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Abstract

A well-known result in incentive theory is that for a very broad
class of decision problems, there is no mechanism which achieves truth-
telling in dominant strategies, efficiency and budget balancedness (or
first best implementability). On the contrary, Mitra and Sen (1998),
prove that linear cost queueing models are first best implementable.
This paper is an attempt at identification of cost structures for which
queueing models are first best implementable. The broad conclusion is
that, this is a fairly large class. Some of these first best implementable
models can be implemented by mechanisms that satisfy individually
rationality.



1 Introductions

There is a vast literature on incentive theory under incomplete informa-

tion suggesting that under quasi-linear preferences the achievement of truth-

telling and efficiency is possible. The pioneering work of Groves (1973) and

Clarke (1971) has established that there exists a class of mechanisms, the so

called Groves mechanisms where all individuals have a dominant strategy to

reveal their information. Moreover, the truth-telling outcome leads to effi-

ciency1. However, Groves mechanisms are in general not balanced i.e there

are preference realizations where aggregate transfers are non-zero. The bud-

get imbalance of Groves mechanisms’ in the context of public goods problem

is shown in Green and Laffont (1977)2.

This paper develops and refines a line of research initiated by Mitra and

Sen (1998). They show that there exists a class of “public decision problems”

which are dominant strategy incentive compatible, efficient and balanced.

One of the best examples of such a public decision problem is the queueing

model which is the model we are concerned with. In this queueing model

there is a server who has to serve a finite set of individuals. The server can

serve one individual at a time. Thus, individuals have to wait in a queue.

Waiting in a queue is costly for each individual. The server’s objective is to

order the individuals in a queue efficiently so as to minimise the aggregate

waiting cost. If the cost of waiting in the queue is private information then

an individual, if asked, will announce his costs strategically so as to get his

job done as early as possible. Therefore, the principal in the queueing model

has an incentive problem under incomplete information. A model similar to

the queueing model is the sequencing model in Suijs (1996).

Mitra and Sen (1998) demonstrate that if waiting costs are linear, it is

possible to devise a scheme of balanced transfers that induce individuals to

1Efficiency means that the outcome achieved in each state is the one that maximises
the social surplus.

2See Green and Laffont (1979) for a comprehensive account of these mechanisms and
their properties.
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reveal their private information and attain efficiency. Suijs (1996) proves a

similar result in the context of his model. It is important to identify the

reason why a possibility result holds in this model in contrast to the well-

known impossibility result in the case of the public good model. In the latter

model, an individual who, by changing his announcement, affects the payoff

all individuals. It is this severe nature of this externality that leads to

budget imbalance (see Green and Laffont (1979)). In the queueing model

with linear cost the externality that can be imposed by an individual is less

severe and more subtle. An individual with kth queue position by changing

his announcement can affect the decision of either individuals who precede

him in the queue or those who succeed him. He cannot simultaneously affect

the decisions of both the predecessor and the successor sets. Thus only

the individuals getting the first position and last position in the queue can

affect all other individuals by changing their announcements. This sort of

externality is necessary for finding a Groves transfer where the individuals

served earlier compensates for those served later in such a way that aggregate

transfer is zero in all states.

Another important feature of any queueing model is that the incentive

problem is “spread over” the queue positions and this helps in finding a bal-

anced Groves transfer where the individuals being served “earlier” pay money

to the individuals receiving “late” service. For example, with three individ-

uals, a balanced Groves transfer in the queueing model is of the following

type. The individual receiving the service first pays the waiting cost of the

individual who is served second in the queue and this money goes to the

individual who is served last. The first part of the transfer resembles that of

the transfer in second price auction where the highest bidder pays the second

highest bid (see Vickrey (1961)). However, in the second price auction this

money goes to an outsider like the principal. In the queueing model there

is an incentive problem for all queue positions and so the payment of the

second highest cost to the individual in the third queue position more then

compensates him for the loss of getting the third queue position instead of
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the second queue position (see Mitra and Sen (1998)).

We attempt to answer the following question: are there cost structures

more general than the linear case where the “first best” can be attained? We

prove that for first best implementability it is both necessary and sufficient

that preferences satisfy a certain combinatorial property and an independence

property. The first property is a restriction on individual preferences while

the second property is a restriction on the externality that an individual

can impose on the remaining set of individuals. We need a combinatorial

structure over the cost vector of each individual which is captured by the

combinatorial property. Preferences satisfy the independence property if an

individual, by changing his announcement, cannot change the relative queue

positions of the remaining set of individuals. For instance, if there are n

individuals then the relative queue positions of any set of (n− 1) individuals

are independent of the queue position of the individual who is left out. In

spite of these requirements, apparently quite strong, there exists a fairly large

class of queueing problems that are first best implementable. Given a broad

class of first best implementable queueing models one can then explore the

possibility of individual rationality i.e. whether individuals would be willing

to participate in the mechanism offered by the server. It can be shown that if

the gross benefit from the service for all individuals is sufficiently high, then

first best implementable queueing models satisfy individual rationality.

This paper is organised as follows. In section two, the general queueing

model is formalised and results on its first best implementability are derived.

Section three deals with separable cost queueing models and its applications.

Section four formalises a general class of first best implementable queueing

problem. Section five is a discussion of discounted cost queueing model. The

concluding section seven is preceded by an exploration of the possibility of

individual rationality of first best queueing models in section six.
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2 The General Model

Let N = {1, 2, . . . , n} be the set of individuals and θj(k) measure the cost

of waiting k periods in the queue for individual j where k ∈ {1, . . . , n}.
The type of individual j ∈ N is the vector θj = (θj(1), . . . , θj(n)). Clearly,

θj(k) ∈ R+ for all j ∈ N and for all k ∈ {1, . . . , n}3. It is assumed that all

individuals dislike waiting i.e. 0 ≤ θj(1) ≤ θj(2) ≤ . . . ≤ θj(n). Let Θ̄ be the

largest domain satisfying this condition. For all j ∈ N, θj ∈ Θ̄, the utility of

each individual j is assumed to be quasi-linear and is of the form:

Uj(k, tj; θj) = vj − θj(k) + tj

where vj(> 0) is the gross benefit derived by individual j from the service

and tj is the transfer that individual j receives.

The server’s aim is to achieve efficiency or minimise the aggregate cost.

A permutation σ = (σ1, . . . , σn) of the set N represents a particular queue.

Thus, σj = k indicates that individual j has the kth position in the queue.

Let Σ be the set of all possible permutations of N. Given a permutation or

a queue σ = (σ1, . . . , σn)(∈ Σ), the cost of any individual j ∈ N is θj(σj). A

state of the world is θ = (θ1, . . . , θn) ∈ Θ̄n where θj is a 1× n vector.

DEFINITION 2.1 Given a state θ, a queue σ∗ = (σ∗1, . . . , σ
∗
n) is efficient

if σ∗ ∈ argminσ∈Σ
∑
j∈N

θj(σj)
4.

Efficiency in this context is an assignment problem that gives each in-

dividual exactly one queue position and each queue position to exactly one

individual in such a way that the aggregate cost is minimised5.

If the server knows θ = (θ1, . . . , θn) then he can calculate the efficient

queue. However, if θj is private information for individual j, the server’s

3R+ represents the non-negative orthant of R.
4Observe that there can be states with more than one efficient queue. So we have an

efficiency correspondence.
5This is a subtle optimization problem. An algorithm which computes efficiency is the

Hungarian method which can be found in Bapat and Raghavan (1997).
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problem then is to design a mechanism that will elicit this information

truthfully. Formally, a mechanism M is a pair 〈σ, t〉 where σ : Θ̄n → Σ and

t ≡ (t1, . . . , tn) : Θ̄n → Rn. This problem is called a general queueing

problem under incomplete information and is written as Ω = 〈N, Θ̄〉. Under

M = 〈σ, t〉, given all others’ announcement θ−j, the utility of individual j of

type θj when his announcement is θj
′ is given by

Uj(σj(θj
′, θ−j), tj(θj

′, θ−j), θj) = vj − θj(σj(θj ′, θ−j)) + tj(θj
′, θ−j).

DEFINITION 2.2 Ω = 〈N, Θ̄〉 is implementable if there exists an ef-

ficient rule6 σ∗ : Θ̄n → Σ and a mechanism M = 〈σ∗, t〉 such that for all

j ∈ N, for all (θj, θj
′) ∈ Θ̄2, and for all θ−j ∈ Θ̄n−1,

Uj(σ
∗
j (θ), tj(θ); θj) ≥ Uj(σ

∗
j (θj

′, θ−j), tj(θj
′, θ−j); θj)

This definition says that for any given θ−j, individual j cannot benefit by

reporting anything other than his true type. In other words, truth-telling is

a dominant strategy for all individuals. Moreover, this truth-telling leads to

efficient queue.

DEFINITION 2.3 Ω = 〈N, Θ̄〉 is first best implementable or FB im-

plementable, if there exists a mechanism M = 〈σ∗, t〉 which implements it

and such that, for all θ ∈ Θ̄n,
∑
j∈N

tj(θ) = 0.

Thus, a queueing problem is first-best implementable if, it can be imple-

mented in a manner such that aggregate transfers are zero in every state of

the world. In such problems, incomplete information does not impose any

welfare cost. In the next section the question of FB implementability of the

general queueing model is analysed.

2.1 Characterization Results

In this sub-section the necessary and sufficient conditions relating to the FB

implementability of the general queueing model are derived. As a preliminary

6An efficient rule is a single valued selection from the efficiency correspondence.

5



step to the main result, some more definitions and notations are introduced

that will be extensively used in this section.

DEFINITION 2.4 A mechanism M = 〈σ, t〉 is a Groves mechanism if for

all j ∈ N, the transfer is of the form

tj(θ) = −
∑
l 6=j

θl(σ
∗
l (θ)) + γj(θ−j) (2.1)

In a Groves mechanism, the transfer of any individual j ∈ N in any

state θ is the negative of minimum cost i.e. −∑l∈N θl(σ
∗
l (θ)) plus the cost

of individual j and a constant γj(θ−j). The utility of individual j with a

Groves transfer is his gross benefit vj less the minimum cost in state θ plus

the constant. It is well known that such a transfer results in dominant

strategy incentive compatibility because the servers’ objective of minimising

the aggregate cost is now an objective of individual j as well and this is true

for all j ∈ N.

According to a well known result of Holmström (see Holmström (1979)),

decision problems with “smoothly connected” domains are implementable if

and only if the mechanism is a Groves mechanism. In more precise terms,

convex domains are “smoothly connected” (see Theorem (2) in Holmström

(1979)). It can be easily checked that the domain under consideration in the

general queueing model satisfy Holmström’s definition of “convex” domains.

Hence it is implementable if and only if the mechanism is a Groves mecha-

nism.

Let C(σ∗(θ′); θ) =
∑
j∈N

θj(σ
∗
j (θ
′)) where, as stated earlier, σ∗(θ′) is an

efficient queue for the announced state θ′. Thus, C(σ∗(θ′); θ) is the minimum

aggregate cost with respect to the announced state θ′ when the actual state

is θ. For notational simplicity define C(θ) ≡ C(σ∗(θ); θ) to be the minimum

aggregate cost with respect to the actual state θ when the announced state

is also θ.

REMARK 2.1 From the definition of efficiency it follows that for all θ and

θ′, C(θ) ≤ C(σ∗(θ′); θ).
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DEFINITION 2.5 Ω = 〈N, Θ̄〉 satisfies the Combinatorial Property

(or CP) if for all j ∈ N, for all θj ∈ Θ̄,

n∑
k=1

(−1)k−1

(
n− 1

k − 1

)
θj(k) = 0 (2.2)

This property is a combinatorial condition on the domain of preferences.

The meaning of this property will become explicit from the following discus-

sion. For individual j with type θj = (θj(1), . . . , θj(n)) define the first order

difference at queue position k ∈ {1, . . . , n−1} as ∆(1)θj(k) = θj(k+1)−θj(k).

Thus, the first order difference at k represents the increase in queueing cost if

individual j is moved from kth position to (k + 1)th position. In particular,

the first order difference at queue position 1 is ∆(1)θj(1) = θj(2) − θj(1).

Similarly, the second order difference at queue position 1 is ∆2(1)θj(1) =

∆(1)[∆(1)θj(1)] = ∆(1)[θj(2)− θj(1)] = θj(3)− 2θj(2) + θj(1). One can sim-

ilarly derive ∆3(1)θj(1), ∆4(1)θj(1) and so on. It can be quite easily checked

from (2.2) that

n∑
k=1

(−1)k−1

(
n− 1

k − 1

)
θj(k) = ∆n−1(1)θj(1) = 0.

Thus a type θj of individual j satisfies CP if the (n − 1)th order difference

at queue position 1 is zero. CP is analogous to (n− 1)th order derivative at

queue position 1. CP implies and is implied by some kind of separability to

be discussed later in Proposition 2.1.

To define the next property one needs to introduce some more notations

and definitions. Consider a queueing model Ω. Define, by eliminating l ∈ N,

the l-reduced queueing model of Ω to be ΩN−l = 〈N− l, Θ̄〉. In any state

θ−l ∈ Θn−1, let σ∗(θ−l) be the efficient queue in ΩN−l. In other words,

σ∗(θ−l) ∈ argminσ̃∈Σ(N−l)
∑
j 6=l

θj(σ̃j)

where Σ(N − l) is the set of all possible permutations of {1, . . . , n− 1} and

σ̃j is the position of individual j( 6= l) in the particular queue σ̃ ∈ Σ(N − l).
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In short, ΩN−l is a l-reduced queueing model of (n− 1) individuals obtained

from Ω by excluding l ∈ N.

For Ω, define P (σ∗(θ), j) = {p ∈ N/{j} | σ∗j (θ) > σ∗p(θ)} to be the

predecessor set of individual j in state θ. In other words, under the efficient

queue σ∗(θ) in state θ, P (σ∗(θ), j) is the set of individuals receiving the

service before individual j. Similarly, for ΩN−l, define P (σ∗(θ−l), j) = {p ∈
N/{j, l} | σ∗j (θ−l) > σ∗p(θ−l)} to be the predecessor set of individual j in state

θ−l. Under the efficient queue σ∗(θ−l) in state θ−l, P (σ∗(θ−l), j) is the set of

individuals receiving the service before individual j.

DEFINITION 2.6 Ω satisfies Independence Property (or IP) if for all

states θ ∈ Θ̄n, for all j ∈ N, for all l ∈ N/{j} and for all θ−l ∈ Θ̄n−1,

P (σ∗(θ−l), j) =

 P (σ∗(θ), j) if l 6∈ P (σ∗(θ), j)

P (σ∗(θ), j)/{l} if l ∈ P (σ∗(θ), j)

This property means that if in state θ, σ∗j (θ) = k, then σ∗j (θ−l) = k for

all l 6∈ P (σ∗(θ), j) and σ∗j (θ−l) = k − 1 for all l ∈ P (σ∗(θ), j). Another

way of stating IP is the following: Consider Ω and a pair {j, l} ∈ N. If

σ∗j (θ) < σ∗l (θ) in state θ, then σ∗j (θ−i) < σ∗l (θ−i) for all i ∈ N/{j, l}. If this

condition holds for all pair of individuals and for all states in Ω then it is

easy to check that Ω satisfies IP. This condition says that if individual j’s

position in the queue is less than that of individual l in some state θ, then

j’s queue position must continue to remain less than that of l’s position in

all ΩN−i that includes both j and l. This condition must hold for all pair

{j, l} ∈ N and for all states θ ∈ Θ̄n. IP eliminates the possibility that an

individual l ∈ N/{j}, who is a predecessor (successor) of individual j in

state θ is a successor (predecessor) of individual j in state θ−i for some i-

reduced queueing model ΩN−i where i ∈ N/{j, l}. Thus, IP guarantees that

the externality imposed by an individual (i in the above argument) is not

severe enough to change the relative queue position of the remaining set of

individuals.
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The separability implied by the combinatorial property and the link be-

tween the combinatorial property (or CP) and the independence property (or

IP) is captured by the following Proposition and the explanation following

it.

PROPOSITION 2.1 Ω = 〈N, Θ̄〉 satisfies CP, if and only if for each θj ∈
Θ̄ there exists a unique vector Hj = {hj(1), . . . , hj(n− 1)} such that for all

k ∈ {1, . . . , n},

θj(k) = (n− k)hj(k) + (k − 1)hj(k − 1). (2.3)

PROOF: Given a n × 1 vector of type for individual j ∈ N, θj ∈ Θ̄ in Ω

satisfying CP, we define a (n−1)×1 vector Hj = {hj(1), . . . , hj(n−1)} such

that for all k ∈ {1, . . . , n− 1},

hj(k) =
k∑
r=1

(−1)k−r
(k − 1)!(n− k − 1)!

(r − 1)!(n− r)!
θj(r) (2.4)

First we check using (2.4) that for all k ∈ {1, . . . , n − 1}, (2.1) holds. Then

we check for k = n this condition holds only if Ω satisfies CP.

(n− k)hj(k) + (k − 1)hj(k − 1)

= (n− k)
k∑
r=1

(−1)k−r (k−1)!(n−k−1)!
(r−1)!(n−r)! θj(r) + (k − 1)

k−1∑
r=1

(−1)k−r−1 (k−2)!(n−k)!
(r−1)!(n−r)! θj(r)

=
k−1∑
r=1
{(−1)k−r + (−1)k−r−1} (k−1)!(n−k)!

(r−1)!(n−r)! θj(r) + θj(k)

= θj(k) (because (−1)k−r + (−1)k−r−1 = 0).

For k = n,

(n− k)hj(k) + (k − 1)hj(k − 1)

= (n− 1)hj(n− 1)

= (n− 1)
n−1∑
r=1

(−1)n−1−r (n−2)!
(r−1)!(n−r)!θj(r)

=
n−1∑
r=1

(−1)n−1−r (n−1)!
(r−1)!(n−r)!θj(r)
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=
n−1∑
r=1

(−1)n−1−r
(
n−1
r−1

)
θj(r)

= θj(n) (from CP).

The last step not only proves the necessity of CP but also guarantees that

for θj, Hj is unique.

To prove the other part of the Lemma it is easy to see that if θj(k) =

(n− k)hj(k) + (k − 1)hj(k − 1) for all k = 1, . . . , n then
n∑
k=1

(−1)k−1
(
n−1
k−1

)
θj(k)

=
n∑
k=1

(−1)k−1
(
n−1
k−1

)
{(n− k)hj(k) + (k − 1)hj(k − 1)}

= (n− 1){
n−1∑
k=1

(−1)k−1
(
n−2
k−1

)
hj(k) +

n∑
k=2

(−1)k−1
(
n−2
k−2

)
hj(k − 1)}

= 0.

Consider Ω and some state θ where individual j ∈ N gets the kth queue

position. Note that in state θ, out of the remaining (n − 1) individuals in

N/{j}, there are (n− k) individuals receiving the service after individual j

and there are (k − 1) individuals receiving the service before individual j.

Consider ΩN−l for all l ∈ N/{j}. Now if an individual l receiving the service

after individual j, i.e. l 6∈ P (σ∗(θ), j), were to be eliminated, then from IP

it follows that j retains the kth queue position in ΩN−l. If, on the other

hand, an individual l who was receiving the service before individual j, i.e.

l ∈ P (σ∗(θ), j), is eliminated from the queue then, from IP it follows that

the queue position of individual j changes from k in Ω to (k − 1) in ΩN−l.

If the vector Hj in Proposition 2.1 replaces θj for reduced queueing models

{ΩN−l}l 6=j, the cost of kth queue position for individual j i.e. θj(k), in Ω

for state θ, can now be represented as the sum of costs in (n − 1) reduced

queueing models. Here individual j has cost hj(k) in (n− k) of the reduced

queueing models. These are reduced models ΩN−l such that l 6∈ P (σ∗(θ), j)

and total number of such reduced models is |N− [P (σ∗(θ), j)∪{j}]| = n−k.

Similarly, individual j has a cost of hj(k − 1) in (k − 1) of these models.

These are reduced models ΩN−l such that l ∈ P (σ∗(θ), j) and total number

10



of such reduced models is |P (σ∗(θ), j)| = k − 1. Observe that this will give

θj(k) = (n− k)hj(k) + (k− 1)hj(k− 1) which follows from CP as established

in Proposition 2.1.

REMARK 2.2 Consider an individual j and a profile θj ∈ Θ̄ satisfying

CP. From Proposition 2.1 it follows that there exists a unique vector Hj such

that for all k ∈ {1, . . . , n}, θj(k) = (n − k)hj(k) + (k − 1)hj(k − 1). Using

θj(1) ≤ θj(2) ≤ . . . ≤ θj(n) one obtains the following restriction on the

elements of Hj. hj(1) ≤ hj(r) ≤ hj(n − 1) for all r ∈ {2, . . . , n − 2}. One

cannot comment on the ordering of the set of elements belonging to the set

{hj(2), . . . , hj(n− 2)}.

REMARK 2.3 Consider Ω and {θj, θl} ∈ Θ̄2 such that θj(k+ 1)− θj(k) ≥
θl(k + 1) − θl(k) for all k ∈ {1, . . . , n}. Note that θj(k + 1) − θj(k) ≥
θl(k + 1) − θl(k) implies that if in some state individuals j and l are as-

signed queue positions k and k + 1, then it is more efficient to serve in-

dividual j ahead of individual l because the marginal cost of shifting in-

dividual j from queue position k to queue position k + 1 is no less than

the same marginal cost for individual l. If this condition is true for all k

then σ∗j (θj, θl, θ−j−l) < σ∗l (θj, θl, θ−j−l) for all θ−j−l ∈ Θ̄n−2. One obvious

implication of this observation is that σ∗j (θj, θl, θ−j−l−i) < σ∗l (θj, θl, θ−j−l−i)

for all i ∈ N/{j, l} and for all θ−j−l−i ∈ Θ̄n−3. Another useful impli-

cation is the following. Consider a state θ where for all pairs {j, l}, if

θj(2) − θj(1) ≥ θl(2) − θl(1), then θj(k + 1) − θj(k) ≥ θl(k + 1) − θl(k)

for all k ∈ {2, . . . , n − 1}. In state θ, if for some pair {j, l}, σ∗j (θ) < σ∗l (θ)

then from the construction of state θ it follows that σ∗j (θ−i) < σ∗l (θ−i) for all

i ∈ N/{j, l}. Therefore, in state θ, Ω satisfies IP. This remark will be used

in some of the results to follow.

In the case of |N| = 3, it is possible to show that CP implies IP. Unfor-

tunately, for |N| > 3 this is no longer true.

PROPOSITION 2.2 Ω = 〈N = {1, 2, 3}, Θ̄〉 satisfies CP⇒ Ω satisfies IP.
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PROOF: Ω = 〈N = {1, 2, 3}, Θ̄〉 satisfies CP implies that the second order

difference is zero. Thus ∆(1)θj(1) ≡ θj(2)−θj(1) = θj(3)−θj(2) ≡ ∆(1)θj(2)

for all j = 1, 2, 3. Therefore, for a pair of preferences {θj, θl} ∈ Θ̄2, if

θj(2)−θj(1) ≥ θl(2)−θl(1), then θj(3)−θj(2) ≥ θl(3)−θl(2). Using Remark

2.3 it immediately follows that Ω satisfies IP.

The next example is to show that for |N| > 3, there is no relationship

between CP and IP. Specifically, it shows that if Ω satisfies CP, it may not

satisfy IP.

EXAMPLE 2.1 Consider the general queueing model for four individuals,

i.e. Ω = 〈N = {1, 2, 3, 4}, Θ̄〉. Let the state θ = (θ1, θ2, θ3, θ4) be of the

following form: θ1 = (1, 23, 45, 67), θ2 = (3, 12, 27, 48), θ3 = (1, 4, 9, 16) and

θ4 = (1, 7, 13, 19). Here, σ∗j (θ) = j for all j = 1, 2, 3, 4. We find that state θ

satisfies CP i.e. for all j = 1, 2, 3, 4,
4∑

k=1
(−1)k−1

(
3

k−1

)
θj(k) =

(
3
0

)
θj(1)−

(
3
1

)
θj(2) +

(
3
2

)
θj(3)−

(
3
3

)
θj(4) = 0.

Now consider the {1}-reduced queueing model ΩN−1 = 〈{2, 3, 4}, Θ̄〉.
In this reduced model we consider the first three elements of the vectors

θ2, θ3 and θ4. Here σ∗2(θ−1) = 1, σ∗3(θ−1) = 3 and σ∗4(θ−1) = 2. Therefore,

P (σ∗(θ−1), 3) = {2, 4} 6= P (σ∗(θ), 3)/{1} = {2} and P (σ∗(θ−1), 4) = {2} 6=
P (σ∗(θ), 4)/{1} = {2, 3}. Thus for state θ, IP is violated.

THEOREM 2.1 Ω = 〈N, Θ̄〉 is FB implementable if only if it satisfies

CP and IP.

Before proving the Theorem a Lemma due to Walker (1980) is stated

below. Consider two profiles θ = (θ1, . . . , θn) and θ′ = (θ′1, . . . , θ
′
n). Define

for S ⊆ N, a type θj(S) = θj if j 6∈ S and θj(S) = θ′j if j ∈ S. Thus for each

S ⊆ N, we have a state θ(S) = (θ1(S), . . . , θn(S)).

LEMMA 2.1 Ω is FB implementable only if for all (θ, θ′) ∈ Θ̄n × Θ̄n,∑
S⊆N

(−1)|S|C(θ(S)) = 0.

12



It is quite easy to see why Lemma 2.1 is necessary for FB implementabil-

ity. Given the Groves transfer, balancedness requires that (n − 1)C(θ) =∑
j∈N

γj(θ−j)
7. For any two profiles θ and θ′ one can now easily check that∑

S⊆N
(−1)|S|C(θ(S)) = 1

(n−1)

∑
j∈N

∑
S⊆N

(−1)|S|γj(θ−j(S)) = 0. It is quite clear

that if the function C has a separable form , then it must satisfy an appro-

priate restriction on the nth order cross partial derivative. The condition in

the Lemma is analogous of this derivative for finite changes.

PROOF OF THEOREM(2.1):

Necessity: We prove the necessity part of the Theorem in two steps. In

the first step we prove that Ω is FB implementable only if it satisfies CP. In

the second step we prove that Ω satisfying CP is FB implementable only if

it satisfies IP.

Step 1: We start with a given type for individual 1 (i.e. θ1) and con-

struct θ−1 and θ′. Then we apply Lemma 2.1 to derive the result. Consider

individual 1 and any announcement θ1 = (θ1(1), . . . , θ1(k), . . . , θn(n)). De-

fine real numbers {ε1, ε2, . . . , εn, θ} such that 0 = ε1 < ε2 < . . . < εn and

0 ≤ θ ≤ θ1(1). Consider two states θ = (θ1, . . . , θn) and θ′ = (θ′1, . . . , θ
′
n)

of the following type: θj(k) = θ1(k) + kεj and θ′j(k) = θ, for all j ∈ N and

for all k = 1, . . . , n. Therefore θj = (θ1(1) + εj, θ1(2) + εj, . . . , θ1(n) + nεj)

and θ′j = (θ, θ, . . . , θ) for all j ∈ N. Consider any two queue positions k

and k + 1 and any two individuals j and j + 1 with types θj and θj+1,

respectively. Note that from the construction of θ, on the one hand, it

follows that if individual j gets the kth position and (j + 1)th individual

gets the (k + 1)th position, then the costs for these two positions add up to

{2θ1(k)+kεj+(k+1)εj+1}. If, on the other hand, the positions of j and (j+1)

are interchanged then the costs add up to {2θ1(k)+(k+1)εj+kεj+1}. Clearly

the former cost exceeds the latter 8 and holds for all k = 1, . . . , n− 1. Thus

the queue that minimises the aggregate cost requires that, σ∗j (θ) > σ∗j+1(θ)

7Adding the Groves transfer of all individuals and setting it to zero gives this condition.
This condition in a more general framework was derived by Holmström (1977).

8This is because from the construction it follows that εj+1 > εj for all j = 1, . . . n− 1.
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for all j = 1, . . . , n − 1. This implies that the efficient queue in state θ is

σ∗(θ) = (σ∗1(θ) = n, . . . , σ∗j (θ) = n − j + 1, . . . , σ∗n(θ) = 1). In state θ′ any

queue is efficient because the costs of all individuals are identical.

Now consider profiles θ(S) = (θ1(S), . . . , θn(S)) where θj(S) = θj if j 6∈ S
and θj(S) = θ′j if j ∈ S. For all s ∈ S, the efficient queue position is

behind all j 6∈ S, i.e. σ∗s(θ(S)) ∈ {n − |S| + 1, . . . , n}. This is because the

queueing costs of all individuals j 6∈ S, in all queue positions strictly exceed

the queueing costs of all individual s ∈ S. Moreover, given θ1, from the

construction of θ−1 and from the argument given for the efficient queue in

state θ it follows that if {j, l} 6∈ S and j < l, then σ∗j (θ(S)) > σ∗l (θ(S)).

Consider the sum
∑
S⊆N

(−1)|S|C(θ(S)). Observe first that, for all l ∈

N/{1} with type θl, if there exists m sets T 1, . . . , Tm of size |T 1|, . . . , |Tm|
respectively with T m̂ ⊆ N/{l} for all m̂ = 1, . . . ,m, for which individual

l’s position is k(∈ {1, 2, . . . , n}), then
m∑̂
m=1

(−1)|T
m̂|θl(k) = 0. Therefore, the

sum
∑
S⊆N

(−1)|S|C(θ(S)) is independent of all elements in the set of vectors

{θ2, . . . , θn}. Also observe that the terms containing θ in
∑
S⊆N

(−1)|S|C(θ(S))

is given by −n{
n∑
k=1

(−1)k−1
(
n−1
k−1

)
}θ = 0. Therefore,

∑
S⊆N

(−1)|S|C(θ(S)) is also

independent of θ. All these observations imply that:∑
S⊆N

(−1)|S|C(θ(S)) =
∑

S⊆N/{1}
(−1)|S|θ1(σ∗1(θ1, θ−1(S))).

For individual 1 with type θ1, σ∗1(θ1, θ−1(S)) = n − |S| for all S ⊆ N/{1}.
Thus∑
S⊆N/{1}

(−1)|S|θ1(σ∗1(θ1, θ−1(S)))

=
n−1∑
|S|=0

(−1)|S|
(
n−1
|S|

)
θ1(n− |S|)

=
n∑
k=1

(−1)k−1
(
n−1
k−1

)
θ1(n− k + 1)

=
n∑
k=1

(−1)n−k
(
n−1
n−k

)
θ1(k)
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= (−1)n−2{
n∑
k=1

(−1)k−1
(
n−1
k−1

)
θ1(k)}.

An application of Lemma 2.1 yields the result for individual 1. We can obtain

the same result for all j ∈ N/{1}.
Step 2: For |N| = 3, Ω satisfying CP is FB implementable only if it satisfies

IP follows from Proposition 2.2. For Ω with |N| > 3, consider any two cost

vectors θ1 = (θ1(1), . . . , θ1(n)) and θ2 = (θ2(1), . . . , θ2(n)) for individuals 1

and 2 respectively. Let z = max[max{∆(1)θ1(k)}k 6=n,max{∆(1)θ2(k)}k 6=n].

Consider the real numbers {ε3, . . . , εn, θ} such that z < ε3 < . . . < εn and

θ ∈ [0,min{θ1(1), θ2(1)}]. Define θj(k) = kεj for all k ∈ {1, . . . , n} and for all

j ∈ {3, . . . , n}. Also define θ′j(k) = θ for all j ∈ N and for all k ∈ {1, . . . , n}.
From the construction it follows that ∆(1)θj(k) > max{∆(1)θ1,∆(1)θ2(k)}
for all j ∈ N/{1, 2}. Now consider profiles θ(S) = (θ1(S), . . . , θn(S)) where

θj(S) = θj if j 6∈ S and θj(S) = θ′j if j ∈ S. For all s ∈ S, the efficient

queue position is behind all j 6∈ S, i.e. σ∗s(θ(S)) ∈ {n − |S| + 1, . . . , n}.
This is because the queueing costs of all individuals j 6∈ S, in all queue

positions strictly exceed the queueing costs of all individual s ∈ S. From the

construction of {θ3, . . . , θn} it follows that for all {j, l} ∈ N/{1, 2} and for all

S ∈ N/{j, l}, with j < l, σ∗j (θj, θl, θ−j−l(S)) > σ∗l (θj, θl, θ−j−l(S)). Observe

that for all S ∈ N/{1, 2}, individuals 1 and 2 are immediate neighbours with

any one of 1 and 2 having queue position n−|S| and the other having queue

position n − |S| − 1. If, on the one hand, θ1(n − |S| − 1) + θ2(n − |S|) ≤
θ1(n−|S|)+θ2(n−|S|−1) then σ∗1(θ1, θ2, θ−1−2(S)) < σ∗2(θ1, θ2, θ−1−2(S)). If,

on the other hand, θ1(n−|S|−1)+θ2(n−|S|) ≥ θ1(n−|S|)+θ2(n−|S|−1) then

σ∗1(θ1, θ2, θ−1−2(S)) > σ∗2(θ1, θ2, θ−1−2(S)). Define, Z(k, k+1) = min{θ1(k)+

θ2(k+1), θ1(k+1)+θ2(k)} for all k ∈ {1, . . . n−1}. Making use of the above

observations and the definition of Z(k, k + 1) we get

∑
S⊆N

(−1)|S|C(θ(S)) =
n−1∑
k=1

(−1)n−k−1

(
n− 2

k − 1

)
[Z(k, k+1)−θ1(k)−θ2(k)] (2.5)

For Ω to be FB implementable it is necessary from Lemma 2.1 that the RHS

of equation (2.5) is zero for all {θ1, θ2} ∈ Θ̄2 and satisfying CP. This crucially
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depends on the terms with Z(k, k+1) in the RHS of equation (2.5). We claim

that the RHS of (2.5) is zero if and only if either one of the two following

conditions is satisfied then Ω is FB implementable.

1. Z(k, k + 1) = θ1(k) + θ2(k + 1) for all k ∈ {1, . . . , n− 1}

2. Z(k, k + 1) = θ1(k + 1) + θ2(k) for all k ∈ {1, . . . , n− 1}.

We first prove the if part of this claim. If condition (1) holds i.e. Z(k, k+1) =

θ1(k)+θ2(k+1) for all k 6= n, then by substituting (1) in (2.5) and simplifying

it we get

∑
S⊆N

(−1)|S|C(θ(S)) =
n−1∑
k=1

(−1)n−k−1

(
n− 2

k − 1

)
{∆(1)θ2(k)} = 0.

The last step follows from CP9. Similarly one can show that if condition (2)

holds then

∑
S⊆N

(−1)|S|C(θ(S)) =
n−1∑
k=1

(−1)n−k−1

(
n− 2

k − 1

)
{∆(1)θ1(k)} = 0.

To prove the only if part of this claim we first assume that the claim is

not true. This implies that there exists θ1 and θ2 for individuals 1 and 2 such

that

(i) ∆(1)θ1(1) ≥ ∆(1)θ2(1),

(ii) ∃ a set T ⊂ {2, 3, . . . , n − 1} such that ∆(1)θ1(r) < ∆(1)θ2(r) for all

r ∈ T and

(iii) ∃ p ∈ {1, . . . , n− 1}/T such that ∆(1)θ1(p) > ∆(1)θ2(p).

Using conditions (i)− (ii) in (2.5) and simplifying it we get

∑
S⊆N

(−1)|S|C(θ(S)) =
∑
r∈T

(−1)n−r−1

(
n− 2

r − 1

)
{∆(1)θ1(r)−∆(1)θ2(r)} (2.6)

9If
n∑

k=1

(−1)k−1
(
n−1
k−1

)
θj(k) = 0, then

n−1∑
k=1

(−1)k−1
(
n−2
k−1

)
{θj(k + 1)− θj(k)} = 0.
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From Lemma 2.1 we know that for FB implementability we need that the

RHS of (2.6) must be zero. Now if ∆(1)θ2(k) = a > 0 for all k ∈ {1, . . . , n−
1} then construct a profile θ̂1 such that ∆(1)θ̂1(k) = (2k + 1)b with b ∈
( a

2n−3
, a

2n−1
). Applying the same type of construction i.e. (2n + 1)b < ε3 <

. . . < εn and θ ∈ [0,min{θ̂1, θ2}] and defining θj for all j ∈ {3, . . . , n} and θ′j
for all j ∈ N in the same way as before we get∑
S⊆N

(−1)|S|C(θ(S)) = ∆(1)θ2(n− 1)−∆(1)θ̂1(n− 1) = a− (2n− 1)b 6= 0.

If ∆(1)θ2(k) is not a constant for all k 6= n, then consider θ̄2 such that

θ̄2(k) = θ2(k) for all k ∈ {1, . . . , n−2} and select {θ̄2(n−1), θ̄2(n)} in such a

way that ā = ∆(1)θ̄2(n− 1) > max{∆(1)θ̄2(k)}k 6=n−1. Again, define θ̄1 such

that θ̄1(k) = kε1 where max{∆(1)θ̄2(k)}k 6=n−1 < ε1 < ā. Again by applying

the same type of construction we get∑
S⊆N

(−1)|S|C(θ(S)) = ∆(1)θ̄2(n− 1)−∆(1)θ̄1(n− 1) = ā− ε1 6= 0.

Therefore, for a preference satisfying condition (i) − (iii) and Lemma 2.1,

we can find a preference in its neighbourhood that fails to satisfy Lemma

2.1. Thus, Ω satisfying CP is FB implementable only if either (1) holds

or condition (2) holds. Since the selection of individuals 1 and 2 for the

above construction was arbitrary, it follows that Ω satisfying CP is FB im-

plementable only if for all j 6= l,

either (a) θj(k + 1)− θj(k) ≥ θl(k + 1)− θl(k) for all k 6= n

or (b) θj(k + 1)− θj(k) ≤ θl(k + 1)− θl(k) for all k 6= n.

This condition means that the descending order of {θj(2)− θj(1)}nj=1 deter-

mines the efficient queue i.e. if θj(2)− θj(1) ≥ θl(2)− θl(1) in some state θ,

then σ∗j (θ) < σ∗l (θ). Using Remark 2.3 we get Ω satisfies IP. The logic is quite

simple, if for example, θj, θl are such that θj(k+1)−θj(k) ≥ θl(k+1)−θl(k)

for all k ∈ {1, . . . , n − 1}, then individual j is served ahead of individual l

for all eliminations of i ∈ N/{j, l}. This proves Step 2.

Sufficiency: Consider the sum
∑
l 6=j
hj(σ

∗
j (θ−l)) in state θ for individual j ∈ N.

From IP we get
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∑
l 6=j
hj(σ

∗
j (θ−l))

= (n− σ∗j (θ))hj(σ∗j (θ)) + (σ∗j (θ)− 1)hj(σ
∗
j (θ)− 1)

= θj(σ
∗
j (θ)) (from condition (2.3) in Proposition 2.1).

Now consider a particular Groves mechanism M̂ = 〈σ∗, t̂〉 where γ̂j(θ−j) =

(n− 1)
∑
l 6=j
hl(σ

∗
l (θ−j)). Then it follows that∑

j∈N
γ̂j(θ−j)

= (n− 1)
∑
j∈N

∑
l 6=j
hl(σ

∗
l (θ−j))

= (n− 1)
∑
j∈N
{∑
l 6=j
hj(σ

∗
j (θ−l))}

= (n− 1)
∑
j∈N

θj(σ
∗
j (θ))

= (n− 1)C(θ).

This implies that for all θ ∈ Θ̂n,
∑
j∈N

t̂j(θ) = −(n− 1)C(θ) +
∑
j∈N

γ̂j(θ−j) = 0.

This section dealt with the restrictions required for FB implementability

of the general queueing model. The next few sections restrict the cost of each

individual to have a common functional form.

3 Separable Cost Models

In this section a class of queueing models, called separable cost queueing

models, are considered. For separable cost queueing models, θj(k) satisfies

the following conditions:

1. θj(k) = f(k)g(θj) for all j ∈ N, for all k ∈ {1, 2, . . . , n} and for all

θj ∈ Θ. Here Θ is assumed to be an interval in R+.

2. g(θj) > 0 for all θj ∈ Θ and g(θj) is continuous and strictly increasing

in θj.

3. Finally, f(k) ≥ f(k − 1) for all k ∈ {2, . . . , n}.
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The first condition multiplicatively separates the cost of each individual

for each position into two functions. The first function f depends on the

queue position. The second function g depends on the type (or cost parame-

ter i.e. θj) of an individual. The second condition is a restriction on the type

function. The third condition restricts the queueing cost function f to be

non-decreasing in queue positions. The second and third conditions together

imply that θj(k + 1) ≥ θj(k) for all k ∈ {1, . . . , n − 1}. The cost parameter

(i.e. θj for j ∈ N) is private information.

Each pair of functions (f, g) together with N and type space Θ, defines a

separable cost queueing problem Ω̂ = 〈N,Θ, (f, g)〉. A major benefit of

such a specification is that the efficiency condition is completely transparent

in this context. For a Ω̂, the queue σ∗(θ) ∈ Σ is efficient in state θ if for

all j 6= l, θj > θl ⇒ σ∗j (θ) < σ∗l (θ). Ties can be broken in many ways.

A particular way of breaking ties, that will be followed in this paper, is to

consider the natural ordering i.e. if θj = θj and j < l then σ∗j (θ) < σ∗l (θ)
10.

The next Proposition is related to IP of Ω̂.

PROPOSITION 3.3 Ω̂ satisfies IP.

PROOF: Consider Ω̂ = 〈N,Θ, (f, g)〉 and an individual j ∈ N with queue

position σ∗j (θ) in state θ. If l ∈ P (σ∗(θ), j) then σ∗j (θ−l) = σ∗j (θ) − 1 and

P (σ∗(θ−l), j) = P (σ∗(θ), j)/{l} in Ω̂N−l = 〈N− l,Θ, (f, g)〉. This is because

individual l is a predecessor of j in Ω̂ = 〈N,Θ, (f, g)〉. Also and because

according to the definition of efficiency and the same tie breaking rule as-

sumption, individual j’s queue position with respect to all other individuals

10Note that the definition of efficient queue depends only on a pairwise comparison of
individual types. In other words, if θj > θl, then for all θ−j−l ∈ Θn−2, σ∗j (θ) < σ∗l (θ).
Also note that given the domain specification, there are states for which more than one
ordering is efficient. So we have an efficiency correspondence for all such states. The tie
breaking rule guarantees that in all states where more than one ordering is efficient, the
decision picked is unique. Thus, a tie breaking rule guarantees a single valued selection of
ordering decision from the efficiency correspondence.
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N/{j, l} remains unchanged in Ω̂N−l = 〈N− l,Θ, (f, g)〉. Recall that the def-

inition of efficiency for any separable cost queueing model Ω̂ depends only on

the order of types of individuals. They remain invariant for the set of n− 1

individuals included in any Ω̂N−l = 〈N/{l},Θ, (f, g)〉. If, on the other hand,

l ∈ N/{P (σ∗(θ), j)∪j} then σ∗j (θ−l) = σ∗j (θ) and P (σ∗(θ−l), j) = P (σ∗(θ), j)

in Ω̂N−l = 〈N − l,Θ, (f, g)〉. This is because individual l is a successor of

individual j in Ω̂ = 〈N,Θ, (f, g)〉 and according to the definition of efficiency,

individual j’s queue position with respect to all other individuals N/{j, l}
remains unchanged in Ω̂N−l = 〈N− l,Θ, (f, g)〉.

The remainder of this section will deal with the question of FB imple-

mentability of the class of separable cost queueing model. The combinatorial

property (or CP) is both necessary and sufficient for FB implementability

of the class of separable cost queueing models. Note that Ω̂ = 〈N,Θ, (f, g)〉
satisfies CP if

n∑
k=1

(−1)k−1

(
n− 1

k − 1

)
f(k) = 0.

REMARK 3.4 From condition (2.3) it follows that Ω̂ satisfies CP, if and

only if there exists a unique vector H = {h(1), . . . , h(n − 1)} such that for

all k ∈ {1, . . . , n},

f(k) = (n− k)h(k) + (k − 1)h(k − 1) (3.7)

where h(k) =
k∑
r=1

(−1)k−r (k−1)!(n−k−1)!
(r−1)!(n−r)! f(r). The other observation that fol-

lows from condition (3.7) is

n∑
k=1

f(k) = n
n−1∑
k=1

h(k) (3.8)

Condition (3.8) will be useful in deriving later results.

PROPOSITION 3.4 Ω̂ = 〈N,Θ, (f, g)〉 is FB implementable if and only

if the cost function satisfies CP.
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PROOF: To prove the necessary part of the Proposition we first construct

two profiles and then apply Lemma 2.1. Let the two states θ and θ′ be of the

following form: θ′1 > θ′2 > . . . > θ′n > θ1 > θ2 > . . . > θn. Now for all S ⊆ N,

we consider profiles θ(S) = (θ1(S), . . . , θj(S), . . . , θn(S)) where θj(S) = θj if

j 6∈ S and θj(S) = θ′j if j ∈ S.

For all S ⊆ N/{1} with profiles (θ1, θ−1(S)), σ∗1(θ1, θ−1(S)) = N − |S|
and for all S ⊆ N/{n} with profiles (θ′n, θ−n(S)), σ∗n(θ′n, θ−n(S)) = |S| + 1.

Therefore,∑
S⊆N/{1}

(−1)|S|C1(θ1, θ−1(S)) =
n−1∑
|S|=0

(−1)|S|
(
n−1
|S|

)
f(n− |S|)g(θ1)

and∑
S⊆N/{n}

(−1)|S|Cn(θ′n, θ−n(S)) =
n−1∑
|S|=0

(−1)|S|
(
n−1
|S|

)
f(|S|+ 1)g(θ′n).

For all xj ∈ {θ2, . . . , θn, θ
′
1, . . . , θ

′
n−1}, if the sets {m1, . . . ,mp}, all subsets

of S/{j}, are such that σ∗j (xj, θ−j(mq)) = k, for all q ∈ {1, . . . , p}, then
p∑
q=1

(−1)mq = 0. Therefore,
∑

S⊆N/{j}
(−1)|S|C(xj, θ−j(S)) = 0.

Combining all these observations we get∑
S⊆N

(−1)|S|C(θ(S)) = {g(θ1)− g(θ′n)}
n−1∑
k=1

(−1)k−1
(
n−1
k−1

)
f(k).

Applying Lemma 2.1 and using g(θ1) 6= g(θ′n) in the above equation we get

n−1∑
k=1

(−1)k−1

(
n− 1

k − 1

)
f(k) = 0 (3.9)

The sufficiency follows quite easily from Theorem 2.1.

Consider a queueing model Ω̂ = 〈N,Θ, (f, g)〉. For convenience consider

the “inverse” of the queue σ∗. That is, given θ ∈ Θn, let µ be a permutation

such that θµ(1) ≥ . . . ≥ θµ(n). Furthermore, if g(θj) = g(θl) and j < l, then

j ∈ P (σ∗(θ), l). The explicit form of the transfer can be obtained from the

following condition:
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tµ(k)(θ) =
k−1∑
q=1

{(n−1)h(q)−f(q)}g(θµ(q))+
n∑

q=k+1

{(n−1)h(q−1)−f(q)}g(θµ(q))

(3.10)

where h(q) =
q∑
r=1

(−1)q−r (q−1)!(n−q−1)!
(r−1)!(n−r)! f(r) for all q ∈ {1, . . . , n− 1}.

The existence of FB implementable Ω̂ is already established in Mitra

and Sen (1998) for f(k) = k. The question of the existence of other FB

implementable separable cost queueing models is analysed in the next section.

3.1 Applications

In this section the existence of a fairly large class of FB implementable sepa-

rable cost queueing models is established. We start by defining a broad class

of queueing cost function.

DEFINITION 3.7 f̃n−2
a is called a polynomial cost function of degree

n− 2 if

1. f̃n−2
a (k) =

n−2∑
p=1

apk
p, for all k ∈ {1, . . . , n}.

2. f̃n−2
a (k) ≥ f̃n−2

a (k − 1), for all k ∈ {2, . . . , n}.

It is important to observe that the class of polynomial cost depends cru-

cially on the specification of the vector a = (a1, . . . , an−2). Let Ω̃n−2
a =

〈N,Θ, (f̃n−2
a , g)〉 be a particular separable cost queueing model with polyno-

mial cost f̃n−2
a . Also let Ω̃n−2 be the class polynomial cost queueing models.

Observe that from Proposition 3.3 it follows that all polynomial cost queue-

ing models Ω̃n−2
a ∈ Ω̃n−2 satisfy IP. One can now introduce some special

cases of the class of polynomial cost queueing models. One such special case

is the factorial cost queueing model.

DEFINITION 3.8 f [m] is called a factorial cost function of degree m

if for all m ∈ {1, . . . n− 2},

f [m](k) = [k]m = k(k − 1) . . . (k −m+ 1).
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Here m represents the queue position from which the f [m] is non-zero i.e.

f [m](k) =


k!

(k−m)!
if k ≥ m

0 otherwise.

One can easily verify that for all k ∈ {2, . . . , n},

f [m](k)− f [m](k − 1) =
m(k − 1)!

(k −m)!
≥ 0.

Let Ω̂[m] = 〈N,Θ, (f [m], g)〉 be a separable cost queueing model with factorial

cost of degree m ≤ n− 2.

Another type of polynomial cost queueing model is the standard cost

queueing model.

DEFINITION 3.9 fm is said to be a standard cost function of degree

m if for all m ∈ {1, . . . n− 2}, fm(k) = km.

One can easily that for all k ∈ {2, . . . , n},

fm(k)− fm(k − 1) = {km−1 + km−2(k − 1) + . . .+ (k − 1)m−1} > 0.

Let Ω̂m = 〈N,Θ, (fm, g)〉 be a separable cost queueing model with standard

queueing cost fm of degree m ≤ n−2. Notice that f [1] = f 1 i.e. factorial cost

function of degree one and standard cost function of degree one are identical.

REMARK 3.5 Following remarks can be made about the polynomial cost

f̃n−2
a ,

1. By selecting appropriate values of ap for all p = 1, . . . , n − 2, one can

get factorial cost of any degree m ≤ n− 2. For example, with |N| = 4,

a2 = 1 and a1 = −1 we get f̃ 2
a (k) = k2 − k = k(k − 1) = f [2](k). In

general, f̃n−2
a is a factorial cost of degree m ≤ n− 2 if ap = s(m, p) for

all p = 1, . . . ,m and ap = 0 otherwise. s(m, p) for all p = 1, . . . ,m, are

Stirling number of the first kind11.

11A Stirling number of the first kind, s(m, p), is defined as the coefficient of xp in the

expansion of [x]p = x(x−1) . . . (x−p+1), i.e. [x]p =
m∑

p=1
s(m, p)xp. For further references

see Tomescu and Melter (1985).
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2. A polynomial cost f̃n−2
a is a standard cost of degree m if am = 1 and

ap = 0 for all p 6= m.

THEOREM 3.2 Ω̃n−2
a ∈ Ω̃n−2 is FB implementable.

We state and prove two Lemma that will be used in proving Theorem

3.2.

LEMMA 3.2 Ω̂[m] is FB implementable.

PROOF: To prove this Lemma we will have to show that Ω̂[m] satisfies CP.

From the definition of f [m], it follows that
n∑
k=1

(−1)k−1
(
n−1
k−1

)
f [m](k)

=
n∑
k=1

(−1)k−1
(
n−1
k−1

)
k!

(k−m)!

= [n− 1]m−1(−1)m−1
n∑

k=m
(−1)k−m

(
n−m
k−m

)
{(k −m) +m}

= [n− 1]m(−1)m
n∑

k=m+1
(−1)k−m−1

(
n−m−1
k−m−1

)
+m[n− 1]m−1(−1)m−1

n∑
k=m

(−1)k−m
(
n−m
k−m

)
= 0.

LEMMA 3.3 Ω̂m is FB implementable.

PROOF: To prove this Lemma we use the following mathematical identity

km =
m∑
q=1

S(m, q)[k]q (3.11)

where [k]q = k(k − 1) . . . (k − q + 1) and S(m, q) are Stirling number of the

second kind12.

12A Stirling number of the second kind S(m, q), is defined as the coefficient of [x]q in

the expansion of xq, i.e., xq =
m∑

q=0
S(m, q)[x]q. Stirling number of the second kind are such

that S(m, 1) = S(m,m) = 1. Moreover, these numbers are unimodal i.e. they satisfy one
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From (3.11), it follows that
n∑
k=1

(−1)k−1
(
n−1
k−1

)
fm(k)

=
n∑
k=1

(−1)k−1
(
n−1
k−1

) m∑
q=1

S(m, q)f [q](k)

=
m∑
q=1

S(m, q){
n∑
k=1

(−1)k−1
(
n−1
k−1

)
f [q](k)}

= 0 (from Lemma 3.2).

PROOF OF THEOREM 3.2: To prove this Theorem we will have to

show that Ω̃n−2
a satisfies CP. Given the form of the cost function we get

n∑
k=1

(−1)k−1
(
n−1
k−1

)
f̃n−2
a (k)

=
n∑
k=1

(−1)k−1
(
n−1
k−1

)
{
n−2∑
p=1

apf
p(k)}

=
n−2∑
p=1

ap{
n∑
k=1

(−1)k−1
(
n−1
k−1

)
f p(k)}

= 0 (from Lemma 3.3).

The remaining part of this section deals with examples of different polyno-

mial cost queueing models with |N| = 4. The first two examples are factorial

cost queueing models of degree one and two. The third example is a standard

cost queueing model of degree two. The final example is a polynomial cost

queueing model of degree two.

EXAMPLE 3.2 Consider Ω̂[1] = 〈N = {1, 2, 3, 4},Θ, (f [1], g)〉 where the

queueing cost function is of the form f [1](k) = k, for all k = 1, 2, 3, 4.

of the following formulae:

1. 1 = S(m, 1) < S(m, 2) < . . . < S(m,M(m)) > S(m,M(m)− 1) . . . > S(m,m) = 1
or

2. 1 = S(m, 1) < S(m, 2) < . . . < S(m,M(m)− 1) = S(m,M(m)) > . . . > S(m,m) =
1

and M(m + 1) = M(m) or M(m + 1) = M(m) + 1 where M(m) = max{q | S(m, q) is
maximum; 1 ≤ q ≤ m}. For a better understanding see Tomescu and Melter (1985).

25



Condition (3.7) gives h[1](k) =
k∑
r=1

(−1)k−r (k−1)!(n−k−1)!
(r−1)!(n−r)! f

[1](r). Elementary

computation gives H[1] = {h[1](1) = 1
3
, h[1](2) = 5

6
, h[1](3) = 4

3
}.

Now consider a state θ = (θ1, θ2, θ3, θ4) such that θ1 ≥ θ2 ≥ θ3 ≥ θ4. This

means that σ∗j (θ) = j, for all j = 1, 2, 3, 4. We can see that for all j 6= l,

σ∗j (θ−l) =

 j if σ∗j (θ) < σ∗l (θ)

j − 1 if σ∗j (θ) > σ∗l (θ).

Consider the Groves transfer, as defined in condition (3.10). Computation

of the transfers give

t1(θ) = −{f [1](2)g(θ2) + f [1](3)g(θ3) + f [1](4)g(θ4)}

+(n− 1){h[1](1)g(θ2) + h[1](2)g(θ3) + h[1](3)g(θ4)}

= −g(θ2)− 1
2
g(θ3),

t2(θ) = −{f [1](1)g(θ1) + f [1](3)g(θ3) + f [1](4)g(θ4)}

+(n− 1){h[1](1)g(θ1) + h[1](2)g(θ3) + h[1](3)g(θ4)}

= −1
2
g(θ3),

t3(θ) = −{f [1](1)g(θ1) + f [1](2)g(θ2) + f [1](4)g(θ4)}

+(n− 1){h[1](1)g(θ1) + h[1](2)g(θ2) + h[1](3)g(θ4)}

= 1
2
g(θ2),

t4(θ) = −{f [1](1)g(θ1) + f [1](2)g(θ2) + f [1](3)g(θ3)}

+(n− 1){h[1](1)g(θ1) + h[1](2)g(θ2) + h[1](3)g(θ3)}

= 1
2
g(θ2) + g(θ3).

Note that
4∑
j=1

tj(θ) = 0. To write an explicit form of the transfers for each

state θ ∈ Θ, consider the “inverse” of the order σ∗, suppose µ is a permutation

such that

θµ(1) ≥ θµ(2) ≥ θµ(3) ≥ θµ(4).

The transfers are

tµ(1)(θ) = −g(θµ(2))− 1
2
g(θµ(3)),
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tµ(2)(θ) = −1
2
g(θµ(3)),

tµ(3)(θ) = 1
2
g(θµ(2)) and

tµ(4)(θ) = 1
2
g(θµ(2)) + g(θµ(3)). Observe that

4∑
k=1

tµ(k)(θ) = 0.

The reason why these transfers are incentive compatible is intuitive. The

individuals with first and second positions in the queue compensates the

individuals with third and last positions in the queue in such a way that

truth-telling is a dominant strategy for all the individuals. The amount that

the first individual pays exceeds the amount paid by the second individual by

g(θµ(2)). So, by moving in the second position the first individual with type

θµ(1) cannot benefit because his reduction in payment will be g(θµ(2)) and his

increase in queueing cost will be g(θµ(1))(> g(θµ(2))). Similarly, the individual

having second position in the queue cannot benefit by moving ahead in the

queue. In which case, he will have to pay g(θµ(1)) more and his reduction

in cost will be g(θµ(2))(< g(θµ(1))). One can, by applying similar arguments,

check that these transfers are dominant strategy incentive compatible for all

individuals.

EXAMPLE 3.3 Consider Ω̂[2] = 〈N = {1, 2, 3, 4},Θ, (f [2], g)〉 where the

queueing cost function is of the form f [2](k) = k(k − 1), for all k = 1, 2, 3, 4.

Using condition (3.7) we get h[2](r) =
m∑
r=1

(−1)m−r (m−1)!(n−m−1)!
(r−1)!(n−r)! f [2](r).

Elementary computation gives H[2] = {h[2](1) = 0, h[2](2) = 1, h[2](3) = 4}.

Consider a state θ ∈ Θ4 and θµ(1) ≥ θµ(2) ≥ θµ(3) ≥ θµ(4)
13. The transfers

are:

tµ(1)(θ) = −2g(θµ(2))− 3g(θµ(3)),

tµ(2)(θ) = −3g(θµ(3)),

tµ(3)(θ) = g(θµ(2)) and

tµ(4)(θ) = g(θµ(2)) + 6g(θµ(3)). Adding the transfers give
4∑

k=1
tµ(k)(θ) = 0. By

considering deviations one can find that truth-telling is a dominant strategy

13µ is the inverse of σ∗ as defined in the previous example.

27



for all individuals.

Observe that the factorial cost of degree 1 is of the same form as the

standard cost of degree 1, i.e. f [1](k) = f 1(k) = k. An example of a standard

cost queueing model for |N| = 4 with m = 2 is given below.

EXAMPLE 3.4 Consider Ω̂2 = 〈N = {1, 2, 3, 4},Θ, (f 2, g)〉 where the

queueing cost function is of the form f 2(k) = k2, for all k = 1, 2, 3, 4. Observe

that from Proposition 3.3 it follows that

f 2(k) = k2 = S(2, 1)k + S(2, 2)k(k − 1),

where {S(2, 2), S(2, 1)} are Stirling numbers of the second kind satisfying

S(2, 1) = S(2, 2) = 114.

From condition (3.7) we know that h2(r) =
m∑
r=1

(−1)m−r (m−1)!(n−m−1)!
(r−1)!(n−r)! f 2(r).

By substituting the factorial cost representation as explained above we ob-

serve that

h2(r) = h[1](r) + h[2](r). Thus, H2 = {h2(1) = 1
3
, h2(2) = 11

6
, h2(3) = 16

3
}.

For a state θ ∈ Θ4 with θµ(1) ≥ θµ(2) ≥ θµ(3) ≥ θµ(4), the explicit form of the

transfers are:

tµ(1)(θ) = −3g(θµ(2))− 7
2
g(θµ(3)),

tµ(2)(θ) = −7
2
g(θµ(3)),

tµ(3)(θ) = 3
2
g(θµ(2)) and

tµ(4)(θ) = 3
2
g(θµ(2)) + 7g(θµ(3)). Check that

4∑
k=1

tµ(k)(θ) = 0. With these

transfers it is clear that the individuals getting first and second positions

in the queue compensate the individuals getting third and fourth positions

in the queue in such a way that truth-telling is a dominant strategy for all

individuals.

14For m = 3, f3(k) = k3 = S(3, 1)k + S(3, 2)k(k − 1) + S(3, 3)k(k − 1)(k − 2) where
S(3, 1) = S(3, 3) = 1 and S(3, 2) = 3. For other ms’ one can similarly represent standard
cost as a weighted sum of factorial costs of degrees {1, . . . ,m} where the weights are
Stirling numbers of the second kind.

28



EXAMPLE 3.5 Consider Ω̃2
a = 〈N = {1, 2, 3, 4},Θ, (f̃ 2

a , g)〉 where the

queueing cost function is of the form f̃ 2
a (k) = a1k+a2k

2, for all k = 1, 2, 3, 415.

Observe that

f̃ 2
a (k)

= a1f
1(k) + a2f

2(k)

= a1f
[1](k) + a2{S(2, 1)f [1](k) + S(2, 2)f [2](k)}

= {a1 + a2}f [1](k) + a2f
[2](k).

From condition (3.7) we know that h̃2
a(k) =

k∑
r=1

(−1)k−r (k−1)!(n−k−1)!
(r−1)!(n−r)! f̃

2
a (r).

By substituting the factorial cost representation it is quite easy to observe

that h̃2
a(k) = {a1 + a2}h[1](k) + a2h

[2](k) for all k = 1, 2, 3.

Thus H̃2
a = {h̃2

a(1) = 1
3
(a1 + a2), h̃2

a(2) = 5
6
a1 + 11

6
a2, h̃

2
a(3) = 4

3
a1 + 16

3
a2}.

Consider a state θ ∈ Θ4 and θµ(1) ≥ θµ(2) ≥ θµ(3) ≥ θµ(4). Here the transfers

are:

tµ(1)(θ) = −(a1 + 3a2)g(θµ(2))− 1
2
(a1 + 7a2)g(θµ(3)),

tµ(2)(θ) = −1
2
(a1 + 7a2)g(θµ(3)),

tµ(3)(θ) = 1
2
(a1 + 3a2)g(θµ(2)) and

tµ(4)(θ) = 1
2
(a1 + 3a2)g(θµ(2)) + (a1 + 7a2)g(θµ(3)).

Adding up the transfers for all k = {1, 2, 3, 4} gives
4∑

k=1
tµ(k)(θ) = 0.

The analysis of the class of separable cost queueing models in this section

suggests the existence of a fairly large class of FB implementable separable

15Note that Ω̃2
a = 〈N = {1, 2, 3, 4},Θ, (f̃2

a , g)〉 is a polynomial cost queueing model if
f̃2

a (k + 1) − f̃2
a (k) ≥ 0 for all k = 1, 2, 3. Therefore one of the following conditions must

satisfied.

1. a1 < 0⇒ a1 + 3a2 ≥ 0

2. a1 = 0⇒ a2 ≥ 0 and

3. a1 > 0⇒ a1 + 7a2 ≥ 0.
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cost queueing models. This FB implementable class increases with the num-

ber of individuals. For example, factorial cost and standard cost queueing

models are of degree m ≤ n−2. The class of polynomial cost queueing model

are also of degree n − 2. So degree of n − 2 plays an important role in FB

implementability of queueing models. This is because CP requires that the

(n−1)th order difference at queue position 1 must be zero. Thus polynomial

costs of degree more than n− 2 are not FB implementable.

4 A General Class

A more general class of queueing models that are FB implementable is con-

sidered in this section. This class is defined by the following property.

DEFINITION 4.10 Ω satisfies Property G if for all j ∈ N and for all

k ∈ {1, . . . , n}, θj(k) satisfies the following conditions:

1. θj(k) =
M∑
p=1

f p(k)gp(θj) +βj(θj) for all j ∈ N, for all k ∈ {1, . . . , n}, for

all θj ∈ Θ and for all p ∈ {1, . . . ,M}.

2. For all p ∈ {1, . . . ,M}, gp(θj) > 0 for all θj ∈ Θ and gp(θj) is continuous

and strictly increasing in θj.

3. For all p ∈ {1, . . . ,M}, f p(k) ≥ fp(k − 1) for all k ∈ {2, . . . , n} and
n∑
k=1

(−1)k−1
(
n−1
k−1

)
fp(k) = 0.

Let ΩG be the class of queueing models satisfying Property G. Observe that

a queueing model ΩG ∈ ΩG with M = 1 and βj(θj) = 0 for all θj ∈ Θ

and for all j ∈ N, is a first best implementable separable cost queueing

model. In the next result it is proved that this class of queueing models is

FB implementable.

THEOREM 4.3 ΩG ∈ ΩG is FB implementable.
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PROOF: To prove this Theorem we first argue that ΩG ∈ ΩG satisfies IP.

This follows from the fact that the efficient queue in any ΩG ∈ ΩG depends

on the ordering of the types as was the case for separable cost queueing

models. Hence by following same arguments as in Proposition 3.3, one can

prove that ΩG ∈ ΩG satisfies IP.

The next step is to specify a Groves transfer and show that ΩG ∈ ΩG

is balanced for all states θ ∈ Θn. Observe that, for all p ∈ {1, . . . ,M},
n∑
k=1

(−1)k−1
(
n−1
k−1

)
f p(k) = 0 implies from condition (3.7) that for all p ∈

{1, . . . ,M}, there exists a unique vector Hp = {hp(1), . . . , hp(n − 1)} such

that for all k ∈ {1, . . . , n}, f p(k) = (n − k)hp(k) + (k − 1)hp(k − 1). Given

ΩG ∈ ΩG satisfy IP, by following the sufficiency argument in Proposition

3.4 we get that for all θ ∈ Θn and for all p ∈ {1, . . . ,M}, fp(σ∗j (θ)) =∑
l 6=j
hp(σ∗j (θ−l)).

Now consider a particular Groves mechanism M̂ ≡ 〈σ∗, t〉 where

γ̂j(θ−j) =
∑
l 6=j
{βl(θl) + (n− 1)

M∑
p=1

gp(θl)h
p(σ∗l (θ−j))} (4.12)

Then it follows that∑
j∈N

γ̂j(θ−j)

= (n− 1)
∑
j∈N

M∑
p=1

∑
l 6=j
gp(θl)h

p(σ∗l (θ−j)) + (n− 1)
∑
j∈N

βj(θj)

= (n− 1)
∑
j∈N

M∑
p=1

gp(θj){
∑
l 6=j
hp(σ∗j (θ−l))}+ (n− 1)

∑
j∈N

βj(θj)

= (n− 1)
∑
j∈N
{
M∑
p=1

f p(σ∗j (θ))g
p(θj) + βj(θj)}.

= (n− 1)C(θ).

This implies that for all θ ∈ Θ̂n,
∑
j∈N

tj(θ) = −(n− 1)C(θ) +
∑
j∈N

γ̂j(θ−j) = 0.

One can easily verify the following results:

• ΩG ∈ ΩG satisfies CP.
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• The class of FB implementable separable cost queueing models is a

special case of ΩG.

5 A Discounted Cost Model

In all the previous sections, the queueing models that were considered had

a cost specification that was increasing over time. Discounting is another

standard way of evaluating costs or benefits which accrue over time. For

example, in repeated games, one way to analyse benefits of an individual

over time is to study the discounted payoff of the individual. Similarly, in

some bargaining models, the cost of delay is measured in terms of a constant

discount rate. One can think of many other situations where discounting is

a standard way of measuring the cost of delay. Therefore, another way of

specifying costs in a queueing model is to consider a decrease in gross benefit

from the service over time. The general model specified in section two is

general enough to include this model as a special case in the following way.

DEFINITION 5.11 A queueing model Ωd = 〈N, [0, 1]〉 is called a dis-

counted cost model if for all j ∈ N and for all k ∈ {1, . . . , n}, θj(k) =

(1− θkj )vj where θj ∈ [0, 1].

The utility of an individual j in Ωd is of the form Uj(k, tj; θj) = θkj vj+tj. This

form of the utility is obtained by substituting θj(k) = (1−θkj )vj in the general

queueing model. Here θj ∈ [0, 1] represents the type of individual j which is

private information. One can check that θj(k+ 1)− θj(k) = θkj (1− θj)vj ≥ 0

for all k ∈ {1, . . . , n− 1}.
It is quite easy to observe that for Ωd, the domain specified satisfies

Holmström’s definition of “convex domains” and hence can be implemented

only by Groves mechanism. For discounted cost queueing models, CP means

that for all j ∈ N, θj(1 − θj)n = 0 i.e. θj ∈ {0, 1}. Thus for all θj ∈ (0, 1)

and for all j ∈ N, CP is not satisfied. The next Proposition looks at the

question of FB implementability of Ωd.
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PROPOSITION 5.5 Ωd = 〈N, [0, 1]〉 is not FB implementable.

PROOF: To prove this Proposition we will consider two states and apply

Lemma 2.1. Consider a particular individual m ∈ N such that vm ≤ vj for

all j ∈ N/{m}. Let θm = 1
3
, θj = 1

2
for all j ∈ N/{m} and θ̄j = 0 for all

j ∈ N. Consider two states θ = (θ1, . . . , θn) and θ̄ = (θ̄1, . . . , θ̄n). Elementary

calculation yields θkm(1− θm)vm < θkj (1− θj)vj for all k ∈ {1, . . . , n} and for

all j ∈ N/{m}. Therefore, n = σ∗m(θ) > σ∗j (θ) for all j ∈ N/{m}. Now for

all S ⊆ N, we consider profiles θ(S) = (θ1(S), . . . , θj(S), . . . , θn(S)) where

θj(S) = θj if j 6∈ S and θj(S) = θ̄j = 0 if j ∈ S. For all S ⊆ N/{m} with

profiles (θm, θ−m(S)), σ∗m(θm, θ−m(S)) = n− |S|. Therefore,∑
S⊆N/{m}

(−1)|S|Cm(θm, θ−m(S)) =
n−1∑
|S|=0

(−1)|S|
(
n−1
|S|

)
θ(n−|S|)
m vm

For all xj ∈ {θ2, . . . , θn}/{θm}, if the sets {m1, . . . ,mp}, all subsets of

S ⊆ N/{j}, are such that σ∗j (xj, θ−j(mq)) = k, for all q ∈ {1, . . . , p}, then
p∑
q=1

(−1)mq = 0 for all k. Therefore,
∑

S⊆N/{j}
(−1)|S|C(xj, θ−j(S)) = 0.

Combining all these observations and the fact that θ̄j = 0 for all j ∈ N

we get∑
S⊆N

(−1)|S|C(θ(S))

=
n∑
k=1

(−1)k−1
(
n−1
k−1

)
θn−k+1
m

= θm(θm − 1)n = 1
3
(1

3
− 1)n 6= 0.

From the constructions in the previous Proposition it is easy to see that

if θ is such that θj ∈ {0, 1} for all j ∈ N, then Ωd is FB implementable.

Therefore discounted cost queueing model cannot be FB implemented simply

because it fails to satisfy CP. This result confirms the importance of CP as

a necessary condition for FB implementability of any queueing model.
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6 Individual Rationality

This section deals with the identification of the sub-class of individually ratio-

nal queueing models within the class of FB implementable queueing models

discussed earlier.

DEFINITION 6.12 A mechanism M ≡ 〈σ, t〉 is individually rational

for a decision problem Ω, if for all j ∈ N and for all θ ∈ ΘN ,

Uj(dj(θ), tj(θ), θj) ≥ 0

This definition means that each individual has an outside option inde-

pendent of his valuation which gives him a utility of zero. An individual will

refuse to participate in the mechanism if he does not get an ex-post utility

of at least zero.

A queueing problem is said to be FB∗ implementable if it is FB imple-

mentable by a mechanism which satisfies individual rationality.

PROPOSITION 6.6 Ω = 〈N, Θ̄〉 satisfying CP and IP is not FB∗ imple-

mentable.

PROOF: Consider a state θ satisfying CP and IP such that θj(1) > vj for

all j ∈ N. Clearly,

Uj(σ
∗
j (θ), tj(θ), θj)− tj(θ) = vj − θj(σ∗j (θ)) < 0

for all j ∈ N. Balancedness imply
∑
j∈N

tj(θ) = 0. If tj(θ) < 0 for some

j ∈ S ⊂ N then Uj(σ
∗
j (θ), tj(θ), θj) < 0 for all j ∈ S and hence individual

rationality is not satisfied. So for all j ∈ N, tj(θ) ≥ 0. Therefore, for

balancedness we need tj(θ) = 0 for all j ∈ N. If tj(θ) = 0 for all j ∈ N

then Uj(σ
∗
j (θ), tj(θ), θj) < 0 for all j ∈ N. Thus Ω = 〈N, Θ̄〉 is not FB∗

implementable.

The general queueing model is not FB∗ implementable simply because

the cost of an individual can be so high as to exceed his benefit from the
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service. However, for ΩG ∈ ΩG and separable cost queueing models where

an individual’s cost parameter θj belongs to an interval Θ ≡ [θ, θ], one can

find sufficient condition under which FB∗ implementability can be achieved.

To establish this result for ΩG ∈ ΩG, consider β̄j ≥ βj(θ) for all θ ∈ Θ ≡ [θ, θ]

and for all j ∈ N. Let β̄ ≥ β̄j and let v ≤ vj for all j ∈ N.

PROPOSITION 6.7 If ΩG ∈ ΩG satisfies

v ≥
M∑
p=1

{[gp(θ̄)− n− 1

n
gp(θ)]

n∑
r=1

f p(r)}+ β̄,

then it is FB∗ implementable.

PROOF: Consider ΩG ∈ ΩG and also the Groves mechanism M with the

Groves transfer obtained from condition (4.12). Further we take an individual

with queue position k ∈ {1, . . . , n} in state θ. The utility of the individual

is given by

Uµ(k)(k, tµ(k), θµ(k))

= vµ(k) −
M∑
p=1

fp(k)gp(θµ(k))− βµ(k)(θµ(k)) + tµ(k)(θ)

= vµ(k) −
M∑
p=1

fp(k)gp(θµ(k))−
M∑
p=1

∑
r 6=k

fp(r)gp(θµ(r))− βµ(k)(θµ(k))

+(n− 1)
M∑
p=1
{∑
q<k

hp(q)gp(θµ(q)) +
∑
q>k

hp(q − 1)gp(θµ(q))}

≥ vµ(k) −
M∑
p=1

gp(θ̄)
n∑
r=1

f p(r) + (n− 1)
M∑
p=1

gp(θ)
n−1∑
r=1

hp(r)− β̄

= vµ(k) −
M∑
p=1

gp(θ̄)
n∑
r=1

f p(r) + n−1
n

M∑
p=1

gp(θ)
n∑
r=1

f p(r)− β̄ (from (3.8))

= vµ(k) −
M∑
p=1
{gp(θ̄)− n−1

n
gp(θ)}

n∑
r=1

f p(r)− β̄

≥ v − [
M∑
p=1
{gp(θ̄)− n−1

n
gp(θ)}

n∑
r=1

fp(r) + β̄]

≥ 0.

A similar result follows for the first best implementable separable cost

queueing model.
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Corollary 6.1 If a FB implementable Ω̂ = 〈N,Θ, (f, g)〉 satisfies

v ≥ {[g(θ̄)− n− 1

n
g(θ)]

n∑
r=1

f(r)},

then it is FB∗ implementable.

The prove of this corollary is immediate from the fact that a first best imple-

mentable separable cost queueing model is a special case of ΩG with M = 1

and βj(θ) = 0 for all θj ∈ Θ and for all j ∈ N.

From this section one can conclude that with a very general cost structure

one cannot FB∗ implement the queueing model. However, for the separable

cost queueing models and general FB implementable class of queueing models

one can find lower bounds on the benefit, sufficient for FB∗ implementability.

7 Conclusion

This paper provides a complete characterization of FB implementability of

queueing models. For a queueing model to be first best implementable, it

is necessary and sufficient that the type vector of each individual satisfies a

certain combinatorial property called CP and that the externality that can

be imposed by an individual on the remaining set of individuals satisfies

the independence property. The class of queueing models analysed in this

paper are implementable only by Groves mechanism. Therefore, the first best

implementability of a queueing problem reduces to the problem of finding

appropriate balanced Groves mechanism. The independence property allows

for a particular type of separability which matches the separability obtained

from the combinatorial property. This paper identifies a fairly large class of

first best implementable queueing models. For completeness, the question of

individual rationality of the FB implementable queueing models is analysed

in section six. The broad conclusion from this analysis is that if the benefit

derived by each individual from the service is sufficiently high, then a FB

implementable queueing model satisfies individual rationality.
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