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Abstract

This paper studies collective choice rules whose outcomes consist of a
collection of simultaneous decisions, each one of which is the only concern
of some group of individuals in society. The need for such rules arises in
different contexts, including the establishment of jurisdictions, the location
of multiple public facilities, or the election of representative committees. We
define a notion of allocation consistency requiring that each partial aspect
of the global decision taken by society as a whole should be ratified by the
group of agents who are directly concerned with this particular aspect. We
investigate the possibility of designing allocation consistent rules which sat-

isfy the Condorcet criterion and respect different notions of voluntarism.

*We wish to thank Luis Corchén, Anke Gerber, Matthew Jackson and Shlomo Weber for
their helpful comments. Our work is partially supported by DGCYT and Direcci6 General de
Reserca under projects PB96-1192, and SGR98-0062.



1. Introduction.

Collective choices often involve multiple simultaneous decisions, whose particular
aspects may affect different agents to different degrees. If new borders are drawn
in a region of the world, I am mainly affected by what my country will look like,
although I may also care about the whole map of the region. If a committee is
chosen to negotiate on behalf of my union, I am especially interested on those
delegates that I am acquainted with, and/or who will more closely represent my
interest.

In this paper we concentrate on polar cases, where each agent is solely con-
cerned with one of the components of the global decision, and congestion effects
are ignored. For example, several hospitals may be built simultaneously, but if
each agent is only allowed to use one of them (and congestion levels are similar),
then he will essentially evaluate the overall decision in terms of the particular
hospital he is assigned to. Under these circumstances, we discuss the merits of
different social choice procedures to determine (1) what set of objects should be
chosen, and (2) which agents should benefit from each of the objects.

Since we consider that agents are assigned to specific objects, and that they
only care about them, an interesting question arises regarding the overall consis-
tency of the collective procedure. Once a decision is taken, all agents who share
the same object emerge naturally as a meaningful group. All those citizens of
a new nation after border redrawing, all the trade union members whose opin-
ion will be channeled by a given representative, all users of a new hospital are
concerned about the same aspects of the global decision. What if they use the
same rule that led society as a whole to make the global choice, and challenge it
by suggesting that, as far as they are concerned, the particular object that they

have been assigned to should be changed for another one? What if all people



who, given the public decision to build hospitals Hy, Ho, are assigned to Hi, then
demand that H] be built instead? What if, after talking to one delegation mem-
ber, the agents he is supposed to represent meet and vote in favor of substituting
him for somebody else? In all these cases, there would be some inconsistency
between a global decision which turns a group into the major beneficiary of one
of its aspects, and the partial decision that these same concerned agents would
suggest, regarding this particular aspect. Social choice procedures which avoid
these problems will be call allocation consistent.

Many authors have been concerned about the connections among different
decisions taken by societies when their members or their resources vary. Different
conditions have been imposed requiring that the changes in the social decision
associated with changes in the membership of society, or with changes in the set of
possible outcomes, respect some notion of consistency (see for example Thomson
(1998) for a survey on consistency).

Our concern can also be viewed as one of consistency, but we must qualify
the analogy. We want to emphasize the fact that our consistency requirement
refers to the connections between global choices and their particular aspects: on
this account, our focus is restricted, since we only consider models where this
distinction makes sense. A second difference is, we believe, in favor of our notion.
We do not look at exogenous changes in the membership of society, which may
or may not be reasonably expected. We concentrate on the connections between
global decisions, taken by the society at large, and their partial components, as
viewed by those agents in the very same society who are affected and concerned by
those partial aspects of the decision. For those problems where the structure of the
global decision is naturally decomposable, and agents are particularly concerned

with only parts of the global picture, we find our notions of allocation and self-



selection consistency to be particularly attractive.

Of course, no single criterion is sufficient to determine what rule is most
attractive in a given context. In this paper, we focus on rules which are allocation
consistent, but also voluntary and respect the Condorcet criterion. In our context,
voluntarism is a normative property requiring that the assignment of agents to
objects should be compatible with the will of agents. The object of Section 3 is to
discuss this requirement at length, and to propose three attractive properties, each
of which can be interpreted as an expression of voluntarism for an appropriate
scenario. These properties are no-envy, Nash stability and group Nash stability.
Allocation rules which are allocation consistent and envy-free are called self-
selection consistent, to emphasize the idea that the concerned agents self-select
themselves to play this role, through their voluntary identification with one of
the projects, hospitals, representatives or nations.

We also focus on rules which respect the Condorcet criterion. A Condorcet
winner is an alternative which defeats every other alternative in majority compar-
isons. Condorcet winners need not always exist, but when they do, their choice
seems quite compelling. We will say that a social choice correspondence respects
the Condorcet criterion! if it always recommends the choice of Condorcet winners
when they exist.

To motivate our further analysis, consider the following example:

Twenty six agents must choose a delegation of three representatives out of

five candidates (x,y,z,r,w), over which they have preferences represented in the

'This property is often called Condorcet consistency, but we prefer to reserve the term con-

sistency for properties involving changes in population, resources, or choice possibilities.



following table,

agents 1,..,67,..,13 | 14,..,17 | 18,..,21 | 22,..,26
preferences x r w z Y
from Y @ r w z
better z Y T r w
to r w Z Y T
worse w z Y x @

If they use an allocation consistent rule that respects the Condorcet criterion,
each one of the chosen delegates should be a Condorcet winner for the set of
voters that he represents. Who represents whom can be specified in several ways.
For example, we could assume that voters only get the chance to communicate
with one delegate, and that this is the one we call his “representative”. But
here we concentrate on the case where, once the delegation is chosen, each voter
identifies as his representative the one delegate that he likes most. There are
ten possible delegations, xyz, xyw, xyr, xzw, xrw, Tzr, yzw, yzr, yrw, zrw. If
xyz was chosen, the sets of agents that would feel represented by x, y and z
would be respectively, U(x) = {1,....,17}, U(y) = {22,..,26}, U(z) = {18, ..,21}.
But then, the Condorcet winner for the voters in U(x) is r. If xyw was chosen,
U(x) ={1,.13}, U(y) ={22,..,26}, U(w) = {14, ..,21}. But then, the Condorcet
winner for voters in U(x) is r. The reader may check that a similar inconsistency
will appear with any of the remaining possible delegations. This proves that, in
the case we just described, no social choice rule can meet our desiderata. This is
why, in what follows, we concentrate on a more specific problem: that of choosing
k objects on a close interval of the real line, when the preferences of agents over
single objects are single peaked.

The problem of choosing several points on a line and having agents cluster



around them admits several interpretations. Variants of this problem have pro-
vided the basic model for the analysis of local public goods and jurisdictional
questions (see Alesina and Spolaore (1997), Greenberg and Weber (1993), Je-
hiel and Schotchmer (1997), Konishi et al.,(1998), Milchtaich and Winter (1998),
Tiebout (1956)). Yet, our model is much more explicit about the connections
between the global decision of the whole group and the partial decisions of its
different subgroups; our main focus is on allocation consistency. On the other
hand, our model explicitly rules out congestion effects, which are important in
many contexts, and also takes the number of objects to be chosen as an exogenous
parameter (in contrast with models where the number of jurisdictions is an en-
dogenous variable). These two restrictive features of our model are borrowed from
a series of recent papers by Miyagawa (1997). His model is very similar to ours,
but we have expanded it to encompass the possibility of a variable electorate to
chose a variable number of objects: this allows us to stress the issue of consistency
and the endogenous character of the groups that share each single object. Even
if our models are similar, Miyagawa’s analysis and conclusions are very different
from ours. His choice of axioms leads him to characterize different rules which
tend to select rather extreme outcomes. Moreover, his formal analysis often stops
at the case where only two objects are chosen. In contrast, our analysis highlights
the importance of rules that extend the median voter principle, and it applies to
any fixed number of partial choices.

In Section 2, we present our model in detail. Section 3 presents three defini-
tions expressing the notion of voluntarism under varying scenarios: no envy, Nash
and group Nash stability. Section 4 studies the existence of allocation consistent
social choice correspondences respecting the Condorcet criterion and leading to

envy-free, Nash stable, or group Nash stable allocations. Section 5 concludes.



2. The Model.

Let N = {1,...,n} be the set of agents. Subsets of N are coalitions. For any
coalition S, |S| denotes the cardinality of S.

In order to describe the set of decisions we need a language to describe the num-
ber and position of relevant locations, and to denote the sets of agents who are
allocated to each location.

Let N be the set of natural numbers. An element in N denotes the number of
locations.

Given S C N and k € N, an S/k—decision is a k—tuple of pairs d = (zp, Sp)¥_,,
where (z1,..,2%) € [0,7]F and (S, .., Sg) is a partition of S. 2 We shall interpret
each xp, as a location and S, as the set of agents who is assigned to the loca-
tion xp, Notice that elements in the partition may be empty. This will be the
case, necessarily, if & > |S|. We call di, = (x1, .., k) the vector of locations, and
da = (S1,..,Sk) the vector of assignments.

Given a S/k— decision d, and j € S, S(j, d) will denote the set in d 4 that contains
Jj, and x(j,d) will denote the element in dy, to which agents in S(j, d) are assigned.
We denote by D(S, k) the set of S/k—decisions.

The set of k—decisions is D(k) = (Jgc D(S, k).

For each agent j € N, the set of k—decisions which concern j is Dj(k) =
Utscnjesy P(S:F)

The set of decisions is D = | J D(k).
k=1

n
For each agent j € N, the set of decisions that concern j is Dj = |J D;(k).
k=1

Agents are assumed to have complete, reflexive, transitive preferences over

?Qur analysis does not depend on I' being a closed, bounded interval of the reals. It could
also be the whole real line, or a finite set of integers, just to mention some alternative possibilities.

As for choosing [0, 77 rather than [0,1] it is just in order to get nicer numerical examples.



decisions which concern them. That is, agent i's preferences are defined on Dj,
and thus, rank any pair of S/k and S’/k —decisions provided that i € SN S".
Denote by =; the preferences of agent ¢ on D;.

We shall assume all along that preferences are singleton-based. Informally,
this means that agents’ rankings of decisions only depend on the location they
are assigned to, not on the rest of locations or on the assignment of other agents
to locations. This assumption is compatible with our interpretation that agents
can only use the good provided at one location, and that this is a public good
subject to no congestion. Formally, a preference »=; on D; is singleton-based if
there is a preference =; on [0,7] such that for all d, d’ € D;, d =; d’ if and only
if x(i,d)=z(i,d).

In all that follows, we shall assume that for all ¢ € N, »=; is singleton-based,
and in addition, that the order %, is single-peaked.?> Abusing notation we will use
the same symbol »=; for both orders.

Given S C N, preference profiles for S are |S|-tuples of preferences, and we
denote them by Pg, Pg, ...

We denote by P the set of all preferences described above, and by P* the set
of preference profiles for S satisfying those requirements.

A collective choice correspondence will select a set of k—decisions, for each
given k, on the basis of the preferences of agents in coalition .S, for any coalition

S C N. Formally,

Definition 1. A collective choice correspondence is a correspondence
¢ : Uscy P9 x N— D such that, for all S C N, Ps € PS and k €N, ¢(Ps, k) C
D(S, k).

3That is: for each =;, there is an alternative p( i) which is the unique best element for =;;

morover, for all z,y, if p(4) > z > y, then & >y, and if y > x > p( 7), then = =;y



‘We now propose three natural and attractive properties that a collective choice
correspondence may or may not satisfy. Two of these properties -efficiency and
respect for the Condorcet criterion- are well known. The third, allocation consis-
tency, is proposed here for the first time.

First, we formulate the condition of Pareto efficiency.

Definition 2. An S/k—decision d is efficient if there is no S/k—decision d' such

that d' =; d for every agent i € S and d' >; d for some j € S.

Second, we rephrase within our model the classical notions of Condorcet win-

ners and respect for the Condorcet criterion.
Definition 3. An S/k—decision d € D(S, k) is a Condorcet winner for S if
{ieS|d-;d} > |{ieS|d =id}| foralld € D(S,k)

Given S C N and a preference profile Pg, let CW (Ps, k) be the set of S/k—decisions

that are Condorcet winners for S.

Notice that any S/k—decision that is a Condorcet winner for S is an efficient
decision.

We shall see in Example 1 that for £ > 1 Condorcet winners may not exist,
but when they do, their choice seems quite compelling. Hence, we will demand
for a collective choice correspondence to recommend the choice of the Condorcet

winners whenever they exist.

Definition 4. A collective choice correspondence @ respects the Condorcet cri-
terion if for all S C N and for all Ps such that CW(Ps,k) # 0, o(Ps, k) =
CW (Ps, k).



We propose our notion of allocation consistency for collective choice corre-

spondences.

Definition 5. A collective choice correspondence @ is allocation consistent if for
all SC N, Ps, k€N, and ((.%’1,51), ceny (mk,Sk)) € QD(Ps,k’), (xh,Sh) € QQ(PSh, 1)
for all h such that Sy, # 0.*

Before closing this section, we clarify the relationship among some of the
requirements on collective choice correspondence that we first described. We show
that, whenever a Condorcet winner exists, each of its components is a Condorcet
winner for its corresponding group. This guarantees that allocation consistency
and the Condorcet criterion are, in principle, compatible requirements. Finally,
we also give a necessary condition for an allocation consistent collective choice

correspondence to respect the Condorcet criterion.

Proposition 1. Given S C N, Ps, and k € N, ifan S/k—decisiond = ((xy, Sp))¥_, €
CW(Ps, k), then dy, = (z,,Sp) € CW(Ps, ,1) for all h such that S, # (.

Proof. Suppose that there is an h such that dj = (x3,S}p) is not a Condorcet

winner for Sp. Then there is a dj, = (z},, S), such that
’{’L €Sy | d;L =i dh}’ > ‘{Z €8Sy | dp, =i ;L}‘

Let Sp1 = {Z € Sy ‘ d;L =i dh}, Sho = {Z € Sh ’ dp > d;l}, and d' = (d;pd—h)-
Then, {i € S | d »; d} = Sp1, and {i € S | d »=; d} = Sho. But then,
{ie S|d =;id} > |{i€S|d=;d}|, which contradicts the assumption that d

is a Condorcet winner for S. W

*Since for k = 1 there is a unique assignment of the agents (all of them together), we will use

indistinctly (zn, Sk) € ¢(Ps,, 1) or zn € ¢(Ps,,,1)
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Proposition 1 and efficiency give necessary conditions for an S/k—decision to
be a Condorcet winner. But they are not sufficient. This is proven in Example
1. In this example there is a unique S/2—decision satisfying both necessary
conditions, but it is not a Condorcet winner despite our strong restrictions on

preferences (which guarantee the existence of Condorcet winners when k = 1).

Example 1. Let N = {1,2,...,13,14}, and P = (%=;)}2, be such that for all i, =;
is euclidean on [0,100] with the following peaks: p(i) = 4, for all t = 1,..,4 and
p(5) = 32, p(6) = 33, p(7) = 34, p(8) = 67, p(9) = 68, p(10) = 69, p(11) = 97,
p(12) = 98, p(13) = 99, p(14) = 100. Let’s see that CW(P,N,2) = (). Because
of Proposition 1 if d = (di,dy) € CW(P,2), d,, € CW,(Ps,,1) for h € {1,2}
and d should be an efficient N/2—decision. Let d = ((4,51),(97,52)), with S; =
{1,..,7}, and Sp = {8, .., 14}. Notice that d is efficient, (4,51) € CW(Ps,, 1), and
(97,82) € CW(Ps,,1). This is the unique efficient N/2—decision such that dj, €
CW(Ps,,1) for h € {1,2}, and thus, the unique potential candidate. However
d is not a Condorcet winner for N, since for d = ((50, 51),(98,55)), with S} =
{1,.,10}, S, = {11,.,14}, {i € N | & = d} = {5,6,7,8,9,10,12,13,14}, and
(ieN|d=d}={1,23411}.

Proposition 2. Let ¢ be an allocation consistent collective choice correspon-
dence. If ¢ respects the Condorcet criterion, then for all S C N, for all Pg,
for all k € N, and for all S/k—decision d € ¢(Ps,k), d,, € CW(Ps,,1), for all
h € {1,..,k} such that Sy, # (.

Proof. This is because, since ¢ is allocation consistent, (z,S) € ¢(Ps,,1).

Since ¢ respects the Condorcet criterion, ¢(Ps, ,1) = CW(Ps,,1). R

11



3. Voluntary assignments.

We have modeled social choice correspondences as the conjunction of rules which
(a) decide the location of each object, and (b) assign each agent to one object.
This formulation gives no room for individual behavior other than voting or re-
vealing preferences. Therefore, our notions of voluntarism are not associated with
the actual behavior of agents within the model, since the agents do not actually
choose where to go: once their preferences are known, they are assigned to one
location. But we are still interested in normative properties of the assignment rule
related to the following question. If agents were given the chance to join a group
other than the one they are actually assigned to, would they want to use this
privilege? If not, we say that the present assignment is voluntary. Otherwise, it
is an imposition from the rule. Hence, voluntarism is a normative requirement in
our analysis, not the description of any allocative process. In order to be precise
about this normative requirement, we must be explicit about the consequences
that agents may expect under the hypothetical statement that they are “given
the chance to join another group”. Our notions of No-envy, Nash and group
Nash stability correspond to three different specifications of what agents might
expect under this hypothesis. If agents envisage the possibility of joining another
group, but not of changing the location of any object, then voluntarism is equal
to No-envy. If agents envisage the possibility of joining another group, and con-
sider that the object assigned to this new group may be reallocated accordingly,
then voluntarism is Nash stability. Group Nash stability would be similar, with
the added possibility that agents might coordinate with others when deciding
whether or not to change groups.

We now proceed to define these notions of voluntarism, and to study their

compatibility with other desirable features of the collective choice rules.
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Definition 6. An S/k—decisiond € D(S, k) is envy-free if for alli € S, z(i,d) =;

xy, for all xy, € dy,.

Remark 1. Notice that any efficient S/k—decision is envy-free, therefore, Con-

dorcet winners, whenever they exist, satisfy this voluntarism property.

Definition 7. A choice correspondence ¢ is envy-free if for all S C N and Pg,

©(Ps, k) selects envy-free S/k—decisions.
We now present the definition which appears in the title of the paper.

Definition 8. A collective choice correspondence is self-selection consistent if it

is envy-free and satisfies allocation consistency.

We emphasize the conjunction of the two properties which give rise to self-
selection consistency, because the groups of agents whose partial decisions must
match with the global decision are self selected as the set of people who would
attach themselves to each location, out of a voluntary choice.

Identifying self-selection consistent collective choice correspondences respect-
ing the Condorcet criterion will be the object of the next section. As a first step
in that direction, we study here the correspondence that selects for each S C N,
and for each k, all the S/k—decisions that are envy-free and satisfy the necessary

condition of Proposition 2, and prove that such correspondence is well defined.

Definition 9. Let ©” be the collective choice correspondence such that for each

SCN, Pg and k € N,
o (Ps, k) = {d € D(S,k) | d is envy-free and dj, € CW (Ps,, 1) for all h s.t.S, # 0}

Proposition 3. The correspondence " is well defined. That is, for each S C N,
Pg and k € N; QDE(Ps,k’) # 0.

13



Proof. We offer the proof for £ = 1,2,3. For any other ¢ the proof is similar.
For k =1, ¢(Ps,1) = CW(Ps,1). Since preferences are restricted to be single-
peaked on [0,T], CW(Ps,1) # 0.

Before considering the cases k = 2, 3, let us fix some notation. The lower median
of a finite collection K of real numbers is denoted by lmed(K). It stands for the
median when the cardinality of K is odd, and for the lowest value of the median

if the cardinality is even®.

For k = 2, let us order the agents by increasing order of their peaks. Let Sy =
{i € S| p6) =p(1)}, and Sy = {i € S| p(i) > p(1)}. Let o' = (zf,}) be
such that =}, = lmed(p(z'))iesg, for h € {1,2}. Let ST = SYU{i € SY | 2} =
z}, and S3 = SO\{i € SY | x] = x}. If S} = SY for all h € {1,2}, then
((x1,81), (23,83)) € ¥(Ps,2). Otherwise we compute the lower median of the
peaks of the agents in S}, and S3, and let 22 = lmed(p(i))iesi for h € {1,2},
2? = (23,23), S = St U {i € S} | 23 = 23},and S3 = SiI\{i € S} | 2} 3=, =3}
If S2 = S} for all h € {1,2}, then ((2%, S?), (23,53)) € ¢¥(Ps,2). Otherwise we
repeat the same process, which is finite because there is a finite set of agents,

at each step x] > wfl*l for all h € {1,2}, where w{z = Imed(p(7)) and

syt
furthermore, S{_l C S and S) C 5’%_1. Hence, for some j we will get S,JL_I =5

for all h, and d = (x?l, SZ),QL:I € o¥(Ps,2).

For t = 3, let p(1) be the smallest peak of the agents, p(2) the second smallest
peak. Let S) = {i € S| p(i) = p(1)}, S§ = {i € S| p(i) = p(2)}, and
S9={ieS|p@)>p@2)} Let at = (x1,23, 23) be such that 2} = Imed(p(i))ies0-

Notice that @1 = p(1), @3 = p(2), for all i € SY, a1 =; 2} =; i, and for all

®We cannot simplify our analysis by assuming an odd number of voters because the nature

of our questions require the size of the electorate to be variable and endogenously given.
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i€ 89, xl = xt, xl = w% If in addition for all 7 € S??, wé =i ¥ = o1, then
zi € CW(Pgo,1) for all h € {1,2,3}, and ((z},S0)3_, € p¥(Ps,3). Otherwise,
let S =89, S5 =SQuU{i € SY |z} = xi}, and S3 = SO\{i € S | x5 =; =i}
For each of these sets, we compute the lower median of the peaks of the agents in
those sets, formally: 7 = lmed(p(i))iesi, for h € {1,2,3}. Notice that =7 > x}
for all h € {1,2,3}. Let S = St U {i € S} | 2% = 23}, S% = [SI\{i € S} | 2% =
23U {i € S | 23 = 23}, and S% = SI\{i € S} | 23 = x3}. If S7 = S} for all
h € {1,2,3}, then 23 € CW(Psz2,1), and ((x2,82))3_, € ¢P(Ps,2). Otherwise
we repeat the same process, which is finite because there is a finite set of agents,
at each step wi > w{fl, h € {1,2,3}, S{fl C S{ and Sg - ngl. Hence, for
some j we will get S,{ = S}];l, w{z = lmed(p(i))iesi_l, for all h € {1,2,3}, and
d= (2}, 5))i_y € ¢"(Ps,3). W

The necessary condition of Proposition 2 tells us that if we want a self-selection
consistent collective choice correspondence ¢ which respects the Condorcet cri-
terion, this correspondence should be a selection from ¢¥. Unfortunately, the
following example shows that the correspondence ¢” itself is not a solution to
our question. This natural correspondence is “too large”, because it may select

S/k-decisions which violate the Condorcet criterion.

Example 2. Let N = {1,2,...,7,8}, and P = (=;)%_; be such that for all i,
=i Is euclidean on [0,15] with the following peaks: p(i) = i, for all i € {1,2}
and p(3) = 4, p(4) = 5, p(5) = 6, p(6) = 9, p(7) = 10, p(8) = 11. Let d =
((2,51),(9,89)), with S; = {1,..,4} and S = {5,..,8}, d € ©¥(P,2), because
for all i € S, 2 =; 12, and for all i € Sy, 12 =; 2, and d1 € CW(Pg,,1),
dy € CW(Ps,,1). However d ¢ CW(P,2), because for d = ((4,57),(10,55)),
with S| = {1,.,5}, 8, = {6,..8}, {i € N | d =; d} = {3,4,5,7,8}, while
{ie N|d~;d}=1{1,2,6}, and d' is a Condorcet winner for N.

15



We now turn to our next definitions relating to voluntarism. Both the notion
of Nash and group Nash stability are based on the assumption that agents may
compare different sets of decisions, resulting from their use of alternative strate-
gies (this is because we are studying social choice correspondences). Since agents’
preferences have been defined up to now on single decisions, we must be precise
on the kind of set comparisons that we allow for. We do that by proposing an
extension rule, which generates a partial order on sets. Given our extension, the
rest of definitions are standard.

Given a preference relation = defined on R, let 1 (3=) denote the extension of
= over subsets of R defined by: for all A;, Ay C R, A; O (%)A if for all z € Ay,
and for all y € A, x = .

From now on, when it is obvious that J (=) is the extension of =, we shall
just write J; likewise, J; will refer to the extension 1 (3=;) when 3=; is an obvious
reference, etc.

Notice again that T is a criterion for extending > which allows for J (=) to
be highly incomplete. Our next definitions of Nash and group Nash stability are

natural, but of course relative to 1.

Definition 10. A collective choice correspondence ¢ is Nash stable if there is
nod € ¢(Ps,k), i € S, and dj = (x;,5;) withi ¢ S; such that @(stu{i},l) P
x(i,d).

Definition 11. A collective choice correspondence ¢ is group Nash stable if there
isnod € ¢(Ps, k), d; = (x;,S;j) and I C Sy, h # j, such that ¢(Ps,uz,1) J; (i, d)

for alli € I.

Condorcet winners, whenever they exist, behave well with respect to group

Nash stability, and consequently, with respect to Nash stability.
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Proposition 4. Given S C N, Pg and k € N such that CW(Ps, k) # 0, there is
no d € CW(Ps, k), dj = (x;,S;) and I C Sp,h # j, such that CW(Ps,uz,1) Ji
x(i,d) for alli € I.

Proof. Suppose there is d € CW(Ps,k), dj = (z;,5;) and I C Sp,h # j,
such that CW(Ps;ur,1) J; x(i,d) for all i € I. Without loss of generality
suppose that h = j + 1. Let [y1,y2] = CW(Ps,uz,1). Let d' be such that
dy = d; for all I ¢ {j,h}, dj = (y1,8; UI), d, = (z1,S5\I). Let’s see that
HieS|d =id} > |{ieS|d=;d}|. Notice that {i € S | d' =, d} = {i €
S; Ul | y1 =i xj}, and since y1 € CW(Ps;ur,1), {i € S;UT | y1 =i 25} >
{i € S;UI | xj >; y1}|. Furthermore, since d € CW(Ps, k), d is envy-free, then
x(i,d) 3= x; for all i € I, therefore x; ¢ CW(Ps,ur,1), and since z; < y; <y for
all y € CW(Ps;ur,1), then [{i € S;UT |y = x5} > {1 € S;UT |25 =i y1}],
and trivially, [{i € S; UT |z =; 1} =|{i € S| d >; d'}|, which contradicts the
fact that d € CW(Ps, k). R

Again, identifying self-selection consistent collective choice correspondence
satisfying (Group) Nash stability and respecting the Condorcet criterion will be
the object of the next section. As a first step in that direction, we define the
maximal subcorrespondence of ¢ which is (Group) Nash stable, and we prove

that such correspondence is well defined.

Definition 12. Let ¢V be the subcorrespondence of ¢ such that for each S C
N, Ps and k € N, ¢V (Ps,k) = ¢¥(Ps,k)\NN(Ps, k), where NN(Ps,k) is the
set of all d € ¥(Ps, k), such that there is ani € S, and d; = (x4,5;), i ¢ S;,
such that CW(Ps,uqiy,1) 2i x(i,d).

Definition 13. Let % be the subcorrespondence of ¥ such that for each S C
N, Ps and k € N, ¢%(Ps, k) = ¢¥(Ps,k)\NG(Ps, k), where NG(Ps, k) is the
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set of all d € ¥ (Ps,k), such that there is dj = (z,5;) and I C Sy, h # j, such
that CW (Ps;ur,1) i x(i,d) for all i € I.

Remark 2. Notice that for all S C N, Ps and k € N, ¢%(Ps, k) C N (Ps, k),

and not necessarily identical as the following example shows.

Example 3. Let N = {1,2,..,16}, and P = (3=;)18, be such that for all i, =; is
euclidean on [0, 14] with the following peaks: p(i) =1, for all i = 1,2, 3, p(4) = 5,
p(5) = 6, p(8) = 8, for all j = 6,7,8,9, p(k) = k, for all k = 10,11,12,13,
p(h) = 14, for all h = 14,15,16. Let d = ((3,51),(11,52)), S1 = {1,..,5}, and
Sy = {6,..,16}. Notice that d € N (P,2), but d ¢ ¢%(P,2), because all agents
in the set I = {6,7,8,9} strictly prefer CW(Ps,ur,1) = {6} to the location that

they are actually assigned to.

Proposition 5. The correspondence ¢ is well defined. That is, for each S C N,
Pg and k € N, QOG(Ps, k) # 0.

Proof. Given S C N, Pg, and k € N, we start with the first S/k-decision in
©¥(Ps, k) that we find in the process described in Proposition 3.Suppose that this
decision was obtained at step j. Let &/ = ((m?b7 Si))ﬁzl be such decision. Suppose
that d7 ¢ »%(Pg, k), then, there is a d{ = (ZU{,S{), and I C Sg, t # [, such that

CW(PSJ-LH, 1) 3; z(i,d) for all i € I. Because preferences are single peaked on
1
[0,7T], S{ must be SZJ—H or S]_,. Let’s prove that, given the process described in

Proposition 3, I C S/

i+1- That is, the movements of agents go always in the same

direction; at any step, if agents move at all, they move from groups S;y; to ;.

Suppose that I C Slj_ and let y; € C’W(Psljul, 1). Notice that y; < x{ Previous

17
to step j there was a step ¢ such that I was in S/, and «f = lmed(p(i))ieslq <y,

but they move, probably not all of them at the same time. Let ¢ be such that
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I C S/, and at ¢+ 1, there was J C I such that J C Squrll because x] | = xf
for all ¢ € J. At step j, we get the following relation, 513{_1 > qu > ] |, which

implies that l’{,l =i m? =; y for all ¢ € J. Therefore, I must be a subgroup

+1 1 ,
of Sl]+1 Let )™ = Imed(p ())ZGSJUI, w{il Imed(p (Z)).esj Y
for all h # 1,1+ 1. Let 9" = ST u{i e S) | o™ = ™), U7 = (SI\{i €
S}JL \ m?fll =i x?fl}) u{i e S it | mJH =i xh+1} for all h € {2,k — 1}
and S = SI\{i € §) | &) = 2T} 1S9 = Sifor all b€ {1,., K},

then &/t! = ((a7, i+l S]H))h | € ©P(Ps,k),if this is no the case, we proceed as

and ;U]H =z

in Proposition 3 until we get a decision in ¢¥(Pg,k).Let d™ be such decision.
If d" € ¢%(Ps, k), we are done. Otherwise, we proceed as in the beginning..
The process is finite for the same reason that it was finite in Proposition 3, and
because, at any step, the movements of the agents go always in the same direction,

form Spy1 to S;. M

A self-selection consistent and group Nash stable collective choice correspon-
dence which respects the Condorcet criterion should be a selection from .
Unfortunately, the following example shows that the correspondence ¢ itself is
not a solution to our question, because it may select S/k-decisions which violate

the Condorcet criterion.

Example 4. Let N = {1,2,..,8}, and P = (;)%_; be such that for all i, =; is
euclidean on [0,14] with the following peaks: p(i) = 4, for ¢ = 1,2, p(3) = 5,
p(4) = 6, p(5) =9, p(6) = 12, p(7) = 13, p(8) = 14. For this profile the set
of Condorcet winners for k = 2 is not empty. For example, ((5,51),(13,552))
with S1 = {1,2,3,4,5} and Sy = {6,7,8} is a Condorcet winner. Let d =
((2,81),(12,82)) with S; = {1,..,4}, So = {5,..,8}. Notice that d € ¢“(P,2),
but this is not a Condorcet winner. It is dominated by ((7,5}),(13,5%)) with
S;={1,..,5}, S5 ={6,..,8}.
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4. Self-selection Consistent and (Group) Nash stable correspon-

dences respecting the Condorcet criterion.

In the previous section we have noted that self-selection consistent correspon-
dences respecting the Condorcet criterion must be strict subcorrespondences of
another, that we have called ¥, which we have proven to be well defined but
will not always respect the Condorcet criterion. Similarly, allocation consistent
correspondences satisfying (Group) Nash stability and respecting the Condorcet
criterion must be subcorrespondences of ¢V and ¢, which again do not always
respect the Condorcet criterion. Hence, while there is still hope to identify some
adequate subcorrespondence meeting all desiderata, some methods to select from
the above correspondences must be suggested.

An alternative route toward finding satisfactory rules could have been to first
identify some correspondence that guarantees respect for Condorcet, and then
check for its respect of consistency and voluntarism. We now introduce the Simp-
son correspondence (Moulin (1988)), which indeed respects the Condorcet crite-
rion and it will be shown not to be allocation consistent. Yet, its introduction is
useful because an appropriate modification of the Simpson rule, when combined
with our results in the previous section, will allow us to construct correspondences
satisfying all our requirements.

We first define the Simpson rule and show that it does not directly define an

allocation consistent choice correspondence.

Definition 14. Given a preference profile P, and a set of agents S, for any d,d’ €
D(S,k), let N(d,d") = {i € S|d=; d'}|. Given d € D(S, k), the Simpson score
of d, denoted SC(d), is the minimum of N(d,d') over all d' € D(S,k), d' # d.

An S/ k-decision d is a Simpson winner for S if SC(d) > SC(d') for all d' €
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D(S, k).
The Simpson correspondence, SW, is defined so that for each S C N, Pg and
keN,

SW(Ps, k) = {d € D(S, k) | SC(d) > SC(d) for all d' € D(S,k)}

While clearly the SW correspondence respects the Condorcet criterion and
is envy-free, it may violate allocation consistency, as shown by the following

example.

Example 5. Let’s consider Example 1 again. If SW were allocation consistent,
since it is envy-free and respects the Condorcet criterion, then it should be a
selection of . Notice that in this example, ¢¥(P,N,2) = {((4,51), (97,52))},
with S1 = {1,..,7}, and Sy = {8, ...,14}. However, d = ((4,51),(97,S2)) is not
a Simpson winner for N. To see that let d' = ((},5]), (z},55)) be such that
Al < o) < 60,97 < oy, < 98, S = {1,..,10}, and S}, = {11,..,14}. This N/2-
decision is such that d' »; d for all i € {5,6,7,8,9,10,12,13,14}, and d »; d’
for all i € {1,2,3,4,11}. Therefore the number of voters preferring d to d' is
five, and this is the minimum over all d. So, the Simpson score of d is five. For
d=((3,51),(98,5y)), it is easy to see that the Simpson score of d is six. Then d

can not be a Simpson winner. Therefore, SW is not allocation consistent.

Even if the Simpson correspondence is not consistent, we can use the Simpson
scores in order to define subcorrespondences of any given correspondence. We

provide a general definition, and then use it for our specific purposes.

Definition 15. Given a subset of S/k—decisions, H C D(S, k), the set of H—Simpson
winners is the set of decisions in H whose Simpson score ( still computed on pair-

wise comparisons over all D(S, k)) is maximal on H.
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Hence, the H—Simpson winners are those elements in H which have the max-
imal Simpson scores. But these scores are computed not only in pairwise com-
parisons among elements in H, but on pairwise comparisons among all elements
of the larger set D(S, k).

This method can now be applied to define subcorrespondences of any given

Correspondence.

Definition 16. Given a correspondence @, its Simpson subcorrespondence, ¢*, is

defined so that for each S C N, Pg and k € N,
©*(Pg, k) = {d € ¢(Ps,k) | d is p(Ps, k) — Simpson winner}

Finally, apply this general procedure to ¢, and define its Simpson subcor-
respondence, ¢*F. It is straightforward to check that ¢*F will satisfy all our

requirements.

Proposition 6. Let ¢*F be the Simpson subcorrespondence of ©¥. This corre-

spondence is self-selection consistent and respects the Condorcet criterion.

For identical reasons, we can defined satisfactory Simpson subcorrespondences

of N, and @Y.

Proposition 7. The Simpson subcorrespondence ¢* is self-selection consistent,
satisfies Nash stability and respects the Condorcet criterion.
The Simpson subcorrespondence ¢*“ is self-selection consistent, satisfies group

Nash stability and respects the Condorcet criterion.

Propositions 6 and 7 provide us with specific and natural examples of collective
choice correspondences satisfying combinations of all our desiderata.
Our last example shows that the rules defined in Propositions 6 and 7 need

not be identical. We do not know yet whether they are always nested.
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Example 6. Let N = {1,2,..,16}, and P = (3=;)1%, be such that for all i, =; is
euclidean on [0,200] with the following peaks: p(1) = 10, p(2) = 29, p(3) = 30,
p(4) = 40, p(5) = 50, p(6) = 80, p(7) = 82, p(8) = 90, p(9) = 105, p(10) =
p(11) = 135, p(12) = 170, p(13) = p(14) = 175, p(15) = 190, p(16) = 200.
Let d = ((40,5)),(17,82)), with S; = {1,.,8}, So = {9,..,16}, and d =
((50,51),(175,5%)), with S} = {1,...,9}, S5 = {10,..,16}. These are the unique
envy-free N/2—decisions such that dp € CW(Ps,,1), d, € CW(Pg,1), for all
h € {1,2}. Therefore, p¥(P,2) = {d,d'}. It is easy to see that SC(d) = SC(d') =
6. Then ¢*¥(P,2) = {d,d'}, but o™ (P,2) = {d'}, then, *N(P,2) = {d'}.

5. Final remarks.

We have proven that social choice correspondences satisfying our quite demand-
ing requirements do exist. We have not provided characterization results, but just
examples involving specific rules. Their construction combines a first choice of
decisions satisfying basic necessary conditions, followed by a further choice among
them (through the Simpson rule) in order to guarantee respect for the Condorcet
criterion. Our use of the Simpson rule is not essential; other extensions of major-
ity, also respecting the Condorcet criterion, could have been used. However, not
all extensions would have been appropriate. The Simpson rule is handy because
it is easy to extend to the choice out of an infinity of alternatives (unlike the
Copeland rule) and because it is simply based on pairwise comparisons between
alternatives.

The above remarks suggest two directions for further research. One would
be to find additional social choice correspondences satisfying our properties. The
other would involve the axiomatic characterization of the rules we have proposed,

or of larger classes containing them.
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