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Abstract

Discrete choice models have been used to describe imperfect com-
petition between …rms selling horizontally di¤erentiated products. In
all theoretical models, the indirect utility function is assumed to be
linear in income so that there is no income e¤ect. We consider here
a situation in which income enters nonlinearly into the indirect util-
ity function. We propose a correct (hicksian) measure of consumer
surplus based on a willingness to pay principle. In order to grantee
the existence of a price equilibrium, match values are assumed logcon-
cavilly distributed. Using a correct measure of welfare, we extent the
results of Anderson, de Palma and Nesterov to the case where income
e¤ects are involved. We proof that under these general assumptions,
overentry prevails. Our …ndings, which extend the conventional dis-
crete choice oligopoly approach provide various guidelines for empirical
research.

1 Introduction
Market performance could be evaluated according to various indexes captur-
ing competitiveness, cost e¢ciency, quality and variety of the goods o¤ered.
Over the last decades, the production costs have decreased enormously all
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over the world with a tendency towards lower sunk costs and as a conse-
quence more variety o¤ered to the consumers (This trend may be somewhat
reduced at the moment given the trends towards merging and acquisition).
Since variety is costly but at the same time bene…cial to the consumers, one
is thus led to wonder whether or not variety o¤ered to the customers is too
large.

We consider here a di¤erentiated product market in which …rms com-
pete strategically. Since each …rm has some market power, equilibrium price
is higher than marginal cost and the two fundamental theorems of welfare
economics break down. This imperfection induces at the same time some
potential biases in the quality o¤ered and in the variety o¤ered. For exam-
ple, consider the case of two …rms competing in quality on the [0,1] quality
line. The equilibrium involves these two …rms located at the center. For such
equilibrium solution, there is a duplication of the resources since the welfare
would be the same if there were only one …rm. In this case, the market pro-
vides too much product variety. Now, if the number of …rms is set to 2, and
assuming inelastic individual demand, the planner will locate the two …rms
on the …rst and the third quartiles. The market equilibrium provides also
the wrong quality and there is not enough quality di¤erentiation.

We restrict this analysis to the biases associated to over- or underprovi-
sion of product variety and set all the product qualities exogenously. Since
we assume decreasing average cost, the market will be served at the mini-
mum cost with a single …rm. However, since the products are di¤erentiated,
the customers would prefer, ceteris paribus, the largest number of product
(…rms). There is an obvious trade-o¤ between e¢ciency and bene…ts from
product di¤erentiation. To study this problem we will adopt here the Cham-
berlin demand system, which assumes symmetry: the product have the same
quality and are horizontally di¤erentiated (Chamberlin (1933)). This type
of approach has been exploited by Spence (1976) and later on by Dixit and
Stiglitz (1977) and Deneckere and Rothschild (1992) to address the problem
of optimum product variety. The trade-o¤ identi…ed by Spence is as fol-
lows. When a new …rm decides to enter into the market, it does not take
into account the fact that it will tend to erode the pro…t of the other …rms.
This “business stealing” e¤ect, per se, induces too many …rms in the market.
On the other hand, the …rm, which decides to enter into a market, gener-
ates some surplus for the consumers. Since …rms are unable to discriminate
perfectly, they will only be able to appropriate a part of the surplus they gen-
erate. As a consequence, this second e¤ect, per se, the “non appropriability
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of consumer surplus” leads to not enough variety. Market equilibrium is the
outcome of these two opposing forces. In the pure symmetric location game,
Salop (1979) has shown that there is far excessive entry in the market. This
is because each …rm competes with only two neighbors; as a consequence
competition is local and reduced, which contributes to explain that the entry
is exacerbated.

On the other extreme, we have non-localized competition à la Chamber-
lin. In this case each …rm competes with all other …rms. Spence (1976)
and Dixit and Stiglitz (1977) have considered these models. We focus here
our attention to a class of models, the discrete choice models, which have
become increasingly popular over the last decade. For the most well known
model, the logit, Anderson and de Palma (1992a) have shown that there is
excessive entry although the amount of overentry is limited (at most one).
Discrete choice models have become very popular tools in industrial organi-
zation, because they are ‡exible tool (see Anderson, de Palma and Thisse
(1992)), and they are embedded with very strong econometric properties (see
McFadden (1981)) and because they allow for existence of a Nash equilib-
rium under mild assumptions. Existence of a Bertrand-Nash equilibrium has
been shown under the hypothesis that the taste distribution is log-concave
(Caplin and Nalebuf (1991)). Interestingly, the intuition suggested by the
logit model goes through for a class of discrete choice models that retain
the log-concavity of the taste distribution (Anderson, de Palma and Nes-
terov (1995)). Their model allows for inelastic as well as elastic demand and
provides various well-known models (the probit model, the CES model, and
the linear model) as special cases. Using speci…c examples, Anderson et al.
(1995) have shown that the amount for over-entry could be substantial and
as large as 10% of the optimal number of …rms. Berry, Levinsohn and Pakes
(1995) and Goldberg (1995) have used these models for empirically analyzing
equilibrium in the car industry.

The discussion concerning over/under-entry for discrete choice oligopoly
models has failed till now to incorporate income e¤ects. McFadden (1996,
1997) provided the …rst extensions of discrete choice model to treat explicitly
income e¤ects. Unfortunately, the results derived by McFadden are based on
numerical simulations and could not be used in the theoretical framework we
wish to use. Later on, de Palma and Kilani (1999) derive welfare formula
(based on the idea of compensating variations) for a version of the logit model
taking into account income e¤ects. In this logit model with income e¤ects,
both the demand and the welfare depend on income.
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We provide in this paper a formulation of conventional discrete choice
model when there are income e¤ect. We assume that the tastes are log-
concavilly distributed and show that there exists in this case a symmetric
equilibrium. We consider two cases: one where demand is inelastic and one
where it is elastic. For these two models, we solve for symmetric price equi-
librium. We show that the existence results derived by Caplin and Nalebu¤
(1991) could be readily extended to the case where there are income e¤ects.
Finally, we provide the main result of the paper by showing that in the two
cases, elastic and inelastic demand, over-entry is the norm. These results
extend the scope of the results of Anderson, de Palma and Nesterov (1995).

The paper is organized as follows. In section 2, a model with unitary
demand allowing for income e¤ects is analyzed. We proof that under as-
sumptions of logconcavity and with decreasing marginal utility of income, a
symmetric price equilibrium exists. We also proof uniqueness of the price
equilibrium under logit assumptions. We extent this framework in section
3 where we assume that individual demand is elastic and the existence of
a symmetric equilibrium is proved. In section 4, we introduce an aggregate
measure of consumer surplus based on the willingness to pay principle. Using
this measure, we proof that market equilibrium yields too many …rms com-
pared with a second-best optimum. Finally, concluding remarks are provided
in section 5.

2 Unitary demand
There is a continuum of consumers of mass 1 with identical incomes, y > 0,
facing a choice among n mutually exclusive products indexed by i, and sold
at price pi, i = 1:::n. Consumer preferences are modelled within the discrete
choice framework (see McFadden (1981)). The conditional indirect utility for
a consumer indexed by k from buying product i is:

uki = vi + e
k
i ; i = 1:::n;

where vi, which depends on price pi and income y is the systematic part of
the indirect utility and eki is a match value between consumer k and product
i.

We make the following assumption about the systematic part, vi of the
indirect utility function:
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A1: The systematic part of the (conditional) indirect utility is:

vi = g (zi) ; i = 1:::n; (1)

where g(:) is twice di¤erentiable, concave and strictly increasing on R+,
and where zi = y ¡ pi.

The formulation (1) generalizes assumption A1 made in Anderson et al.
(1995), where the conditional indirect utility is taken to be linear in income
and price. In their formulation g (z) = z and the marginal utility of income is
constant. Note that since the price and income enter the conditional indirect
utility function as y¡p, the individual (conditional) demand, di, is according
to the Roy’s identity, inelastic and unitary : di = ¡ [(@vi /@pi ) /(@vi /@y) ] =
1.

We consider in this study the Chamberlinian set up and restrict our at-
tention to symmetric equilibria. That is, we assume that the individual are
statistically identical and that the …rms are identical. As a consequence (see
assumption A2 in Anderson et al. (1995)) the match value satisfy assumption
A2:

A2: The density of types is
nQ
i=1
f (ei), with

R b
a f (x)dx = 1, and F (X) =

RX
a f (x) dx.

The interval (a; b), where a and b can be either …nite or in…nite, is the
support of the distribution of the match values.

The demand for good i corresponds to the mass of consumers who derive
the largest utility by purchasing good i. Therefore, the demand function for
good i, denoted by Di, is:

Di =
Z b

a
f (x)

Y

j 6=i
F (vi ¡ vj + x)dx; i = 1:::n; (2)

where vi are given by (1).
We assume that each …rm has the same constant marginal cost set for

now to zero with no loss of generality1, and incurs the same …xed costK > 0.
The pro…t of …rm i, ¼i, is given by:

¦i = piDi ¡K; i = 1:::n: (3)

1Since the pro…t function is ¦i = (pi ¡ c)Di, if c > 0, we can consider the following
change in variable: Pi = pi ¡ c and Y = y ¡ c.
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Existence of an equilibrium depends crucially on the distribution of the
match value. Caplin and Nalebu¤ (1991) introduce the idea of logconcavity
as a key tool to prove the existence of a Bertrand-Nash equilibrium. Recall
that the function f(x) is logconcace if ln[f (x)] is concave. We assume:

A3: f (x) is logconcave and twice di¤erentiable on (a; b).

For an interior equilibrium, the following price …rst-order conditions:

@¦i
@pi

=Di

Ã
1 + pi

@ lnDi
@pi

!
= 0; i = 1:::n; (4)

must be ful…lled. Di¤erentiating the demand function (2) with respect to pi
yields:

@Di
@pi

= ¡g0 (zi)
X

j 6=i
­ij; i = 1:::n; (5)

where:

­ij =
Z b

a
f (x) f (vi ¡ vj + x)

Y

k6=i;j
F (vi ¡ vk + x) dx; j 6= i; i = 1:::n:

For the symmetric candidate equilibrium, we obtain:
0
@

X

j 6=i
­ij

1
A /n = n (n¡ 1)

Z b

a
f2 (x)Fn¡2 (x)dx ´ ­ (n) : (6)

Substituting (6) into (5) and using equation (4) leads to the following implicit
equation for the price candidate equilibrium:

p¤ =
1

g0 (y¡ p¤) ­ (n) : (7)

Its existence is stated in the following proposition.

Proposition 1 Under assumptions A1-A3 and provided that income is suf-
…ciently high, a unique symmetric Bertrand-Nash price equilibrium, p¤ =
p¤ (n), given by (7) exists. Moreover, p¤ is nonincreasing in n.
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Proof. The price …rst-order condition evaluated at a symmetric solution is
equivalent to:

Ã (p; n) ´ pg0 (y ¡ p)­ (n) = 1: (8)

We have Ã (0; n) = 0 and Ã (p; n) is strictly increasing in p since
@Ã /@p = [g0 (p)¡ pg00 (p)]­ (n) > 0: Note also that ­ (n) (and therefore
Ã (p; n)) is nondecreasing in n (see Anderson et al. (1995), Proposition 1).
Assuming that y is large enough, i.e. for y ¸ [­ (2) g0 (0)]¡1, it follows that
Ã (y; n) ¸ 1.2 Therefore, there exists a unique solution p¤ to equation (8)
given by (7), with p¤ 2 [0; y]. The price equilibrium is nonincreasing in n
since @Ã /@n ¸ 0 and @Ã /@p > 0.

Since g(:) is strictly increasing and concave (assumption A1) and since
the match values are logconcavilly distributed (assumptions A2 and A3),
Proposition 4 in Caplin and Nalebu¤ (1991) guarentee that the pro…t function
(3) is logconcave (and hence quasi-concave) in own price. As a consequence
the symmetric candidate equilibrium is a Bertrand Nash equilibium.

Note that with a linear speci…cation, g (z) = z, the price equilibrium
reduces to:

p¤ =
1

­(n)
;

which is independent of consumer income. In that case, the welfare function
reduces to W(n) = y + n

R b
a xf(x)F

n¡1(x)dx ¡ nK. The welfare analysis is
more intricate for a non-linear speci…cation of g(:) and is relegated to Section
3.

An important particular case of the demand function occurs when the
match value are distributed according to the double exponential distribution,
with cumulative density function given by:

F (x) = exp

"
¡ exp

Ã
¡x
¹

!#
; x 2 (¡1;+1) ;

where ¹ > 0 is a scale parameter. In that case, demand given by (2) reduces
to the logit speci…cation (see Anderson, de Palma and Thisse (1992)):

Di =
evi/¹

Pn
j=1 e

vj /¹
; i = 1:::n: (9)

2 If g0 (0) = +1, a price equilibrium exists for any y > 0.
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With the double exponential speci…cation, it can be shown that ­ (n) =
(n¡ 1) /¹n (see equation (6)) so that the price equilibrium solves:

p¤ =
¹n

(n¡ 1) g0 (y ¡ p¤) :

Let us consider two particular cases:

² With double-exponentially distributed match values and g(z) = z,
we obtain the standard logit model introduced by Anderson and de
Palma (1988) to study oligopoly competition with di¤erentiated prod-
ucts. The (unique) price equilibrium is therefore p¤ = ¹n /(n¡ 1) ,
n ¸ 2.

² With double-exponentially distributed match values and with a loga-
rithmic speci…cation, g (z) = ln z, the unique price equilibrium is ex-
plicitly given by:

p¤ =
¹n

(n¡ 1) +¹ny;

for n ¸ 1.3 In this case, the equilibrium price depends linearly on
consumer income. The monopolistic competition limit prices remains
bounded away from zero since limn!1 p¤ = ¹y /(¹+ 1). For very large
product di¤erentiation we have lim¹!1p¤ = y .4

Caplin and Nalebu¤ (1991) have provided results on the uniqueness of
the price equilibrium with logconcave density of preferences for the duopoly
model (see Proposition 6 in Caplin and Nalebu¤ (1991)). No general results
have been derived for logconcave distributions. The uniqueness of the price
equilibrium is however guaranteed for the standard logit model with no in-
come e¤ects (see Anderson and de Palma (1988)).5 We extend below this
result when there are income e¤ects:

Proposition 2 Under assumption A1-A2 and with double exponentially dis-
tributed match values, the symmetric price equilibrium is unique.

3The monopoly price is p¤ (1) = y.
4This new model has not the undesirable property of the logit model: lim¹!1 p¤ = 1.
5Another proof is available in Milgrom and Roberts Milgrom and Roberts (1990) which

also show that the price game has a log-supermodularity property.
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Proof. Using a change in variables vi = g (y ¡ pi), pro…t functions can be
written: ¦i = [y ¡ g¡1 (vi)]Di (we set K = 0, w.l.o.g). The logarithm of the
pro…t function: ln¦i = ln [y ¡ g¡1 (vi)] + lnDi is strictly concave since:

@2 ln¦i
@v2i

=
@2 ln [y¡ g¡1 (vi)]

@v2i
+
@2 lnDi
@v2i

< 0;

where the inequality holds since g (:) is concave and Di is logconcave with
respect to the vector (v1:::vn). Moreover we have the following relation:6

@2 ln¦i
@vi@vj

=
@2 lnDi
@vi@vj

> 0; j 6= i:

Now, the demand function (9) satisfy the following identity:

@2 lnDi
@v2i

= ¡
X

j 6=i

@2 lnDi
@vi@vj

:

Therefore the uniqueness of a price equilibrium is guarenteed by the diagonal
dominant property (cf. Friedman (1977)):

¯̄
¯̄
¯
@2 ln ¦i
@v2i

¯̄
¯̄
¯ >

X

j 6=i

¯̄
¯̄
¯
@2 ln ¦i
@vi@vj

¯̄
¯̄
¯ :

3 Elastic demand
In this section, the framework is enlarged to allow for elastic demand. In
Anderson et al. (1995), elastic demand is modelled by assuming that: vi =
y + v(pi), where v(:) is twice continuously di¤erentiable, convex and stricly
decreasing over (0; bp). With this speci…cation, a model with elastic individual
(conditional) demand is obtained. This framework is further extended in
Anderson et al. (1995) to the case where the marginal utility of income is
not constant but remains independent on price.7 However, their extension

6For the logit demand model given by (9), we have:
¡
@2 ln Di /@vi@vj

¢
=

(¡1 /¹) (@Di /@vj ) > 0; j 6= i.
7With this assumption, results provided by Caplin and Nalebu¤ cannot be used directly.

However, to proof the existence of a price equilibrium while still using results of Caplin
and Nalebu¤, it su¢ces to operate a change in variable and use vi instead of pi as strategic
variable. In this case, it is straightforward to show that pro…t function of Firm i is quasi-
concave in vi.
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leaves away income e¤ects since demand functions remain independent on
income.

We provide here a generalization of these frameworks where the marginal
utility of income is non linear and depends on price. In this case, the condi-
tional demand is elastic. Assumption A1 is replaced by:

A1’: The systematic part of the (conditional) indirect utility is:

vi = g (y + v (pi)) ; i = 1:::n; (10)

where g(:) is twice di¤erentiable, concave and strictly increasing on
R+ and v (:) is twice continuously di¤erentiable, convex and strictly
decreasing on R+ with limp!1 v (p) = ¡1.

Using the Roy’s identity, the conditional demand for good i is:

d (pi) ´ ¡@vi /@pi
@vi /@y

= ¡v0 (pi) :

The demand function for good i is therefore: d (pi)Di, where Di is given by
(2). Let c the constant marginal cost. The pro…t of …rm i is now:

¦i = ¼ (pi)Di ¡K;
where ¼ (p) = (p¡ c) d (p) is the net revenue pe consumer for a …rm charging
p.

We need to impose some conditions on the conditional demand d (:) (and
hence on v(:)) which guarantees the logconcavity of the pro…t function. One
way is to assume that d (:) is logconcave in p. But since this condition is not
satis…ed for many standard speci…cations (CES, ...), we select according to
Caplin and Nalebu¤ (1991), the weaker assumption that d (:) is logconcave
with respect to lnp. It is equivalent to assume that the elasticity of the
conditional demand d(:), de…ned by " (p) = ¡pd0 (p) /d (p), is nondecreasing
in p.

A4: The elasticity " (p) of the conditional demand function is nondecreasing
for all p.

A weaker su¢cient condition to obtain quasi-concave pro…ts is provided
in Anderson et al. (1995) where they de…ne:

´ (p) ´ ¡(p ¡ c) v00 (p)
v0 (p)

=
p¡ c
p
"(p) ;
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which is the elasticity of the net revenue per consumer (with respect to the
markup). They assume that ´ (:) is nondecreasing for all p > c such that
´ (p) � 1. However, assumption A4 made here seems more intuitive and
implies assumption A4 made in Anderson et al. (1995). Indeed, we have the
following lemma:

Lemma 3 Under assumption A4, ´ (:) is increasing in p for all p > c. More-
over, …rms must charge a price within [c; ep) where ep is such that ´ (p) < 1
for p < ep and ´ (p) ¸ 1 for p ¸ ep. Within [c; ep), net pro…t per consumer
¼ (p) is strictly increasing.

Proof. Since ´0 (p) has the same sign as: [c" (p)/p ] + (p¡ c)"0 (p), it is
positive for all p > c.

The pro…t derivative with respect to price is: @¦ /@p = ¼ 0 (p)D +
¼ (p) (@D /@p), where the …rm subscript is dropped for the sake of conve-
nience. Therefore, a …rm must necessarily charge a price such that ¼0 (p) > 0.
De…ne the price ep such that ¼0 (p) > 0 if p 2 [c; ep) and ¼0 (p) � 0 if p ¸ ep
which is well de…ned since ¼0 (p) = d (p) [1 ¡ ´ (p)] and the term into brack-
ets is strictly decreasing in p. Therefore, within [c; ep) (admissible prices),
´ (p) < 1 and hence ¼ (p) is strictly increasing.

The existence of a symmetric solution to the price game is provided in:

Proposition 4 Under assumptions A1’-A4 and provided that income is suf-
…ciently high, a unique symmetric Bertrand-Nash price equilibrium, p¤ =
p¤ (n), exists. It is the unique solution of:

p¤ ¡ c = 1 ¡ ´¤
d (p¤) g0 (z¤)­ (n)

; (11)

where ´¤ = ´ (p¤) and z¤ = y + v (p¤). Moreover, p¤ (n) is nonincreasing in
n.

Proof. The conditional demand for good i, d(pi), is logconcave in lnpi (see
A4). Since f(:) is logconcave, we know from Caplin and Nalebu¤ (1991) (cf.
Proposition 12) that the pro…t function is quasi-concave with respect to pi,
where pro…ts are strictly positive.

The price …rst-order condition evaluated at a symmetric solution leads
to:

Ã (p; n) ´ ´ (p) + ¼ (p) g0 (y + v (p)) ­ (n) = 1: (12)
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We have @Ã /@p > 0 within [c; ep) and Ã (c; n) = 0. To prove the existence
of a solution, we have to show that limp!ep Ã (p; n) > 1. Three cases must be
distinguished:

² If ep is …nite, necessarily ´ (ep) = 1 and hence limp!ep Ã (p; n) > 1. It is
therefore su¢cient to consider any positive income such that y+v (ep) ¸
0.

² If ep = 1 with limp!1 ´ (p) = 1 ¡ " with " 2 ]0; 1[. Note …rst that
¼ (p) is unbounded. Indeed, (ln¼ (p))0 ¸ (ln (p ¡ c)")0. Let p0 > c,
we have: ¼ (p) ¸ (p¡ c)"¼ (p0)/(p0 ¡ c)" for p ¸ p0. It follows that
limp!1 ¼ (p) = 1.8 . Hence, for y large enough, de…ne p (y) as the
unique solution to y + v (p (y)) = 0 which exists since limp!1 v (p) =
¡1. Function p (:) is strictly increasing and limy!1p (y) = 1. There-
fore, there exists yb such ¼

³
p

³
yb

´´
= [g0 (0) ­ (2)]¡1. Now, for each y

such that y ¸ yb, we have Ã (p (y) ; n) > 1 and hence equation (12) has
an admissible solution.

² If ep = 1 with limp!1 ´ (p) = 1, we have Ã (p (y) ; n) = ´ (p (y)) +
¼ (p (y)) ­(n) g0 (0). Since it is strictly increasing in y and tends to-
wards a limit greater than 1, there exists yb such thatÃ

³
p

³
yb

´
; n

´
= 1.

Therefore, for any y ¸ yb, equation (12) has an admissible solution.

Finally, since @Ã /@p > 0 and @Ã /@n ¸ 0, it follows that p¤ (n) is non-
increasing in n.

4 Welfare measure and optimum
This section contains a measure of consumer surplus (CS) which will be
used later on to evaluate the market long-run outcome. Following McFadden
(1997, 1998), we proceed by computing …rst a (monetary) measure of the
individual consumer’s willingness to pay (WTP). Second, we aggregate this
measures to obtain the mean WTP which will be used as a CS variation
measure.

First, we compute the WTP at the individual level. Since individuals have
speci…c match values, each individual will have, a priori, a speci…c WTP for

8See also Anderson et al. (1995), footnote 16.
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a given change. Then, we compute the WTP for a population of consumers
described by its distribution of tastes (aggregation over the population).

We focus here on symmetric situations where prices are identical, since
the price equilibrium is symmetric. Consider an initial situation involving n
goods sold at price p0. At the …nal state, there are n +1 goods priced at p1.

We compute the compensating variation (CV) at the individual level,
which is the maximum amount that a given consumer with income y and
speci…c match values would be willing to pay for a change from the initial
situation (p0; n) to the …nal situation (p1; n + 1). Denote v0 = v (p0) and
v1 = v (p1). The aggregate measure of CS variation is described in the
following proposition:

Proposition 5 Under assumptions A1’-A3, the aggregate CS variation due
to a change from (p0; n) to (p1; n +1) is:

¢(CS)n!n+1 =
³
v1 ¡ v0

´
+

bZ

a

xZ

a

Á(z0; xn; x)fn (xn) dxnf (x) dx; (13)

where fn (:) = nF n¡1 (:)f (:) and:

Á (z; xn; x) = z ¡ g¡1 (g (z) + xn ¡ x) : (14)

Proof. The CV denoted by csk for a consumer of type k solves the following
equation:

g
³
z0

´
+ eekn = g

³
z1 ¡ csk

´
+max

³
eekn; e

k
n+1

´
; (15)

where z0 = y + v0; z1 = y + v1 and eekn =maxi=1:::n
eki which are distributed

according to the density function fn (:).
Note that the CV depends on z0, z1, eekn, and ekn+1. Solving (15) with

respect to csk leads to:

csk =
³
v1 ¡ v0

´
+ Á

³
z0; eekn; e

k
n+1

´
; (16)

where Á is given by (14). Now, integrating this CV measures given by (16)
over the population, we obtain the mean CV variation given by (13).

Note that the …rst term (v1¡ v0) in (13) is the CS variation due to the
change in price, the remaining term being the CS variation due to the increase
in variety. Let us consider some particular cases.
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² With a standard linear speci…cation with g (z) = z, the aggregate CS
variation given by (13) reduces to:

¢ (CS)n!n+1 =
³
v1 ¡ v0

´
+

bZ

a

xZ

a

(x¡ xn)fn (xn) dxnf (x) dx: (17)

Using an integration by parts for the integral in the right hand side of
(17), we obtain:

bZ

a

xZ

a

(x ¡ xn) fn (xn) dxnf (x) dx =
bZ

a

Fn (x) (1 ¡ F (x)) dx: (18)

The CS variation is therfore equivalent to the di¤erence between the
expected utility levels. With double-exponentially distributed match
values, the CS variation reduces to:

¢(CS)n!n+1 =
³
v1 ¡ v0

´
+ ¹ [ln (n +1) ¡ lnn] ;

which could also be obtained from the standard logsum formula (cf.
McFadden (1981)).

² Consider the logarithmic speci…cation g (z) = ln z. In that case, ex-
pression (13) reduces to

¢ (CS)n!n+1 =
³
v1 ¡ v0

´
+ z0

bZ

a

xZ

a

³
1¡ exn¡x

´
fn (xn) dxnf (x)dx:

For the double exponential distribution, de Palma and Kilani (1999)
have shown that this expression can be simpli…ed as:

¢ (CS)n!n+1 =
³
v1 ¡ v0

´
+ z0

µ
¹

Z 1

0

t¹

n + t
dt

¶
:

The social welfare is taken as the sum of consumer surplus plus pro…ts,
where pro…t variation is:

¢¦n!n+1 = ¼
³
p1

´
¡ ¼

³
p0

´
¡K:

Therefore, the expression for the welfare variation is¢Wn!n+1 = ¢ (CS)n!n+1+
¢¦n!n+1.
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With unitary demand and g (z) = z, the incremental welfare is, using
(17) and (18):

¢Wn!n+1 =
bZ

a

Fn (x) (1¡ F (x)) dx ¡K;

which coincide with formula (7) used in Anderson et al. (1995).9 It is worth
to note that this expression does not depend on the …nal price and the price
variation is a pure transfer between consumers and …rms. In that particu-
lar case, the …rst-best and the zero-pro…t constrained second-best optimum
coincide.

We now describe the market equilibrium under free-entry. Revenue per
…rm is, using (11):

R¤ (n) ´ ¼ (p¤)
n

=
1 ¡ ´¤

n

g0 (z¤) n­ (n)
;

where ´¤
n
= ´ (p¤ (n)).

>From lemma 3 and proposition 4, R¤ (n) is strictly decreasing in n.
Since it tends towards zero as n goes to in…nity, the free-entry equilibrium is
uniquely de…ned by condition:

R¤ (ne) ¸ K > R¤ (ne+ 1) ;

provided that the market is served R¤ (ep) ¸ K .
Since ¼ (p) is strictly increasing (lemma 3), pro…t per …rm is lower than

¼ (ep) /n ¡K. Henceforth, de…ne en ´ ¼ (ep) /K as a bound to the number of
…rms which can make pro…ts. For n � en, de…ne p = p (n) as the unique price
such that the zero-pro…t constraint is …lled:

¼ (p (n)) = nK; (19)

which is well-de…ned since ¼ (p) raises continuously from 0 to enK within
[c; ep).

The variation of welfare along the zero-pro…t constraint is (cf. (13)):

¢W z
n!n+1 = v (p (n + 1))¡ v (p (n)) + I (n) ;

9Anderson et al (1995) have used the expected maximimum utility as a measure of
consumer bene…t since in their model, the indirect utility is additive linear in income.
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where:

I (n) =

bZ

a

xZ

a

Á(zn; xn; x)fn (xn) dxnf (x)dx; (20)

and where Á is given by (14) and zn = y+ v (p (n)).
Using a similar reasoning as in Anderson et al. (1995), we show that if it

is socially optimal to have n + 1 …rms in the market, then n …rms will have
nonnegative pro…ts at equilibrium. Formally, we proof that for any positive
K:

¢W z
n!n+1 ¸ 0 ) R¤ (n) ¸ K: (21)

This condition implies that the equilibrium never entails underentry. This
result is proved in the following theorem which provides a generalization to
theorem 2 in Anderson et al. (1995):

Theorem 6 Under assumptions A1’-A4, the market will not underprovide
diversity relative to the zero-pro…t constrained optimum.

Proof. Condition (21) leads to the following implication:

I (n) ¸ v (p (n)) ¡ v (p (n + 1)) ) R¤ (n) ¸ K: (22)

Deriving the zero-pro…t constraint given by (19), we obtain:

dv (p)

dn
= v0 (p)

dp

dn
=

¡K
1 ¡ ´ (p):

Using the theorem of the mean, there exists n 2 [n; n + 1] such that:

v (p (n))¡ v (p (n +1)) = K

1¡ ´n
;

where ´n = ´ (p (n)). Hence, condition (22) implies:

I (n) ¸ K

1 ¡ ´
n

) 1

g0 (z¤n)n­ (n)
¸ K

1¡ ´¤
n

; (23)

where I (n) is given by (20) and z¤n = y + v (p
¤ (n)).

>From the theorem of the mean and given that g (:) is strictly increasing
and concave, we have the following inequality for xn � x:

Á (zn; xn; x) � x ¡ xn
g0 (zn)

;
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which yields:

I (n) � 1

g0 (zn)

bZ

a

Fn (x) (1¡ F (x)) dx:

Therefore:

I (n) ¸ g0 (zn)K
1¡ ´

n

)
bZ

a

F n (x) [1¡ F (x)] dx ¸ g0 (zn)K
1¡ ´

n

: (24)

Implication (26) in Anderson et al. (1995) states that, for all positive K:

bZ

a

F n (x) [1¡ F (x)] dx ¸ K

1¡ ´
n

) 1

n­ (n)
¸ K

1 ¡ ´¤
n

:

In particular, we have:

bZ

a

F n (x) [1¡ F (x)] dx ¸ g0 (zn)K
1¡ ´

n

) 1

n­ (n)
¸ g0 (zn)K

1 ¡ ´¤
n

; (25)

Hence, from (24) and (25), we obtain:

I (n) ¸ K

1 ¡ ´
n

) 1

n­ (n)
¸ g0 (zn)K

1¡ ´
n

:

Now, since z¤n > zn (obviously, p¤ (n) < p (n)) and g (:) is concave, we obtain
(23).

5 Concluding remarks
We have introduced in this paper a discrete choice oligopoly model with in-
come e¤ects. Two versions of the model have been proposed. In the …rst,
each consumer purchases one unit of the good, in line with the discrete choice
framework. In the extended model, consumers are allowed to purchase a vari-
able amount of one of the variants. The demand depends on income even
if, in the proposed formulation with variable individual demand, the con-
ditional quantity purchased in independent of income. We were not able
to derive the representative consumer model for this formulation. This was
possible in the special case where taste are distributed according to a double
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exponential distribution (see for details de Palma and Kilani (1999)). There-
fore we based our analysis on the compensating variation formula that was
computed for each individual embedded with speci…c tastes and then sumed
up for all the individuals in the population. Under those hypotheses, our
main result is that the market always provide too many products (excessive
variety) according to the second-best (zero-pro…t constrained) optimum.

One implication of this result is that an ad-valorem tax or a unit tax could
increase the welfare in the market since such taxes tend to reduce producer
pro…ts (even if producer prices could be over-shifted) and therefore reduce
product variety. Such reduction could be, according to our main result, wel-
fare improving. One major limitation of our approach is that we only consider
single product …rms. Without income e¤ects and with double-exponentially
distributed tastes, Anderson and de Palma (1992b) analyzed multiple prod-
uct …rms and have shown that the market over-provide products, while the
number of product o¤ered by each …rm is too small. It remains to be shown
how those results, true for the multinomial logit model, could be extended
for more general discrete choice models with income e¤ects. A second major
limitation of our approach is that …rms are assumed to be symmetric and
supply products with the same vertical quality. Indeed, Anderson and de
Palma (1999) have shown that the market could under or over provide vari-
ety when qualities di¤er. Moreover, other biases are to be considered since
typically, the low quality goods tend to produce too much variety while the
large quality goods tend to produce to little. This result is less clear when
income a¤ect consumer choices and when consumers are embedded with dif-
ferent incomes. The distribution of income is likely to preserve the existence
proof, so that this research avenue should be pursued in order to obtain useful
results to shed new light on empirical applications.
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