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Abstract

We introduce a method that relies exclusively on Monte Carlo simulation
in order to compute optimal portfolios. Our method is completely general and
only require complete markets and knowledge of the dynamics of the security
processes. It can be applied regardless or the number of factors and of whether
the agent derives utility from intertemporal consumption, terminal wealth or
both. We perform some comparative statics.

*Department of Mathematics, USC, Los Angeles 90089. Ph: (213) 740-3794. Fax: (213) 740-
2424. E-mail: cvitanic@math.usc.edu

tDepartment of Mathematics, USC, Los Angeles 90089. Ph: (213) 740-3761. Fax: (213) 740-
2424. E-mail: goukasia@usc.edu

iFBE, Marshall School of Business, USC, Los Angeles, CA 90089. Ph: (213) 740-6538. Fax:
(213) 740-6650. E-mail: fzapatero@sba.usc.edu



1 Introduction

The derivation of the optimal portfolio of a rational investor is a central problem
in asset pricing. Although the interest of closed form solutions that would allow to
derive equilibrium implications is obvious, the increase in computational power along
with the lack of closed form solutions for many interesting cases have triggered an
interest in numerical methods as a possible answer to the problem. In this paper we
suggest a method purely based on Monte Carlo simulation that allows to solve the
problem in complete markets.

Merton (1971) introduced methodology to attack the problem of a rational in-
vestor with time additive preferences that chooses how to allocate her wealth between
consumption and the existing securities. In his setting, computation of optimal con-
sumption and investment strategies requires the solution of a PDE. However, that
PDE only has a closed form solution in a handful of cases.

Karatzas, Lehozcky and Shreve (1987) and Cox and Huang (1989) introduced
martingale methods to solve the problem of an utility optimizing investor. Martingale
methods allow to consider more general settings than dynamic programming methods
and in general allow to compute the optimal consumption policy of the investor. But
optimal portfolios, in general, cannot be computed in closed form when martingale
methods are used.

A large number of papers have recently undertaking the problem of computation
of optimal portfolios. Campbell and Viceira (1999) and Barberis (1998) use numerical
approximations to find optimal portfolios in a discrete time setting. In continuous
time, Kim and Omberg (1996) solve the PDE in closed form for a specific parame-
terization of the model. Liu (1998) finds a closed form solution for a general class
of parameterizations for an agent whose utility depends only on terminal wealth.
Wachter (1999) solves also a specific case but that allows for intertemporal consump-
tion. Brennan, Schwartz and Lagnado (1997) and Xia (1999) solve numerically the
PDE also for specific (but more general) parameterizations of the utility function.
Finally, Detemple, Garcia, Rindisbacher (1999) compute the Malliavin derivatives of
the processes and then use Monte Carlo simulation in order to retrieve the optimal
portfolio.

In this paper we introduce a pure Monte Carlo simulation approach very easy to
implement and that can be applied whenever two conditions are met (this two condi-
tions are also required by the method introduced in Detemple, Garcia, Rindisbacher
(1999):

e Markets are complete, that is, the number of non-redundant stocks and the
number of Brownian motion processes that explain the uncertainty of the econ-
omy are equal.

e We know the dynamics of all the processes involved (the expanded opportunity
set is markovian.



The method we introduce here can be applied to any type of time additive utility
function and any parameterization of the security processes, regardless of whether
the agent derives utility from final wealth, intertemporal consumption or both and
regardless of the number of Brownian motion processes that explain the uncertainty
of the economy. The advantage of Monte Carlo simulation is that it is very easy
to implement and converges very fast. Monte Carlo simulation has been increasingly
popular to price derivatives since its introduction in finance by Boyle (1977). However,
it had not been considered as a tool to solve optimal portfolios until the work of
Detemple, Garcia and Rindisbacher (1999).

We propose here a method purely based on Monte Carlo simulation. We use the
fact that the optimal portfolio of the investor is part of the standard deviation of
the optimal wealth process. Monte Carlo simulation is particularly appropriate to
compute expectations and we use this property to compute the second moment (the
expected value of the squared change in the wealth level).

The structure of the paper is as follows. In Section 2 we describe the setting
and give an intuition of the method. In Section 3 we apply the general idea to the
computation of an optimal portfolio. In Section 4 we do some exercises and perform
some comparative statics. In Section 5 we explain the extension of the method to the
multifactor case. We close the paper with some conclusions.

2 General Method

2.1 Securities

Here we describe the financial assets the investor can choose among. In order to
illustrate the method we will define some specific, although fairly general dynamics.
As it will be clear later the method is not restricted to the set of prices defined here.
In order to simplify the notation, we consider real prices, expressed in terms of the
unique consumption good. There are two types of securities. First, there are n stocks
whose price satisfies the following dynamics,
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where W is a vector of n independent standard Brownian motion processes. Realiza-
tions of these n Brownian motion processes define the path followed by the economy.
Additionaly, i* and o’ represent the drift and volatility of the stock process i and are
possibly stochastic (we discuss their dynamics later). The second type of security is
a bond whose price B evolves according to the following dynamics,

dB, = B,r,dt (2)

where r is the possibly stochastic interest rate (we discuss its dynamics later).



Uncertainty in this economy is given by the realizations of the n dimensional
Brownian motion process. We assume that the number of stocks and the numer of
Brownian motion processes is the same. Besides, we assume that the matrix 3 formed
by stacking the n o? vectors is non-singular at every point in time ¢: this is equivalent
to assuming that markets are complete. In order to simplify the notation, we will
assume (w.l.g.) throughout the paper that n = 1 and therefore, ¥ = o. In the last
section of the paper we consider the case of n =2 (and n > 2 would be analogous).

We now consider the dynamics of the different parameters of the model. We first
define the market price of risk 6 as

p=E_1 (3)

As we mentioned above, we consider the possibility of u,r and o stochastic. The
only restriction that we impose is that all the parameters, plus those of any existing
state variable depend on the n dimensional Brownian motion process that describes
the uncertainty of this economy. The dependence on the Brownian motion process
can be of any type as long as it is known. In summary, we only require the expanded
opportunity set to be markovian. In this paper we will restrict to the following dy-
namics. With respect to the interest rate, we assume that it satisfies the following
dynamics:

dry = (a4 be(r)" + (07 ) db =+ (dy + folre)™ -+ 91(61)") AW, (4)

where a,, b,, ¢, d., fr, gr, -, pr, @ and v, are constant. With respect to 6, we assume
that it satisfies

do, = (ag + Ce(@t)pe) dt + (dg + gg(Ht)”e) dW, (5)
where ay, ¢y, dgy, g9, ps and vy are constant. A subset of the previous dynamics are
the “affine” models studied in Duffie, Pan and Singleton (2000). In fact, the previous
dynamics, although fairly general, are still restrictive. Our approach is completely
general in a markovian setting and could deal, for example, with a setting were all the
parameters of (4) and (5) where stochastic, as long as they depended on the Brownian
motion process and the form of the dynamics were known.

2.2 General Idea

We now explain the general idea of the method we will use to compute the optimal
portfolio of the individual. In the previous economic setting, consider the expression

Ct =F l/tTf<T37037Ws)d3 ’ «7:;5 (6)

where the information up to moment ¢, represented by JF;, is the path of the Brownian
motion process up to t. Equation (6) satisfies a stochastic differential equation of the
type

dCy = audt + v dW, (7)



where o and v are again possibly stochastic and path-dependent.

Although in general a closed form expression for v does not exist, the computation
of that parameter is the key in many problems in finance, like hedging of contingent
claims or (the problem we consider in this paper) the optimal portfolio of an utility
maximizing investor.

In this paper we suggest to use Monte Carlo simulation in order to compute the
process v (and, therefore, the optimal portfolio of the individual). The method we
introduce here can be applied whenever Monte Carlo simulation is possible and two
requirements are satisfied: complete markets and markovian expanded opportunity set
(regardless of the number of parameters). Monte Carlo simulation has the advantage
that it is very easy to implement and converges very quickly.

Monte Carlo simulation was introduced in finance for the pricing of derivatives
by Boyle (1977). Boyle, Broadie and Glasserman (1997) offer a detailed survey of
the application of Monte Carlo simulation to the pricing of derivatives. In fact, the
use of numerical methods in finance has been restricted very recently to the pricing
and hedging of derivatives. Only recently numerical methods have started to be
used as a way to solve the problem of finding the optimal portfolio. We mention
in discrete time, Campbell and Viceira (1999) and Barberis (1998). In continuous
time, Brennan, Schwartz and Lagnado (1997) and Xia (1999) use numerical methods
to solve the PDE’s that result from the dynamic approach. Detemple, Garcia and
Rindisbacher (1999) use Monte Carlo simulation combined with the computation of
the Malliavan derivatives. In this paper we introduce a method based exclusively
on Monte Carlo simulation. The advantage of Monte Carlo simulation over other
numerical methods is that it is very easy to implement and converges very quickly.

When Monte Carlo simulation is applied to financial problems, an expression of
the type of (1) is discretized in the following way,

St—l—At — St = St (/LtAt + O'tZt) (8)

where z is a quasi-random number drawn from a (computer generated through some
type of numerical algorithm) hypothetical normal distribution with zero mean and
v/t standar deviation. A time horizon T is divided in N intervals of size At and by
generating N values z we will have a discretized version of a possible path of S.

Consider the problem of estimating numerically the value C' of equation (6): a
large numbers of paths of W will be simulated and used in the dynamics of all the
relevant processes in the form explained above; in order to compute the expected
value of (6) the average of all of the paths will be taken in order to derive C. Here
we suggest to use the same technique in order to derive v, the volatility term of the
expression (7). From (6), the volatility v is!

B B 9 1/2
v, = lim (E [(CHN G — At |E]>
At—0 At

IThis is a heuristic derivation. For a formal treatment of the “quadratic variation”see Karatzas
and Shreve (1993)).




= lim (E lM | ft] ) " (9)

At—0 At

We can ignore the effect of the drift a becauseit multiplies At, that converges to
0 and does it faster than in the denominator because the numerator is squared.
Alternatively, we can compute v as,

v, = lim E l(0t+At - Ct)(VI/H-At - VVt) | f;;|
At—0 At
T (Crrar — Cy) (=)
= | 1)

where z; is the quasi-random number discussed above. Informally, in (9) we com-
pute the standard deviation of the stochastic process while in (10) we compute the
covariance between C' and the Brownian motion process W (which, clearly, is also v).

As we will see, however, the expression in (10) is more convenient when there is
more than one Brownian motion process (the “multifactor”case that we will consider
in the last section of the paper).

At moment ¢t we know the value C; but in order to compute numerically the
expression in (10) we need to generate a number of values of Cy, o; but we do not know
the dynamics of C' (that is in fact the problem we are trying to solve). However, from
(6) we know that Cyya; is the expected value of some function of the parameters of
the model (that depend on the path of the Brownian motion process) whose dynamics
we know. This is the fact that we will exploit and will allow us to compute optimal
portfolios. We explain the exact procedure in next section.

3 Computation of the Optimal Portfolio

We consider the problem of a rational, utility maximizing, investor. The utility of
this investor is the result of a bequest target, intertemporal consumption or both.
There is a single consumption good that we will use as numeraire. Individuals receive
an initial endowment in units of the consumption good that they can either consume
or invest in the financial markets.

In order to simplify the presentation, we will focus in the two following problems,

X’Y
U(Xy) = max Ble "L (11)

T cY
U(X,) = maxE| / eﬂs(S*t);Sdsm] (12)

(m,c) t

where 7 represents the trading strategy (to be described below) and X is the wealth
level of the investor, ¢ is the subjective discount factor (that in order to simplify the
notation we will assume constant but is not necessary for our method). The initial,
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exogenous wealth level of the investor is X,. In this paper, for simplicity, we will
only consider CRRA utilities with v as the parameter that characterizes the degree of
risk aversion. Again, as pointed above, our method is completely general and can be
applied to any type of utility function. However, we need utilities to be time additive.
Within this class of utility functions, our method allows us to solve any case.

The investor can allocate her wealth either in consumption ¢ or in any of the
securities described above. We denote by 7 the amount of wealth invested in the
stock. The wealth process X of the investor satisfies,

dX; = (mps + (1 — X)re — ¢p) dt + modW; (13)

The previous problem was first considered in continuous time by Merton (1979),
using dynamic programming. More recently, Karatzas, Lehoczky and Shreve (1987)
and Cox and Huang (1991), introduced martingale methods that allow to solve the
problem using lagrange multipliers (as an static problem). Following the approach of
these two papers and using the notation introduced in (3), we can write (13) as
dXt = (T’tXt — Ct) dt + (O'thVt + etdt)

= (rXi;—c)dt+ 0. dW, (14)
where W is a Brownian motion process with respect to Q, the “equivalent risk-neutral
probability.” We define, the process,

1/t t
(1 _ 1
& eXp( i /0 62ds /O edeS> (15)

The present value of this process represents the continuous time Arrow-Debreu prices.
The problem of the investor is equivalent to the maximization of equation (11) subject
to: . .

ERe o ¥ Xy = Bere o ¥ Xp = X, (16)

or, respectively, maximization of equation (12) subject to
T S T S
EQ/ e Ji rudue ds = E§T/ e Ji rudi e ds = X, (17)
t t
where ¢ is given by equation (15). The dynamic problem has now become an static

problem. Using standard optimization techniques we find that the respective optimal
final wealth and optimal consumption strategies are given by,

' .
X; = <yefo (Ms”ng) 1 (18)

¢ = (yefoT(‘;—’“S’dS&)ﬁ (19)

where y is the lagrange multiplier, the scaling constant that guarantees that the
budget constraints (16) and (17) are satisfied.
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It is by now standard that in the complete markets specification that we consider
here the wealth process X can also be expressed as an expectation of the type de-
scribed in equation (6). More explicitely, the value of the wealth process at every
point in time is the expected discounted value of future consumption and/or termi-
nal wealth under the equivalent “risk-neutral”probability measure that depends on 6
(this is in fact the result used to derive the budget constraints of (16) and (17):

T 1 T
Xo= B9 T Xa | F] = ¢ Blére b 7 Xal 7 (20)
t
in the case of utility from final wealth and

T 1 T s

X, = EQ[/ e )i rudtc ds|Fy) = ZEKT/ e Ji rudtic ds| F] (21)
t t t

in the case of utility from intertemporal consumption, with £ given by equation (15).

But the right hand sides of (20) and (21)are expressions of the type of (6) and,

therefore, satisfy

d (EQ re LTXTm]) — adt + vdW, (22)

for (20) and similarly for (21) but comparing (13) and (22) we conclude that the
optimal portfolio is given by
= (o) "'m, (23)

and, therefore, by retrieving numerically v using the method explained in the previous
section, we can derive the optimal portfolio strategy.
More explicitely, from (10),

v, = lim E l(Xt—f—At — Xo ) Wipar — Wi) |E]
At—0 At
_ (Xepar — Xo)(2)
= | SR .

where z; is the computer generated quasi-random number that we discussed in the
previous section (for more on that see Press, Teukolsky, Vetterling and Flannery
(1992)).

Therefore, the specific procedure is as follows. At moment ¢ we know X;. In order
to compute (24) we need to compute, for each realization of the (computer generated)
Brownian motion process z the corresponding wealth value X;, ;. But,

—fT rsds
Xitar = EQ[G vtae T Xop| Fryae
&r

T
= Bl le e x|
it

T T ﬁ
— E[%e Jiyaqreds (yefo (J_TS)dS§T> | Fiy ] (25)
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for the the case of utility from final wealth, where we have used (18) and

Q T —fs rodu
Xine = FE [/ e Jerac e ds|Fiyadl
t+At

T s
= Hl o / ¢ Jovae ruducsd5|~7'—t+m]
£t+At t+At
= F é.T r - [? A rudu fs(é—ru)du 'Y_il
= [gt-i-At LA e Ji+At yelo gs dS|E+At] (26)

in the case of utility from intertemporal consumption, where we have used (19).
The right hand side of (25) and (26) will not have in general a closed form solution
(exceptions are the logarithmic utility case v = 1 and the affine models considered in
Duffie, Pan and Singleton (2000)). However we can use Monte Carlo simulation to
compute that right-hand side. In order to do that we need to know the dynamics of
the processes involved. With respect to &, from (15) it satisfies,

&

and the dynamics of r and 6 are given by (4) and (5). At moment ¢t we know X,
ry, and 0;. We discretize these processes as explained in (8) and generate a large
number of paths for each of them, compute the expressions in the right hand side
of (25) and (26) and average over them in order to get our estimate of X;, o, for a
given realization of the (computer generated) Brownian motion z. Then we generate
another Brownian motion process and get a second estimate of X;, ;. After a number
of estimates of X;. A, have been generated, we average over all of them in order to
compute (24).
In summary, we use a two-step procedure:

1. We are at moment ¢t and know Xy, r, 6; and &. We observe (generate with
the computer) a realization of the Brownian motion process, say z;. Using
the dynamics of r, 6 and £ we upgrade their values to ryya¢(21), 0rrai(21) and
&+at(z1) and compute X, a¢(21) using (25) or (26). With the notation we mean
that we are at moment ¢ and we will compute a value of the wealth process at
t + At contingent on getting a realization of the Brownian motion process equal
to z1 att.

2. We generate a second value for the Brownian motion process at ¢, say z; and
compute X;,a¢(22). We repeat the procedure N times and collect the values
Xiiat(zi),i=1,...N. Then we use (24) and compute,

al (Xt-i-At(Zi) - Xt) Zi
At

1
N (28)

=1



Clearly, this procedure is independent of the type of utility function, whether the
investor derives utility only from terminal wealth, from intertemporal consumption or
from both and of the dynamics of the stochastic processes involved (as long as those
dynamics are known).

In the next section we analyze some results for different values of the parameters
of the model.

4 Analysis of results

The basic model we study is a simplification of the general model presented in section
2. With respect to the interest rate, we consider the Cox, Ingersoll and Ross (1985)
dynamics, that is,

dry = Kk, (F — r)dt — o, /TedW; (29)

For the equity premium 6 we first consider a simple mean-reverting process with
constant volatity, B
df; = k(0 — 0;)dt + opdW, (30)

This is in fact the model considered in Detemple, Garcia and Risdinbacher (1999).
They calibrate this model and find the following values for the parameters,

7=.06, o, =.0364, K, =.0824 ky=.6950, 6 = .0871,

op = .21, o(t)=.2, r(0)=.06, 6(0)=".1.

With respect to the utility function, Detemple, Garcia and Risdinbacher (1999) only
consider the case of utility from terminal wealth. We will consider both cases as
expressed in equations (11) and (12). In the case of utility from terminal wealth, with
time horizon T' = 1, risk-aversion characterized by v = —1 and initial wealth Xy =1
(so that the portfolio can be interpreted as the proportion of current wealth invested
in the risky stock) which is the case considered in Detemple, Garcia and Risdinbacher
(1999) we obtain an optimal investment in the risky security of 7* = 0.252.

In Table 1 we consider the sensitivity of the portfolio both to changes in risk-
aversion and horizon. Risk-aversion is measured by the parameter v: the lower y
(which has to be smaller than 1 to guarantee the concavity of the utility function)
the more risk averse the individual. The case 7 = 0 corresponds to an agent with
logarithmic utility. In that case the problem has closed-form solution and the optimal
portfolio is g. We consider both the case in which the individual only draws utility
from terminal wealth (TW) and when the individual draws utility from intertemporal
consumption (IC). As expected, when both the horizon and risk aversion increase,
the investor allocates a larger proportion of wealth to the risky asset. The investor
allocates a smaller proportion of wealth to the risky security when she derives utility
from intertemporal consumption.



In Tables 2 and 3 we consider changes in k,, the speed of mean-reversion, o,,
the constant component of the volatility of the interest rate and oy, the constant
component of the volatility of the equity premium. Increase in mean-reversion of the
interest rate decreases holdings of the risky security since there is less need to hedge
given the larger stability of the interes rate. When the volatility of the interest rate
increases the agent invests more in the risky security (which is negatively correlated
to the interest rate). When volatility of the risk premium process increases, the agent
invests less in the risky security (since it becomes less attractive).

Finally, we consider the following alternative dynamics of the interest rate and
the equity premium process,

dry = Rp(F—ry)dt —o.(ry)""dW; (31)
A6 = k(8 — 0,)dt + op(6)™dW, (32)

For v, # 0.5 and/or vy # 0 the problem does not belong to the class of affine models
anymore. In Tables 4 and 5 we study effect of changes in these parameters. When v,
changes the volatility of the interest rate process is not proportional to the volatility
of the interest rate and the time effect is lessened. When vy increases, however, the
proportion of wealth invested in the risky security increases. In fact, the investment
allocation seems to be very sensitive to changes in this parameter.

Overall, however, it seems that, for time additive CRRA preferences (which are
the standard in the literature) portfolio allocation does not change very much, unless
a very high degree of risk aversion is considered.

5 Multiple Factors

For ease of notation, in the previous section we have considered the case of a single
Brownian motion process. However, as we stated before, the method that we suggest
in this paper can be applied regardless of the number of Brownian motion processes
that explain the dynamics of the model, as long as we stay in a complete markets
setting, that is, the number of stocks is equal to the number of Brownian motion
processes and the variance covariance matrix of all the stocks is non-singular.

Suppose, for example that we have two stocks and two independent standard
Brownian motion processes W' and W?2. The price of each of the stock processes
St i = 1,2 satisfies

ds

= = pe 4+ ordWl + o2dW? i = 1,2 (33)
t

and we assume that the matrix

11 12
5 - ( % ") (34)

0y Oy
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is non-singular for all .
In this setting, the agent can invest in both securities and, as a result of it, his/her
wealth dynamics will be of the type,

dX; = aupdt + vt dW} + v} dW}? (35)

Of course the optimal portfolio of the individual will be now bi-dimensional and, as
in (23) equal to,
™ =(X) v (36)

where vT = (V1,1?).

The implementation of Monte Carlo simulation is analogous to the one-dimensional
case, but now we will have to generate two simultaneous series of random numbers
z! and 22. The discrete version of (33) is

A —Si=S; (,uiAt + otz + —l—azzzf) i=1,2 (37)
Analogously, we can replicate the paths of the stochastic processes involved, r, 6 and
¢. In order to retrieve ' and v? we use, (this is similar to (24)),

— lim E l(X”At — X0)(24) | ]—‘t] i=1,2 (38)

At—0

At

In order to implement this expression we use a two-step procedure as the one de-
scribed in the one-dimensional case, but with the following modification: we start at
t where we know X;, r; and ;. We generate one realization of each of the Brown-
ian motion processes that we call z{ and 2% and compute 74, a¢(21, 2%), Orrne(21, 23)
and & a¢(21, 22). Then we compute X; a¢(21,22) by replicating the paths of all the
stochastic processes involved. Then, we generate another pair of realization of the
Brownian motion processes, zi and z2 and we repeat the process to get Xy, az(24, 22).
We repeat the process N times and approximate each v (whose estimate we denote
by ©%) by computing,

Z Xt+At 31721) Xt) Zi 1 =1.2 (39)
N & At ’ ’

Obviously, the approach would be analogous if we had more than two factors.

6 Conclusions

In this paper we introduce a method that relies exclusively on Monte Carlo simu-
lation in order to compute optimal portfolios. Our method is completely general
and only require complete markets and knowledge of the dynamics of the security
processes. It can be applied regardless or the number of factors and of whether the

11



agent derives utility from intertemporal consumption, terminal wealth or both. The
implementation is very easy ansd allows us to perform some comparative statics. The
method relies on the fact that the optimal portfolio is part of the standard devia-
tion of the wealth process and such standard deviation can be directly estimated. In
fact, computing the standard deviation through Monte Carlo simulation has other
applications in finance, like the computation of the optimal hedge of an option (see
Cvitani¢, Goukassian and Zapatero (1999)).
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Table 1: Effect of Horizon and Risk Aversion

7 =0.06;0 = 0.0871; 7y = 0.06; 6y = 0.1; 09 = 0.2
Ky = 0.824; kg = 0.6950; o, = 0.0364; 5y = 0.21

T=1 T=5 T =10
7y IC T™W IC ™™ IC W
0.5 1.042 | 1.095 | 1.221 | 1.236 | 1.230 1.146
0 0.5 0.5 0.5 0.5 0.5 0.5
-1 10.244 | 0.252 | 0.270 | 0.295 | 0.297 | 0.328
-2 10.174 | 0.175 | 0.210 | 0.230 | 0.239 0.270
-5 | 0.074 | 0.080 | 0.135 | 0.170 | 0.185 0.213
-10 | 0.056 | 0.059 | 0.125 | 0.139 | 0.193 0.193

Table 2: Effect of Parameter Dynamics for v = —1

7 =0.06;0 = 0.0871; 79 = 0.06;
0o = 0.1; 09 = 0.2; kg = 0.6950

T=1

T

=5

T =10

g9

IC

W

IC

™W

IC

™W

0.0824
0.12
0.0824
0.0824

0.0364
0.0364
0.05
0.0364

0.21
0.21
0.21

0.3

0.244
0.240
0.257
0.234

0.252
0.252
0.257
0.243

0.270
0.269
0.282
0.262

0.295
0.285
0.311
0.283

0.297
0.276
0.274
0.280

0.328
0.289
0.297
0.298
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Table 3: Effect of Parameter Dynamics for v = —2

7 =0.06;0 = 0.0871; 79 = 0.06;
0o = 0.1; 09 = 0.2; kg = 0.6950

T=1

T=5

09

IC

T™W

IC

™W

0.0824
0.12
0.0824
0.0824

0.0364
0.0364
0.05
0.0364

0.21
0.21
0.21

0.3

0.174
0.175
0.167
0.166

0.175
0.176
0.180
0.170

0.210
0.194
0.213
0.192

0.232
0.205
0.241
0.207

0.239
0.234
0.259
0.219

0.270
0.248
0.290
0.242

Table 4: Non-affine models with v = —1

7 = 0.06;0 = 0.0871; 79 = 0.06; 6, = 0.1;09 = 0.2
K, = 0.824; kg = 0.6950; 0, = 0.0364; 7 = 0.21

T=1 T=5 T =10
v | Vg IC ™ IC W IC W
05 | 0 ]0.244|0.252 | 0.270 | 0.295 | 0.297 | 0.328
025 0 |0.249]0.253 | 0.228 | 0.231 | 0.244 | 0.245
0 [0.244 | 0.233 | 0.246 | 0.243 | 0.226 | 0.233
0.5 [ 0.5]0.246 | 0.260 | 0.286 | 0.308 | 0.322 | 0.346
0.5 | 2 ]0.265 | 0.266 | 0.300 | 0.323 | 0.335 | 0.362
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Table 5: Non-affine models
with v = -2

7 =0.06;0 = 0.0871; ry, = 0.06
6o = 0.1;00 = 0.2; k,, = 0.824;
ke = 0.6950; o, = 0.0364; 09 = 0.21

T=1 T=5

IC ™ | IC T™W

v,

<
5

05 | 0 |0.174 | 0.175 | 0.210 | 0.230
025 0 |0.169 | 0.170 | 0.165 | 0.168
2 0 [0.172 | 0.166 | 0.154 | 0.156

0.5 [05]0.184 | 0.189 | 0.221 | 0.244
0.5 | 2 [0.186 | 0.189 | 0.232 | 0.258
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