical methods that I use require the mean and variance of �(E[AgjI(t+
1)]jI(t); Ag). Note that �AEgtj(qgt; I(t)) � N(Ag;

�2
�

�qgt
). From this and Equa-

tion (5), it follows that,

EfE[AgjI(t+ 1)]jAgg = (1 � �g(t))E[AgjI(t)] + �g(t)Ag; (26)

V arfE[AgjI(t+ 1)]jAgg = �g(t)
2 �2

�

�qgt
: (27)

Now I consider the potential generic entrant's problem. Let p�e(k;npt�1; t)
be the probability that the FDA approves k potential entrants including the
one in question. The value function for a potential generic entrant can then
be written as:

Vpe(St) = �f
nptX
k=0

p�e(k;npt; t+ 1)E[Vg(St+1)jSt; qgt; et = k]g: (28)
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3.3.2 Initial Entry Decision Before Patent Expiration

Now I discuss the initial period of the model (i.e. the period before patent
expiration). Recall that the initial period can be divided into two stages, with
nature drawing a true mean generic attribute and the initial entry decisions
of generic �rms occurring in order.

In the �rst stage, nature draws a true mean attribute level for generic
drugs (Ag) from an unknown distribution. None of the agents in the model
observes the level of Ag. All �rms (including both the brand-name �rm and
the generic �rms) obtain their initial prior of Ag from the representative
physician, i.e., N(A;�2

Ag
(0)).

In the second stage, the generic �rms simultaneously decide whether to
submit an application to the FDA. Recall that all generic �rms are assumed
to be identical. Thus, the cost of submitting an application (ce) is the same
for all generic �rms. After paying this sunk entry cost, a generic �rm obtains
a lottery which determines when it can start its operation.

Denote ~St = Stnnpt. If there are m generic �rms which pay the sunk
entry cost in the initial period, then the value of being a potential generic
entrant is:

Vpe( ~S0; np0 = m) = �f
mX
k=0

p�e(k;m; t = 1)E[Vg(S1)jS0; qg0 = 0; e1 = k]g:

(29)

Then in equilibrium, the initial number of potential generic entrants is:

npe�0 ( ~S0) =(
0 if Vpe( ~S0; n

pe
0 = 1) � Xe; else

minfm 2 =+ : Xe � Vpe( ~S0; n
pe
0 = m); Vpe( ~S0; n

pe
0 = m+ 1) < Xeg:

(30)

3.3.3 Stackelberg Leader-follower vs Simultaneously Moved

In each period, the market structure that I consider here is a version of a
Stackelberg model. The brand-name �rm is acting as the leader, and the
generic �rms are acting as the followers and move simultaneously. Evidence
suggests that the brand-name products consistently receive a fairly high risk
or perceived attribute premium from the demand side. In addition, the
brand-name products are also heavily advertised compared with the generic
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products. Hence, it seems that a Stackelberg model is a natural starting
point to be considered.

Obviously, simply based on the above argument, one cannot exclude a
model in which all �rms choose their prices simultaneously, or choose quan-
tities instead of prices. I should note that the market structure described
in this section is just one version that I examine. One goal of this research
is to use the parameter estimates, which are obtained without imposing a
particular supply-side model, to select an oligopoly model that explain the
data best. I will also consider other market structures and compare them
with the Stackelberg model presented above.

4 Model Parameterization and Computation

Issues

In this section, I discuss the numerical methods that I used to solve the
equilibrium model. Readers who are not interested in the details may skip
to the next section.

One way to solve this type of dynamic multi-agent model is to transform
it to a stochastic discrete version (e.g., Benkard[2]). To illustrate the model
parameterization of a stochastic discrete version of this model), suppose that
I discretize E[AgjI(t)] and �Ag(t) into na and n� points respectively.

E[AEjI(t)] = fA1; A2; � � � ; Anag; (31)

�Ag(t) = f�1; �2; � � � ; �n�g: (32)

where

A1 < A2 < � � � < Ana; (33)

0 = �1 < �2 < � � � < �n� : (34)

As described above, �2
Ag
(t) evolves according to (8), i.e.,

�2
Ag
(t+ 1) =

1
1

�2
Ag

(t) +
�qgt
�2
�

:

However, (8) describes a deterministic continuous process. For the purpose
of the discrete version of the model, I therefore transform it into a stochastic

26



discrete process ~�2
A(t).

15

To accomplish this, I de�ne ~�2
Ag
(0) = �2

Ag
(0), then calculate �2

Ag
(t +

1) from ~�2
Ag
(t) and qgt using (8). Now I compare �2

Ag
(t + 1) to the set of

discretized values f�1; �2; � � � ; �n�g and �nd the closest two points to �2
Ag
(t+

1). Let �2
d and �2

u be the two closest discretized points such that �2
d �

�2
Ag
(t + 1) � �2

u. Then the distribution of ~�2
Ag
(t+ 1) given ~�2

Ag
(t) and qgt is

de�ned as follows:

~�2
Ag
(t+ 1) =

8><
>:

�2
u with prob

�2
Ag

(t+1)��2
d

�2u��
2
d

;

�2
d with prob 1 � �2

Ag
(t+1)��2

d

�2u��
2
d

:
(35)

Now let's consider how to obtain the expected value function, E[Vj(St+1)jSt;
qgt(pbt; ~p�gt(pbt)); et = k;Ag]; j 2 fb; gg (see Equation (24)). Conditional on
E[AgjI(t)] and Ag, E[AgjI(t+ 1)] is normally distributed according to (5).
In order to compute E[Vg(St+1)jSt; qgt(pbt; ~p�gt(pbt)); et = k;Ag], I �rst trans-
form the normally distributed E[AgjI(t+ 1)] to a discrete random variable,
~E[AgjI(t+ 1)], with support fA1; A2; � � � ; Anag. Now I de�ne a set of points
fA1;2; A2;3; � � � ; Ana�1;nag such that Ai;i+1 =

Ai+Ai+1

2 . Then I assign the prob-
ability to each discretized points A1; A2; � � � ; Ana as follows,

Prob(Ai) = �(Ai;i+1)� �(Ai�1;i); for i 6= 1 or na; (36)

Prob(A1) = �(A1;2); (37)

Prob(Ana) = 1� �(Ana�1;na): (38)

where �(:) is the cdf of E[AgjI(t+1)] conditional on E[AgjI(t)] and Ag. For
simplicity, let's assume that there is no demand shock (�k) for the moment.
Then, given the discrete distribution of ~E[AgjI(t + 1)], the expected value
function is simply,

E[Vj(St+1)jSt; qgt; et = k;Ag] =
naX
l=1

Prob(E[AgjI(t+ 1)] = Al) �Vj(St+1jSt; qgt; et = k;Ag); (39)

where

�Vj(St+1)jSt; qgt; et = k;Ag] =X
l2fu;dg

Prob(~�Ag (t+ 1) = �l)Vj(St+1jSt; qgt; et = k;Ag); (40)

15The process needs to be stochastic to ensure the value function is continuous in qgt
(or ~pgt).
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for j 2 fb; gg.
The numerical integration method described in (36) - (38) is similar to

the classical quadrature methods (e.g., extended midpoint rule). Notice that
as the mean of the distribution moves toward the end points (i.e., (A1; Ana)),
the approximation of this method will deteriorate. But as long as I locate the
true Ag far from the end points,16 the probability that the model will reach
the end points will be small. Hence, I do not expect this will signi�cantly
a�ect the results.

Similarly, one can transform the continuous random variable, �j, into
a discrete random variable. And the integration can be done in a similar
fashion as above.

To obtain E[Vj(St+1)jSt; qgt; et = k] (unconditional on Ag, see (25)), I
will need to integrate E[Vj(St+1)jSt; qgt; et = k;Ag] over Ag. Gauss-Hermite
quadrature method will be used here.

5 Data

5.1 Sample Selection

Sample drugs were selected from chemical entities whose patent expired dur-
ing the four year period from 1984 through 1987.17 This period was chosen
because the Drug Price Competition and Patent Term Restoration Act of
1984 lowered entry barriers for multiple source drugs. During this period, 83
chemical entities which came o�-patent were identi�ed.

The following classes of products were excluded from the sample: (i) over-
the-counter drugs; (ii) combination drugs; (iii) injectable, intravenous, and
diagnostic drugs since these products are not often used in direct therapeutic
competition with other dosage forms in the retail pharmacy market; (iv)
drugs used exclusively in a hospital setting; and (v) drugs for which multiple
source entry was found to be earlier than the patent year obtained from the

16This can be done once we obtain estimates of Âg's.
17The data set described here is the same as one used in Suh et al.[41]. The data on sales

volume, revenue and patent expiration date were originally collected by Professor Stephen
Schondelmeyer on behalf of the U.S. O�ce of Technology Assessment. I am grateful to
Professor Schondelmeyer for making these data available to me. I am also grateful to
Professor Scott Morton who generously shared her data set on patent expiration dates
with me. I used her data set to cross check the patent expiration dates that I collected
from other sources. The discussion in this section is heavily drawn from Suh et al.[41].
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FDA. After eliminating products not meeting the selection criteria, 35 sample
drugs were available for analyses. Among them there are four markets which
have not experienced any generic entry.

5.2 Data Sources

Data sources for this study included: the IMS U.S. Drugstore (USD) and U.S.
Hospital (USH) database, the pharmaceutical Manufacturers Association's
(PMA) Statistical Fact Book and Patents on Medical Products, and the
Food and Drug Administration (FDA).

Data on sales revenue and quantities sold were obtained from IMS USD
and USH databases. Data for each labeler by strength, dosage form, and
package size were extracted. The data set contains quarterly data from the
�rst quarter of 1980 through the fourth quarter of 1990. Observations in this
data set represent combined sales from drugstores and hospitals.

In 1986, IMS America claimed that USD and USH database re
ected 98%
of the ethical pharmaceutical market. The remaining 2% was represented
by direct physician dispensing. One limitation of IMS data is that mail
order pharmacies, discount stores and supermarkets with pharmacies are not
included in their audits. Treating product/quarter as one observation, total
sample size is 1198.

The patent expiration date was obtained from the FDA and the Phar-
maceutical Manufactures Association's (PMA) Report of Patents on Med-
ical Products. The approval date for Abbreviated New Drug Applications
(ANDA) for marketing generic drugs was obtained from the FDA's Orange
Book.

Daily De�ned Dose (DDD) and Average Treatment Duration (ATD) are
collected from the Medispan's Price-Trek database. DDD is used to stan-
darize the unit to number of patient days. ATD is used to obtain the amount
of drugs that each purchase decision would amount to.

The estimates of the number of patients who have been diagnosed with a
particular condition is obtained from National AmbulatoryMedical Care Sur-
vey and the National Hospital Discharge Survey. These estimates together
with ATD are used to create the size of markets variable.
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6 Estimation and Calibration

In this section I discuss how to estimate the preference parameters using a
new likelihood based method which involves approximating the true pricing
policy function. I also discuss how to obtain the parameter values for the
supply side.

The potential endogeneity problem of price is the main concern in esti-
mating this class of product di�erentiated market models. If producers know
the values of the unobserved product characteristics, E[AgjI(t)] and �, it is
likely that prices are correlated with them. This causes a similar simultaneity
problem in the analysis of demand and supply in the homogeneous product
markets. If this correlation exists and the econometrician ignores it when es-
timating the learning model, not only will the price coe�cient be biased, but
so will the other preference parameters that determine the rate of learning.

In models of product di�erentiated markets where the demand system is
obtained by aggregating the individual demands, this simultaneity problem
is further complicated by both the individual's discrete choice set and inter-
action of preferences distribution and product characteristics. These makes
the market level demand a complicated nonlinear function of product char-
acteristics, including the unobserved characteristics. Hence, the market level
demand is a complicated nonlinear function of the structural disturbances.

6.1 Maximum Likelihood: Approximation Approach

In this section, I describe a new estimation method to correct this simul-
taneity problem. To understand the contribution of my method, it would be
useful to review the classical full information maximum likelihood approach
(FIML). In this approach, the econometrician needs to model the oligopolis-
tic supply side explicitly, then derive a pricing policy rule as a function of
observed and unobserved product characteristics, and other state variables.
Then the econometrician should form the joint likelihood function of a se-
quence of price vectors and quantity vectors, and consistent estimates of
the parameters can be obtained by using FIML. Full information maximum
likelihood estimation involves an iterative process, solving numerically the
supply-side multi-agent dynamic programming problem for a given set of
parameter values, then evaluating the likelihood function, etc., until the like-
lihood is maximized. However, as the demand involves learning, the full
solution of the multi-agent dynamic programming problem is very compu-
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tationally demanding. For a version of a dynamic oligopoly model that I
detail in section 3, it takes 6 - 50 hours cpu time to solve the model once
in an advanced Sun Unix machine, depending on the exact parameterization
of the model. Hence, in this context, full information maximum likelihood
is infeasible except for some very simple supply-side models. In addition,
even if the econometrican has the computation power to apply FIML, biased
estimates may still result if the equilibrium model is misspeci�ed.

Instead of generating a pricing policy function by solving a supply-side
model explicitly, my estimation approach approximates the pricing policy
function by expressing it as a polynomial of the state variables. As explained
above, E[AgjI(t)] and �t may be correlated with pt, where pt = (pbt; pgt). In
addition, pjt may also be a�ected by (�Ag(t); ngt; t), where ngt is the number
of generic entrants at time t. Hence the true pricing policy function should
be a function of (�bt; �gt; E[AgjI(t)]; �Ag(t); ngt; t). Let �j(:) denote the \true"
pricing policy function, for j 2 fb; gg. Then,

pjt = �j(�bt; �gt; E[AgjI(t)]; �Ag(t); ngt; t)�jt; (41)

where � is a prediction error term, which may be due to measurement error.
Taking log on both sides of Equation (41), I obtain,

log(pjt) = log(�j(�bt; �gt; E[AgjI(t)]; �Ag(t); ngt; t)) + log(�jt); (42)

To approximate log(�j(:)), I use a polynomial series estimator, that is, I
project pjt to a polynomial of (�bt; �gt; E[AgjI(t)];�Ag(t); ngt; t). Assuming
that the prediction error, �jt, is distributed log normal, I obtain the condi-
tional likelihood of observing pt,

fp(ptjngt; �Ag(t); E[AgjI(t)]; �t; 
); (43)

where 
 is the vector of parameters for �j(:); j 2 fb; gg.
Recall that the observed quantity demanded, qjt, follows a multinomial

distribution and therefore is subject to some sampling errors, �jt. Unlike
Berry et al.[5] who assume the expected quantity output is the same as the
observed quantity output, I incorporate these sampling errors explicitly into
the estimation procedures. Given that the size of the market for all markets
is over one million, I assume that the multinomial distribution can be well ap-
proximated by normal distribution. Let �d = f(�k; �ke ; �k; �k0; �

k
0t)

K
k=0; !; r; �;

��; �Ag(0); ��; A;Agg18 denote the set of demand-side parameters, where �ke

18Note that Ab has been normalized to some value.
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is the standard deviation of the extreme value distributed taste shock for
type k patients (ekij); �� is the standard deviation of the unobserved product
characteristic (�); Ag is the actual mean attribute level of generics; and the
de�nitions of other parameters are given above.19

Then the quantity output, qjt, can be expressed as, for j 2 fb; gg,

qjt = MPr(jjp; �Ag (t); ngt; E[AgjI(t)]; �t; �d) + �jt: (44)

where

V ar(�t) = M

 
Pr(bjt)(1� Pr(bjt)) �Pr(bjt)Pr(gjt)
�Pr(bjt)Pr(gjt) Pr(gjt)(1� Pr(gjt))

!
; (45)

Pr(jjt) = Pr(jjp; ngt; �Ag(t); E[AgjI(t)]; �t; �d): (46)

Notice that when sample size is large (like over one million in this context),
� is so small that it is not su�cient to explain the discrepancies between the
model and the data. Hence, the main sources of uncertainty for the quantity
output are coming from the structural disturbances: E[AgjI(t)] and �t. I
denote fq(qtjpt; ngt; �Ag(t); E[AgjI(t)]; �t; �d) as the likelihood of observing qt
conditional on (pt; ngt; �Ag(t); E[AgjI(t)]; �t).

The joint likelihood of observing (qt; pt) is simply the product of fq(qtjpt; :)
and fp(ptj:), that is,

l(qt; ptjngt; �Ag(t);E[AgjI(t)]; �t; �d; 
) = (47)

fq(qtjpt; ngt; �Ag(t);E[AgjI(t)]; �t; �d)fp(ptjngt; �Ag(t);E[AgjI(t)]; �t; 
)

Now note that �Ag(t) is a function of fqg�gt�1�=0 (see (8)). Also, recall that
(5) gives,

E[AgjI(t+ 1)] = E[AgjI(t)] + �g(t)( �Agt � E[AgjI(t)]);
�Agt = Ag + �t

��p
�qgt

;

�t
iid� N(0; 1): (48)

19Notice that it is necessary to normalize some parameters in order to identify the
remaining parameters. In this case, I normalize Ab; �

1

e and �flurazepam to some numbers,
and the mean of � is normalized to be zero. Appendix B discusses the normalizations used
here.
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Hence, E[AgjI(t)] is a function of fqg�gt�1�=0 and f��gt�=0.
Therefore, one can rewrite (47) as,

l(qt; ptjngt; �Ag (t);E[AgjI(t)]; �t; �d; 
) = (49)

l(qt; ptjngt; fqg�gt�1�=0; f��gt�=0; �t; �d; 
)

Hence, for each market, the likelihood of observing a sequence of fqt; ptgTt=0

is:

L(q; pjfng�gT�=0; f�� ; ��gT�=0; �d; 
) = (50)
TY
t

l(qt; ptjngt; fqg�gt�1�=0; f��gt�=0; �t; �d; 
):

But (f��gt�=0; �t) are unobserved to the analyst and therefore must be
integrated over to form the unconditional sample likelihood for (qt; pt), that
is,

L(q; pjfng�gT�=0; �d; 
) = (51)Z Z TY
t

l(qt; ptjngt; fqg�gt�1�=0; f��gt�=0; �t; �d; 
)dF (f��gT�=0)dF (f��gT�=0):

Assuming that �t is i:i:d:, the above integrals can be rewritten as,

L(q; pjfng�gT�=1; �d; 
) = (52)Z
f

TY
t

[
Z
l(qt; ptjngt; fqg�gt�1�=0; f��gt�=0; �t; �d; 
)dF (�t)]gdF (f��gT�=0):

Evaluating such an integral numerically is very di�cult as it involves high
order integrals over the unobservables (f��gt�=0; �t).

20 I resolve this problem
by using the method of simulated maximum likelihood.

In the simulation approach, one uses Monte Carlo methods to simulate the
high order integrals that enter the likelihood function rather than evaluating
them numerically (Pakes[32], Lerman and Manski[26], McFadden[29], Pakes
and Pollard[33], Keane[23]). To obtain the simulated likelihood for (qt; pt), I
�rst make D� draws of (�

s) from its distribution F (�j), and make D� draws
of f�tgTt=0 from its distribution F (f�tgT�1t=0 ), where the superscript s and r

20In this case, integrating over f��gt�=0 is equivalent to integrating E[AgjI(t)], which is
serially correlated. The order of integral is t, where t could be as large as 20.
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distinguish the simulated values from the actual values. Then the simulated
likelihood can be obtained by averaging the conditional likelihood over all of
the simulated set of unobservables,

L(q; pjfng�gT�=1; �d; 
) ' (53)

1

DA

DAX
r=1

f
TY
t

[
1

D�

D�X
s=1

l(qt; ptjngt; fqg�gt�1�=0; f�r�gt�=0; �
s; �d; 
)]g:

Drawing �st is straightforward once its distribution is speci�ed. For the
preliminary estimates that I report in this paper, I assume that the distribu-
tion of �jt is i:i:d: normal. Notice that it is E[AgjI(t)] that enters the model.
One should think of f��gt�=0 as the seeds that generate fE[AgjI(t)]rgTt=1. To
draw a sequence of fE[AgjI(t)]rgTt=1, one can use a sequence of f�rtgTt=1 to
generate a sequence of sample means of experience signals, f �Ar

gtgTt=1 (recall

that �Agt � N(Ag;
�2
�

�qgt�1
)). Using this sequence of f �Ar

gtgTt=1 and the Bayesian

updating formula for E[AgjI(t)] (Equation (5)), I generate a sequence of
fE[AgjI(t)]rgTt=1 recursively.

It should be noted that the sampling errors for quantities demanded (�)
and the prediction errors for prices (�) serve the function of kernel smoother
in forming the simulated likelihood function. For each draw of the unobserv-
ables (�st ; E[AgjI(t)]r), the conditional likelihood l(qt; ptj:) in (53), generated
by the sampling errors and the prediction errors, assigns positive density
to any value of quantity demanded and price. They also make the simu-
lated likelihood function a di�erentiable function of the parameters, so that
it is possible to maximize the likelihood using optimization techniques that
depend on derivative information.

However, when the variance of sampling errors for quantities demanded
is very small, the simulated likelihood function will become approximately a
step function of the parameters, which precludes derivative-based optimiza-
tion techniques. If this is the case, one would need to add another error term
to each quantity equation to help smoothing the likelihood function. A large
variance of this additional error term would make the likelihood behaving
very well, but lead to bias in the estimates. The compromise is to choose a
value of the variance that does not introduce too much bias, but that is still
large enough to force the likelihood to behave properly. In estimating the
model, I experienced that the sampling errors are too small and hence I have
\in
ated" the sampling error by multiplying it with a constant, ks.
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The estimation method discussed in this sub-section allow us to obtain
estimates for the parameters from the demand side, which include the pa-
rameters for the utility function ((�k; �ke ; �

k; �k0; �
k
0t)

K
k=0; !; r; �; ��; ��), the

parameters for the representative physician's initial prior (A;�Ag(0)), and
the true value of generic attribute (Ag). But it does not give the distribu-
tion fromwhichAg is drawn (Ao; �A), the entry probability (pe), the potential
market size (M), and the supply-side parameters (�s), which include marginal
cost (mc) as well as the sunk cost of entry (ce).21

The reason why the above estimation method cannot yield estimates for
the supply-side parameters is because they do not incorporate the �rms' prob-
lem explicitly. However, it has the advantage of correcting the simultaneity
problem when estimating the demand-side parameters without imposing a
particular supply-side model. As a result, one can use the parameter esti-
mates from these methods to tests and compare di�erent supply-side models
(e.g., forward-looking �rms vs myopic �rms, Stackelberg model vs simulta-
neously moved model, etc.). Unlike generalized method of moments (GMM),
this method does not depend on instruments. The parameter estimates for
the pseudo-pricing policy function also allows us to learn the structure of the
true pricing policy function. Indeed, given the above framework, one can
easily carry out statistical test to see if the pricing policy function depends
on unobserved product characteristics, because such a pricing policy function
is just a nested speci�cation of the general pricing policy function.

6.2 Identi�cation Issue

The variation of quantities and prices due to the change in the number of
generic entrants, and the time trend for the outside good have helped identi-
fying the price coe�cient of the demand model. Both the number of generic
entrants and the time trend for the outside good are exogeneous to the model,
and they a�ect the equilibrium price via the oligopolistic equilibrium. Al-
though they also a�ect the demand, the changes are determined in a nonlin-
ear structural way.22 The learning parameters are mainly identi�ed by the
evolution of qt.

21To summarize, the supply-side parameters, �s = fmc; ceg.
22Notice that the number of generic entrants does not enter the utility function. It

a�ects the demand only through the denominator of the logit formula, or more generally
speaking, the i:i:d: property of the idiosyncratic taste di�erences (eijt). Also, note that
the time trend only appears in the utility of choosing the outside good.
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The unobserved state variables also enter the demand model in a struc-
tural nonlinear fashion. The identi�cation for the coe�cients of the unob-
served state variables in the the pricing policy function hinges on the func-
tional form assumptions. This is why I propose to use a 
exible functional
form to approximate the pricing policy function. Ideally, if there is no data
limitations, one should experiment di�erent order of polynomial estimator
and select one that best �t the data.

6.3 The distribution from which Ag is drawn

The actual distribution from which Ag is required if one wants to conduct
policy experiments. For simplicity, I assume that the actual distribution of
Ag is the same as the representative physician's initial prior. Alternatively,
one could impose this restriction in the estimation procedure.

6.4 Entry Probabilities

I model the entry probabilities as a binomial distribution. Recall that npt
is the number of potential generic entrants in period t (after the disclosure
of the FDA's approval decision in period t). Let �t = �(npt�1; t) be the
probability that a potential generic entrant receives approval from the FDA
in period t. Then the probability that there are k potential generic entrants
which are allowed to enter the market in period t, conditional on npt�1, is:

pe(k; npt�1 = m; t) =

 
m
k

!
�(m; t)k(1 � �(m; t))m�k: (54)

where �(m; t) is given by a logit model with npt�1; t, and therapeutic class
dummies as regressors.

The probability that the FDA approves k potential entrants in period
t+ 1 including the one in question (see (28)) is then,

p�e(k; npt�1 = m; t) = �(m; t)

 
m� 1
k � 1

!
�(m; t)k�1(1� �(m; t))(m�1)�(k�1)

=

 
m� 1
k � 1

!
�(m; t)k(1� �(m; t))m�k (55)

Equation (54) form the basis for the likelihood function that can be used
for estimation. I will pool the data from all 31 markets together to esti-
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mate the parameters of the logit model that generate �(m; t), which in turn
generates pe(:) and p�e(:).

6.5 Potential Size of the Market

The model assumes that the potential market size is exogenous and that
some patients will choose to purchase the outside good. As in Stern[38], for
each disease category, I use data from the National Ambulatory Medical Care
Survey (NAMCS) and the National Hospital Discharge Survey (NHDS) to
obtain an estimate of the total number of individuals who were diagnosed
with a particular condition by a physician or a hospital in a particular year. I
then obtain the mean total number of patients by averaging the total number
of patients over years. The total size of the market is taken to be the average
length of drug therapy within the category multiplied by the mean total
number of patients. Multiplying the total number of patients by average
number of days per patient yields the total potential number of patient-day
doses.

Then the market shares are simply the number of patient-day doses sold
divided by the number of total potential patient day doses.

6.6 Marginal Cost of Production and Sunk Cost of En-
try

The marginal cost of production for drugs is assumed to be the same across
time and �rms for each market. It is believed that the marginal cost of
production is typically very low for drugs (e.g., Scott-Morton). As shown
in Ching[9], in 12 out of 31 markets, the average generic prices converge
to almost zero. Since the actual cost data are not publicly available, I will
solve the model by assuming that the marginal cost is equal to two values:
zero and the lowest generic price observed. Then I will conduct sensitivity
analysis by varying the marginal cost parameter between these two values.

The last parameter needed is sunk cost of entry, ce. Unfortunately, ce is
not observable. I will calibrate this parameter by interviewing people who
work in the generic drug industry.
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7 Results

The estimation results presented here are based on the new approximation
method I propose and the observations from two markets, 
urazepam and
temazepam. Both drugs treat insomnia. Treating product/quarter as one
observation, the number of observations are 92 (46 for each). The potential
size of the market is about 4.4 million patients per quarter (or 133.5 million
patient days). It should be emphasized that the �nal goal of this research
is to estimate the learning model using all the data from my sample, which
contains 31 chemical entities and 1198 observations. Therefore, the results
presented here should only be viewed as preliminary. However, they illus-
trate the economic insights that one can obtain from estimating a structural
learning model. Moreover, they demonstrate the capability of a structural
equilibrium model in addressing policy questions.

Besides the coe�cients for the utility of the outside good (�k0; �
k
0t), the

mean attribute levels of generics (Ag), and the fraction of experience signals
that is revealed in each period (�), both markets share a common set of pa-
rameters. These are the price coe�cients (�k); the weight attached to the
(imperfectly observable) attribute (!); the risk coe�cient (r); the initial prior
variance (�A(0)2); the experience variability (�2

�); the proportion of consumer
type (�k); and the standard deviation of the unobserved product character-
istics (��); the standard deviation of the extreme value distributed consumer
tastes (�ke ). I estimate a version of the demand model with two types of con-
sumers (k = 0; 1), each type has a di�erent set of parameter values for the
price coe�cient and the coe�cients for the outside good (�k; �k0; �

k
0t). The

total number of structural preferences parameters that I estimate is 21.
For the pseudo-pricing policy function, as an initial step, I use the �rst-

order polynomial approximation. For j 2 fb; gg,

log(pjt) = 
j0 + 
j1t+ 
j2ngt + 
j3�Ag(t)

+
j4E[AgjI(t)] + 
j5�bt + 
j6�gt + ~�t: (56)

Both markets also share a common set of coe�cients for the pseudo-pricing
policy functions. These are the intercept, the coe�cients for the time trend,
the number of generic entrants, the variance of generic attribute, the un-
observed expected attribute, the unobserved brand-name characteristic and
the unobserved generic characteristic. The prediction errors for the pricing
equations also share the same variance. The total number of parameters in
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the pricing policy function is 15. Hence, there are altogether 36 parameters
to estimate.

As discussed in appendix B, for identi�cation reasons, the standard devi-
ation (�ke ) of the idiosyncratic taste distribution (eijt) of one type of patients,
and the fraction of experience signals revealed (�) for one market must be
�xed. I normalize the standard deviation of the idiosyncratic taste distribu-
tion for type 0 patients to be one, i.e., �0

e = 1. And I set the fraction of
experience signals revealed for 
urazepam to be the reciprocal of the sales
for the brand-name drug in the period right before the patent expired, i.e.,
�(flurazepam) = 1:457X10�8. Similarly, the mean attribute level of one
product must be �xed, because the absolute levels have no meaning. A nat-
ural choice will be �xing the mean attribute level for the brand-name drug.
My quadratic utility function also requires that attribute levels be below a
certain level so that utility is increasing in the attribute level. Therefore,
in the estimation procedure, I set the mean attribute level of the brand-
name drug to be 0.25 initially and update it on each step of the optimization
algorithm to ensure it stays in the proper range.

7.1 Parameter Estimates(Preliminary)

The parameter estimates and standard errors of the learning demand model
and the pricing equation are shown in Table 1 and Table 2 respectively. The
number of draws that I use is 100, for both fE[AgjI(t)]rgTt=0 and �st . The
kernel smoother, ks, that I choose to \in
ate" the sampling error that gener-
ates the conditional likelihood of observing qt is 13. Table 1 suggests that the
learning model is able to �t the data well. All parameter estimates, except
for the intercepts of the price-sensitive patients' (type 0) utility of purchasing
the outside good for 
urazepam, are statistically signi�cant. Patients attach
a positive weight to the \latent" attribute, which I interpret as some quan-
ti�able measure of e�ectiveness (e.g., the time that it takes a patient to fall
asleep after taking a sleeping pill). The estimated mean attribute levels of
generics for both 
urazepam and temazepam are signi�cantly di�erent from
zero. They are negative and below the mean attribute level of brand-name
originals, which are �xed at 0.1611 for both chemicals. As discussed before,
Ab also includes some psychological bene�t from consuming the brand-name
drug (this could be due to habit, or some image e�ect due to their reputation
and advertising) that cannot be sorted out from its actual mean attribute
level in the current framework. Hence, one should not conclude that the
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quality of the brand-name drug is better than the quality of generic drugs
simply from the higher value of Ab.

The risk coe�cient (r) is signi�cantly positive, which indicates risk-averse
behavior. This result, combined with a positive !, indicates that increased
perceived attribute variance decreases expected utility and lowers the market
share of a product. The experience variability (�2

�) is signi�cantly positive,
but small. The fraction of experience signals revealed for temazepam (�) is
also signi�cantly positive. It should be emphasized that it is the ratio be-
tween the experience variability (�2

�) and the fraction of experience signals
revealed (�) that determines the rate of learning. The absolute values of �2

�

and � by themselves have no meaning. The initial prior variance (�A(0)
2)

is large and statistically signi�cant, indicating that the representative physi-
cian is uncertain about the mean attribute levels of generics initially. The
initial prior mean (A) is negative and statistically signi�cant and its large
magnitude, relative to the estimates of the actual mean attribute levels of

urazepam and temazepam (Ag). This indicates that the representative ph-
syician's initial expectation about the mean attribute of generics is lower
than the actual mean attribute levels of generics for both 
urazepam and
temazepam. The standard deviation of the idiosyncratic taste distribution
of the price-insensitive patients (type 1) is small, relative to that of the price-
sensitive patients (type 0), and statistically signi�cant. This indicates that
the purchase decisions of the price-insensitive patients are mainly determined
by their mean utility levels of choosing di�erent alternatives.

The estimates of the time trends for the outside good are positive, and
statistically signi�cant, for the price-sensitive patients (type 0) of both 
u-
razepam and temazepam, indicating that the value of the outside option for
the price-sensitive patients is increasing over time. This could be due to
the decrease in generic prices of drugs that are substitutes for the one ana-
lyzed here.23 The estimates of the time trends for the outside good is much
smaller, but statistically signi�cant, for the price-insensitive patients (type
1), indicating that the value of the outside option for this type of patient
does not change much over time. This could result from some mixture e�ect
of the entry of new drugs (which would tend to raise the value of the outside
good) and the increase in brand-name prices for other substitutes (which
would tend to lower the value of the outside good).24 The constants (�0) in

23It seems likely that price-sensitive patients would choose generics if they consider
another close substitute.

24Similarly, it seems likely that price-insensitive patients would buy brand-name origi-
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the utility of choosing the outside good for the price-insensitive patients are
negative. But it should be noted that the absolute levels of \mean utility"
has no meaning; only relative magnitudes a�ect the market shares.

Table 2 shows the parameter estimates of the pseudo-pricing equations.
The intercepts and the time trends for both brand-name and generic pricing
equations are statistically signi�cant. The number of generic entrants is
di�erent from zero at 10% signi�cance level for both pricing equations. Other
parameters are not statistically signi�cant. It should be noted that most of
the learning has been accomplished in the �rst four to six quarters since
the �rst generic enters the market. Hence, for most of the observations
�Ag(t) and E[AgjI(t)] remains relatively constant. This could explain why
these two state variables are not signi�cant. The statistically insigni�cance
could also be due to the small number of observations used for estimation.
Another possibility is that the pricing policy function may not depend on
the values of E[AgjI(t)]; �bt; and �gt. This may result if �rms choose prices
before they observe these three state variables. It is di�cult to make any
concrete conclusion at this point. I will try to use more data and experiment
di�erent order of polynomials for estimation.

7.2 Model Predictions using Pricing Equation

In this section, I discuss the goodness of �t, the rate of learning and the
model prediction about the change in demand composition.

7.2.1 Goodness of Fit

To illustrate the goodness of �t, I simulate 1000 sequences of price and quan-
tity pairs for both the brand-name drug and the generic drugs, from the
demand model and the pseudo-pricing policy function using the parameter
estimates. The number of generic �rms is taken as exogenous. I then compute
the predicted prices and predicted quantities for each period by averaging the
simulated prices and quantities. Figure 3 plots the predicted demand and the
actual demand for 
urazepam. Figure 4 plots the predicted prices and the
actual prices for 
urazepam. These two �gures indicate that the estimated
demand model and the pricing function �t the data quite well, though the
predicted demand for generics appears to be higher than the actual demand

nals if they choose another substitute.
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for generics. The predicted generic demand is saturated at around 17 mil-
lion patient days while the actual generic demand is saturated at around 21
million patient days. Figure 5 plots the predicted demand and the actual
demand for temazepam. Figure 6 plots the predicted prices and the actual
prices for temazepam. The discrepancies between the predicted values and
the actual values are fairly small. This demonstrates that the learning model
and the pricing equation speci�ed here are able to �t the data quite well.

7.2.2 Rate of Learning

The rate of learning refers to the rate at which the perceived variance of
the mean attribute level converges to zero (or the rate at which the ex-
pected mean attribute level converges to the actual mean attribute level).
Again, since the results for both 
urazepam and temazepam are similar,
I will only focus my discussion on 
urazepam. Table 3 shows the change
of the predicted perceived variance (E[�2

Ag
(t)]) and the predicted expected

mean attribute level (EfE[AgjI(t)]g) over time for 
urazepam. Recall that
time 0 is the period when the patent expired. Generics enter the market in
the fourth quarter after the patent expires. The predicted perceived variance
(E[�2

Ag
(t)]) quickly decreases by approximately 96 percent in two quarters

since its inception (from 6:47 to 0:23). And it decreases by roughly 91 per-
cent in the next two quarters (from 0:23 to 0:019). Then the rate of learning
keeps diminishing as the predicted perceived variance becomes smaller. This
is consistent with the prediction from the Bayesian updating formula for
the perceived variance (see Equation (8)). The predicted expected mean at-
tribute level for generics (EfE[AgjI(t)]g) converges at about the same rate as
the predicted perceived variance. It increases from �4:716 to �1:657 for the
�rst two quarters. Then it gradually converges to the actual mean attribute
level, at a diminishing rate.

The slow di�usion of generics could be due to learning, the slow entry of
generics, or the change in the utility of purchasing the outside good. One
advantage of estimating the structural learning model is that it allows me to
separate the e�ect of each factor contributing to the slow di�usion, by simply
changing some parameters values of the model, or restricting the values of
some variables. To investigate the e�ect of learning, one could set the initial
perceived variance (�2

Ag
(0)) to be zero, and the initial prior mean attribute

level (A) to be the actual mean attribute level (Ag). Keeping everything else
at the estimated parameter values, one could then re-simulate the model and
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compute the predicted quantities and prices. In this hypothetical situation,
the predicted data represents the outcome of a market where agents are cer-
tain about the mean attribute level right from the beginning. By comparing
the di�erence between the predicted data from this model without uncer-
tainty and the predicted data from the original model with uncertainty, one
can conclude how much di�usion is due to learning.

I use the demand model and the pricing equation to conduct this exercise.
The results for 
urazepam and temazepam are again very similar. Hence, I
only report the case of 
urazepam here. Table 4 shows both the predicted
generic sales for the model with uncertainty and the model without uncer-
tainty. As expected, the predicted sales of generics for the model without
uncertainty are consistently higher than that for the model with uncertainty.
The predicted sales of generics in the model without uncertainty starts at
around 7.9 million patient days in the fourth quarter since the patent expired,
when there is only one generic entrant. It then gradually climbs to 12.3 mil-
lion patient days in the eighth quarter with the number of generic entrants
equal to three. The increase in generic sales in this model has �ltered out the
learning e�ect and is therefore due to the increase in the number of generic
entrants. There are two slight drops in generic sales in the �fth quarter and
the seventh quarter, where the number of generic entrants remains the same
these two periods. These drops are due to the increase in value of the outside
good. In the learning model, the predicted generic sales starts o� at around
125,000 patient days. This is just 1.7 percent of that in the model without
uncertainty. This indicates that the uncertainty of the generic attribute has
severely a�ected the initial sales of generics. But in the next period, the
predicted generic sales have quickly increased by 19 times and reached 2.4
million patient days. This is about 38 percent of that in the model with-
out uncertainty. Although it is still much lower than the predicted generic
sales in the model without uncertainty, the gap between them has become
signi�cantly smaller. In the eighth quarter, the predicted generic sales in the
model with uncertainty has already increased to about 12.1 million patient
days. This is 98 percent of that in the model without uncertainty. This indi-
cates that learning is responsible for most of the slow di�usion for the initial
four quarters. The di�erence between these two predicted generic sales then
diminishes very slowly. In the 24th quarter, the predicted generic sales are
25.3 million patient days and 25.6 million patient days for the model with
uncertainty and the model without uncertainty respectively. This di�erence
is just about one percent.
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7.2.3 Change in Demand Composition

I now discuss the change in demand for each type of patient predicted by the
model. The changes in demand composition for 
urazepam and temazepam
are qualitatively similar. Therefore, I only discuss the case of 
urazepam.
Figure 7 shows the change in demand for the price-sensitive patients (type 0)
and the price-insensitive patients (type 1). For the price-sensitive patients,
the demand for the brand-name drug decreases from 23 million patient days
to around 6,000 patient days in 24 quarters since the patent expired. The
demand for generics starts in the 5th quarter since the patent expired. It
increases from around 127,000 patient days to the peak of 6.7 million patient
days in six quarters. Then it decreases to around 159,000 at the end of the
period. The rise in demand for generics for the �rst six quarters is due to
learning, and decline in the relative generic prices. As I have discussed in
the previous sub-section, most of the learning is completed in the �rst six
quarters for 
urazepam. Although the relative generic price keeps decreasing
over the remaining periods, the decline of generic demand suggests that the
e�ect of the positive time trend for the outside good has outweighed the
e�ect of prices. The decrease in the demand for the brand-name drug is due
to both increases in its relative prices and the positive time trend for the
outside good.

For the price-insensitive patients, the demand for the brand-name drug
decreases from 43 million to 10 million. The demand for the generics gradu-
ally climbs from 340,000 to 22 million patient days. The decrease in demand
for the brand-name drug is due to the competition from the generic drugs,
the increase in relative brand-name prices and the positive time trend for the
outside good. The increase in demand for generics is due to learning and the
decrease in relative generic prices.

The change in the composition of demand may seem counterintuitive, as
one may expect, a priori, that the price-sensitive patients should be the group
who mainly buy generics. Instead, the model predicts that most of the price-
sensitive patients switch to the \outside good". However, it should be noted
that when price-sensitive patients choose an \outside good", it is likely that
they purchase a generic drug of another close substitute. Since the price of
generics usually drops over time and I only model the \outside good" using
a reduced form approach, the decrease in generic prices of other substitutes
may translate to a positive time trend. Hence, although the model says that
most of the price-sensitive patients switch to the \outside good", it may still
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be the case that they are mainly buying generics (for other close substitutes).
One might �nd that the change in demand for the price-sensitive patients still
seems too dramatic, even if choosing the \outside good" can be interpreted
as choosing a generic of another substitute. This could be due to insu�cient
consumer heterogeneity in terms of price sensitivity. The current version
only allows for two types of patients, which is quite restrictive.25 I expect
that more reasonable changes in demand composition can be obtained when
I increase the number of patient types in the learning model. The linear time
trend is also another restrictive functional form assumption. One can allow
for a quadratic term for the time trend of the outside good. I am currently
exploring these two directions.

7.3 Model Prediction using Dynamic Equilibrium Model

Now I use the parameter estimates obtained here to simulate the dynamic
equilibrium model that I develop in section 3.

7.3.1 � = 0

I �rst simulate the model by setting the discount factor, �, to be zero. I
also set the marginal cost to be zero. In this case, �rms are just maximizing
their current period pro�ts. Comparison between the predicted quantities
and prices and the actual quantities and prices are shown in Figure 9 to 12.
The results are summarized as follows:

(i) The predicted quantities of both 
urazepam and temazepam match
the data reasonably well in terms of pattern and magnitude (Figure 9 and
10).

(ii) Figure 11 and 12 compare the predicted pricing pattern and the actual
pricing pattern for 
urazepam and temazepam respectively. In both markets,
the model predicts that the prices of generics fall over time. This is consistent
with the data. For 
urazepam, the model fails to produce the pattern that
brand-name prices increase in response to generic entry (Figure 11). But
for temazepam, the model is able to produce such a pricing pattern (Figure
12). This demonstrates that the model has the potential to generate this
counter-intuitive observation. It should be noted that for temazepam, the
coe�cient for the time trend of choosing outside good is positive for the

25However, it should be noted that by allowing for two types, the overall goodness of �t
for the model has already been signi�cantly improved.
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price-insensitive patients, and negative for the price-sensitive patients. The
positive time trend implies that the value of the outside good is increasing
over time, and this would increase the competition faced by the brand-name
�rms and generic �rms. As a result, it would tend to drive down both
the brand-name prices and generic prices. On the contrary, the negative
time trend would tend to drive up both the brand-name prices and generic
prices. My conjecture is that the negative time trend of the outside good
for price-insensitive patients is at least partly responsible for the increase in
brand-name price. The estimation results are still preliminary and only the
performance of one particular supply-side model is being examined. I expect
to be able to improve the results by improving the parameter estimates and
examining other versions of supply-side model.

(iii) The change in composition of demand by types is similar to the
simulation results using the pricing function (Figure 13 and 14). The model
predicts that most of the price-sensitive patients switch to the outside good
at the end of the period. Again, I believe that it is possible to improve the
estimates so that the model can generate more reasonable changes in the
composition of demand.

7.3.2 � > 0

In this case, I set � = 0:9. I have solved the model for the case of temazepam.
�Ag(t) is discretized to take �ve di�erent values, [0; 0:04; 0:177; 1:683; 6:470];
E[AgjI(t)] is discretized to take seven di�erent values, [�4:8;�3:5;�2:7;�1:56;
0:16; 0:54; 1:74]; and �t is discretized to take three values [�1; 1; 1], with prob-
ability of each value to be 1=3.

I �nd that the model prediction (not shown here) for this case is very
similar to that of � = 0 case. This could be the result of fast learning
process. From the generic �rms' point of view, they also face an externality
problem. It is because all generic �rms share the same generic quality. This
will lessen the incentive for generic �rms to speed up the learning process.

8 Applications and Extensions

8.1 Applications

This research is the �rst step toward structural modeling of a dynamic equi-
librium in the prescription drug market. Since I explicitly solve the dynamic
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equilibrium and thus obtain the decision rules of agents, this approach allows
me to quantify the e�ect of altering speci�c parameters of the model, and
the e�ect of imposing certain constraints to the model. One can use the dy-
namic equilibrium model, together with the estimated parameter values, to
simulate the welfare impact of several public policies including: (i) restricting
the prices for brand-name originals below some arbitrary level, (ii) reducing
the average approval time for marketing generic drugs, and (iii) changing the
cost of obtaining such approval.

As many brand-name �rms keep raising their prices after generic entry,
it may seem that the consumer welfare can be increased by imposing a price-
ceiling for brand-name drugs. However, in this case the welfare consequence
is not obvious. It should be noted that by lowering brand-name prices, the
number of patients who switch to generic drugs initially will decrease. But
this means that less experience signals will be revealed. And this in turn will
slow down the learning process as well as the rate of adopting generic drugs.
As a result, the equilibrium sequence of generic prices and the equilibrium
number of generic entrants will also change. Therefore, it is not clear, a
priori, whether this policy will necessarily bene�t the consumers. Reducing
the average approval time for marketing generic drugs26 will certainly a�ect
generic �rms' entry decisions and hence the industry evolution, because it will
change the expected bene�t of entering the market. Similarly, changing the
cost of preparing an application for marketing generic drugs27 will also a�ect
the evolution of the industry by changing the number of generic entrants.
Since �rms' entry and pricing decisions are endogenized here, the equilibrium
model is able to quantify the welfare impact of these policies. I am currently
analyzing these policy experiments.

In addition, one can also use the model to quantify the bene�ts of in-
troducing generic drugs by computing the compensating variation in this
framework. As mentioned before, there is an externality problem in the
learning process because individual patient does not take into account the
bene�t of his/her experience signal to other patients in the economy. Us-
ing the parameter estimates, one can also solve the social planner's problem
and �nd out the socially optimal levels of demands after internalizing this
externality.

26This could be achieved by improving the e�ciency of the FDA.
27The entry cost can be reduced if the FDA simpli�es the application procedures. Or,

it can be increased if the FDA tightens some approval requirements.
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Other than the applications above, the current version of the model can
also be extended to consider the e�ect of advertising and explain the pre-
emptive strategy recently adopted by some brand-name �rms.

8.2 Extensions

8.2.1 Role of Advertising

It is well-known that the advertising expenditures of brand-name companies
are very high in the pharmaceutical industry, and empirical evidence suggests
that advertising may play an important role in determining both the demand
for a product and the aggregate demand for a drug in the prescription drug
market (e.g., Le�er[25], Caves and Hurwitz[7], Caves et al.[8], Grabowski and
Vernon[18], Scott Morton[36], Berndt et al.[4], etc.). IMS America's O�ce
Contact Report (formerly National Detailing Audit) and National Journal
Audit contain detailed information on monthly advertising expenditures for
each drug and each manufacturer. I am currently requesting data on ad-
vertising expenditures from IMS America. In the future I will extend the
model to include advertising expenditures as a choice variable for the brand-
name �rm. I plan to model the \image"28 of the brand-name drug and the
aggregate demand for the drug as two stochastic functions of advertising ex-
penditures. This approach will introduce another source of dynamics into my
model. To my knowledge, the interaction between learning and advertising
has not yet been explored in any dynamic oligopoly structural model.

8.2.2 Evaluating the Impact of Introducing Generic Drugs by

Brand-name Companies

As mentioned in the introduction, some brand-name �rms introduce their
own generic drugs before their patents expire. It is believed that by entering
the generic market �rst, the brand-name �rm might gain �rst-mover advan-
tages and therefore could possibly deter generic entry (e.g., Yang[43]). In
1994, the Federal Trade Commission opened a number of inquiries about the
overall e�ect of this pre-emptive strategy. The model developed here could
explain this strategy in terms of consumer learning and forward-looking �rms,

28For a discussion of \image" or \prestige" e�ect of advertising, see Stigler and
Becker[39] and Becker and Murphy[1].
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if it is extended to allow each generic �rm to have its own perceived qual-
ity. In the future I will extend the model along this dimension, and evaluate
the impact of this strategy by carrying out particular policy experiments,
such as restrictions on when the brand-name �rms are allowed to enter the
generic market. The pre-emptive strategy has only been adopted by some
brand-name �rms in the past few years. It is believed that the increase in
the portion of price-sensitive patients29 has driven this adoption. Using the
extended version of the model, one can also determine the extent that change
in the portion of price-sensitive patients can account for the adoption of this
pre-emptive strategy.

29This could be due to the expansion of health maintenance organizations and the
government's cost containment e�ort in promoting generic drugs.
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A Computing EfE[AjjI(t)]g and Ef(E[AjjI(t)])2g

I �rst show how to obtain EfE[AjjI(t)]g, for j 2 J=b. From Equation(5), it
follows that

EfE[AgjI(t+ 1)]g = (1� �g(t))EfE[AgjI(t)]g+ �g(t)E[ �Agt]: (57)

Note that �Agtj(qgt; I(t)) � N(Ag;
�2
�

�qgt
). Hence, E[ �Agt] = Ag;8t. In addi-

tion, recall that E[AgjI(0)] = Ag. Hence, for all t > 0, it is clear that
EfE[AgjI(t)]g = Ag;8t by using recursive substitution method.

Now I consider Ef(E[AjjI(t)])2g. It can be shown that

EfE[AgjI(t+ 1)]2g = (1 � �g(t))
2EfE[AgjI(t)]2g+ (2�g(t)� �g(t)

2)A2
g

+�g(t)
2 �2

�

�qgt
: (58)

Note that Ef(E[AjjI(t+ 1)])2g only depends on Ef(E[AjjI(t)])2g. Clearly,
Ef(E[AgjI(0)])2g = A2

g. Hence, for all t > 0, one can obtain Ef(E[AjjI(t)])2g
by recursive substitution method too.
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B Identi�cation

There are three identi�cation problems for the model described above. First,
absolute levels of attribute are not identi�ed. This problem is addressed
previously (Erdem and Keane[16]) and solved by �xing the attribute level
of one product, say Ab. If this or an equivalent requirement is not imposed,
then ((Aj)j2fb;gg; ��; �Ag(0)) can be multiplied and (!A; r) can be divided
by an arbitrary scalar, and the expected utilities, E[UijjI(t)]; j 2 fb; gg,
remain unaltered. Second, the mean of �jt; j 2 fb; gg, are not identi�ed. The
identi�cation is achieved by requiring the mean of �jt to be zero. Third,
according to the Bayesian updating formula for the perceived variance (8),
�2
� and � cannot be both identi�ed if this pair is allowed to be di�erent across

markets. Identi�cation is achieved by normalizing � to be the reciprocal of
the brand-name drug sales in the period right before the patent expired. If
�2
� is restricted to be the same across markets, and � is allowed to be di�erent

across market, then only one � needs to be normalized.
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Table 1: Estimation Results for 
urazepam and temazepam

Demand Model Estimate s.e
type 0 price coe�cient (�0) 0.033* 0.004
type 1 price coe�cient (�1) 0.006* 0.0002
risk coe�cient(r) 1.939* 0.026
utility weight for attribute (!) 0.070* 0.002
standard deviation of unobserved
product characteristic (��) 0.059* 0.002
initial prior mean (A) -4.796* 0.061
initial prior variance (�2

Ag
(0)) 6.470* 0.243

experience variability (�2
�) 0.005* 0.0002

proportion of type 0 (�0) 0.592* 0.002
standard deviation of type 1 heterogeneity (�1

e) 0.138* 0.003
mean attribute levels (Aj):
Ab 0.161
Ag(flurazepam) -1.624* 0.039
Ag(temazepam) -1.559* 0.038
fraction of experience

signals revealed:
�(flurazepam) 1.46e-8
�(temazepam) 2.02e-8* 2.39e-10
outside good coe�cients:

urazepam:
type 0 time trend (�0

0t) 0.329* 0.003
type 1 time trend (�1

0t) 0.007* 0.0001
type 0 intercept (�0

0) -0.068 0.085
type 1 intercept (�1

0) -0.368* 0.008
temazepam:
type 0 time trend (�0

0t) 0.314* 0.003
type 1 time trend (�1

0t) -0.008* 0.0003
type 0 intercept (�0

0) 0.210* 0.077
type 1 intercept (�1

0) -0.162* 0.004

-LL = 1004:41
Number of draws = 100
Notes:
* - t-statistic > 2
** - t-statistic > 1
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Table 2: Estimation Results for 
urazepam and temazepam

Price Equation Estimate s.e
Brand-name:
intercept (
b0) -1.421* 0.086
time trend (
b1) 0.031* 0.005
no. of generics (
b2) -0.011** 0.009
variance of generic attribute (
b3) 0.008 0.023
expected attribute (
b4) 0.008 0.050
brand-name demand shock (
b5) -0.001 0.002
generic demand shock (
b6) -0.002 0.003

Generics:
intercept (
g0) -1.470* 0.085
time trend (
g1) -0.041* 0.005
no. of generics (
g2) -0.011** 0.010
variance of generic attribute (
g3) -0.015 0.023
expected attribute (
g4) -0.024 0.051
brand-name demand shock (
g5) -0.0001 0.002
generic demand shock (
g6) 0.001 0.003
variance of prediction error 0.006* 0.0007

Notes:
* - t-statistic > 2
** - t-statistic > 1
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Table 3: Flurazepam: predicted perceived variance and predicted expected
mean attribute of generics

Time Number of
(quarter) generic entrants E[�2

Ag
(t)] EfE[AgjI(t)]g

0 0 6.470 -4.796
1 0 6.470 -4.796
2 0 6.470 -4.796
3 0 6.470 -4.796
4 1 6.470 -4.796
5 1 1.844 -2.432
6 2 0.230 -1.657
7 2 0.039 -1.637
8 3 0.019 -1.632
9 5 0.011 -1.629
10 5 0.007 -1.628
11 6 0.006 -1.627
12 7 0.004 -1.626
13 9 0.004 -1.626
14 9 0.003 -1.626
15 10 0.003 -1.625
16 10 0.002 -1.625
17 11 0.002 -1.625
18 11 0.002 -1.625
19 11 0.002 -1.625
20 11 0.001 -1.625
21 11 0.001 -1.625
22 11 0.001 -1.625
23 11 0.001 -1.625
24 11 0.001 -1.625

Notes:
0-th quarter refers to the quarter in which the patent expired.

54



Table 4: Flurazepam: predicted generic sales for the model with uncertainty
and the model without uncertainty (number of patient days, million)

Predicted generic sales:
Time Number of with without
(quarter) generic entrants uncertainty uncertainty
0 0 n.a. n.a.
1 0 n.a. n.a.
2 0 n.a. n.a.
3 0 n.a. n.a.
4 1 0.13 7.42
5 1 2.39 6.32
6 2 10.4 11.5
7 2 8.95 9.21
8 3 12.1 12.3
9 5 16.9 17.0
10 5 15.7 15.8
11 6 16.9 17.2
12 7 18.3 18.5
13 9 21.2 21.4
14 9 20.5 20.8
15 10 20.3 20.5
16 10 21.4 21.7
17 11 21.3 21.6
18 11 22.4 22.7
19 11 22.5 22.8
20 11 22.5 22.8
21 11 22.6 22.9
22 11 22.7 22.9
23 11 22.7 23.0
24 11 22.8 23.0

Notes:
0-th quarter refers to the quarter in which the patent expired.
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Figure 1: Generic market share and relative generic price vs. time after the
�rst generic entry
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Figure 2: Price of brand-name and generics vs. time
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Figure 3: Comparsion between predicted and actual demand, semi-reduced
form model
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Figure 4: Comparsion between predicted and actual price, semi-reduced form
model
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Figure 5: Comparsion between predicted and actual demand, semi-reduced
form model
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Figure 6: Comparsion between predicted and actual price, semi-reduced form
model
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Figure 7: Predicted demand by type, semi-reduced form model
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Figure 8: Predicted demand by type, semi-reduced form model
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Figure 9: Comparsion between predicted and actual demand, equilibrium
with � = 0
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Figure 10: Comparsion between predicted and actual demand, equilibrium
with � = 0
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Figure 11: Comparsion between predicted and actual price, equilibriumwith
� = 0
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Figure 12: Comparsion between predicted and actual price, equilibriumwith
� = 0
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Figure 13: Predicted demand by type, equilibrium with � = 0
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Figure 14: Predicted demand by type, equilibrium with � = 0
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