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Abstract

Consider a Bertrand model in which each �rm may be inactive with a known
probability, so the number of active �rms is uncertain. This activity level can be
endogenized in any of several ways{ as whether to incur a �xed cost of activity, as
output choice, or as quality choice. Our model has a mixed-strategy equilibrium, in
which industry pro�ts are positive and decline with the number of �rms, the same
features which make the Cournot model attractive. Unlike in a Cournot model with
similar incomplete information, Bertrand pro�ts always increase in the probability
other �rms are inactive. Pro�ts decline more sharply than in the Cournot model, and
the pattern is similar to that found empirically by Bresnahan & Reiss (1991).
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1. Introduction

Consider a carpenter who is asked by a house owner to submit a tender for
renovating part of the house. He considers it very likely that if the homeowner has
asked for tenders from other carpenters, he gives the job to the carpenter with the
lowest tender. However, he also knows there is a chance that the homeowner has not
found any other carpenter free to do the work that month and will give the job to
him even if his tender is rather high. What price will the carpenter charge?

The price will certainly be above marginal cost. With some probability the car-
penter is a monopolist who can charge the monopoly price but with some probability
he faces competition. We will model the situation and show that there exists an equi-
librium in mixed strategies and that expected industry pro�ts are positive for any
number of �rms. Moreover, not only do expected pro�ts rise with seller concentration,
but the model does reasonably well in explaining the empirical results of Bresnahan
and Reiss (1991) on how industry pro�ts increase.

The model allows for many interpretations, in two categories. First, uncertainty
about the existence of competitors may arise from uncertainty about consumer search
behavior, as in the carpenter example. It may be unclear whether consumers regard
rival commodities as perfect substitutes, consumer search costs may be uncertain from
the �rm's perspective, or consumers may vary in their sophistication. Examples of this
range from grocery shopping to buying clothing from mail order companies depending
on what catalogs have been received to buying beers that to some consumers all taste
alike but to other consumers do not.

Second, uncertainty about the existence of competitors may arise from uncer-
tainty about other sellers' behavior. It may be unclear whether rivals have hit their
capacity constraints (in which case they cannot compete for additional consumers),
whether rivals have entered yet, whether rivals have grossly overpriced by mistake or
ignorance, or whether rivals have temporarily high costs. It may be unclear whether
other competitors have also discovered a new market, or in black markets it may be
di�cult to know the number of �rms operating in that market (cf., Janssen and Van
Reeven, 1998). Examples of these range from wholesale distribution of candy bars
(where in periods of peak demand �rst one and then another manufacturer may hit
capacity) to airline ticket pricing to sales of unusual but not rare antiques or used
books. Any of these situations can be modelled as uncertainty over the number of
active rivals.

In the two-stage models considered in Section 3, we endogenize the entry decision
of �rms and show that in three di�erent settings, entry will be a random decision in
the equilibrium of the game: (i) auctions, as in the carpenter example), (ii) choosing
output or capacity, and (iii) choosing whether to produce high or low quality. An
important feature of all three settings will be that the entry decision itself is not
observed before �rms decide on their pricing behavior.
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The paper is related to several di�erent literatures. A variety of models, of which
Salop & Stiglitz (1977) and Varian (1980) are early examples, have shown that com-
petitive markets can have price dispersion even in equilibrium, with di�erent �rms
charging di�erent prices for an identical good because of heterogeneous consumer
search, some consumers observing more prices than others. The closest of these to
the present model is Burdett &Judd (1983), in which some consumers observe one
price, some two prices, some three, and so forth. Our model di�ers in a number of
respects. First, while one possible interpretation is that consumers di�er with respect
to the number of prices they observe, our model allows for the other interpretations
mentioned earlier, interpretations inappropriate for search models. Second, we an-
alyze a strategic model instead of a competitive one, which allows us to study the
impact on pricing behavior of the number of �rms, a variable not relevant in Bur-
dett &Judd (1983). Finally and most important, we treat uncertainty di�erently. In
our model, a �rm believes there is a �xed probability that any of its competitors is
active, whereas in Burdett and Judd it is the probability that a consumer observes
a certain number of prices that is exogenous. The di�erence lies in what happens
as the number of sellers increases. In our model, a seller knows that the probability
that at least one other �rm is actively competing with it has become closer to one.
This drives prices closer to marginal cost, and in the limit we obtain the standard
Bertrand outcome. Burdett and Judd still have price dispersion and positive indus-
try pro�ts as the number of �rms becomes in�nite, because each �rm may still be
visited by a non-negligible number of consumers who do not search for other prices.
In their model, the reason a consumer pays a high price is not that low prices are not
available, but that he does not know where to �nd them.

Also related is Elberfeld andWolfstetter (1999). They consider a two-stage model
in which �rms �rst decide whether to enter and then compete in prices. The outcome
of the �rst stage is known before the �rms set their prices in the second stage. Thus,
the outcome in the second stage is standard: a �rm charges the monopoly price if
it is the only �rm in the market, otherwise prices are equal to marginal cost. Their
main result is that the probability that no �rm enters the market increases with the
number of potential competitors. Their analysis is closely related to our two-stage
game, the important di�erence being that in our model the entry decision itself is not
oberved before �rms compete in prices.

Spulber (1995) analyzes a model of Bertrand competition when �rms' cost func-
tions are private information. He shows that the model has a unique pure strategy
equilibrium in which �rms set prices above marginal cost and have positive expected
pro�ts. In contrast, the �rms in our model do not know how many competitors they
have, but assume that any competitor that does exist has the same cost structure.
Even though the type of uncertainty varies between Spulber's model and ours, the
properties of the market equilibrium are similar: �rms set prices above marginal cost
and receive positive expected pro�ts.
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Another approach to positive pro�ts under Bertrand competition can be found in
the epsilon-equilibrium Bertrand model of Baye & Morgan (1999). They show that if
�rms only choose prices to reach within epsilon of their maximal pro�t, then a mixed-
strategy equilibrium exists, in which pro�ts are positive and large compared to the
value of epsilon. Thus, if, due to satis�cing or managerial slack, �rms do not maximize
pro�ts completely, the Bertrand model generates more realistic outcomes. The model
in our paper also introduces noise which generates a mixed strategy equilibrium, but
our noise is the possibility that a customer does not have alternative sellers from
whom to buy.

Finally, our model is also of interest for students of auctions. The similarities
between Bertrand price competition and �rst-price sealed-bid auctions is well-known,
as, e.g., Baye & Morgan (1997a, b) explain. Our paper can be regarded as answering
the question what is the optimal bid if the number of participantsin a sealed-bid
auction is unknown, as is often the case in procurement bids, adding to the literature
of which McAfee & Macmillan (1987) is an example.

Section 2 of the paper lays out the basic model and solves for the mixed strategy
equilibrium. Section 3 shows how the entry decision can be endogenized in three dif-
ferent types of two-stage games. These three models also show some of the alternative
ways our basic model may be interpretated. Section 4 compares the outcome in the
model with that of a Cournot model, and compares the expected industry pro�ts in
our model for di�erent numbers of potentially active �rms with the empirical �ndings
of Bresnahan and Reiss (1991). Section 5 concludes.

2. The Model

Let there be N �rms that might produce a homogeneous good. Before deciding
price, a �rm does not know how many other �rms are active in market. The probabil-
ity a given �rm is active is �, where 0 � � � 1. If � = 1, the market is described by
the Bertrand model of price competition, and the equilibrium price equals marginal
cost. If � = 0 so our one �rm is assured of being a monopolist, it will charge the
monopoly price. For simplicity, we will assume that there is one consumer, who buys
at most one unit, and his maximum willingness to pay for the good is v. In case of
tied prices, the consumer picks a �rm randomly. Marginal cost is normalized to 0.

First, let us establish that there is no symmetric Nash equilibrium with any
�rm putting positive probability on choosing any particular price on the continuum.
Suppose Firm 1 (without loss of generality) charges price p0 with positive probability
�, rather than mixing over a continuous range of prices and putting in�nitesimal
probability on each. Putting positive probability on p0 = 0 is not pro�t maximizing,
because if the �rm charged the monopoly price of v instead on those occasions it
would have an expected payo� of (1� �)N�1v, so let us focus on p0 > 0.
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If p0 > 0, and both �rms are putting positive probability � on p0, then with
positive probability �2 they will both charge p0 and they will each have a contribution
of (�2=2)(p0 � 0) towards their expected pro�ts. Firm 1 ccould increase its expected
pro�t, however, by deviating to putting zero weight on p0 and positive weight on
p0� �; for su�ciently small �: This would replace the expected pro�t of (�2=2)(p0� 0)
with the larger expected pro�t of (�2)(p0� �). Thus, it cannot be that both �rms put
positive probability on any p0 in equilibrium.

Let us then consider a situation in which only Firm 1 chooses p0 with positive
probability mass. There then exists a neighborhood around p0 where prices are not
chosen with a strictly positive probability mass. We distinguish two possibilities.
First, there exist a neighborhood [p0; x) with x > p0 such that the probability that
Firm 2 charges a price in the neighborhood equals 0. This cannot be an equilibrium, as
Firm 1 can increase p0 without reducing its chance of winning the customer. Second,
there exist a neighborhood (p0; x) with p0 < x such that the probability that Firm 2
charges a price in the whole neighborhood is strictly positive. This can also not be part
of an equilibrium, however, as Firm 2 has an incentive to shift probability mass from
prices just above p0 to prices just below it. Hence, there cannot be any equilibrium
in which only one �rm puts strictly positive probability on any single price. In
conjunction with the previous paragraph, this means that there is no equilibrium in
which any �rm chooses any price with positive probability mass.

Second, the support over which a �rm mixes in equilibrium is connected. Con-
sider hat would happen if Firm 1 randomized over an unconnected support, which
would include at least two intervals, denoted by [�1; 1] and [�2; 2]. It is easy to see
that an optimal (mixed strategy) response of Firm 2 does not include prices in the
interval [1; �2]. In this case, there exists, however, an � > 0 such that Firm 1 will
not be indi�erent between setting a price of 1� � and setting a price of �2+ �. Thus,
a necessary condition for Firm 1 randomizing over [�1; 1] and [�2; 2] is violated.

Let us therefore construct an equilibrium in mixed strategies with the strategies
having a continuous and compact support. Let Fi(p) be the probability that �rm i
charges a price smaller than p. The expected payo� to �rm i of charging a price pi
when all other �rms choose a mixed strategy according to F (p) is

�i(pi; Fi(p)) = �N�1
k=0

 
N � 1
k

!
(1� �)k[�(1 � F (pi))]

N�k�1pi: (1)

This expression can be explained in the following way. The probability that
exactly N � k � 1 out of the other N � 1 �rms besides Firm i are active is equal to 

N � 1
k

!
(1� �)k�N�k�1: (2)

The expected payo� to �rm i when exactly N � k � 1 �rms are active and when it
charges a price of pi is equal to pi times the probability that each of these N � k� 1
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�rms charges a price that is larger than pi, which is (1� F (pi))
N�k�1pi. Multiplying

these two terms and summing up over all k gives the expression above.

Expression (1) is, of course, nothing but an application of the Binomial Theorem,
and a standard result says that

�N�1
k=0

 
N � 1
k

!
akbN�k�1 = (a+ b)N�1: (3)

Applying equation (3) to the pro�t equation (1), we obtain

�(pi; Fi(p)) = [1� �F (pi)]
N�1pi: (4)

In equilibrium, �rm i must be indi�erent between all pure strategies that are
in the support of the mixed strategy distribution. Hence, it must be that on some
interval of prices the derivative of expression (4) with respect to pi equals zero. Thus,
a necessary condition for any equilibrium in continuous mixed strategies is

[1� �F (pi)]
N�1 � (N � 1)[1� �F (pi)]

N�2�f(pi)pi = 0; (5)

or
1� �F (pi)� �(N � 1)f(pi)pi = 0; (6)

where f is the density function associated with cumulative distribution function F .

It is a matter of straightforward calculations to show that the solution to di�er-
ential equation (6) is

F (pi) =
1� (1� �)

�
N�1

q
v
pi

�
�

; (7)

for (1� �)N�1v � pi � v.

Result (7) implies that there is a unique symmetric equilibrium with compact
support, and we have shown earlier that an equilibrium in pure strategies does not
exist. These results are stated in Proposition 1.

Proposition 1. The unique symmetric equilibrium of the Bertrand model with an
uncertain number of competitors is in mixed strategies and the distribution function
of a player's strategy is

F (pi) =

8>>>>>>>><
>>>>>>>>:

0 for pi � (1� �)N�1v

1�(1��)

�
N�1
p

v
p

�
�

for (1� �)N�1v � pi � v

1 for pi � v

(8)
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Price dispersion is a well-known outcome in real-world markets. Warner &
Barsky (1995), for example, sampled prices at various stores in Michigan for a num-
ber of identical single products and found considerable dispersion.1 Thus, the mixed
strategy we found is quite consistent with reality.

Figure 1 shows the cumulative density for di�erent values ofN using equation (8)
with � = :2 and v = 100 (prices are at intervals of 1, connected). As N increases, each
�rm chooses relatively low prices with higher probability. As N becomes large, the
cumulative density function approaches 1 for all values of p that are strictly positive.
Of course, the equilibrium price under perfect competition is also equal to 0. The
perfectly competitive outcome can be regarded as the limit case of the present model
when the number of �rms becomes very large.
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1

F(p)
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N=24

N=2

N=8

N=4
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Figure 1: Equilibrium Price Distributions as Industry Concentration
Rises (� = :2; v = 100)

The intuition is straightforward. As the number of potential competitors in-
creases, the probability of at least one other �rm actively producing the same product
rises. With greater probability of competition, the �rm reduces its prices. In the limit,
a �rm is extremely likely to have at least one active competitor. Standard Bertrand
competition comes into e�ect and each �rm charges a price equal to marginal cost.

Expected pro�t for one �rm can be found using the pure strategy pro�t from
charging p = v. Since the �rm is active with probability �, that pro�t is

�i = �(1 � �)N�1v: (9)

1See Tables I and III of Warner and Barsky (1995). They found, for example, that a GI Joe had
prices of 3.88, 2.93, 2.69, 2.96, 2.84, 2.96, and 2.69, while and a Hu�y Vortex unassembled boy's
bicycle had prices of 73.47, 99.99, 112.63, 119.99, 119.99, and 18.70.
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Note that individual pro�t is declining in N and its sum, industry pro�t, is equal
to2

N�(1 � �)N�1v: (10)

Let �b denote expected industry pro�t under Bertrand competition of this kind
given that at least one �rm is active. The pro�t in equation (10) can be written as

NX
i=1

�i = N�(1� �)N�1v = (1� �)N (0) + [1� (1� �)N ]�b; (11)

yielding

�b =
N�(1� �)N�1v

1� (1� �)N
: (12)

To see how industry pro�t changes with N , note (after some algebra) that

d�b

dN
=

"
(1� (1� �)N ) +Nlog(1 � �)

(1� (1� �)N )2

# h
�(1 � �)N�1v

i
(13)

Derivative (13 ) is well-de�ned, even though only integer values of N have an
economic interpretation. Its sign is the same as the sign of

1� (1� �)N +Nlog(1 � �): (14)

For N = 1, expression (14) becomes �+log(1��), which is negative because � <
1. For larger N , expression (14) becomes even more negative, because its derivative
with respect to N is �(1��)N log(1��)+ log(1��) = log(1��)[1� (1��)N ] < 0.
Thus,

d�b

dN
< 0; (15)

and pro�ts fall as the number of �rms increases.

In the appendix it is shown that we can say more, namely

d2�b

dN2
> 0: (16)

This means that pro�ts are convexly decreasing in the number of �rms in the
industry, so the shape shown in the numerical examples graphed in Figure 2 in Section
4 would be found for any example.

2Note that although the pro�ts of the di�erent �rms are not independent, the expected pro�ts
are, so this summation is legitimate.

7



More General Demand Structures

So far the assumption has been that the quantity demanded is one unit for all
prices smaller than v and zero otherwise. Here, we will consider a more general
demand function, which we denote by D(p). For simplicity we will restrict ourselves
to the case N = 2. We will impose one condition on this demand function, namely
that pD(p) is increasing in p for p < pm , where pm is the monopoly price. Most
demand function that are commonly employed satisfy this condition. It is satis�ed,
for example, if pD(p) is concave in p.

Assumption 4.1. The function pD(p) is increasing and di�erentiable on [0; pm).

For general demand functions, the expected pro�t of �rm 1 when �rm 2 chooses
a price according to the cumulative mixed strategy distribution F2(p) is given by

�1(p1; F2(p)) = (1� �)p1D(p1) + �(1� F2(p1))p1D(p1): (17)

A necessary condition for an equilibrium in mixed strategies with continuous
support to exist is that on a certain domain of prices

[(1� �) + �(1� F2(p1))][D(p1) + p1D
0(p1)]� �f2(p1)p1D(p1) = 0: (18)

One can show that the solution to di�erential equation (18) is given by

F2(p) =

8>>>>>><
>>>>>>:

0 if p � p

1
�

h
1� (1��)pmD(pm)

pD(p)

i
if p < p � pm

1 if p > pm

(19)

A similar solution holds for Firm 1. It is clear that equation (19) is similar to
equation (12) and the results of the basic model generalize to more general demand
functions. Note that from the solution for Fi(p) it is clear why we have to impose a
condition on demand: A necessary and su�cient condition for Fi(p) to be increasing
in p is that pD(p) is increasing in p for all values of p smaller than pm . In the
present case it is impossible to provide an explicit solution for the domain of prices
over which a �rm randomizes. It is clear that the upper bound is given by pm. This
is because even if the other �rm does not exist, it is not optimal to set a higher price.
The lower bound of the domain, denoted by p , is de�ned implicitly by the condition
pD(p) = (1��)pmD(pm) As pD(p) is increasing in p for p < pm, p is uniquely de�ned
in this way.
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Industry pro�ts may be calculated as in Section 2 and equals

�b =
N�(1 � �)N�1pmD(pm)

1� (1� �)N
: (20)

3. Endogenizing Entry

In this section, we consider three \front-end" games that endogenize whether a
�rm is active. We will limit the games to two potential �rms each, since our aim is
simply to illustrate how the probability � in the previous model might arise. Section
(i) is a standard model of entry that requires a �xed cost. A �rm does not know
whether the other �rm has entered when it must choose its price. Section (ii) is a
model of output or capacity. Two �rms choose how much to produce before they set
their prices. When setting prices they do not know the quantity chosen by the other
�rm. Section (iii) is a model of product quality, where �rms set prices not knowing
which quality the other �rm has chosen. In all these models, the activity choices of
�rms is random in the symmetric equilibria.

(i) A Model with a Fixed Entry Cost

Consider the following two-stage extension of the basic model. In the �rst stage
both �rms decide whether or not they enter the industry. There is a �xed entry cost
denoted by F with F less than v, the consumer's reservation price. At the beginning
of the second stage the �rms have not observed whether the other �rm has entered or
not. In the second stage, the �rms set a price if they entered in the �rst stage. One
example is a sealed bid auction with an entry fee, a common situation in government
procurement: it is costly to prepare a bid, and when sending in their bids �rms do
not know how many competing bidders there are. As the outcome of the �rst stage
is not observed, we can analyze the game as a simultaneous move game.

There are three equilibria. In the two asymmetric equilibria, one �rm enters
the market and sets a price equal to v, while the other �rm stays out. In the third,
symmetric, equilibrium, both �rms are indi�erent between entering the market or
staying out and they enter the market with a certain probability . Given this
probability of entering, each �rm chooses a price according to the mixed strategy
distribution calculated in Section 2, with  replacing �. The expected payo� in the
second stage is (1� )v. The only way in which the �rms can be indi�erent between
staying out and entering the market is if (1�)v equals the �xed entry cost F . Thus,
 equals 1� F=v, and expected pro�ts are zero.

(ii) A Model of Output Choice

Kreps & Scheinkman (1983) contains a model in which �rms compete �rst in
outputs and then in prices. We can do something similar here. Consider a market
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with two consumers, each buying up to one unit each and with a reservation price of
v. There are two �rms, each of whom can decide in the �rst stage whether to produce
1 or 2 units of a homogeneous output. In the second stage, �rms compete in prices
not knowing the decision of the other �rm in the �rst stage. The cost of producing
1 unit is normalized to 0 and the cost of producing 2 units is K < v, possibly with
K = 0.

There does not exist an equilibrium in pure strategies. It is not an equilibrium for
Firm 1 to produce 1 unit and charge a high price, because Firm 2 would respond with
2 units and a slightly lower price, driving Firm 1's pro�ts negative. There cannot be
one in which Firm 1 chooses to produce 1 unit and charge a low price, because Firm 2
would respond with 1 unit and a price of v, making it pro�table for Firm 1 to deviate
and produce 2 units and charge slightly less than v. Nor can it be an equilibrium
for Firm 1 to produce 2 units and charge a price greater than K, since Firm 2 would
produce 2 units also and charge a lower price, making Firm 1 unpro�table. Finally,
it cannot be an equilibrium for Firm 1 to produce 2 units and charge a price of K or
less, since Firm 2's best response would be to produce 1 unit and undercut Firm 1's
price, in which case Firm 1 would do better to produce 1 unit and charge a price of
v.

Let us then consider an equilibrium in mixed strategies: Each �rm chooses with
probability � to produce 2 units, and otherwise produces 1 unit. If a �rm happens
to choose 1 unit, it will charge a price equal to v. The pro�t of any �rm producing 2
units is then

�i(p
2
i ; F

1
�i(p); F

2
�i(p)) =

8><
>:

2(1� �)p2i + 2�(1� F 2
�i(p))p

2
i �K if p2i < v

4=3(1� �)v + 2�(1� F 2
�i(p))v �K if p2i = v

(21)

where p2i is the price charged by �rm i if it has produced 2 units and F j
�i(p) is the

distribution function with which Firm �i chooses prices if it has produced j units.

It is easy to see that it cannot be optimal to set p2i = v. A necessary condition
for an equilibrium in mixed strategies is

(1� �) + �F 2
�i(p)� �f2

�i(p)p = 0; (22)

or
1� �F 2

�i(p)� �f2
�i(p)p = 0; (23)

This equation has the same form as equation (5) for N = 2. Hence, the solution is
given by

F 2
�i(p) =

1� (1� �) v
p

�
(24)

for (1� �)v < pi < v.
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The pro�t to either �rm of producing 1 unit is

�i(p
1
i ; F

1
�i(p); F

2
�i(p)) = [1� �+ �(1� F 2

�i(p
1
i )]p

1
i ; (25)

where p1i is the price charged by �rm i if it has produced 1 unit.

It is easy to see that given (24), the R.H.S. of (25) reduces to (1� �)v, which is
independent of p1i . Hence, given (24), it is optimal to set p1i = v.

The pro�ts of producing 1 and 2 units are (1 � �)v and 2(1� �)v �K. In the
mixed strategy equilibrium, these two expressions have to be equal to each other,
which implies that � = (v �K)=K.

So, the entry decision (here: with how many units to enter the Bertrand competi-
tion phase) is random and the uncertainty about the existence of a �erce Competitor
has been derived endogeneously.3

(iii) A Model of Choice of Product Quality

So far we have considered the situation that two (or more) �rms do not know
how many competitors they have. An alternative interpretation is that the �rms do
not know whether consumers consider the products to be perfect substitutes. Let us
suppose two �rms can produce di�erent qualities of the same product. In the �rst
stage, �rms choose whether to produce low (L) or high (H) quality. They know the
quality they themselves produce, but they do not know the quality the competitor
produces. In addition, the consumer also does not know which quality the �rms
produce. Low and high quality incur constant marginal production costs of cL and
cH , with cH > cL > 0. In the second stage �rms choose prices.

Let us consider the case in which a consumer buys one unit of a product: if he
buys the high quality, he does not buy the low quality and vice versa. He derives
utility of vi � p from consuming quality i; i = L;H, where p is the price he pays for
the product he buys. The consumer maximizes utility. In particular, if the consumer
somehow can infer the quality of the products he will buy the high quality good if and
only if vH � pH > vL � pL , where pH and pL are the prices charged by the two types
of �rms. For convenience, assume that vL > cH . A special case of the present model,
is one in which vH = vL . This case can be interpreted as Bertrand competition with
�rms not knowing of each other whether they have low or high marginal cost (cf.,
Spulber, 1995).

We will �rst consider the pricing game under the assumption that for any of the
two �rms, consumers and the other �rm believe that the �rm produces low quality
with probability �, i.e., the �rms randomly choose their product quality. Next, we

3Note that there exists a continuum of equilibria,all in mixed strategies of the form derived in
Section 2, indexed by the price a �rm sets when producing only 1 unit.
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will argue that this assumption can be justi�ed. There are several types of equilibria
in the present model. We will consider the case when cH � cL > 2(vH � vL) and show
that a continuum of separating equilibria exists, each of which has a structure similar
to the one considered in the previous models.4

For convenience, we consider the following two restrictions on the out-of-equilibrium
beliefs. First, if a consumer observes an out-of-equilibrium price below cH , he knows
that this price is set by a low-quality �rm, because a high-quality �rm that maximizes
pro�ts would never set such a price. Thus, we impose the belief that P (� = Ljp) = 1
for all p < cH . (Note that this is implied by the Intuitive Criterion of Cho & Kreps
(1987)). Second, if a consumer observes an out-of-equilibrium price above cH , it
does not know whether it is set by a high or a low-quality �rm. It seems reasonable,
however, to impose that the consumer has the same beliefs no matter which price
above cH is observed, i.e., P (� = Ljp) = �0 for all p > cH .

Proposition 2. Suppose cH � cL > 2(vH � vL). For any given level of �0 > 0, there
exists a continuum of equilibria, indexed by �, where � 2 [0; �0(vH � vL)), in which

pH = cH + �

F (pL) = 1
�

h
1� (1� �)

�
(cH+��cL)�(vH�vL)

pL�cL

�i (26)

for (1� �)[cH + �� (vH � vL)] � pL � cH + �� (vH � vL).

Proof. First, we calculate the expected pro�t of the low-quality �rm in equilibrium.
When this �rm sets a price pL � cH + �� (vH � vL) it is certain that the consumer
will buy from it when the other �rm produces high quality. Hence, its expected pro�t
is

�(pLjFL(p)) = (1� �)(pL � cL) + �(1 � FL(pL))(pL � cL): (27)

Substituting the expression for FL(pL) given in Proposition 2 yields

�(pLjFL(p)) = (1� �)[(cH + �� cL)� (vH � vL)]; (28)

which is strictly positive.

There are several ways in which the low-quality �rm could deviate.

a) Deviating to a price smaller than (1 � �)[cH + � � (vH � vL)] makes the
consumer buy the product for sure, but it yields strictly smaller pro�ts.

(b) Deviating to a price in between [cH + �� (vH � vL)]and cH is not pro�table,
because the consumer will infer that it is a low quality product and will not buy it.

4If cH � cL < 2(vH � vL), the equilibrium may be separating, partially separating, or pooling,
depending on the parameters. We will not discuss that case, since our purpose in this paper is just to
show how quality choice can result in mixed-strategy Bertrand competition, not to fully characterize
how product quality is chosen.

12



(c) The �rm could deviate by setting pL in the interval [cH ; cH + �). Given the
out-of-equilibrium beliefs we speci�ed, the consumer thinks that there is a probability
of �0 that the good is of a low quality. Thus, the payo� the consumer derives from
buying at this price is �0vL+(1��0)vH � pL. If the other �rm is a high-quality �rm,
it would set a price of cH + � and the consumer derives a payo� of vH � cH � � from
buying at this price. As � is smaller than �0(vH � vL) , the last expression is always
larger than the �rst. Similarly, if the other �rm happens to produce low quality, the
maximum price it will charge is cH + � � (vH � vL) and the consumer's payo� from
buying at such prices is larger than or equal to vL� [cH+��vH�vL)], which reduces
to vH � cH � � . Thus, the consumer is always better o� buying from the other �rm
and will not buy at a price in the interval [cH; cH + �). Hence, it is not bene�cial to
deviate to such a price.

(d) The low quality �rm could deviate by setting its price equal to cH + � . The
consumer will think that the price is set by a high quality �rm and will to choose to
buy from the low quality �rm with probability 1=2 if the other �rm produces high
quality and sets its equilibrium price. Accordingly, the payo� of deviating in this way
is equal to (1 � �)(cH + � � cL)=2 . This is smaller than the equilibrium payo� if
2(vH � vL) < cH + � � cL . Given the condition in the proposition, this is the case
for all values of �.

(e) The low quality �rm could set a price pL > cH+� . This is a situation similar
to (c), the only di�erence being that the �rm considers charging even higher prices.
Following the argument under (c), it is clear that the consumer will not buy at such
a high price. Accordingly, the low quality �rm is not better o� deviating from its
equilibrium strategy.

Let us now consider the high-quality �rm. In equilibrium, the expected payo�
of this type of �rm is given by ��=2 . We consider two possible deviations.

(a) A deviation to a price pH � cH yields a non-positive payo� and is therefore
not undertaken.

(b) For a deviation to a price pH such that either cHN < pH � cH + � or
pH > cH + �, we can give an identical argument as above under (c) and or (e): the
consumer will not buy at this price and, hence, this deviation leads to a lower payo�.

We can conclude that it is not pro�table for any type of �rm to deviate from
their equilibrium strategies. Q.E.D.

The mixed strategy distribution of the low quality �rm has the same structure
as the mixed strategies we have encountered before. This becomes apparent if we
recall that earlier we have assumed that the cost of production is zero (set cL = 0)
and that the maximum price a �rm can set is not anymore given by v, but by the
price the �rm can set to distinguish itself from a high quality �rm, i.e., replace v by
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cH + � � (vH � vL) . If we substitute these values into the expression of the mixed
strategy equilibrium, we have the same expression as in Section 2.

We will now analyze the �rms' quality decision. First, note that there exists
an equilibrium in which both �rms choose low quality and set prices equal to cL.
More importantly for our paper, however, there exists a continuum of equilibria,
parametrized by �, each of which Pareto-dominates the equilibrium just described.
In each of these equilibria, �rms choose to produce low quality with probability �,
where � is such that the expected pro�t of the low quality and the high quality
choices are equal to each other. More precisely, for each � > 0, � is such that
(1� �)[(cH + �� cL)� (vH � vL)] = ��=2.

4. Comparing Bertrand and Cournot

Cournot (1838) proposed a model in which N �rms simultaneously choose quan-
tities and let the market determine the price. Bertrand (1883) pointed out that
entirely di�erent conclusions result if the �rms choose prices simultaneously instead.
Even though the assumptions of price competition seem more realistic, the quantity
model yields more realistic outcomes, because pro�ts are positive, but fall gradually
as the number of �rms increases. We have shown that this objectionable feature of
the Bertrand model disappears when uncertainty about the presence of competitors
is taken into account. We will now see what happens to the Cournot model when un-
certainty is added, and compare the Bertrand and Cournot models under uncertainty.
To make the comparison clearer, we will use linear demand,

p

 
NX
i=1

qi

!
= a� b

NX
i=1

qi: (29)

Let us de�ne q(p) as the demand facing a monopolist at a price of p, so

q(p) =
a

b
� p

b
: (30)

The monopoly price then equals a=2 and the quantity demanded is a=2b at that
price.

We will compute the expected pro�ts from Cournot and Bertrand for di�erent
levels of N to obtain some idea of the e�ects of concentration in each.
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Bertrand equilibrium

Applying equation (20) to the case of linear demand, the industry pro�ts in the
Bertrand model with uncertainty are

�bertrand =
N�(1 � �)N�1pmD(pm)

1� (1� �)N
=

N�(1 � �)N�1 a2

4b

1� (1� �)N
: (31)

Adding uncertainty eliminates the discontinuous behavior of the original Bertrand
model. Uncertainty makes a big di�erence, and the comparative statics become con-
sistent and intuitive. Pro�ts are always positive, but they fall whenever the number
of �rms or the probability of more �rms being active increases. Figure 2 shows this
for a particular numerical example with a = 100, b = 1, N from 0 to 7, and � from 0
to 1.5

1

Industry
Profit

Number of Firms (N)

α

αα
α

α

α

α

bπ

=0

=1

=.9

=.1

=.2

=.4

=.8

(no
 uncertainty)

2 3 4 5 6 7
0

500

1000

1500

2000

2500

Figure 2: Bertrand Pro�ts For Di�erent Probabilities of Activity, �, and
Numbers of Firms, N

(from Equation (31 (conditional on at least one �rm being active)

5In every case, expected industry pro�ts are conditional upon at least one �rm being active.
When � = 0, this is to be interpreted as the probability zero (but nonetheless possible) event that
one �rm is active and the expected number of other �rms is zero.
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Cournot Equilibrium

Now let us compute the Cournot equilibrium. Let q� be the Cournot output we
are trying to determine. Firm i's expected pro�t if all other �rms choose q* is then

�i(qi; q
�) = �N�1[p(qi + (N � 1)q�)]qi +

 
N � 1
1

!
(1� �)�N�2[p(qi + (N � 2)q�)]qi

+

 
N � 1
2

!
(1� �)2�N�3[p(qi + (N � 3)q�)]qi + :::

=
PN�1

j=0

 
N � 1

j

!
(1� �)j�N�1�j[p(qi + (N � 1� j)q�)]qi:

(32)

Substituting the linear demand function yields

�i(qi; q
�) =

PN�1
j=0

 
N � 1

j

!
(1� �)j�N�1�j[a� b(N � 1� j)q� � bqi]qi

= [a� b�(N � 1)q� � bqi]qi

(33)

Di�erentiating equation (33) with respect to qi, setting q� = qi, and solving for
q� yields

q� =
a

2b+ �b(N � 1)
(34)

Note that if � = 1, this boils down to q� = a
(N+1)b

. Adding incomplete infor-
mation makes no great di�erence to the Cournot model. If some �rms might not be
active, each active �rm produces somewhat more than it would have done otherwise,
but there is no qualitative shift in the equilibrium.

The expected Cournot industry pro�t conditional upon one �rm being active is
then

�Cournot =
a2�N

b[1� (1� �)N ][2 + �(N � 1)]2
: (35)

Equation (35) is conditional upon Nq� being not so large as to drive the price
to zero, which might rationally happen, since a �rm would be willing to accept a
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price of zero occasionally as the result of all N �rms coincidentally being active and
producing a large amount.

Figure 3 depicts Cournot pro�ts for di�erent degrees of activity and concentra-
tion, using the same numerical parameters as the Bertrand pro�ts in Figure 2.

α

α

α
α
α
α

=0

Number of Firms (N)

(no
 uncertainty)

Industry
Profit

π

1

Cournot

α =1

=.1

=.9
=.8
=.4
=.2

2 3 4 5 6 7
0

500

1000

1500

2000

2500

Figure 3: Cournot Pro�ts For Di�erent Probabilities of Activity, �, and
Numbers of Firms, N

(from Equation (35), conditional on at least one �rm being active)

Figure 3 shows that depending on the number of �rms in the industry, the
presence of uncertainty to the Cournot model can either increase or reduce industry
pro�ts. Under Cournot competition, a �rm expands its output when it expects fewer
rivals to be helping push down the price and the next e�ect on expected industry
output is unclear. Conicting forces are at work in Cournot equilibrium, and the net
result is sensitive to particular values of the parameters underlying the model.6

Pro�ts and Concentration in Bertrand, Cournot, and the Bresnahan-Reiss Study

Let us now compare Bertrand and Cournot. Using pro�t equations (31) and
(35), the ratio of industry pro�ts under Bertrand and Cournot competition is

6The result is reminiscient of the peculiarities of pro�t per �rm in the Cournot model, which can
(but do not always) give rise to an incentive for a Cournot �rm to split in two to increase its pro�ts,
as noted by Salant, Switzer & Reynolds (1983).
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�Bertrand

�Cournot

= (1� �)N�1
�
1 +

�

2
(N � 1)

�2
; (36)

which is decreasing in both N and �.

Table 1 and Figure 4 show the outcomes of our numerical example for di�erent
degrees of concentration under Cournot and Bertrand behavior with certainty and
with � = :8. (Figure 4 also illustrates the Bresnahan-Reiss empirical result, of which
more will be said later.) As we have seen, uncertainty changes the Bertrand model
in a crucial way, because pro�ts do become positive and monotonic in the number of
�rms. The sharp fall in pro�ts moving from monopoly to duopoly under certainty in
the Bertrand model is perhaps not so unreasonable as it looks. It is extreme, but it
is a limiting result as � goes to one, as Figures 2 and 4 illustrate.

Number of Firms N 1 2 3 4 5 6 7

Bertrand, � = 1 2500 0 0 0 0 0 0
Bertrand, � = :8 (eq. (31)) 2500 833 242 64 16 4 1

Cournot, � = 1 2500 2222 1875 1600 1388 1224 1093
Cournot, � = :8 (eq. (35)) 2500 2125 1867 1650 1480 1333 1211

Table 1: Industry Pro�ts for Di�erent Concentration Levels7

Number of Firms (N)

Industry
Profit

α

α

α
=1

=1

(no
 uncertainty)

(no
 uncertainty)

Bresnahan-
Reiss
(Table 3)

Cournot

Cournot

Bertrand

Bertrand

2 3 4 5 6 7
0

500

1000

1500

2000

2500

1

=.8

=.8

α

Figure 4: Bertrand and Cournot Pro�ts

7Numerical calculations and �gures use Mathematica. Values are rounded.
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Consider the shape of the pro�t-concentration paths. All the curves in Figures 2
through 4 have convex shapes, if only weakly in the limiting cases, but the curvatures,
and therefore the empirical implications, are di�erent. As Figure 4 and Table 1, in
particular, show, pro�ts decline much more rapidly in Bertrand than in Cournot.
For the parameters chosen, industry pro�ts fall from the monopoly level of 2500 to
duopoly pro�ts of 833, triopoly pro�ts of 242, and low levels thereafter. Cournot
pro�ts show a much more uniform decline as concentration falls.

Comparison of Figures 2 and 3 shows that for smaller values of the activity
probability � the Bertrand pro�t path becomes atter and the Cournot path, per-
haps more curved, but even at extreme values Cournot does not generate such sharp
di�erences from the addition of one �rm to the market.

For most modelling purposes, these models are building blocks, and such subtle
di�erences in the pro�t-concentration path are unimportant. They are interesting,
however, if one wishes to consider Bertrand and Cournot as serious oligopoly models
in their own right. Empirically, then, how do pro�ts react to the number of �rms? Do
they decline to zero with duopoly and then stay constant, as in the original Bertrand
model? Do they decline smoothly, as either version of the Cournot model would
suggest? Or do they decline rapidly, as the Bertrand model with uncertainty would
suggest?

Measuring the relationship between pro�ts and concentration is an old exercise
now in some disrepute.8 The di�culty is that the usual unit of observation has
been the industry. This is natural enough, since one needs a measurement of con-
centration for each observation. Comparing accounting pro�ts across industries is
fraught with danger, however, since accounting pro�ts di�er from economic pro�ts in
ways that depend on the industry chosen and which are very likely to be correlated
with technology, and hence with concentration. Moreover, it is not clear that the
concentration-pro�ts path is even the same across industries.

Bresnahan & Reiss (1991) took a clever empirical approach to the same problem.
They took the unit of observation to be the market for a particular product in a
particular small town, rather than for many products over the entire United States,
and they looked at market size rather than directly at pro�ts. They collected data
on the size of a town and the number of dentists there, for example. If a town is very
small|say, 500 people|- it will have no dentist, since a dentist incurs a �xed cost
and could not make any pro�t there even as a monopoly. If it grows to 800 people, it
will have one dentist, since the pro�ts are enough for monopoly, but entry by a second
dentist would drive them negative. If the town grows to 1,600 people, however, it
may still have only one dentist| if entry by the second dentist would not just split
the industry pro�ts, but reduce them.

8See pp. 349-366 of Carlton & Perlo� 's 1994 industrial organization text for a good discussion
of the problems of the pro�ts-concentration literature.
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Number of Firms N 1 2 3 4 5

Doctors 0.88 1.75 1.93 1.93 1.83
Dentists 0.71 1.27 1.39 1.36 1.28
Druggists 0.53 1.06 1.68 1.92 1.88
Plumbers 1.43 1.51 1.51 1.55 1.49
Tire Dealers 0.49 0.89 1.14 1.19 1.22

Table 2: Bresnahan-Reiss Entry Thresholds si: Original

(1,000's of inhabitants)9

Bresnahan and Reiss used this approach to estimate the thresholds si for entry
in small markets for a number of industries. Table 2 shows these thresholds in thou-
sands of inhabitants per �rm. Table 3 rescales the same numbers to be very roughly
comparable with the numerical example used earlier in this paper.10 The rescaling is
somewhat arbitrary, since the theory of Bresnahan and Reiss is that some quasi-rents
remain to cover �xed cost even when the minimum scale for entry attens out, but it
creates a comparison measure for how the intensity of competition changes with the
number of �rms.

Number of Firms, N 1 2 3 4 5

Doctors 2500 430 0 0 0
Dentists 2500 440 0 0 0
Druggists 2500 1550 430 0 0
Plumbers 2500 830 830 0 0
Tire Dealers 2500 1130 270 100 0

Average 2500 960 230 20 0

Table 3: Bresnahan-Reiss Entry Thresholds: Rescaled and Rounded
(25(sm�si)

(sm�s1)
)

What is signi�cant is how pro�ts atten out, even though the choice of 0 as
the at level in Table 3 is arbitrary. The empirical result that going from one �rm

9Calculated from Table 5A of Bresnahan & Reiss (1991). Note that the entry of .79 in the second
row of their original paper is a mistake and should be 1.09, and their Figure 4 illustrates si=s5, not
the s5=si in the legend.

10Table 3's rescaling uses the following procedure.
De�ne the monopoly level of pro�ts in an industry to be 2500, and the competitive level to

be 0. Assume that when si reaches its maximum level sm over [1; 5], the competitive level of
pro�ts is reached and any further changes are measurement error. Apply the conversion formula

s�
i
= 25(sm�si)

(sm�s1)
, and Table 3 results.
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to two is much more important than going from two to three, and that full-edged
competition kicks in very quickly matches the Bertrand model with uncertainty very
well, and is inconsistent with the Cournot model.

We do not want to argue that the Bertrand model with uncertainity is the only
model that may explain the data presented. Other models in the industrial organi-
zations literature may also explain the data. To illustrate that it is not that easy,
however, to explain these data, let us consider the Salop (1979) model as set out in
Tirole (1988, pp.282-4) with linear and/or quadratic cost for an exogenously deter-
mined value of N . With linear (quadratic) cost, the relation between price and N
is given by p = c + t=N , respecively p = c + t=N2, where t is a transportation cost
parameter and c is marginal cost. As toptal demand is constant in the Salop model,
industry pro�ts are given by t=N , and t=N2, respectively Confronting these equations
with the Bresnahan and Reiss results reveals that pro�ts in the Salop model do not
decline exponentially as our model and the empirical results suggests.

5. Concluding Remarks

The Bertrand model with uncertainty about the number of competitors is sim-
ple, but its properties are both interesting and useful, and, in particular, the extreme
transition from monopoly to competition found in the standard Bertrand model dis-
appears. Expected pro�ts are positive, but decline with the number of �rms in the
industry, and decline in a way that empirical work suggest is more realistic than the
way they decline in the Cournot model. We have tried to show that the model is
useful both as a simple description of oligopoly and as a building block for other
topics in industrial organization, and this usefulness has already been illustrated in
Gwin (1997), and Janssen and Van Reeven (1998).
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Appendix on Convexity

This appendix shows that Bertrand industry pro�ts are convex in N .

The second derivative d2�b
dN2

is derived from the �rst derivative in (13), which can
be rewritten as

d�b

dN
= �v

(
(1� �)N�1

1� (1� �)N
+
(1� �)N�1Nlog(1 � �)

[1� (1� �)N ]2

)
: (37)

The derivative of this is

d2�b
dN2

= �v
n
[1�(1��)N ](1��)N�1log(1��)+(1��)N (1��)N�1log(1��)

[1�(1��)N ]2
+

[(1��)N�1log(1��)+(1��)N�1Nlog2(1��)][1�(1��)N ]2+2[1�(1��)N ](1��)N log(1��)[N(1��)N�1log(1��)]
[1�(1��)N ]4

o
:

= �v
n
2 (1��)N�1log(1��)

[1�(1��)N ]2
+ (1��)N�1Nlog2(1��)[1�2(1��)N ]+(1��)2N+2(1��)N�2(1��)2N

[1�(1��)N ]4

o

= �v
n
2 (1��)N�1log(1��)

[1�(1��)N ]2
+ (1��)N�1Nlog2(1��)[1�(1��)2N ]

[1�(1��)N ]4

o

= (1��)N�1log(1��)
[1�(1��)N ]2

n
2 + Nlog(1��)[1+(1��)N ]

1�(1��)N

o
�v:

(38)

The �rst term of this expression is negative because log(1 � �) is negative.

The second term has the same sign as

2� 2(1� �)N +Nlog(1 � �)[1 + (1� �)N ]: (39)

We will show that expression (39) is also negative for all N and all � 2 (0; 1).
We will �rst show that it is negative for N = 1. In this case we can de�ne f(�) =
2�+(2��)log(1��). It is easy to see that f(0) = f 0(0) = 0 and that f 00(�) = � �

(1��)2
,

which is strictly negative for all � > 0. Hence, for all � 2 (0; 1), f(�) < 0.

Let us then consider for �xed �,

g(N) = 2� (1� �)N +Nlog(1 � �)[1 + (1� �)N ]: (40)

It can be shown that

g0(N) = (1� �)N � 1� (1� �)NNlog(1 � �) (41)

and that
g00(N) = �(1� �)N log2(1� �): (42)

22



As g(1) and g0(1) are strictly negative, we can conclude that expression (39) is nega-
tive, so that

d2�b

dN2
> 0: (43)
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Appendix on Comparison of Bertrand and Cournot pro�ts

This appendix shows that the ratio (36) is decreasing in N and �. To see the
�rst, take the derivative with respect to N , which is

log(1 � �)(1 � �)N�1
h
1 + �

2
(N � 1)

i2
+ �(1 � �)N�1

h
[1 + �

2
(N � 1)

i
= flog(1 � �)

h
[1 + �

2
(N � 1)

i
+ �g(1 � �)N�1

h
[1 + �

2
(N � 1)

i (44)

The sign of is derivative (44) is determined by the sign of the �rst term. Since

�
1 +

�

2
(N � 1)

�
� 1 >

��
log(1 � �)

; (45)

the derivative is negative.

To see that ratio (36) is decreasing in �, take the derivative with respect to �,
which is

�(N � 1)(1� �)N�2
h
1 + �

2
(N � 1)

i2
+ (N � 1)(1� �)N�1

h
1 + �

2
(N � 1)

i
= �(N � 1)(1� �)N�2

h
1 + �

2
(N � 1)

i h
1 + �

2
(N � 1)� (1� �)

i
= �(N � 1)(1� �)N�2

h
1 + �

2
(N � 1)

i h
�
2
(N + 1)

i (46)

which is negative.
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