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Abstract

This paper examines group formation in group-credit contracts re-
cently popular in credit programs for the poor. The joint-liability in these
contracts induces a correlation between the choice of partner and of re-
payment strategy. We show that this leads to non-monotone matching
patterns, which differs with the homogeneous or assortative matching as-
sumptions prevalent in the literature.

The heterogeneity in equilibrium arises from the ability of borrow-
ers to use the joint liability to create credible insurance arrangements
among group partners in missing insurance market environments. Beyond
a certain risk level, nonetheless, borrowers are unable to remunerate safer
partners for the asymmetric insurance, and are hence left to match homo-
geneously. Distributional measure-consistency requirements can also lead
to pockets of homogeneous matching in heterogeneous matching regions.
The exact matching pattern depends on the distribution of borrower types,
although we show it remains non-monotone for any finite or continuous
distribution.

This result challenges the common assumption that joint-liability in-
duces borrowers to form groups with partners with similar risk profiles.
In missing market contexts, institutional innovations may spillover to fill
other failures. This highlights, in particular, the necessity for empirical
analyses to carefully account for the endogeneity of group characteristics,
as a failure to so can seriously jeopardize the validity of decisions reached.

1 Introduction

Group lending has been a widely heralded tool in the search for financial mech-
anisms to extend credit to the poor. Most group lending programs have had
extensive outreach to the poor, while maintaining extremely high repayment
rates. The salient feature of the group-lending approach is that borrowers orga-

nize in credit groups which are made jointly-liable for the entirety of the loans
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responsability.



taken by members. Default by any member of the group has repercussions on
all members of that group. A growing number of papers have examined the
role of this joint-liability on repayment rates and borrower welfare, as com-
pared to individual lending contracts.! However, most studies assume that this
joint-liability leads to borrowers matching homogeneously (as in Stiglitz, 1990,
and Armendériz de Aghion, 1996), or take group composition as given (e.g.,
Besley and Coate, 1996; Diagne, 1998; and Wydick, 1995). Very few papers
have addressed the issue of group formation.?

The matching literature has examined exactly this issue: how do individ-
uals form in teams to maximize joint production when there is an indivisible
input? Models have extended the “marriage model” (Becker, 1981) to account
for search frictions (e.g., Diamond, 1982, and Shimer and Smith, 1998), miss-
ing markets (e.g., Fernandez and Gali, 1997, and Legros and Newman, 1998),
and varying outside options (e.g., Kremer and Maskin, 1995, and Legros and
Newman, 1998).> However, matching models take borrowers’ actions as given.
No model (to our knowledge) has examined how group composition can change
individual incentive structures.

This paper presents a model in which group membership is endogenous,
and in which a borrower’s choice of repayment strategy depends on both his
own type and on the type of his partner. Group members choose partners in
a context of missing insurance markets and decide whether or not to repay
and potentially provide insurance for their partner. The results of our model
suggest a non-monotone matching pattern in which: (1) safer borrowers form
groups with partners riskier than they in a negative manner to exploit bene-

ficial insurance arrangements; (2) middle-type borrowers match either hetero-

ISee, for example, Stiglitz (1990); Besley and Coate (1993 and 1995); Armendériz de
Aghion (1995); Ghatak (1995); Wydick (1995); Sadoulet (1997) and Diagne (1997).

2Ghatak (1995) is a notable exception. He shows that the joint-liability can counter a
“market for lemons” tendency in individual loans where the interest rate drives out the better
borrowers, by making groups shoulder most of the cost of the riskier borrowers. Groups then
form in a homogeneous manner, with the safer borrowers organizing among themselves. The
reason our result will differ is that Ghatak does not model borrowers’ incentive to repay.

3Legros and Newman (1998) provide a very complete discussion of the issues of limited
transferability due to missing markets and varying outside options.



geneously with safer borrowers, or homogeneously with borrowers of identical
risk as theirs; and (3) the riskier borrowers form in groups homogeneous in risk,
since these borrowers are too risky to be accepted in such insurance schemes.
The exact matching pattern in groups depends on the distribution of borrower
types, although we show that the matching pattern remains non-monotone for
any continuous distribution.

The point we illustrate in this paper is that group characteristics are en-
dogenous and hence analyses that take group composition as given can be mis-
leading. This result is important in light of the emerging empirical work on
the performance of credit groups. Empirical studies have often followed their
theoretical counterparts in assuming (at least implicitly) that matching is exoge-
nous. Authors then use group characteristics as exogenous explanatory variables

4 However, endogeneity in these vari-

in analyses of credit-group performance.
ables can lead to serious biases in the analysis, and jeopardizes the reliability
of policy conclusions derived from the results. In our case, for example, using
risk-heterogeneity to explain performance would find that more heterogeneous
groups tend to perform better. Drawing a causal relationship between hetero-
geneity and performance would, however, be misleading. Special care must be
taken in empirical analyses to account for the endogeneity of group membership.

The remainder of the paper is organized as follows. The next section presents
a model of group lending in a context of missing insurance markets (Sadoulet,
1997). We use results from that paper to derive borrower repayment strategies
and expected returns. Section 3.1 introduces the matching problem and defines
the equilibrium concept used in the paper. Section 3.2 characterizes the equilib-

rium. Section 4 summarizes the results and concludes. The proofs are relegated

to the appendices.

Matin (1998), for example, explains default rates by the length of the average membership
in a group. Sharma and Zeller (1996) use group size, intra-group variance of land holdings,
the proportion of relatives in a group, and the percentage of female members to explain
repayment rates. Wenner’s (1995) explanatory variables of loan-payments delinquency include
the average savings of group members, whether the group reports screening members, and a
factor-analysis score measuring the groups’ organizational strength.



2 Group Lending
2.1 The Model

Microfinance mechanisms are designed to provide credit to the poor. The model
we use tries to capture some of the salient characteristics of poor entrepreneurs
that have made lending to them difficult: lack of collateral and of other sources
of income, and moral hazard opportunities.

For simplicity, the borrowers in our model are assumed to have no assets and
no savings capacity between periods. They want to invest one unit of capital in
a productive project. Their project has two states of nature: it can succeed and
yield X; or it can fail and yield nothing. Borrowers are characterized by their
type, P;, which is the probability of success of their projects:

X with probability P; (“success”)

Borrower #’s project yields { 0  with probability (1— P,) (“failure”).

In each period, individuals need to borrow the required unit of capital from
a financial institution at an interest rate r, which they take as exogenous. The
financial institution® offers two types of loans: individual loans and group loans.
Individual loans give borrowers one unit of capital and they must repay L =
1 + 7 units back in order not to be considered in default. To get a group loan,
borrowers must choose a partner. Each borrower receives one unit of capital
but both borrowers are jointly-liable for the entire group loan: if the bank does
not receive 2L as the group’s repayment, then both borrowers are considered in
default. The interest rate on both loans is assumed to be equal® and borrowers
can only participate in one loan at any given time.

Since borrowers have no assets, the financial institution cannot require col-
lateral from the borrowers to back the loans. The incentive for borrowers to

repay their loans is maintained by a rule: borrowers are guaranteed access to

T assume that the financial institution is the sole source of “cheap credit” to avoid issues
of credibility of institutional rules see discussion in Sadoulet (1997).

6The interest rates in the two different contracts are taken as equal to replicate the policy
of Génesis Empresarial, the financial institution which hosted the survey in Guatemala. Why
the interest rates do not differ is not clear, particularly since these two programs report
different repayment rates. A personal conversation with Steven Gross, financial manager of
ACCION International, did not resolve the mystery.



future loans upon repayment of the loan; however, any borrower in default —
as defined above for each contract — loses access to both individual and group
loans forever.”

To simplify the notation, we will normalize everything in terms of the re-

payment L. The borrowers’ return when successful will then be
x=X/L

and borrowers will be thought of as repaying 1 unit. We also restrict groups
to be of size 2 as we want to abstract the analysis from the potential trade-offs
between group-size and quality of partners.®

For convenience, each borrower is assumed to always be able (though not
necessarily willing) to repay the entire group loan when his project is successful,
i.e., x > 2. Borrowers’ alternative sources of credit (typically money-lenders ex-
tending individual loans) are assumed to be able to extract all the surplus from
borrowers through the use of local information and enforcement mechanisms. A
defaulter’s fallback value from losing access to future loans from the institution
is therefore normalized to zero. Borrowers’ projects will be taken as uncorre-
lated to preclude the problem of trade-off in the choice of partner between the
probability of success of his project and its covariance. Borrowers are taken
to be infinitely lived and have the same discount factor § € (0,1). Borrower
types P; are assumed to be (finitely or continuously) distributed according to a
distribution F on B C [0, 1], and there is a unit mass of borrowers of every type.
This is to bypass the question of availability of homogeneous partners, and to
insure that all borrowers of a same type match in the same way in equilibrium

(equal treatment property).”

T As pointed out in Sadoulet (1997), these lending contracts are obviously not optimal from
the financial institution’s point of view. In particular, a contract that would dominate these
would be a kind of “credit record” as is done with credit cards. Borrowers could use this
credit record to insure themselves. However, non-collateralized lending contracts in practice
are designed with this “exclusion forever” clause.

8If there were no costs of monitoring, groups would be of infinite size to gain in diver-
sification; or contracts between groups would spring up, in essence making them groups of
infinite size. The restriction on the size of groups in essence is an assumption that it would
be prohibitively expensive for borrowers to monitor more than one party.

9There are thus the same number of borrowers of each type, and borrowers are more or
less densely distributed on B.



Sadoulet (1997) shows that if borrowers are “safe enough,” they have an
incentive to maintain access to future loans. Borrowers whose expected returns
in future periods are larger than the cost of repaying the loan will want to
repay loans. Some borrowers will even set up insurance arrangements within
their group in which partners will cover each others’ loans in case of project
failure. The reason is that borrowers operate in risky environments and hence
need insurance; group lending allows for insurance arrangements to arise even
in environments which are otherwise non-conducive to insurance contracts.'’
What allows these insurance contracts to be sustained is that borrowers cannot
renege on their insurance commitment because of the joint-liability: if they do
not provide insurance, the whole group — including the borrowers reneging on
the insurance commitment — loses access to future loans. In addition, strategic
defaults, in which borrowers are wnwilling to repay when they are able to,
can be punished by exclusion from future rounds of the loan. Group lending
hence creates a punishment technology which allows for the enforcement of
insurance contracts. In general, these insurance arrangements require some
kind of transfer between members when both are successful, to compensate for
asymmetric risks.

We note the difference between transfers between borrowers, and insurance.
Transfers refer to borrowers paying (at least in expected terms) part of their
partner’s loan when both borrowers’ projects are successful. Insurance, on the
other hand, is when one borrower cover his partner’s loan when his partner’s
project fails. A borrower providing insurance hence covers the full group loan
amount of 2 units.

The general individual rationality conditions for groups to choose mutual-
insurance strategies in equilibrium are shown graphically in figure 1.'' They, in

essence, require that groups form within an individual rationality envelope, in

10Note that, even though borrowers are risk-neutral, there are gains from insurance since a
default makes borrowers lose access to future loans forever.

' The alternatives for borrowers are to match with a partner of same risk (homogeneous
matching), or to participate in an individual loan. The conditions are detailed in Sadoulet

(1997).
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Figure 1: Sustainable mutual-insurance equilibria.

which partners of a group are not “too risky” compared to each other (a borrower
who always succeeds would never want to form a group with a partner whose
project always fails, for example); and in which borrowers are safe enough that
maintaining access to future loans is profitable (a very risky borrower whose
project succeeds might not want to repay as there is a high probability that
his project will fail in the next round). In this paper, we will concentrate on
borrowers who are safe enough to be willing to repay their own (individual) loan.
These are borrowers whose discounted expected return next period is greater

than the cost of repaying the loan, i.e.,

1
in P, > —. 1
L II’IZ-lé% — bx (1)

We will disregard borrowers riskier than (696)_1 12

2.2 Expected returns under group lending.

Since borrowers have perfect and complete information about each other’s risks,
there is no learning or adjustment of repayment strategy from period to period.

Borrowers’ matching decision is the same in each period. The joint return for

121f the sct of borrowers B were to contain borrowers riskier than (§z)~', Sadoulet (1997)
shows that these borrowers would choose to default in all states of nature in equilibrium and

would form groups with other similar borrowers in [0, (63:)_1} or participate in individual

loans. As they would match homogeneously in equilibrium, their inclusion would not modify
the equilibrium we describe in Section 3.



a group {P;, P;} with mutual-insurance strategies is then given by the infinite-

horizon discounted sum of per-period expected returns:

W(PZ',PJ') = [PZ'I—"-PjI—PinQ—Pi(l—Pj)Q—Pj(l—]DZ’)Q]

+6(1— (1= ) (1= Fy)) {W (P, Fy)} -

With probability P;, borrower i’s project is successful and yields z. The same
holds for j with probability ;. When at least one of the projects is successful,
both loans get repaid and the group gets access to future loans. If the loan is
not repaid, borrowers lose access to future loans and hence get a payoff of zero

thereafter.!® The infinite discounted sum above can be rewritten as:

(Pt P)e (P4 PO P)2 ,
17(PZ'+P]'(17P¢))6 ' ()

W (P, P;) =

Becker’s classic result is that complementarities in the joint-payoff leads to
positive assortative matching (Becker, 1981, Chapter 4). In our context, this
would entail that matched individuals are identical in equilibrium.

Taking cross-partials of the joint payoffs yields:

OPW (P, P;) 26(1 — P; — P+ P,Pi§) (x — 1)+ (1 = 6) (1 — 6P, P})
OPOF; (1= (P + Py (1= P)) )’

G

We note that if § = 1, the cross partial is positive:

82W(P¢,Pj) z—1

_ >0
OP;0P; (1—(P+P(1-P))°

There is hence complementarity among borrowers which leads to positive assor-
tative matching: matched partners are identical in equilibrium if 6 = 1.

However, if § < 1, then the cross partial is positive if and only if

6(1—Pj)$+1—6(2—Pj)

BB

It is easily checked that there exist values of § and x such that the cross partial
in (3) does not have the same sign for all P; and P;. There will hence not

be complementarities (or substituabilities) over the whole interval of borrowers

13 As noted above, horrowers benefit from insurance even though they are risk-neutral,
because after a failure they lose access to future credit. The expected value of their project is
thereafter zero. This, essentially, makes their payoff function concave.



and we cannot refer to Becker’s monotone matching result. We hence use an

alternative approach, as in Legros and Newman (1998).

2.3 Surplus from matching heterogeneously.

Define a group {P;, P;}’s surplus from matching heterogeneously to be the dif-
ference between the heterogeneous group’s joint-return, and each individual’s

expected payoffs in separate homogeneous groups'*:

7 (P By) =W (P, By) = 3W (P P) = 5W (Fy, By @

The joint-return in homogeneous groups is assumed to be split evenly between

the two partners.'> Note that the surplus function is symmetric so that
o (Pi, Pj) = o (P;, Pi),
and that the surplus of a homogeneous group is, by definition, zero:
o (P, P;)=0.

For future reference, it is also worth noting that o (P;, P;) is continuous and
differentiable in P; and F;.

The following Lemma describes the surplus function o (p, P;).
Lemma 1 The surplus function o (P;, P;) is such that:

1. there exists a unique p’ such that o (p/,P;) < 0 for all P; < p’ and

o(p',P;) >0 for all P; > p'. Moreover,

2. VP; > p/, there exists | (P;) < p’ such that

o(P,P)<0 VP <I(P)
o(P,P;) >0 VP, >1(P)
(P, P;)=0 if P, =1(P;) orP;j=PF,.

M Segregation payoffs in Legros and Newman (1998).
15 Homogeneous borrowers have identical preferences and outside option.
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Figure 2: The surplus function o (p, P;) as a function of partner risk P;.

3. VP; < p/, there exists k (P;) > p’ such that

U(R7Pj)>0 VPJ' >]€(PZ)
('J'(.P¢7Pj)<0 VPj <k(Pz'), Pj;épz'
O’(PZ',PJ‘):O Zij:k(Pz) O’I‘Pj:P7;.
4. The points p', 1 (P;) and k (P;) are independent of the distribution of bor-

rower types F.

Lemma 1 proves that the surplus is as represented in figure 2. The argument
of the proof (in appendix A.1) goes as follows. The surplus function o (p, P;)
as a function of the partner’s risk P; is a cubic function with a double root at
P; = p. We show that there exists a unique value of p, which we call p’, such
that the third root is also equal to p and that the surplus o (p’, P;) is increasing
in P;. This gives the right-hand panel of figure 2. We then establish that: for
all p < p/, the third root k (p) is greater than p’ (as in the middle panel); while
for p > p’, the third root ! (p) is smaller than p’. Finally, knowing the sign of the
surplus of matching p’ with the riskier partner p (always negative) and with the
safest partner P (always positive, if o > p’) leads to the shapes drawn in figure
2.

Matching homogeneously yields a surplus of zero, by definition of the surplus
function. However, if a relatively safe borrower (i.e., p; > p’ — left panel of

figure 2) matches with someone riskier than he, the surplus from heterogeneous

10



matching can be positive as the net insurance provided by p; increases the
joint expected return W (py, P;) beyond the sum of each individual returns in
separate homogeneous groups. Positive surpluses can be maintained as long as

P; is not too risky:
1 1 . ,
W(p1,Pj) > §W(p1,p1)+§W(Pj,Pj) 1fp1 > p' and Pj >l(p1).

If P; is riskier than [ (py), the costs to p; of insuring P; are higher than the
benefits P; gains from the extra insurance. The surplus from those matches
become negative.

For relatively risky borrowers (i.e., po < p’ — middle panel of figure 2), the
only partners that yield a positive surplus are borrowers much safer than they
(i.e., with P; > k (p2)). Matching with any partner P; riskier than & (p2) makes
the extra cost of insurance for P; (as compared to a homogeneous P; group)
not worth the benefit to po. The surplus of ps matching with any partner riskier
than k (p2) therefore yields a negative surplus o.

The point p’ (right panel of figure 2) is such that matching with a partner
safer than he yields a positive surplus. However, p’ would be better off in a
homogeneous group than with a partner riskier than he.

This in particular implies that any two borrowers riskier than p’ matched
together would yield a negative surplus, unless the partner happens to be of

identical risk. We state this as a lemma as we will refer to this result later.!¢
Lemma 2 VP;, P; < p' with P, # P;, o (P;, P;) <.

As we will see, this will imply that no borrowers riskier than p’ will ever

match together in equilibrium unless they are identical.

3 Equilibrium Matching.

3.1 Definitions.

Borrowers are distributed on a set B according to a (finite or continuous) dis-

tribution F' with measure u. We are interested in finding a matching correspon-

L6 Proof in Appendix A.2.
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dence m which will assign to each P; € B a partner m (P;) € B. For m to be an

equilibrium matching, it must satisfy the following properties:

Definition 1 An equilibrium matching correspondance m will be a correspon-

dence from B onto B which to each P; € B assigns a partner m(P;) € B such

that the matches are:

1. feasible: the aggregate of each borrower’s expected portion of the total sur-

plus does not exceed the total surplus produced, i.e.,'”

5 [l + (el aF () < [a (B () dF (P)
B B

where s (P;) is P;’s expected portion of the total surplus in equilibrium.

2. stable: no pair of borrowers P;, P; (matched or not to each other under
m) has an incentive to break their assigned position to form a new group

together and share its surplus:
S (P»L) + s (Pj) >0 (Pi,Pj) .

In particular, this requires all matched groups to produce a mon-negative

surplus in equilibrium:

o(P;,m(P;))>0 VP ebB.

3. measure consistent: every set of borrowers has to match to a set of the

same measure, i.e.,
VICB, u(T)=p(m(D).
This requires the number of “borrowers” and “partners” to add up.'®

The definition of equilibrium should also contain an assignment of surplus, as

it needs to satisfy feasibility. Nonetheless, the following results from Roth and

17 The factor % is to account for the double counting in the left hand side.
18 Measure consistency is crucial because we are in a one-sided matching problem: the
“borrowers” and “partners” in a group come from the same population. This requirement

rules out matching rules such as m (p) = 2p which would match a set [0, 1] one-to-one to the
smaller set [O, %} . Despite being a one-to-one mapping, it is not measure consistent.

12



Sotomayor (1990) and Legros and Newman (1998) will allow us to characterize
the equilibrium without having to consider how the surplus is split between

borrowers.

Lemma 3 There are no transfers between members of different groups in stable

outcomes.t?

This essentially comes from the assumption of stability which requires in-
dividual surpluses to be at least as great as what borrowers would get if they
shared all the surplus created by their own group. Hence, there will be no net

transfer out of any group.

Lemma 4 Any equilibrium is optimal in the sense that it maximizes the aggre-

gate surplus (given a group size of 2).2°

We give no proof of Lemma 4; the interested reader is instead referred to
Legros and Newman (1998). In essence the argument is that, if the equilibrium
matching m does not maximize total surplus, there exists some other measure
consistent matching m which yields a higher expected surplus. This means that
there exists at least one pair of borrowers unmatched under m which, when
matched under m, produce a higher surplus than both received under m. This
pair would then break from the assigned groups under m and form their own
group; m would not be stable.

Lemma 4 insures us that we only have to worry about finding the matching
rule that maximizes the aggregate expected surplus without being concerned
about the division of surplus within groups in equilibrium.

We also make precise the concept of negative matching, which will be im-

portant in the characterization of the equilibrium:

Definition 2 Borrowers on an interval T C B will be said to match negatively

if for any P;, P; € 1 :

P; >Pj <:>m(Pz) <m(Pj).

9This is an implication of Lemma 8.5 in Roth and Sotomayor (1990).
20This is Proposition 1 in Legros and Newman (1998).

13



\ \
"risky" borrowers: | "medium" borrowers: | "safe" borrowers:;

all match homogeneously | match hetero with [p',p] | match heterogeneously
or homogeneously in a negative way

| |

Figure 3: Equilibrium matching pattern.

A borrower P; will be said to match homogeneously if P; matches with a partner

of identical risk:

Note that the definition of negative matching does not say anything about
the matching pattern in the matching image of Z, m (Z). This distinguishes
negative matching from the concept of negative assortative matching which con-

siders matching patterns within a set.?!

3.2 Non-monotone matching

This section characterizes the equilibrium. The reader might find figure 3 helpful

for the discussion.

Proposition 1 Tuake any continuous distribution F' of borrower types on B = @, ﬁ] .

In equilibrium, the set of borrowers B can be divided into three subsets:

2INegative assortative matching usually refers to a property on a set, say J. Take any two
equilibrium groups (a,b) and (¢,d) in J X J. The equilibrium satisfies negative assortative
matching if

max (a,b) > max (¢,d) <= min (a,b) < min(c,d).

In our definition, we don’t look at the matching image of Z. In particular, Z would still display
negative matching according to our definition if there existed some equilibrium group within
the image m (T) of the set Z, say (z,m (z)) € m (I)xm (I), such that z < m (F;) <m (z) < P;
for some P; € T and m (P;) € m (Z). This would not satisfy negative assortative matching.

14



1. ‘safe’ borrowers in [p',P|] who match heterogeneously and in a megative

way,

2. ‘medium’ borrowers in [m (p),p’) who match either heterogeneously with

partners in [p',p| or homogeneously if no ‘safe’ borrower is available; and
3. ‘risky’ borrowers in [g, m (ﬁ)) who match homogeneously.

The proof of Proposition 1 is provided in Appendix A.4. We only give here
the logic of the proof and some interpretation of the result.

Recall that p’ is defined as the borrower who can generate a surplus with and
only with any partner safer than he. The result of the proposition is that we
can classify borrowers in three different categories — ‘safe’ above p/, ‘medium’ in
between m (P) and p’, and ‘risky’ below p’— and that each category of borrower
matches in a different manner in equilibrium.

In equilibrium, the ‘safe’ borrowers [p’, p] match heterogeneously in a nega-
tive way (Appendix A.4.1). The reason is that for a ‘safe’ borrower, the marginal
effect on the surplus caused by lowering the risk of his partner decreases with
his own risk. Therefore, for any two ‘safe’ borrowers p; and ps and partners

q1 and g2 such that

q2 < q1 <p2 <pi,

if the matching correspondence prescribed groups {p1,q:} and {ps, ¢} in equi-
librium, then a rearrangement of the partners in the groups would allow to
increase the total surplus and make everybody better off.??> The matches would
hence not be stable.

There is one (at most) type of ‘safe’ borrowers that matches homogeneously
in equilibrium, which we call .23 All the borrowers above p match with partners
riskier than they in [m (P),Dp), while the rest of the ‘safe’ borrowers in [p/, p)
match with partners safer than they in (p,p’] . By the property that ‘safe’ bor-

rower match negatively, as borrowers get closer to p, the heterogeneity in their

22By Lemma 4, which states that the aggregate surplus must be maximized in equilibrium,
and by Lemma 3, which shows that there are no transfers between groups.
23The existence and uniqueness of p is proved in Corollary 2 in Appendix A.4.1.
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group gets smaller. The type p therefore matches homogeneously in essence as
a limit case of heterogeneous matching. The uniqueness of p stems from the fact
that if two different ‘safe’ types matched homogeneously, they could exchange
partners and create two heterogeneous groups with positive surplus.

The borrowers who choose riskier partners do so because they can extract
some surplus from their riskier partners to compensate (and possibly remuner-
ate) them for their net insurance provision.? The borrowers matching with
safer partners have to pay a transfer. However, this transfer buys them higher
levels of insurance than under homogeneous matching. How much of the surplus
the safer borrowers can extract will depend on the threat points each borrower
can use, which in turn depend on F. We note that, unless F' is discrete and
such that the safest borrower below p’ is so risky that a negative assortative
matching among the ‘safe’ leads to a higher total payoff, the safest borrower T
will choose a partner m (p) no safer than p’. The interval [m (P) ,p’) then defines

the ‘medium’ borrowers,??

and the borrowers below m (p) are called ‘risky’.

The ‘risky’ borrowers in equilibrium are always too risky to be chosen by
‘safe’ borrowers to join their group: their expected returns are not sufficient to
pay a ‘safe’ partner for the higher expected cost of insurance. In addition, no
borrower riskier than p’ will ever match with a partner riskier than p’ other than
a partner of identical risk as his (by Lemma 2). Therefore, ‘risky’ borrowers all
match homogeneously with partners of identical risk.

The ‘medium’ borrowers match either with much safer borrowers (i.e., bor-
rowers in [p,p]), or homogeneously with other ‘medium’ borrowers of identical
risk. In essence, all ‘medium’ borrowers would like to match with ‘safe’ part-
ners, but there might not be enough ‘safe’ partners for all the ‘medium’ ones.

The alternative of matching with another ‘medium’ of different risk or with a

‘risky’ partner would produce a negative surplus (by Lemma 2). The ‘medium’

24 Transfers from the risky to the safe member are necessary to sustain heterogeneous groups
as the safe member provides more and receives less insurance than in a homogeneous group.
As borrowers always have the option of forming homogeneously, the risky partner must com-
pensate his safer partner for the unbalanced insurance. See Sadoulet 1997.

2m (p) < m (p’) as the ‘safe’ borrowers match negatively and m (p') > p’.
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borrowers who have no ‘safe’ partners available to them hence match homoge-
neously.

An interesting feature of the equilibrium is the potential non-assortative
matching in the set of ‘medium’ borrowers. The second point of Proposition 1
stipulates that some ‘medium’ borrowers can be left to match homogeneously
while other ‘medium’ types around them match with ‘safe’ partners. We can
therefore have pockets of homogeneous matching in a otherwise negative assor-
tative matching pattern. This is due to the fact that all borrowers below m (D)
match homogeneously, and that ‘safe’ borrowers can always pick a borrower
below m (p) with whom to match, if such at type exists above [ (p) .

Take the example of a borrower type-distribution F such that F' (p)—F (p’) =
F(p') — F (p/ — ). By negative matching, it is easy to show that p’ matches
with p’. In addition, there are sufficiently many ‘medium’ borrowers for the ‘safe’
set [p/,P| to match with the ‘medium’ set [p’ — ¢, p’] . Define m* (P) to be the

partner that maximizes the surplus in p’s group, i.e.,
m* (p) = argmaxo (D, q) . (5)
q<P

If m*(p) < p’ — ¢, then P can increase the surplus in his group (and hence
the total surplus) by not matching with p’ — e and matching with m* (p). The
‘medium’ borrower p’ — € would be left to match homogeneously. We therefore

have the following corollary:

Corollary 1 If the type distribution F is continuous and such that there ex-
ists some ¢ € (m*(p),p’) such that F (p') — F (q) = F(p) — F (p'), then the
equilibrium match will display “holes” in which some ‘medium’ borrowers match

homogeneously while the other ‘medium’ borrowers match heterogeneously.

The proof is provided in Appendix A.4.3. Note that there can be no homoge-
neous matching holes among the ‘safe’ borrowers because of negative matching.
As illustrated in the example above, the differentiation between ‘medium’

and ‘risky’ borrowers, as well as who among the ‘medium’ segment matches
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heterogeneously or homogeneously, depends on the distribution of types F. As all
borrowers who match homogeneously generate zero surplus, the maximization
of total surplus in equilibrium is equivalent to the maximization of the surplus
generated by the heterogeneous matches. The points p and m (P) are hence

jointly determined by the maximization:>°

e /p " o (0 () dF (1)

p,m(p

subject to a measure consistency constraint:

F(p) = F () < F(p)—F(m(p) Vpz=p.

If the measure-consistency constraint never binds for any p > p, then the
equilibrium is one in which each borrower P; € [p,p| chooses a partner m™* (P;)

where m* is given by:27

m” (P;) = argmaxo (P, q)

and the ‘safe’ type p who matches homogeneously is equal simply p’. If in ad-
dition F' is such that F'(p) — F (p') = F (p') — F (m* (p)) for all p, then there

*(P),p'] in which ‘medium’ borrowers are left to match

will be no “holes” in [m
homogeneously. This is because the optimal choices for ‘safe’ borrowers happen

to exactly match the availability of ‘medium’ borrowers.

To sum up, the equilibrium displays a matching structure in which a non-
monotone relationship between individual risk and group risk composition ex-
ists. Some borrowers (the ‘safe’ ones) enter heterogeneous risk-sharing arrange-
ments with intragroup transfers. Others (the ‘risky’ ones) have projects which
fail too often to enable them to pay more extra insurance and hence match
homogeneously. And there are potentially some (‘medium’) borrowers who are
in homogeneous group because of the lack of ‘safe’ partners and yet are sur-

rounded by similar (‘medium’) borrowers who match heterogeneously. Note

26 Again, the integrals are sums if F is finite.

2"TNote: the measure consistency not binding does not imply that everbody can match with
P; = 1; there are still only one unit of each type. However, there are no binding restrictions
on the density of types on B.

18



that this non-monotone matching within the category of ‘medium’ borrowers is
not due to search or other matching frictions which keep borrowers from setting
finding their first-best partner,?® as there is no concept of matching frictions in
our model. It is entirely due to a relative dearth of one (endogenous) type of
borrowers.?® The risk composition of credit groups will hence depend not only

on borrowers’ risk, but on the distribution of borrower types also.

3.3 Example

We illustrate the qualitative features of the equilibrium with the following ex-

ample. Take the parameters of the model to be the following:

T =2
6=.9

so that projects yield a return of 2L when successful,*°

and that agents discount
at a rate of 10% between periods. Using equations (8), (10), and (5), we can
calculate the values of p’, which distinguishes ‘safe’ and ‘medium’ borrowers;
the point m* (1), which maximizes the surplus in p = 1’s group; and the point
1(1), below which p = 1 would never choose a partuner as it would lead to a

negative surplus. The values of these variables are the following:

Y — 8333
m* (1) = .75037
I(1) = .5555

28 Matching frictions refer to any characteristics of borrowers or the lending environment
which impede borrower’s ability of matching with their (constrained) first-best partner. Such
frictions may include problems of availability of partners, informational problems which re-
strict borrowers’ monitoring ability, social codes restricting enforcement sanctions, or charac-
teristics which impede borrowers’ credibility in promising or requiring transfers.

29Note that “dearth” refers to the fact that certain types are distributed more “densely”
than others, i.e. there can exist p1 and pa such that

/ "are < [ ar ).

1 p2

Not all borrowers in the interval [p2,p2 + a] will be able to match with borrowers in
[p1,p1 + a], despite there being a unit mass of each type.

30 As mentioned above, 2 = 2 implies returns of 200% which seems unlikely in practice,
particularly considering that microfinance loans are often short term loans. This assumption
was necessary to insure that borrowers were always able to provide insurance when their
partner’s project failed. Nonetheless, it is also unlikely that projects fail completely, yielding
zero returns, in practice. The assumption that x > 2 should be interpreted as an assumption
that borrowers are always able to provide the partial-payment insurance their partners need.
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Figure 4: Example 1 - non-assortative matching.

Suppose that there are 14 borrower types given by:*!
B={5,.6,.7,.74,.76,.77,.78,.79, .84, .85, .86, .95,.99,1} .

Taking all the possible combinations of types in groups of two, and using Lemma
4 which stipulates that the equilibrium matching will be the one which maxi-

mizes the aggregate surplus, we find the equilibrium groups to be the following:3?

{55} {6,6 {770 {741} {76,.99} {.77,.77} {.78,.95}
(79,79} {.84,.86} {8585} {.86,.84} {.95 .78} {.99, .76} {1,.75}

We depict the equilibrium matching in Figure 4.

The ‘safe’ borrowers are the types above p’ = .8333. These borrower match
negatively: take any two ‘safe’ borrowers; the safer of the two has a partner
riskier than the other ‘safe’ type’s partner.®® The only ‘safe’ type who matches
homogeneously is p = .85.

The ‘medium’ types are in the interval [m (1),p’] = [.74,.8333] . These bor-
rowers match either with ‘safe’ types, or they match homogeneously. The fact

that p = .77 and p = .79 match homogeneously provides an illustration of the

31 Practically, we take 2 borrowers of each type to simulate the unit mass of each type:
it allows borrowers to match homogeneously, and insures an equal treatment property (all
borrowers of each type match similarly).

32The simulations were programmed in Stata with the help of Vince Wiggins from Stata
Corp.

33Take p; and pa to be two “safe” borrowers, with p; > po (i.e., p1 is safer than po). Then
p2’s partner m (p2) is safer than pq’s partner m (p1), as the “safe” borrowers match negatively.
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homogeneous matching pockets among ‘medium’ types described in Proposition
1. There is a dearth of “safe” types which leads some “medium” types to match
homogeneously.

The ‘risky’ types below m (1) = .74 match homogeneously. Matching in
homogeneous groups gives them higher expected returns than individual loans,
but no safer borrower will accept them in a heterogeneous group. With the pa-
rameters chosen, borrowers below (6;1;)71 = .556 will always default strategically
and hence are indifferent between individual loans and group loans.?*

Two interesting properties of this equilibrium are the difference in matching
patterns between the ‘risky’ types and the others, and the existence of non-
assortative matching within the ‘medium’ region. In particular, it is interesting

to note how these properties adjust with the parameters of the model and with

the distribution of borrower types. We examine these in turn.
3.3.1 The effect of the type distribution F

If we modulate the example by changing the types slightly, we find that the

equilibrium changes. Say that borrower types are the following:
B=1{.5,6,.7,.74,.76,.77,.78,.79, .84, .85,.90, .95,.97, 1}

maintaining the preceding values for x and 6. We changed only two types as
compared to the first example: .99 and .86 were replaced by .97 and .9, respec-
tively. The equilibrium then becomes one in which there are no homogeneous
groups among the ‘medium’ and the ‘safe’ borrowers, as shown in Figure 5. In

particular, there is no ‘safe’ type p who matches homogeneously.
3.3.2 The effect of project returns x and discount rate ¢

Increasing the returns x of projects when they are successful increases the benefit
of maintaining access to future loans. One could then expect that surpluses

from heterogeneous matching would increase, and that this could lead to more

31Note that this implies that no borrower wanting to repay loans would ever choose hor-
rowers below (6:10)_1 as partners. The search could hence have been limited to the 13 types
above p = .556.
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Figure 5: Example 2 - no homog. matching among ‘medium’ and ‘safe’.

heterogeneous matching. Using the fact that the risk of the optimal partner is
increasing in x, i.e.,

om”* (p)
oz

<0 Vp>yp,

we have that the maximum risk-heterogeneity in heterogeneous groups is non-
decreasing in x, even for discrete F. The argument for continuous types distri-
butions stems directly from the fact that m (p) < m™* (p) in equilibrium and that
p will try to match as close to m* (p) as possible.*> As m* (p) falls for all p as
x increases, m (p) cannot increase or measure counsistency would be violated. In
discrete distributions, it is possible for m (p) to be strictly greater than m* (p) if
o (p,m(p)) > o (p,q) for all ¢ < m* (p) and m* (p) ¢ B. However, as x increases,
m* (p) shifts left for all p, and hence the available (formerly ‘risky’) borrowers

get closer to m™* (p) which makes them more appealing as partners.

In our example, increasing x has exactly that effect as shown in the table

below.
N max heterogeneity
m (1) m(l) 1—m(1)
r=2|.75037 .74 .26
xr=3 | .67925 7 3
r =4 | .64864 .6 A4

As benefits of keeping access to further loans increase, borrowers are willing to

pay higher transfers to their safer partners, which leads to more heterogeneity

20 equation in the proof o orollar and the fact that oo > or a < p.
35By equation (17) in the proof of Corollary 1, and the f h (p,q) >0forallg<p
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in equilibrium (conditional on the availability of types). Nothing, however, can
be said about the effect of x on the qualitative importance of the homogeneous
matching pockets as p’ depends on x too. The effect of z on the relative size of
the sets of ‘medium’ and ‘safe’ types is hence not characterizable in a general
setting.3¢

Similarly we can examine the role of 6. As noted in Section 2.2, the “joint-
production” function W (P;, P;) is supermodular when ¢ = 1. The matching is
hence homogeneous in equilibrium. We note, nonetheless, that even for values of
6 as high as .99999, the equilibrium in our example has p = 1 match with m (1) =
.95, while p = .99 matches homogeneously. There is hence still potential for some
heterogeneous matches in which borrowers exploit risk-sharing benefits, even at
extremely high values of ¢. This equilibrium also demonstrates the potential for
non-assortative matching among ‘medium’ types: the delimiter between ‘safe’
and ‘medium’ types p’ is equal to .9968 in this case; p = .99 is therefore a

‘medium’ type who matches homogeneously.

4 Conclusion.

This paper challenges the assumptions that matching in credit groups is ex-
ogenous, and that joint-liability in group lending contracts induces groups to
form homogeneously. We provide a model in which risk heterogeneity in groups
emerges as a rational response to missing insurance markets, and the risk-
heterogeneity of groups and insurance arrangements depend non-monotonically
on borrower types and on the distribution of those types.

Econometrically, this poses certain difficulties for studies trying to evaluate
the impact of group composition on group performance. Within the current
“Microfinance Revolution,”®” there is an acute interest in understanding which
types of groups “perform” better, where performance is gauged by both outreach

(ability to reach the poor) and repayment rates. Empirical studies have sought

36Note that the quantitative importance of the level of non-assortative matching among
‘medium’ types can be made arbitrarily large, by concentrating the type distribution on
‘medium’ types matching homogeneously in equilibrium.

3TMorduch, 1998.
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to explain differences in performance by using group characteristics such as the
percentage of group members of the same sex and/or ethnicity, the proportion
of family members within a group, differences in activities between members of
a same group, the potential for social sanctions, the existence of a “behavior
code” in groups, group size, etc. Such factors can be related to the severity
of adverse selection and moral hazard behavior in credit groups (see, for ex-
ample, Matin, 1998; Sharma and Zeller, 1997; Wenner, 1995; Wydick, 1998;
and Zeller, 1998). However, as shown by Proposition 1, group characteristics
are endogenous: borrowers choose their partners. Additionally, there can exist
non-monotonicities in the matching process so that group composition does not
necessarily match back one-to-one with a measure of borrower quality. Treat-
ing these group characteristics as exogenous explanatory variables biases the
empirical results and jeopardizes the reliability of the conclusions reached.

In a companion empirical paper (Sadoulet and Carpenter, 1999), we attempt
to solve the first problem by estimating the relationship between individual risk
preferences and group risk-heterogeneity using data from a survey conducted in
Guatemala. We find evidence that risk-matching is not homogeneous, even when
accounting for possible matching frictions. The next step would be to examine
determinants of credit group performance taking into account the matching
process which determines group characteristics.®®

This analysis also reinforces the importance for microfinance institutions
to allow borrowers to freely choose their group composition. Borrowers need
to be able to assess potential partners’ riskiness, monitor their partners, and
enforce sanctions (such as exclusion from the group) for credit groups to operate
successfully.

In addition, while there certainly are other justifications for credit groups
to exist besides the insurance motive presented in this paper, this analysis al-
lows us to reconsider the role of “peer pressure” in group lending programs.

“Peer pressure” has often been offered as an explanation for the better repay-

38 Ackerberg and Botticini (1998) is another example that controls for matching effects in
empirical estimation.
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ment performance of group lending programs as compared to individual lending
programs. Group members can monitor partners’ actions and sanction moral
hazard behavior, hence leading to higher repayment rates (e.g., Stiglitz, 1990;
Besley and Coate, 1995; and Arméndariz de Aghion, 1994). However, if bor-
rowers can choose which group they will join, “peer pressure” cannot force a
borrower who would intentionally default on an individual loan to repay a group
loan. That borrower would not choose to join a group which would force him
to repay in the first place; he would simply match with other borrowers who
intend to default on their group loan, or take an individual loan were one avail-
able. Problematic borrowers self-select out of groups which would punish them.
This “peer-pressure” can lead to higher repayment rates if it improves the effec-
tiveness of financial institutions screening technology. Since joint-liability leads
to the worst borrowers matching homogeneously, the detection of one “bad”
borrower in a group signals the whole group’s intention of defaulting.

When groups form homogeneously, the benefit of joint-liability is that it pro-
vides a framework which allows borrowers to set up insurance arrangements in
environments which might otherwise not be conducive to such arrangements.
This insurance increases aggregate repayment rates compared to individual
loans. In addition, the heterogeneous matching provides ‘medium’ borrowers
even better insurance than homogeneous matching as they receive from ‘safe’
borrowers (for a payment, but which leaves them still better off). Borrowers
unwilling to repay match amongst themselves and hence do not affect repay-
ment rates as compared to individual loans. The increase in repayment rates
is not only beneficial from an accounting perspective, it also allows a greater
proportion of borrowers to maintain access to future loans, thereby increas-
ing the outreach of lending programs. It is hence important to recognize the
role of endogeneity of group formation when analyzing the justifications for the

establishment of credit-group programs.
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A Proofs

For notational ease, will denote the partials of o with respect to its first and

second arguments by o1 and o2, and the cross partial by oys.
A.1 Lemma 1

We prove each claim of Lemma 1 in turn.
Lemma 1.1: There exists a unique p’ € B such that
o,P;) <0 VP; <p', and (6)
o(,P;) >0 VP; > p'.

Proof. We proceed in 3 steps.

Step 1: defining p’.

The derivation of o9 is straightforward, but the expression is lengthy so we
do not report it. Consider the partial oo (P;, P;) as a function of P;. It is equal
to zero for four values of P;, only two of which are real. One of the real roots is
at P; = P;; denote the other real root by rs (P;) and the two complex ones by

21 (P;) and 29 (P;) . The partial o2 can then be rewritten as:
02 (P, Py) = (P — P;) (Pj —r2) (P — 21) (P — 22) - v (P, ) (7)

where a(P¢7Pj) is a term continuous in P; and P; which never goes to zero
(since o5 has only four roots). Both real roots of oy are equal when:

1
6(bx —1)

Py=ro = (6(;1;—1) /519 (—2x6+x26+1)) =y (8)

We note that p’ is unique and does not depend on the distribution of types F.
Step 2: matching any borrower P; with p'.
Following the decomposition in (7), and using the fact that the two complex

roots z; and zo are conjugates a £ bi, the partial oo (p/, P;) can be rewritten as:

o2 (0, P) = (Pj—p')° (B — (a+0bi) (P — (a—bi))-a(,P)
= (Pj—p)? ((Pj —a)? +b2) a(p,Py).

o9 (p/, P;) therefore has the sign of a (p/, P;) . Calculating o2 (p/, 0) gives a pos-

itive sign so that «(p/, P;) is positive, and hence oo (p’, P;) > 0. Therefore
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o (p', P;) is monotonically increasing in P;, except at P; = p’:

o2 (p,Py) >0 VP #£p. (9)

As o (p/,p’) =0, we hence have that

o(p,P;) <0 VP <p

and

o ,P;) >0 VP;>p.

which proves the claim. =

Lemma 1.2:
VP, >p', Jl(P)such that o (P, P;) <0 VP; <l(P) and
o(P;, Pj) >0  otherwise.
Proof. We proceed in 2 steps

Step 1: for all P; > p/, there exists a unique ! (P;) < p’ such that
g (P»L'7 l (Pz)) =0.

Solving o (P;,q) = 0 for q yields three roots: a double root at ¢ = P;, and
(x—1)6P+62—2)—1

6((bx—1)P+1—2x)
Define [ (P;) to be this last root:

another at ¢ =

C(z—1)6P+6(2—2)—1
LB = S((r—1)P+1—xz) (10)

To prove | (F;) € (27 P’ ) , we use the Intermediate Value Theorem:

e the surplus of matching with the riskiest borrower in B namely p =

1/ (x6) — is negative:

1\ (14 P) (- Pde+1)°
”(H%_é) IR R Y ) 5 ) (o e (R D
(1)

e The surplus of matching P; with p’ is positive by equation (6).
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e 0 (P;,q) is continuous in g.

Hence, by the Intermediate Value Theorem, there exists some q € (Q, P )

such that o (P;,q) = 0. Since P; > p/, the only candidate root is ¢ =1 (F;).

Step 2: establishing the sign of o (P;,q).
Since o (F;, q) is continuous in ¢, it can only change sign at its roots ¢ = (P;)
and ¢ = P;, where [ (P;) < P; for P, > p’. The sign of ¢ in each of the inter-
vals defined by these roots — (p,l(F;)), (I(P;), P;) and (P;,1) — can hence be

established by examining the sign at one point of each interval.

e The surplus of matching with p is negative by equation (11), and p <
1 (P;). Therefore, o (P;,q) < 0 for all ¢ < (F;).

e The point p’ lies in [[ (P;), ;) as

1

)= 55D (6(3;71)7\/5(176) (721“6—1—:1:25—1—1)) —

and

al(q)
3—q——(1—5)

(x—2)bx+1
§((x6—1)q+1—2)°

(12)

By equation (6) (and by symmetry of o), the surplus is strictly positive

when P; matches with p’ :
o (P,p)>0as P, >p.
The surplus o (Pj,q) is hence strictly positive for all ¢ in (I (P;), P;) .

e The surplus of matching with ¢ = 1 yields:

o (P1) = (P, —1)° 1-6)(1-6P (2 P))

(13)

1
which is positive as long as P; > you = p. Therefore, all points ¢ > P;
P

yield a positive surplus when matching with P;: o (P;,q) >0 Vg > P;.

Therefore, for any P; > p’, o (P;, P;) < 0 for any P; < [ (P;) and o (P;, P;) >

0 otherwise. m
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Lemma 1.3:
VP <yp', Jk(P;)such that o(P;,P;) >0 VP;>k(FP;) and
o(P;,P;) <0  otherwise.

Proof. By equation (13), o (P;,1) > 0. By equation (6) and symmetry of
o, 0 (P;,p') <0as P, <p'. Since o (P;,q) is continuous in ¢, there exists some
k(P;) € (p',1) such that o (P, k (FP;)) = 0.

The surplus o (P;, ¢) has three roots in ¢ as shown in Step 1 of the proof of
Claim 2. Two of those roots are equal to P;. Hence k (F;) is the unique root
greater than p’. This implies that o (P;,q) >0 for all ¢ > k(FP;). =

This completes the proof of Lemma 1.

A.2 Lemma 2

The claim is that two borrowers riskier than p’ that match together yield a

negative surplus:
VP, P; < pl7 (‘J’(PZ',PJ‘) < 0.

Proof. The proof follows immediately from Lemma 1.1 and Lemma 1.3. If
P; < p/, then k(P;) > p/ since o (P;,p’) < 0 by Lemma 1.1. Hence, as P; < p/,
o(P;,P;) <0by Lemma 1.3. m

A.3 Lemma 3

This result is from Roth and Sotomayor (1990): There are no transfers between
members of different groups in stable outcomes.

Proof. Let s (P;) be borrower P;’s expected surplus in equilibrium. By the
feasibility of this equilibrium, the sum of borrower expected returns cannot be

greater than the total expected surplus:

1

5 [P P dF(R) < [o(Pum(P) dF () (14
B B

For the equilibrium to be stable, it must be that the individual surpluses of any

P; and P; are at least as great as if they shared the surplus created by their

31



own group:
s(Py) +s(Pj) =20 (bi, Fy). (15)

As this holds for all P; and P;, we can integrate (15) over P; and P;, reorganize

the terms, and combine with (14) to get that

5[5+ su(R))] aF () = [a(Bm(R) dF )

B B
in equilibrium. In addition, both members must get at least their expected

returns in homogeneous groups, i.e.,
s(P;)>0 and s(P;)>0 VP,P;eB
so that
s(P;) 4+ s(m(Py)) = o (P, m(F;)) VP, €B

A group’s surplus is entirely divided among its members and there are no trans-

fers to members of other groups. m
A.4 Proposition 1

Proposition 1 claims that the set of borrowers B can be split into three intervals,
according to the matching patterns. We prove the claims slightly out of order

to enable the use of Proposition 1.3 in the proof of Proposition 1.2.
A.4.1 The ‘safe’ match negatively.

Proposition 1.1: Borrowers in [p',p| match negatively:
VP, P e [p,pl, P> P <= m(P;) <m(P)

Proof. Assume without loss of generality that P; > P;. We construct the
proof in 3 steps.
Step 1: the surplus o (p,q) is strictly positive for all groups (p,q)

such that [ (P;) < ¢ < P; <p.
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By equation (12), we have that [ (p) < [ (P;) since p > P; > p’. By Lemma 1,
the surplus o (p,q) is strictly positive for all ¢ > [ (p), ¢ # p. Therefore, the

surplus o (p, q) is strictly positive for all ¢ in (I (P;), P;) .

Step 2: the cross partial 012 (p, ) is strictly negative for all p and ¢
such that p > p’ and [ (p) < ¢ < P.
Setting the cross-partial o192 to zero:

0? - 00 —D)p+1—a)g—b6(x—1)p+6(2—x)—1
gy 1) =2 (1= (p+q(1=-p)s)

yields a wunique solution for ¢ at ¢ = [ (p) .

=0 (16)

In addition, the cross-partial evaluated at ¢ = 1 is negative:

bx(6—1)p—1+6(3—2x)
1oy

o2 (p,1) =2 <0

as 6 <1land x> 2.
As 012 (p, q) is continuous in ¢ on [I (p), 1] and the solution to equation (16)

is unique, we have that

o12(p,q) <0 Vg€ [l(p),1]
by the Intermediate Value Theorem. This is in particular true for all ¢ in

[l(p),p]asp <1.

Step 3: VP;, Pjwith P, > P; > p', m(P;) < m(P;) for the matching

to be stable.

Step 2 implies that for all P; > P; > p/, and for all ¢; and ¢ in (I (P;),D)

with ¢1 > qo :
o (Pj,q1) — o (Pj,q2) > 0 (P;,q1) — 0 (Pi, q2)

This means that for all P; and P; in [p/,p] such that P; > P;, the partner P;
matches with in equilibrium — namely m (P;) — has to be riskier than the partner

P; matches with for the equilibrium to be stable:
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If this result didn’t hold, a rearrangement of partners — namely P; with m (P;)
and P; with m (P;) — could make P;, m (P;), P; and m (P;) better off without

making anybody else worse off. The matching m would hence not be stable. m

Corollary 2 There exists at most one p € [p/, D] such that m (D) = p in equi-

librium.

Proof. By Lemma 2, p’ is such that o (p, P;) < 0 for all P; < p'. Therefore,
to satisfy stability, the equilibrium matching must satisfy that p’ matches with

a partner at least as safe as himself:
m (p’) > p’ in equilibrium.
By the negative matching of ‘safe’ borrowers in Proposition 1.1:
e if m(p') =/, then for all P; > p/, m(P;) < p’. The unique p is hence p’.

o if m(p') > p' : if there existed ¢; and go such that ¢ > g2 > p’ and
m(q1) = ¢1 and m(ga) = go, then the matching among safe borrowers

would not be negative, which contradicts Proposition 1.1.

We hence have that there is at most one p € [p/,p] that matches homoge-

neously. m

Remark 1 The points p and m (p) are jointly determined by the mazximization

of the aggregate surplus

/Npﬂ(p,m(p))dF (p)

subject to the measure consistency constraint

F(p)-F®) <F/p) —-F(m(p) Vp>p.

Note that there will hence only be heterogeneous matches in equilibrium
provided that the distribution of types is such that there are some borrowers
above p'. If [p/, D] is not a proper interval, then there will only be homogeneous

matching in equilibrium.
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For [p/,P] to be a proper interval, the parameters z, § and P must be such

that

25 —1— 76 (2 —P)
6(1-p(2-po))

Low values of p require x to be very large (« > 10 for any § when p = .65): the
benefit of maintaining access to future loans has to be high enough for borrowers

to set up heterogeneous groups when probabilities of success are low.
A.4.2 The ‘risky’ match homogeneously

Proposition 1.3: Borrowers in []_Lm(]_?)) match homogeneously:
Proof.

e By Proposition 1.1, the safest borrower p matches with p’ or a borrower

riskier than p’, i.e.,
m (p) < p'.

e By Proposition 1.1, all borrowers in [p’, p| match with borrowers safer than
m (P), so that no borrower in [p’, p| are available to match with a borrower

Py <m(p).

e By lemma 2, for all P; < p/, matching with a partner less than p/ yields a

negative surplus if that partner is not a twin:
o(Pj,q) <0  VP; <p and Vg < p’ with ¢ # P;.
Therefore, borrowers with P; < m (p) will match homogeneously. m

A.4.3 The ‘medium’ match heterogeneously, or homogeneously.

Proposition 1.2 Borrowers in [m (P),p’| match either heterogeneously with

partners in (p', D], or homogeneously:

VP, € [m((P),p), m(P)e€lp,p] or m(P) =P,
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Proof. By Lemma 2, any P; < p’ will never match in equilibrium with
another borrower P; < p’ unless P; = P;, as this produces negative surplus
which would violate the equilibrium stability requirement. So a ‘medium’ P; will
match either with a partner identical to himself, or with a partner P; > k (),

where k (P;) was defined in Lemma 1.3 and shown to be safer than p/. m

Corollary 1 If F is continuous and such that there exists some q € (m* (p),p’)
such that F (p')—F (q) = F (p)— F (p') , then the equilibrium match will display
“holes” in which some ‘medium’ borrowers match homogeneously while the other
‘medium’ borrowers match heterogeneously.

Proof. We prove the Corollary in two steps. First we show that for any
continuous F, m (p) < m*(Pp) where m* (p) was defined as the partner who

maximizes the surplus created by p’s group, i.e.,
V continuous F, m (p) < m™ (p) where m™ (p) = arg maxao @, q) . (17)
q<p

Assume not. By Proposition 1.3, any ¢ < m (P) matches homogeneously and
hence produces a surplus of zero. Define m to be a matching correspondence
from B onto B such that:
m (p) = m™ (p)
m (m (p )) =m (p)
m(p)=m(p for all other p € B
Then the total surplus under m would be greater than the total surplus under

m. The matching m could hence not be an equilibrium.

Secondly, we show that if F' is such that there exists ¢ > m™* (p) such that
F(p')=F(qg)=F (@) —F ) (18)

then some ‘medium’ borrowers in [m (P) , p’] will match homogeneously in equi-
librium.
By Lemma 2, there are at most F (D) — F (p’) ‘safe’ borrowers matching with

borrowers below p’. The measure of ‘medium’ borrowers can be written as
F@)-Fm@)={F@)-F(@}+{F(@)-m®@)}
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By the first step of the proof, ¢ > m* (p) > m (p) and hence F (q) — m (D)
is positive. There are hence more ‘medium’ borrowers than ‘safe’ borrowers.
As ‘medium’ borrowers match homogeneously if they cannot match with ‘safe’
borrowers, if F' is such that the ¢ defined in the equation (18) exists, there will
be “holes” in which ‘medium’ borrowers match homogeneously in equilibrium.
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