
   

 

A Generalized Vickrey Auction 
Lawrence M. Ausubel* 

University of Maryland 

September 1999 

 

Abstract 

In auction environments where bidders have pure private values, the Vickrey auction (Vickrey, 

1961) provides a simple mechanism for efficiently allocating homogeneous goods. However, in 

environments where bidders have interdependent values, the Vickrey auction does not generally 

yield efficiency. This manuscript defines a “generalized Vickrey auction” which yields 

efficiency when bidders have interdependent values. Each bidder reports her type to the 

auctioneer. Given the reports, the auctioneer determines the allocation that maximizes surplus. 

The payment rule is the following extension of Vickrey auction pricing: a bidder is charged for 

a given unit that she wins according to valuations evaluated at the minimum signal that she 

could have reported and still won that unit. 
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      *The analysis presented here was originally contained in Appendix B of Ausubel (1997). Several 
colleagues advised me that it was buried and completely missed amid the long paper, and they urged me 
to repackage it into a more visible form. Finally they have shamed me into removing the appendix from 
that paper, and writing a separate manuscript. 
        I am grateful to Peter Cramton, Ted Groves, Philippe Jehiel, Eric Maskin, Benny Moldovanu, Motty 
Perry and Phil Reny for extremely helpful discussions at various stages of the development of this 
manuscript. All remaining errors are my sole responsibility. 



 

 1 

  

A Generalized Vickrey Auction 
Lawrence M. Ausubel 

 

INTRODUCTION. 

In auction environments where bidders have pure private values, the Vickrey auction (Vickrey, 
1961) provides a simple mechanism for efficiently allocating M identical objects. Quite straightforwardly, 
bidders simultaneously and independently submit up to M bids each; and the M highest bids win. More 
sophisticatedly, the payment rule is that, if bidder i is to be assigned k objects, then she is charged the kth 
highest rejected bid (submitted by another bidder) for her first unit, the (k−1)st highest rejected bid for her 
second unit, … , and the highest rejected bid for her kth unit. As is well known, it then becomes a (weakly) 
dominant strategy for each bidder to submit bids equaling her true marginal values, yielding efficiency, 
when bidders have diminishing pure private values. 

However, in environments where bidders have interdependent values—meaning that one bidder’s 
value depends on another bidder’s signal—the Vickrey auction as defined in the previous paragraph does 
not generally yield efficiency. While efficiency obtains in single-object environments where bidders are 
completely symmetric (Milgrom and Weber, 1982) and in two-bidder auctions generally (Maskin, 1992), 
the Vickrey auction does not generally yield efficiency in single-object environments with three or more 
asymmetric bidders (Maskin, 1992), nor in multiple-object environments with symmetric bidders 
(Ausubel, 1997). For the case of a single object where bidders have interdependent values, Maskin (1992) 
defined a “modified second-price auction” which extends the standard second-price auction to yield 
efficiency. In the same spirit, in this manuscript, we shall generalize Maskin’s approach by defining a 
“generalized Vickrey auction” for multiple identical objects which yields efficiency when bidders have 
interdependent values. 

The three papers most closely related to the current manuscript are Dasgupta and Maskin 
(forthcoming), Perry and Reny (1999), and Jehiel and Moldovanu (1999). The first two papers differ from 
the current one in their basic informational perspective: they assume that the mapping from signals to 
valuations is commonly known by bidders, but not known by the auctioneer; here it is assumed that the 
mapping from signals to valuations is commonly known by bidders and the auctioneer. Dasgupta and 
Maskin’s work—contemporaneous with Ausubel (1997, Appendix B), the original version of the current 
manuscript—provides an extremely general, but rather complicated procedure: each bidder communicates 
her valuation, as a function of each possible realization of all other bidders’ valuations, and the auctioneer 
computes fixed points. Perry and Reny’s work—subsequent to Ausubel (1997, Appendix B)—restricts 
attention, as here, to the case of homogeneous objects and diminishing returns, and then obtains a two-
round bidding procedure which is less computationally intensive for the auctioneer. In the first round, 
bidders simultaneously submit bids, which become public information and which are fully revealing of 

the bidders’ signals. In the second round, each bidder i submits bids { }jl
ikb  representing what bidder i 
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would submit in a two-bidder, second-price, single-object auction for the kth unit of bidder i versus the lth 
unit of bidder j. Bidders may need to submit a fairly voluminous collection of bids, as j runs through all 
bidders (j ≠ i) while k and l run through all k + l ≤ M + 1, where M is the number of objects. However, the 
auctioneer is merely required to pick out the high bids. 

The current manuscript, by assuming that the auctioneer also knows the payoff structure, is 
instead able to get by with a very simple direct mechanism. Each bidder reports her type, and the 
auctioneer then determines an efficient allocation and payments reminiscent of Vickrey’s rule. This makes 
the mechanism quite intuitive and transparent, and the analysis quite short and simple. Of course, their 
procedures and mine must be outcome-equivalent. 

The stronger informational requirements placed on the auctioneer than in Dasgupta-Maskin and 
Perry-Reny can perhaps be defended by embedding the direct mechanism as the second stage of a two-
stage procedure. In the first stage, each bidder reports the mapping from signals to valuations both for 
herself and all other bidders. If the bidders make consistent reports, then the auctioneer proceeds to carry 
out the generalized Vickrey auction; if the bidders make inconsistent reports, then the auctioneer sends 
everybody home empty-handed. 

Jehiel and Moldovanu’s work—also subsequent to Ausubel (1997, Appendix B)—shows that 
with multi-dimensional signals, an efficient direct mechanism is impossible. This is consistent with the 
current manuscript, as I assume a single-dimensional signal space. For the case of a single-dimensional 
signal space—and under the hypothesis that each bidder’s utility is a linear function of her own and other 
bidders’ signals—Jehiel and Moldovanu extend the direct mechanism of this manuscript to yield efficient 
outcomes in environments with allocative externalities (i.e., unlike in the other cited papers, they allow 
each bidder’s utility to also depend on the assignments to other bidders). 

The current manuscript—as well as the three related papers—set efficiency as the sole objective. 
In the real world, sellers often set reserve prices in auctions. It then becomes an interesting question 
whether it is possible to extend the selling procedure herein so as to be constrained-efficient subject to the 
reserve price (i.e., to efficiently assign all objects that are sold, but to inefficiently withhold some of the 
objects from the market). At the same time, this manuscript (and the three related papers) assumes that 
payoffs are realized without the possibility for further trade in the auctioned item following the 
conclusion of the auction. In the real world, agents often engage in post-auction resale. It also becomes an 
interesting question whether it is possible to embed the efficient equilibrium of the auction into the larger 
game consisting of an auction round followed by a resale round. Both of these problems are affirmatively 
solved in Ausubel and Cramton (1999). 

 

THE MODEL AND THE RESULTS. 

A seller has a quantity M of a homogeneous good to sell to n bidders, N ≡ {1,…,n}. The good may 
be assumed to be either in discrete units or perfectly divisible, with little effect on the analysis. In the 
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discrete case, each bidder i can consume any quantity qi ∈  {0, 1, … , M}. In the perfectly-divisible case, 

each bidder i can consume any quantity qi ∈  [0,M]. Let q ≡ (q1,…,qn), and let Q ≡ {q | ∑i qi ≤ M} be the 
set of all feasible assignments. Each bidder’s value for the good may depend on the private information of 
all the bidders. Let ti ∈  Ti ⊂  [0,ti

max] be bidder i’s type (i’s private information), 
t ≡ (t1,…,tn) ∈  T ≡ T1 × ⋅⋅⋅ × Tn, and t−i ≡ t ~ ti. (Type may be discrete or continuous.) A bidder’s value 
Vi(t,qi) for the quantity qi depends on her own type ti and the other bidders’ types t−i. A bidder’s utility is 

her value less the amount, Xi, she pays: Vi(t,qi) − Xi. Let vi(t,qi) denote the marginal value for bidder i, 
given the vector t of types and quantity qi. This is defined so that, in the discrete case, 

1
( , ) ( , ) ,iq

i i ik
V t q v t k

=
= ∑  and in the perfectly-divisible case, 

0
( , ) ( , ) .iq

i i iV t q v t y dy= ∫  We make the following 

two assumptions on vi(t,qi): 

Value monotonicity. For all i, ti, t−i, and qi, vi(t,qi) ≥ 0, vi(t,qi) is strictly increasing in ti, vi(t,qi) is 

weakly increasing in tj (j ≠ i), and vi(t,qi) is weakly decreasing in qi. 

Value regularity. For all i, j, qi, qj, t−i, and ti′ > ti, vi(ti,t−i,qi) > vj(ti,t−i,qj) ⇒  vi(ti′,t−i,qi) > vj(ti′,t−i,qj) 

and vi(ti′,t−i,qi) < vj(ti′,t−i,qj) ⇒  vi(ti,t−i,qi) < vj(ti,t−i,qj). 

Value monotonicity implies that types have a natural order, and that bidders have (weakly) 
diminishing marginal valuations. Observe that, without diminishing marginal valuations, the standard 
Vickrey auction does not yield efficiency even with pure private values. Value regularity is effectively a 
single-crossing property: it implies that an efficient assignment rule may be selected so that each bidder 
i’s quantity is weakly increasing in ti. Value regularity holds if an increase in bidder i’s type raises i’s 
marginal value at least as much as that of any other bidder. Without value regularity, Perry and Reny 
(1999) show that there may not exist any efficient mechanism. 

Let * * *
1( ) ( ( ), , ( ))nq t q t q t≡ !  denote an ex post efficient assignment rule for the M objects, i.e., 

*( )q t  maximizes ( , ( ))i i iV t q tΣ  subject to ( ) ,i iq t MΣ ≤  for all type realizations t ≡ (t1,…,tn) ∈  T. (When 

the efficient assignment is not unique due to flat regions in the aggregate demand curve, q*(t) is chosen so 

that each *( )iq t is weakly increasing in ti.) Given efficient assignment rule *( )q t , let us define: 

 { }*ˆ ( , ) inf | ( , ) .i i i i i it t y t q t t y− −= ≥  (1) 

Thus, ˆ ( , )i it t y− is the minimum report that bidder i can make and still receive at least y units in the 

efficient allocation, in the event that her opponents report t−i. Finally, it is useful to define v−i(t,q−i) as the 

marginal value of the (q−i)th unit to bidders −i (and given that the units are allocated efficiently among 
bidders −i).  

The generalized Vickrey auction is now defined to be the direct mechanism in which objects are 

assigned according to *( )q t  and the payment rule is defined as the following extension of Vickrey auction 
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pricing: bidder i pays the ( )*( ) 1iq t k+ − th highest rejected value (other than her own) for her kth object 

where, crucially, values are evaluated for this calculation using ˆ ( , )i it t k− as the signal for bidder i and 

using t−i (the vector of actual reports) as the signals for bidder i’s opponents.1 

Observe that this static mechanism has the same general flavor as the Vickrey auction.  Any 
bidder’s submitted bid does not determine the price she pays (conditional on winning the object), since:  
(1) à la Vickrey, her payment is determined only by the opportunity cost of providing her with the object; 
and (2) in computing the opportunity cost, the bidder’s actual reported signal is not used, but rather the 
lowest signal which would enable her to win the object. 

More formally, we define: 

DEFINITION 1. Given any efficient assignment rule q*(t) such that *( )iq t  is nondecreasing in ti for 

each i, the generalized Vickrey auction is the direct mechanism in which bidders simultaneously report 

their types and each bidder i is assigned * ( )iq t  units and is charged a payment *( )iX t  computed by: 

 
* ( )*

1
ˆ( ) ( ( , ), , 1 ),iq t

i i i i ik
X t v t t k t M k− − −=

= + −∑  (2) 

in the case of discrete units, and computed by: 

 
* ( )*

0
ˆ( ) ( ( , ), , ) ,iq t

i i i i iX t v t t y t M y dy− − −= −∫  (3) 

in the case of perfectly-divisible units. 

We easily have the following theorem: 

THEOREM 1. For any valuation functions vi(t,qi) satisfying value monotonicity and value 

regularity, and for any efficient assignment rule q*(t) such that *( )iq t  is nondecreasing in ti for each i, the 

generalized Vickrey auction has sincere bidding as an ex post equilibrium. 

PROOF. Since q*(t) has the property that *( )iq t  is nondecreasing in ti for each i, ˆ ( , )i it t y−  defined 

by Eq. (1) is nondecreasing in y. For the case of perfectly-divisible units, substituting Eq. (3) into the 
expression, Vi(t,qi) − Xi, for bidder i’s utility yields the following integral for bidder i’s utility from 

reporting her type as ti′ when her true type is ti and the other bidders’ true and reported types are t−i: 

 
* ( , )

0
ˆ( | , ) ( , , ) ( ( , ), , ) .i i iq t t

i i i i i i i i i i iU t t t v t t y v t t y t M y dy
′

−

− − − − −
′  = − − ∫  (4) 

                                                      
1 In this paragraph, for the case of perfectly-divisible units, bidder i then pays the ( )* ( )iq t y− th highest rejected value 
(other than her own) for her yth object. 
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Observe that the integrand of Eq. (4) is independent of ti′, bidder i’s reported type; ti′ enters into Eq. (4) 
only through the upper limit on the integral. Moreover, by value monotonicity, the integrand of Eq. (4) is 

nonnegative for all y ≤ *( , )i i iq t t−  and is nonpositive for all y ≥ *( , )i i iq t t− . Hence, ( | , )i i i iU t t t−′  is 

maximized when the upper limit on the integral equals *( , )i i iq t t− , which is attained by sincere bidding. 

For the case of discrete units, the argument is analogous. ! 

In the case of a perfectly-divisible good, the expression taken by the payment rule of the Vickrey 
auction becomes still simpler if the type space is continuous, the valuation functions vi(t,qi) are continuous 

for each i, and if the zero types have zero marginal valuation for the good. In that event, *(0, )i iq t− may 

always be taken to be zero, and for y > 0, we have that ˆ ( , )i it t y−  exactly satisfies: 

 ˆ ˆ( ( , ), , ) ( ( , ), , ) .i i i i i i i iv t t y t M y v t t y t y− − − − −− =  (5) 

 

Consequently, we immediately have: 

PROPOSITION 1. For the case of continuous types and a perfectly-divisible good, consider any 

valuation functions vi(t,qi) satisfying value monotonicity, value regularity, continuity, and vi(0,t−i,qi) = 0, 

for all i, t−i and qi, and any efficient assignment rule q*(t) such that *(0, ) 0i iq t− =  and * ( )iq t  is 

nondecreasing in ti for each i and t−i. Then the generalized Vickrey auction has the payment rule: 

 
* ( )*

0
ˆ( ) ( ( , ), , ) .iq t

i i i i iX t v t t y t y dy− −= ∫  (6) 

Finally, observe given Eq. (6) that, under the assumptions of Proposition 1, Eq. (4) reduces to: 

 
* ( , )

0
ˆ( | , ) ( , , ) ( ( , ), , ) .i i iq t t

i i i i i i i i i i iU t t t v t t y v t t y t y dy
′

−

− − − −
′  = − ∫  (7) 

Eq. (7) has an eminently simple interpretation, in close keeping with the traditional mechanism-design 
literature. Bidder i is precisely permitted to retain her “informational rents”: her value for the yth unit is 

( , , )i i iv t t y− ; she is required to pay only ˆ( ( , ), , )i i i iv t t y t y− − , which would be exactly her value if she were 

just the minimal type who is assigned a yth unit. 

It is interesting to observe that the equilibrium of the generalized Vickrey auction is not only a 
Bayesian-Nash equilibrium, but also an ex post equilibrium: given that bidder i knows the announcement, 
t−i, that bidders −i will make (and believes the announcement), bidder i still finds it a best response to 
announce her true type. Given that bidders will not possess dominant strategies in an environment with 
interdependent values, this is about the strongest result we can hope for. Moreover, since this is an ex post 
equilibrium, observe that the outcome is independent of the joint distribution of types. 
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Finally, let us relax the informational requirements placed on the auctioneer by specifying a two-
stage revelation procedure in which the auctioneer need not know the mapping from signals to valuations. 
(The mapping still needs to known by all the bidders.) In the first stage, each bidder simultaneously 
reports the mapping from signals to valuations both for herself and all other bidders. If all of the bidders’ 
reports agree, then the auctioneer proceeds to calculate and carry out the generalized Vickrey auction for 
the reported mapping from signals to valuations; if the bidders’ reports do not agree, then the auctioneer 
sends everybody home with zero goods assigned and zero payments. Since every bidder’s interim payoff 
in the generalized Vickrey auction is nonnegative (in fact, every bidder’s ex post payoff is nonnegative), 
we easily have: 

THEOREM 2. For any valuation functions vi(t,qi) satisfying value monotonicity and value 

regularity, and for any efficient assignment rule q*(t) such that *( )iq t  is nondecreasing in ti for each i, the 

two-stage procedure has truthful reporting in the first stage and sincere bidding in the second stage as an 
equilibrium. 

 

CONCLUSION: COMPARISON WITH ASCENDING-BID AUCTIONS. 

For some symmetric models with interdependent values, there exist ascending-bid auction 
procedures which also yield efficient allocations. For a single indivisible object, this is provided by the 
English auction (Milgrom and Weber, 1982). For M objects and unit demands, this is provided by an 
ascending-clock auction which ends at the moment the (M+1)st bidder drops out. For M objects and flat 
demands, this is provided by my efficient ascending-bid auction design (Ausubel, 1997). It is interesting 
to now observe how the outcome of the generalized Vickrey auction compares with the outcome of the 
efficient ascending-bid auction under these circumstances. 

With a single indivisible object, the winner’s payment in the generalized Vickrey auction equals 
ˆ( ( ,1), ,1)i i i iv t t t− − − , coinciding with the payment in the English auction. Thus, the equilibria are outcome-

equivalent. However, if there are M ≥ 2 objects and if efficiency requires that a positive quantity of 
objects be awarded to two or more of the bidders, then the outcomes differ in a subtle way. In the 
generalized Vickrey auction, all of the private signals have been revealed to the mediator, and the 
payment is then allowed to depend on all (n − 1) private signals of the other bidders. By way of contrast, 
in the efficient ascending-bid auction designs, some or all of the objects are awarded at a time when two 
or more bidders remain in the auction. Consequently, the payment then depends on (n − 2) or fewer of the 
private signals of the other bidders. By the same logic as in Milgrom and Weber (1982), in environments 
where the bidders’ signals are strictly affiliated, the generalized Vickrey auction uses more private signals 
and hence yields higher expected revenues. Indeed, as shown by Perry and Reny (1999), it yields an upper 
bound for the expected revenues of an efficient ex post equilibria, and thus, it is the appropriate 
benchmark for comparing the revenues of the efficient ascending-bid auction designs. 
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At the same time, the generalized Vickrey auction has a serious disadvantage relative to the 
efficient ascending-bid auctions. To paraphrase Maskin (1992, p. 127, footnote 3), the reader should 
notice that the rules of the generalized Vickrey auction are defined in terms of the mappings from signals 
to valuations. That is, the auction designer must know these mappings (à la Theorem 1), a demanding 
requirement, or ask them and obtain consistent responses (à la Theorem 2), still a reasonably implausible 
task. By contrast, the designer can remain ignorant of the mappings if he uses the efficient ascending-bid 
design, a distinct advantage that may well more than offset the theoretical disadvantage in expected 
revenues. 
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