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Abstract

We formulate an evolutionary learning process in the spirit of Young
(1993a) for games of incomplete information. The process involves trem-
bles. For many games, if the amount of trembling is small, play will be in
accordance with the games’ (semi-strict) Bayesian equilibria most of the time.
This supports the notion of Bayesian equilibrium. Further, often play will
most of the time be in accordance with exactly one Bayesian equilibrium.
This gives a selection among the Bayesian equilibria. For two specific games
of economic interest we characterize this selection. The first is an extension to
incomplete information of the prototype strategic conflict known as Chicken.
The second is an incomplete information bilateral monopoly, which is also
an extension to incomplete information of Nash’s demand game, or a simple
version of the so-called sealed bid double auction. For both games selection
by evolutionary learning is in favor of Bayesian equilibria where some types
of players fail to coordinate, such that the outcome is inefficient.
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1 Introduction

This paper suggests an evolutionary learning process in the spirit of Young (1993a)
for static games of incomplete information and demonstrates in general how such a
process may give justification for the notion of Bayesian equilibrium and may give
selection among multiple Bayesian equilibria. For two specific games of economic
interest the selection is characterized. The first is an extension to incomplete infor-
mation of the prototype strategic conflict known as the Chicken game. The second
is an incomplete information bilateral monopoly; it can be viewed as an extension
to incomplete information of Nash’s demand game, and it is also equivalent to a so-
called (sealed bid) double auction. For both games selection turns out to be in favor
of Bayesian equilibria exhibiting certain inefficiencies. These can be attributed to
the presence of incomplete information, since they are due to miscoordination by
some types of players.

There are mainly two motivations for extending the models of evolutionary learn-
ing to incomplete information. First, the foundations of Bayesian equilibrium are at
least as shaky as those of Nash equilibrium. Any doubt one may have concerning the
feature that players use best replies against each other, is as relevant for Bayesian
equilibrium in games of incomplete information as it is for Nash equilibrium in
games of complete information. For Bayesian equilibrium one may further doubt if
the idea that players plan for types they are actually not, is an adequate formaliza-
tion of how players cope with uncertainty in games. It is therefore of interest if one
can give a justification of Bayesian equilibrium for some games of incomplete infor-
mation, like that given of Nash equilibrium for some games of complete information
by, e.g., Young (1993a). Second, going from complete to incomplete information
in games often adds a dimension of equilibrium multiplicity, in particular it often
implies the existence of many inefficient equilibria, such that equilibrium selection
may be even more relevant in games of incomplete information. Since the evolu-
tionary models with small trembles suggested by, e.g., Young (1993a) and Kandori,
Malaith, and Rob (1993), have proved to be strong devices for equilibrium selection,
it is a natural idea to generalize such processes to games of incomplete information.

To define an evolutionary learning process connected to a game of incomplete

information, one has to give a physical meaning to the types and priors that are



part of the formulation of the game. We assume that there are two large pools of
players containing players to take the "row” and the ”column” position in the game
respectively, and that each pool is subdivided in types. The existing types are as
in the underlying game; if a player of a specific type from one pool plays against
a player of a specific type from the other, the two will receive payoffs depending
on their types and actions exactly as in the underlying game. Play goes on in
subsequent rounds. In each round, one player is picked at random from each pool
and these two play the game once. We assume (1) that all players know the true
probability distribution by which opponents are picked, and (2) that after each
round of play the chosen actions as well as the true types of the players who took
them, are perfectly observed by everybody.

For each type of each player there is a record of the actions a player of that
type took in a certain number of earlier rounds where this type was picked for play.
After a round of play the records on the two types who played are updated; the
oldest observation is deleted and the new one is inserted. The records on other
types are unchanged. When a player is about to play, he intends to play a best
reply to the expectation on the opponent created from samples from the current
records on the opponent. This defines the basic learning process. The perturbed
learning process is defined from the basic one by adding a tremble: with a small
probability ¢ a picked player does not (necessarily) play a best response, but takes
an arbitrary action. The interest is in the perturbed process for & small.

The considered game and the process may well be such that when the probability
of trembling is small play will be in accordance with the games’s semi-strict Bayesian
equilibria most of the time. For such games one has then obtained the kind of
support for the notion of Bayesian equilibrium looked for. Further, also when a
game has several Bayesian equilibria, it may well be that play will be in accordance
with a specific one most of the time. This will then yield a selection among the
Bayesian equilibria. We hope by our analyses of the Chicken and bilateral monopoly
games to demonstrate the economic usefulness of this selection in situations with
incomplete information.

Both games are extensions to incomplete information of the kind of coordina-
tion games typically studied in the earlier contributions on evolutionary learning in

games, and both are illustrations of how incomplete information may add an eco-



nomically important dimension of equilibrium multiplicity. Each game has under
complete information several strict Nash equilibria, but these have similar efficiency
properties. In Chicken both pure Nash equilibria involve one player taking the tough
action and the other taking the cautious one; equilibrium selection is only a matter
of who takes which action, i.e., who gets the (main part of the) surplus. In Nash’s
demand game there is a strict Nash equilibrium for each possible strict division,
but all equilibria are efficient since all surplus is exploited; equilibrium selection is
only a matter of how large a share each player gets. Under incomplete information
the games may well have equilibria with qualitatively different efficiency properties.
In Chicken there are still the two equilibria where (independently of types), one
side takes the tough, and the other side takes the cautious, action, but in addition
there can be an equilibrium where sometimes (for some types), both players take
the tough action, and a waist occurs. Our extension of Nash’s demand game to in-
complete information is one where the game is interpreted as a bilateral monopoly
and the buyer and the seller are uncertain about each others’ reservation prices.
Such a game may well have both strict equilibria, where the bids of the different
types are spread out in a way that ensures that any two types who can trade to
mutual benefit do so, and strict equilibria where the bids are clustered in a way so
that there are couples of types who could trade to mutual benefit, but do not do
so; the potential gains from trade are not exhausted. The first type of equilibrium
is efficient, the latter is inefficient. For both games the type of inefficiency possible
in equilibrium is due to incomplete information.

A theory of equilibrium selection in the complete information games, for in-
stance by evolutionary learning, can give insight into how surplus is shared. This
is of economic interest. The issue if one should expect to observe equilibria with
one or the other type of efficiency properties in the incomplete information games
is also of economic interest; it may, for instance, be decisive for the recommenda-
tion of the double auction as a trade mechanism. We address the second issue by
studying equilibrium selection by means of evolutionary learning in two versions
of the incomplete information games. In both a unique Bayesian equilibrium is
selected. For the incomplete information Chicken this will, if there is considerable
uncertainty about payoffs, be of the type where sometimes tough is played against

tough. For the bilateral monopoly the selected equilibrium is one with clustered



bids where the potential gains from trade are poorly exploited. In both cases se-
lection is in favor of an equilibrium exhibiting a certain kind of inefficiency that
can be attributed to incomplete information. Equilibrium selection by evolutionary
learning in incomplete information games may well be in favor of equilibria that
have qualitatively different efficiency properties than the equilibria that also occur
under complete information.

The present paper is closely related to contributions such as Young (1993a), Can-
ning (1992a), and Kandori, Malaith, and Rob (1993), that introduced the approach
of evolution or evolutionary learning with trembles for static games of complete in-
formation. Some papers have studied equilibrium selection by evolutionary models
for dynamic games with both incomplete information and sequential moves, most
notably for signalling games, Canning (1992b), Noldeke and Samuelson (1997), Ja-
cobsen, Jensen, and Sloth (1999). The present paper is (as far as we know) the first
to study an evolutionary process in the same spirit for static games of incomplete
information.

In Section 2 we give the definitions of games of incomplete information and
Bayesian equilibrium. Section 3 defines the evolutionary learning process in two
steps, the basic and the perturbed process respectively. Further we state some gen-
eral results about convergence and stochastically stable states. In Sections 4 and
5 we analyze the incomplete information versions of the Chicken and the bilateral
monopoly game respectively, and characterize the long run behaviors supported by
evolutionary learning. Section 6 concludes. Proofs are given in Appendix. How-
ever, some of the proofs are very long in their complete versions and for these the
Appendix sketches the main steps only, while the complete proofs are available from

the authors upon request.t

2 Games of Incomplete Information and
Bayesian Equilibrium

We describe a finite static two player game of incomplete information as follows.
The Row player, Player 1, has finite action set R, and the Column player, Player

2, has finite action set C. Player 1 is of one type a out of the finitely many in



A, while Player 2 is of one type 3 out of the finitely many in B.! Each player
knows his own type, but not the opponent’s. Player 1’s belief concerning Player
2’s type is given by a probability measure b over B. Likewise, Player 2’s belief
concerning Player 1’s type is given by a probability measure a over A. If players 1
and 2 of types a and (3 choose actions » € R and ¢ € C respectively, they obtain
von Neumann-Morgenstern payoffs u(r, ¢, o, 3) and v(r, ¢, , 3).

A probabilistic expectation, or conjecture, of Player 1, concerning Player 2’s
choice, is a collection ¢ = (gg) of probability measures over C, one for each of
Player 2’s possible types. Likewise, an expectation of player 2 is p = (p,), where
each p, is a probability measure over R. The expected payoff of a Player 1 of type

a, who holds a conjecture ¢, from choosing the specific action r, is,

Ualra) = 32 0(0) S ulrs .0 B)as ),
BeB ceC

and r is a best reply if it maximizes U, (', q) over ' € R. Let the set of pure best
replies be BR,(q), and let BUR,,(q) be the subset of undominated best replies, that
is, r is in BUR,(q), if r is in BR,(q) and there is no other action that (weakly)
dominates r. Define the expected payoff of Player 2, Vj(c,p), similarly and let
the sets of best replies and best undominated replies for a Player 2 of type (3
holding a conjecture p be BRs(p) and BU Rg(p) respectively. The sets BUR,(q)
and BU Rg(p) are non-empty.

A Bayesian equilibrium (in pure actions) is a pair r(+), ¢(+), where r(«) € R for
all @ € A, and ¢(8) € C for all B € B, such that if one for each « defines the
probability measure p, by p.(r(c)) = 1, and for each 3 defines g3 by ¢s(c(5)) = 1,
then r(a) € BR4(q) for all @ € A, and ¢(8) € BRg(p) for all 8 € B. A Bayesian
equilibrium is semi-strict if for all the o’s and 3’s, BU R,(q) only contains r(«), and
BU Rg(p) only contains ¢(/5). We only consider games with at least one semi-strict

Bayesian equilibrium.

'For everything below we could, more generally, have chosen a formulation where the set of
available strategies possibly depends on type, R(«) and C(3) etc. This could be of some relevance
in the context of evolutionary learning with trembles, see Section 3 below, but would imply a
heavier notation.



3 Evolutionary Learning in Games of Incomplete
Information

A Bayesian equilibrium is a Nash equilibrium of the extended game where the
players’ pure strategies are mappings r : A — R, and ¢ : B — C, and payoffs
associated to such strategies are the expected values of payoffs from the original
incomplete information game, where expectations are taken with respect to types.
However, the evolutionary learning process we define in this section is not just
an application of the process of Young (1993a) to this extended game Applying
Young’s process directly to the extended game would imply an assumption that
in each round the full strategy of the opponent, and not just the action taken by
the relevant type of opponent, is observed, and this is not meaningful. Hence, the
process we define is not a special case of Young’s. On the other hand, Young’s
process is (almost) the special case of the process defined here where the game
under consideration has only one type for each player. The presence of incomplete
information necessitates some modelling choices which do not have counterparts in
the work of Young. We prefer to face these in a general formulation rather than for

the specific games separately.

3.1 The Basic Learning Process

Envisage that there are two large (disjoint) pools of player 1s and 2s, both pools
partitioned according to types. Players from the two pools play a game between
them in subsequent rounds. In each round one player 1 is picked at random from
pool 1, such that type « has probability a(«), and one player 2 is picked randomly
from pool 2 with probability b(3) of type . The picked player 1 chooses an action
r from R, while the picked player 2 chooses an action ¢ from C. They receive
payoffs according to their choices r and ¢, and their types a and 3, as given by the
underlying game, that is, u(r, ¢, o, 3) to player 1, and v(r, ¢, a, ) to player 2.

We make two important informational assumptions. (1) Players know the true
probability measure, a or b, by which their opponent is picked. (2) After a round
of play the actions r and ¢ chosen in the round, as well as the true types a and (3
of the players who took them, become known to everybody.

The individuals keep records of past play. For each type a or 3, a record h,, or



hg reports which actions were taken the last m, or mg times a player of that type
played, h, € R™ and hg € C™#. A state h is a complete description of the records,
h = ((ha), (hg)) € [1aea B™ X [I3c5 C™. The state space is thus finite. After a
round of play where a type « of player 1 chose r, against a type 3 of player 2 who
chose ¢, only h, and hg are updated, and this is done by deleting in each of them
the oldest observation and inserting as the newest observation r and c respectively.
Given a state h, a state h' is a successor to h, if it is possible to go from h to A’ in
one step according to this procedure by picking o and 3, and r and ¢ appropriately.

When a player 1 has been picked, he first samples from the records on player 2;
for each (3 he takes a sample (g from hg, where the sample size kg = #Q)s fulfils
ks < mg. The sampling goes on according to a random procedure, which is such
that all observations in hg have positive probability of being in ()3. Let @) be the
collection of samples, Q) = (Q)g). A picked player 2 samples P, from h,, where again
the sample size is k, < m,, and the set of samples is P = (P,). Samples P, and
()3 are converted into probability measures p, and gz over R and C respectively
the obvious way; p,(r) is the number of times r appears in the sample P, divided
by k., etc. It will cause no confusion to identify the samples P and () with the so
derived collections of probability measures p and q.

According to the basic learning process, a player 1 picked for play will take an
action in BUR,(Q), if he is of type a. If BUR,(Q) has several elements, he will
pick one at random according to a full support probability measure on BU R, (Q).
Similarly a picked player 2 of type § will take an action in BURg(P).

Given the random procedures by which players are picked, sampling goes on, and
ties are broken, there will for each pair of states h and h' be a specific probability
of going from h to k' in one step. Call this transition probability 7°(h,n/). Of
course, if A’ is not a successor of h, then 7°(h, ') = 0. The matrix of all transition
probabilities is II, which defines a homogeneous Markov chain on H.

A convention is defined as a state h with two properties: (1) It consists entirely
of constant records, that is, for each «, the record h,, is a list of m,, identical actions
r(a), and for each (3, hg is a list of mg identical actions ¢(5). (2) Each recorded
action is the unique undominated best reply to the only samples that are possible
from h: If one lets P, be the list of k, times r(«), and lets Qs be the list of ks
times ¢(03); then BUR,(Q) = {r(a)} for each o, and BURg(P) = {c(B)} for each



G.

A convention is an absorbing state for II°, that is, a state that one stays in
for sure when transitions are governed by II°. Since we have assumed that in case
of several undominated best replies all have positive probability, it is also true
that every absorbing state is a convention. Further, for any convention there is a
semi-strict Bayesian equilibrium defined in the obvious way, and every semi-strict
Bayesian equilibrium defines exactly one convention. Since we have assumed that
there is a semi-strict Bayesian equilibrium, II° has at least one convention and
absorbing state.

Assume that from any state, there is, according to II°, positive probability of
reaching a convention in a finite number of steps. From a standard argument
there is then probability one of finally reaching a convention irrespectively of initial
state,? and we say that the basic learning process converges to a convention. One
can formulate assumptions on the considered game and the details of the learning
process that ensure convergence. The following is a straightforward extension of
a result in Young (1993a). First define the best reply graph: Each node s is a
combination (r(a),c(()) of actions, one for each type of each player. There is a
directed edge from s to s if and only if s’ is different from s for exactly one type of
one player, and for this type the action in ¢’ is an undominated best reply to the
strategy combination of the opponent in s. The game is weakly acyclic if, from any
node, there is a directed path (through directed edges) to some node out of which
there is no edge (a sink). Every sink is a semi-strict Bayesian equilibrium. For each
node s, let L(s) be the length of the shortest path to a sink. Let L be the maximum
of L(s) over all nodes. Finally, let k be the largest sample size, k = max, g(ka, kg),

and let m be the shortest record length, m = min, g(mq, my).

Proposition 0. If the game is weakly acyclic and k < %, then the basic

learning process converges to a convention.

Sometimes it is possible to give a direct proof of convergence not referring to

Proposition 0, as for the bilateral monopoly game studied in Section 5. Convergence

2If there is, starting from any state, at least probability 7 of reaching a convention in s steps,
then there is at most probability 1 — 7 of not reaching a convention in s steps, and then there is
at most probability (1 — ) of not reaching a convention in st steps. Here (1 — )¢ goes to zero as
t goes to infinity. So, independently of initial state it has probability zero to not eventually reach
a convention, or probability one to reach one.



implies that there are no other absorbing sets than the singleton sets of conventions.
It then follows from a standard result on Markov chains that a stationary distri-
bution for I1°, a probability measure u over H, such that uII’ = u, can only have
p(h) > 0 for conventions h. The reverse, that any distribution with p(h) > 0 only
for conventions h is stationary, is obvious.

The definition of the basic learning process involves some modelling choices,
which are not just straightforward extensions of formulations in Young (1993a).
One has nothing in particular to do with incomplete information: We assume that
players only consider undominated best replies, not all best replies, as candidates
for actions to take. Consequently they put positive probability on all undominated,
not on all, best replies. Unexpected actions will occur frequently due to trembling,
and it is therefore dangerous to play dominated actions. Since there are always
undominated best replies, it is most natural to assume that players prefer these. As
a consequence the equilibria that correspond to the absorbing states of the basic
learning process are all the semi-strict, and not only all the strict as in Young
(1993a).

The other two are: (1) individuals know the true measures a and b, and (2)
they perfectly observe types (as well as actions). These are linked to incomplete
information and can be said to be at the most well-informed extreme. A consequence
of (1) is that the probabilities of types are not, as are the action choices of types,
subject of learning. In favor of (1) it can be argued that information about a
population’s distribution over types is often more available than information about
how types choose actions. For instance, it may be officially statistically recorded
how people are distributed according to income, consumption, occupation, etc., or
how firms are distributed according to plant size, financial or ownership structure,
etc., features which may be relevant for the (not directly observable) ”type” of a
player. For (2) note that if the player pools are large, each individual only plays
rarely, so no individual has incentive to hide his type after having played. Further,
for some games of incomplete information there is enough ”structure” in the way
payoffs depend on types to ensure that one can read the opponent’s type from
one’s own payoff. Therefore, if payoffs can be observed, so can types. A purely
analytical motivation for (1) and (2) is that it seems natural in a first investigation

of the evolutionary approach in static games of incomplete information to consider



assumptions at the most well-informed extreme.

3.2 The Perturbed Learning Process

The basic view taken in the literature on evolutionary learning is that a slightly
perturbed process involving trembles is more realistic than the basic one described
above. We modify the process by assuming that there is in each round for each
player independently a small probability ¢ that a picked player will not play a best
reply to his samples, but take a random action according to a specific full support
distribution (which is independent of ¢) over his full strategy set. The remaining
probability 1 — € is assigned to the undominated best replies as before. This means
that in each round, any ”suboptimal” action has a probability proportional to e
of being played. The described trembling can be interpreted as mistakes or ex-
periments or "mutations”. The transition probabilities of the modified process are
called 7*(h,h’), and the matrix of transition probabilities, the perturbed Markov
chain, is called II°.

There is here a modelling choice which is particularly, but not only, relevant for
games of incomplete information. An alternative specification could be that in the
g-eventuality of a tremble a random action is picked from a full support distribution
only over the subset of undominated actions. This could be particularly relevant if
trembles are interpreted as experiments. Such a restriction on trembling could easily
be captured by excluding from the beginning dominated actions from the strategy
sets, which could well imply that the sets of available actions would depend on type,
R(a) and C(f3), as already discussed. Here we have chosen the notationally simpler
formulation where all types of a player have the same strategy set and trembles
may go to all alternative strategies in that set. We note, however, first that all
of the qualitative general results reported in this section would be identical in the
formulation with type dependent strategy sets as long as it is assumed that a tremble
for a type a could go to any strategy in R(«), etc. Second, the equilibrium selection
obtained for the specific games studied below does not depend on trembling to
dominated actions. For the Chicken game this follows since there are no dominated
actions. For the bilateral monopoly game there are many dominated actions since
it is always dominated for a buyer, e.g., to bid at or above his reservation price.

We demonstrate, however, that the selected equilibrium is the same if trembling

10



can go to all bids as when trembling is restricted to go to bids on the "right” side
of the reservation price. The selection results thus hold both for interpretations
of trembles that would naturally allow these to go to dominated actions, and for
interpretations that would naturally exclude them from doing so.

The process II¢ is irreducible: for any pair of states h and h’, there is according
to II* positive probability of going from h to A’ in a finite number of steps; this is
just a matter of picking types and actions (which now all have positive probability)
appropriately. Further, I1¢ is aperiodic: this follows since I1° is irreducible and there
is a convention h with 7°(h, h) > 0. Finally, II° is a regular perturbation of I1° in
the sense of Young(1993a), i.e., IT¢ is irreducible and aperiodic, IT*° — TI° as ¢ — 0,
and for any transition hh/ for which 7%(h, k') = 0, there is a well defined order of
the speed by which 7¢(h, k') goes to zero with e.

The resistance in a transition hh' is defined as this order: If 7°(h, k') = 0, and
k' is not a successor of h, so even with trembles it is impossible to go from h to
B, then also w%(h,h’) = 0, and 7°(h, k') could be said to go to zero infinitely fast,
so the resistance in hh' is infinite. If 7°(h, ') = 0, but one can go from h to K’
if one type of each player makes a tremble, so two trembles are necessary, then
7= (h, h') is some constant times 2, which goes to zero with a speed of order two,
and the resistance in k' is two. If 7%(h, ') = 0, but it takes just one tremble (by
one type of one player) to go from A to b, then 7¢(h, /') is a constant times ¢, and
the resistance is one. Finally, if 7°(h,h’) > 0, the resistance is zero. To find the
resistance in a transition from one state to another is just a matter of counting the
trembles necessary to go from the first to the second.

It is standard from the theory of Markov chains that for each € > 0, there is a
unique stationary distribution p®, p°II* = p°, and this has the empirical content,
that if one lets the process run for a long time according to the probabilities of
IT¢, then the relative frequencies by which the states are visited converge to the
probabilities of p® with probability one. Our interest is in II* for small ¢, and
therefore in p® = lim,__q u°. It follows by Young (1993a), Lemma 1, that this limit
distribution exists, and that it is a stationary distribution for II°. The states in the
support of ;¥ are called stochastically stable, and these are the states that will be
observed frequently for small €. Since u° is stationary for I1°, if the basic learning

process converges, then only the conventions of II° can be stochastically stable.
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This has two important implications. In the long run observed play will most
of the time be in accordance with the game’s semi-strict Bayesian equilibria. This
supports the notion of Bayesian equilibrium, in so far as the game and the details
of the process are such that the basic learning process is convergent. Further, it will
often be the case that only one convention is, or only a few close conventions are,
stochastically stable, so only play according, or close, to a specific of the game’s
semi-strict Bayesian equilibria will be observed frequently. This provides a selection
among the Bayesian equilibria.

To actually find the selected equilibria requires the use of a (quite complicated)
theorem characterizing the stochastically stable states. The following is a result
from Young (1993a), specialized to the situation where all absorbing sets are single-
ton (i.e., conventions). Assume that TI° has several conventions hy, ..., hy. Above
it was described how one defines the resistance of a direct transition between two
states. For two conventions h and h', define the resistance in the (indirect) transi-
tion hh', as the minimal sum of resistances over all collections of direct transitions
leading from h to h'. An h-tree is a collection of transitions h;h, between conven-
tions such that each convention other than h stands first in exactly one transition,
and for any convention h’ # h, there is a unique way to go from A’ to h through the
transitions of the collection. For each h-tree one can define the sum of resistances
embodied in the transitions of the tree. The stochastic potential of h is the minimal

of such total resistances over all h-trees.

Theorem 0. Assume that the basic learning process converges to a conven-
tion. Then the stochastically stable states are exactly the conventions with minimal

stochastic potential.

4 Conventional Behavior in Chicken with Incom-
plete Information

Below to the left the complete information game Chicken is displayed, where R =
C={D,H}, and « >0 and § > 0.

D H D H
D | 0,0 0,0 D|{0,0]|1,p0
H|a0|-1,-1 H|a1]00
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This is a prototype strategic situation where each player has a cautious action, here
D (Dove), and a tough one, here H (Hawk), and it is good to take the tough action
against an opponent playing cautiously - the parameters o and [ indicate how good
- but bad to take it against an opponent who also plays toughly, while D against
D is "neutral”.> The game has exactly two strict Nash equilibria: One is (H, D),
where Player 1 plays H, and Player 2 plays D; the other is (D, H).

For the risk dominance relation, Harsanyi and Selten (1988), one transforms
the game to the one to the right with only zero’s on the off-equilibrium diagonal
and the same best reply structure. The ”"Nash product” of an equilibrium is the
product of the two players’ payoffs in the transformed game, and the risk domi-
nating equilibrium is the equilibrium with the largest Nash product, so if @ > (3,
then (H, D) risk dominates (D, H), and vice versa. Young (1993a) and Kandori,
Mailath, and Rob (1993) show that the risk dominance selection rule is supported
by evolutionary learning. Young’s process is as defined in Section 3 with only one
type of each player. Assume that the record sizes for both positions in the game
are m, and the sample sizes are both k. It should cause no confusion to let a vec-
tor of m times H be denoted by also by H etc. The two conventions are (H, D)
and (D, H), corresponding to the two semi-strict equilibria. Young shows that if
k < m/3, then the basic learning process converges, and if further & is sufficiently
large, then the convention corresponding to the risk dominating equilibrium is the
only stochastically stable state.

We now consider a game of Chicken with incomplete information. The action
sets are still R = C' = {D, H}, and uncertainty only concerns how good it is for
a player to play H against D. Player 1 is of one of two types which, with a slight
abuse of notation, are called 1/« and «, where « is a number above one. Each type
has probability 1/2. Similarly, player 2 is of type 1/ with probability 1/2, and of
type [ with probability 1/2, where 5 > 1. For the action combinations (D, D) and
(H, H) payoffs are independent of types and as given in the complete information
game, that is, (0,0) and (—1, —1) respectively. If the action combination is (H, D),
then player 1’s payoff is independent of the type of player 2, and it is 1/« if player

3The assumption that a player using D receives the same payoff when the opponent plays D
as when he plays H simplifies some formulas below, but is not essential for the basic result. The
Chicken game formalizes, e.g., duopoly situations where the strategic conflict is really a battle
over the roles as leader and follower.
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1 is of type 1/, and « if he is of type «a, while player 2 gets 0 independently of
types. Similarly, if the combination is (D, H), then player 2 gets 1/3 if of type
1/6, and g if of type (3, independently of the type of player 1, while player 1 gets
zero irrespective of types. For what follows it is convenient that the incomplete
information game is (also) given by just two parameters « and (3, and that these
measure the degree of the players’ uncertainty about payoffs.

The incomplete information game has three strict Bayesian equilibria. The first
two are: r(1/a) =r(a) = H,c(1/8) = c(f) = D, and r(1/a) = r(a) = D,c(1/5) =
¢(B) = H. These are counterparts of the strict equilibria of the complete informa-
tion game; on side plays H, and the other plays D irrespective of types. The players
coordinate and clearly the equilibria are efficient ex ante and ex post. The third
equilibrium is 7(1/a) = ¢(1/8) = D,r(a) = ¢() = H, where the "low” types play
D, and the "high” types play H. This is an equilibrium since against the strategy of
player 2, player 1 of type 1/« obtains zero in expected payoff from D and %(é —1)
from H, so D is best, while player 1 of type a obtains zero from D and %(a - 1)
from H, so H is better, etc. There is a lack of coordination in it, since when both
players are of low type or both are of high type, losses occur. The equilibrium is
not inefficient ex ante, but it is ex post, and even ex ante it is dominated by a half-
half convex combination of the other two equilibria. So, the third equilibrium is
qualitatively different from the first two, which are as the equilibria under complete
information, in particular with respect to efficiency.

Consider the learning process defined in Section 3 for this particular game.
Because of the symmetry of the game it is natural to assume m; ;o = my, = my/g =
mg = m, and ky, = ko = k13 = kg = k. The three conventions are (H, H; D, D)
and (D, D; H, H) corresponding to the two efficient equilibria with coordination,
and (D, H; D, H) corresponding to the equilibrium with lack of coordination. It is
easy to check that the game is weakly acyclic and L = 2. Therefore we get directly

from Proposition 0,

Proposition 1. If k < m/4, then the basic learning process converges to a

convention.

So, when k < m/4 and the trembling probability is small, only behavior in

accordance with the three conventions, or strict Bayesian equilibria, will be observed
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frequently. Theorem 1 tells which will be observed,

Theorem 1. Assume k < m/4. If k is sufficiently large, then if (o — 1)(5 —
1) < 4, the conventions (H, H; D, D) and (D, D; H, H) are the only stochastically
stable states, while if («« — 1)(8 — 1) > 4, the convention (D, H; D, H) is the only

stochastically stable state.

The main message is that under incomplete information equilibrium selection by
evolutionary learning is no longer only a matter of which of the two efficient equi-
libria is supported, or who grasps the surplus. Rather, with a substantial amount
of uncertainty about payoffs, it is the qualitatively different, less coordinated equi-
librium, and only that, that will be observed frequently. Under incomplete infor-
mation, evolutionary learning may well select in favor of equilibria with efficiency
properties very different from those of the equilibria, which are counterparts of

equilibria also occurring under complete information.*

5 Conventional Behavior in Bilateral Monopoly

Bargaining in a bilateral monopoly with uncertainty about reservation prices can
be modelled as a game of incomplete information, as first suggested by Chatterjee
and Samuelson (1983). There are two players: player 1 is a buyer characterized by a
reservation price o € A, and player 2 is a seller characterized by a reservation price
(or cost) B € B, where A and B are the sets of possible reservation prices. The
buyer offers a price » € R, and the seller asks for a price ¢ € ', and it is assumed
that R = C = M, where M is the set of allowed bids. Trade occurs if and only if
r > ¢, at the trading price p = TTJFC.F) The payoff for the buyer is zero if no trade
occurs, and o — p otherwise, and the payoff for the seller is zero if no trade occurs,
and p — ( otherwise. We will refer to o and 3 as the types of the buyer and the
seller respectively. Each player knows his own type, but not the opponent’s. The

41t is just an artifact of the payoff specifications above that when (a—1)(8—1) < 4, both of the
conventions corresponding to a coordinated equilibrium are stocahstically stable. It is relatively
easy to see, e.g., that if one from such a situation increases one of the player 1 payoffs a little bit
above 1/« or «, then only (H, H; D, D) is stochastically stable.

>The set of allowed trading prices is thus the set of all possible midpoints of allowed bids.

15



belief concerning the latter is given by some probability distribution over A or B,
which is independent of the player’s own type.

This game has gained much attention in the literature. It captures some impor-
tant aspects of bargaining under incomplete information. In fact it is an extension
to incomplete information of the bargaining game known as Nash’s demand game;
a simple version of the latter appears as the complete information special case,
A = {1}, B = {0}. Further, it is a possible formalization of what goes on whenever
a buyer meets a seller, and the two are not completely sure about the other’s ea-
gerness to sell or buy. Finally, it is a simple case of a ”sealed bid double auction”,
a much studied trade mechanism, see Satterthwaite and Williams (1989).

In the special case of Nash’s demand game, there is a strict Nash equilibrium for
each bid x € M strictly between zero and one, where both players bid x. All these
equilibria are efficient and only differ with respect to the division of the surplus.
Consider for this game the learning process defined in Section 3, just with only
one type for each player, and assume that record sizes on both players are m, and
sample sizes are both k, and that k¥ < m/2. There is a convention for each of the
strict Nash equilibria, where each convention consists of two records, one for each
player, with only the bid z of the equilibrium in them. It is an implication of the
result in Young (1993b), that for large enough k, the convention with x = 1/2; is
the only stochastically stable state (assuming M symmetric with enough bids in it,
and 1/2 € M).

Under incomplete information also equilibria with inferior efficiency properties
may exist. An often studied version of the game is where all of A, B, and M are
the unit interval, and o and 3 are independently uniformly distributed. This game
has infinitely many Bayesian equilibria as demonstrated by Leininger, Linhart, and
Radner (1989).

Some are stepwise. In these the players cluster their bids; A and B are parti-
tioned into the same number of intervals, and all types in some interval of reservation
prices submit the same bid. The bids used by the two sides are the same. The sim-
plest case is a one-step equilibrium: Let x be any number (strictly) between zero
and one. The strategies where the buyer bids z if a > z, and zero otherwise, and
the seller bids x if § < x and one otherwise, form a Bayesian equilibrium. Trade

only occurs if § is below z, and « is above x, and the equilibrium is clearly ineffi-
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cient: On either or both sides of x, there will be couples of types a, 3 who could
trade to mutual benefit, a > (3, but do not do so since they are on the same side of
x. There are also stepwise equilibria with two, three, etc. steps, and they are also
inefficient (and not even second-best, see below), but as long as they do not involve
too many steps, they have the attractive property that they would be relatively
simple to carry out: the way bids are clustered reminds of a simple rule of thumb.

Other equilibria are ”smooth”: the strategies are smooth functions of type (but
can be modified to non-smooth strategies in areas where no trade occurs). The
strategies must satisfy a system of first order differential equations. A particular
smooth equilibrium is of special interest: Myerson and Satterthwaite (1983) show
that among all Bayesian equilibria the strategies given by r(a) = %oz + %, and
c(B) = %ﬁ + i maximize the expected gains from trade. If a < i or § > %, there is
no trade, and the equilibrium is not fully efficient,® but it is the unique second-best
equilibrium. On this ground it is sometimes considered the most plausible one. It
could be held against it, however, that it is complicated to carry out, since it uses
a very "fine tuned” dependence of bid on type.

Incomplete information adds a dimension of multiplicity where equilibria differ
also with respect to basic efficiency properties. The issue, if one should normally
expect to see the more or the less efficient equilibria in actual play of this game, is
important, e.g., for the recommendation of the double auction as a trade mecha-
nism. The basic tension, or equilibrium selection problem, seems to stand between
efficiency and simplicity.

We will investigate what equilibrium selection by evolutionary learning has to
say on this tension. We have to consider a finite version of the game, and to be
able to characterize the stochastically stable states, a simplified one. We consider
the specification where A = B = {0, %, %, 1}, and type is independently uniformly
distributed; each of the four types of a player has probability i. Further, M =

{0,2,...,22 1}, where n = 10V for some natural number N.” This is a simplest

6The feature that for a < i, the buyer bids above his reservation price, is thus not so peculiar;

there is never trade if o < 1. The (non-smooth) strategies with r(a) = 0 for a below 1, and
¢(B) = 1 for B above %, and otherwise as above, also form an equilibrium and give the same
outcome.

"The assumption, n = 10V, is technical and not essential for results. It implies that % and
% are not allowed bids, whereas % is. Further it implies that if y < % is an allowed bid, then

there is another allowed bid z < %, such that 2x > y. These properties are convenient since
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possible version of the game still representing a ”true” conflict between efficiency
and simplicity in the sense that the game has semi-strict equilibria of two kinds:
3-step equilibria which are efficient, and 2-step equilibria which are inefficient, but
simpler; see below.®

For the buyer it is dominated to bid anything at or above the reservation price
a, except if of type a = 0, in which case the only undominated bid is » = 0. On
the other hand, any allowed bid x < « is undominated; it is the unique best reply
for the conjecture that the seller bids x irrespective of type. Likewise, for a seller of
type 3, the undominated actions are all bids in M strictly above (3, except for 3 =1,
where the only undominated bid is ¢ = 1. There are many Bayesian equilibria in
pure strategies using only undominated actions. The strategies r(a) = 0 for all «,
and ¢(f) = 1 for all 3, form a ”zero-step” equilibrium which involves no trade; it
is highly inefficient. Next, for any allowed bid z # 0, 1, the strategies r(«a) = z if
a > z, and r(a) = 0 otherwise, and ¢(8) = z if § < z, and ¢(5) = 1 otherwise,
form a ”one-step” equilibrium which involves some trade, but is still inefficient. A
one-step equilibrium is illustrated in Figure 1(a). Zero- and one-step equilibria are
not semi-strict: there will always be either a type a > 0 of buyer who bids zero, or
a seller # < 1, who bids one, which is best reply, but not the only undominated best
reply, since, e.g., the smallest allowed bid above zero is also undominated best reply
for such a buyer. Therefore none of these equilibria can correspond to conventions.

There are, however, semi-strict two-step equilibria. Let x and z be two allowed
bids with # < 3, and z > 2. Consider the strategies r(-) and ¢(-) for the buyer and

seller respectively,

as illustrated in Figure 1(b). It is immediate that for o € {0, 3,2}, the action

r(a) = x is the unique undominated best reply to ¢(-). For (1) = z to be also the

unique undominated best reply, a deviation by type a = 1 down to x must yield

they contribute to establish that the the only absorbing sets for the basic learning process are
the singleton sets corresponding to semi-strict equilibria, or (which is the same), that the basic
learning process converges to a convention. In the absence of n = 10", there could also be some
non-singleton absorbing sets, but the presence of these would not affect the stochastically stable
states and hence not the selection result we obtain.

8With only the types 0, %, and 1, and the game otherwise the same, there would still be both
efficient 2-step and inefficient 1-step equilibria, but only the first could be semi-strict.
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less expected payoff, that is, one must have $(1 — z) + (1 — #£) > (1 — z), or

x > 5z — 4. Likewise, ¢(3) is obviously best reply for (§ € {%, %, 1}, but for 5 =0 to

1z+4z
4 2

play a unique undominated best reply one must have %x + > iz, or 5z > 2.

So, under the further restrictions x > 5z — 4, and 5x > z, also implying = > 0 and
z < 1, the strategies form a semi-strict Bayesian equilibrium, and such strategies
always exist: just set x = 1% and z = 1—70. The only reason these equilibria are
not fully strict is the presence of the "redundant” types o = 0, and 3 = 1; other
types play unique best replies. The two-step equilibria are not efficient, because if a
buyer of type a = % happens to meet a seller of type 3 = %, the two will not trade
according to equilibrium behavior, although they could do so to mutual benefit at
any price between their reservation prices.!’ There are also some equilibria involving
trade at two different prices which are not semi-strict. For instance, there exist pairs
of allowed bids fulfilling 0 < z < 3 < y < 3, and strategies r(0) = 0, r(3) = =,
2

r(2) =7(1) =y, and ¢(0) = x, c(3) =y, ¢(3) = ¢(1) = 1, that form an equilibrium,

but here the seller of type 3 = % does not have a unique undominated best reply.

Finally, there are semi-strict three-step equilibria. Let three allowed bids fulfill
x < % <y < % < z, and let the strategies be,

1 2 1 2

r(0)=0r(3)=c0) =2,r(5) =c(3) =y rl) =c3) =2c1) =1, (2

as illustrated in Figure 1(c). Under some restrictions these form a semi-strict equi-

librium. Obviously, the buyer types a € {0,3} play best replies. For v = 2, it

3
must not pay to deviate from y down to z: (3 —y) + (3 — 2¥) > 1(3 —z), or

4 4 3x > 9y. Similarly one finds that the condition for z being strictly better than
y for type a =1, is y > 22 — 1. One does not have to check whether a deviation by

9Evidently, the latter condition must appear from the first by symmetry: in 2 > 5z — 4, change
rtol—z and z to 1 — z, and 5x > z results.
W The presence of an unexploited opportunity of trade is not a full proof of inefficiency. One

has to demonstrate the existence of better strategies. Change the equilibrium strategies so that
r(%) = c(%) =y, where % <y< %, the strategies being otherwise the same. At the new strategies,
buyers of types different from o = % obviously get higher or the same expected payoff. Type o = %

gets higher payoff if i(% —y)+ %(% — m;ry) > i(% —x), or 9y < 4 + 3z. Similarly, only for the
seller type 3 = % could there be doubt about payoff, and this type gets higher expected payoff if

T - +2(y—3)>1(2—13), or 9y > 2+ 3z. Under the equilibrium restrictions on « and z,
one has 4 + 3x > 2 + 3z, so one can find a number y, such that 2"'—9?” <y < # (also implying
% <y < %), and in fact the set M will always contain an allowed bid with this property. The
new strategies are at least as good as the equilibrium strategies for all types and strictly better

for some types.
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Figure 1: Types of equilibria in the bilateral monopoly

Buyer Bid Seller Buyer Bid Seller Buyer Bid Seller
type used type type used type type used type
14 -1 1 <— 1 1\< 1
z -4
2134+ | 2/3 213} | 2/3 2/3\\ 2/3
y \
/3 - 1/3 1/3 - 1/3 1/3 ~- 1/3
: : \X\\
0+—> - 0 0 > - 0 0 > - 0
A M B A M B A M B
1-step equilibrium 2-step equilibrium 3-step equilibrium
(a) (b) (€)

a = 1 all the way down to = could pay, due to an obvious monotonicity property:
higher types can only have higher best replies. So, if deviation down to x payed
for a = 1, so it would have done o = % By symmetry (in the above conditions
change x to 1 — z, and z to 1 — x, and y to 1 — y), the condition for a seller of type
B = 0 to strictly prefer x to y is 2x > y, and for g = % to strictly prefer y to z is
9y > 3z + 2. Again, due to monotonicity in best reply as a function of type (and
since seller types 3 € {%, 1} obviously play best replies), one does not have to check

further. Again the obtained restrictions imply that x > 0 and z < 1, and strategies

obeying all restrictions exist, e.g., for x = %, Yy = %, z= 1—70. These strategies form a
semi-strict Bayesian equilibrium which is also fully strict except for the redundant
types. It goes without proof that the three-step equilibria are efficient. We have

established,

Proposition 2. There are exactly the following semi-strict Bayesian equilibria

of the considered game: Two-step equilibria given by the strategies in (1) and the

12

restrictions that = and z are both in M, that 0 <z < 3, 3

< z <1, and,

S5z >z and x > 5z — 4, (3)
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and three-step equilibria given by the strategies in (2) and the restrictions that z,

y,andzarea]linM,that0<x<%<y<§<z<1,and,
44 3x >9y and y > 2z — 1 and 2x > y and 9y > 3z + 2. (4)

All the two-step equilibria are inefficient, whereas all the three-step equilibria are

efficient.

In our simple representation of the bilateral monopoly with incomplete informa-
tion the distinction between equilibria that are second-best and equilibria that are
not second-best, takes the sharp form of a distinction between fully efficient and
inefficient equilibria, which is convenient. Essentially this is because we have only
few types.

For the evolutionary learning process defined in Section 3 it seems natural to
specify m, = mg = m, and k, = kg = k for all o, 3, where £ < m, because of
the symmetry of the game. The usual assumption of ”not too much sampling”, like
k < m/3 in Theorem 1, contributes to avoid cyclical behavior of the basic learning
process I1°, and hence to establish convergence to a convention. We do not need
such a restriction here, since the presence of the redundant types « =0 and 5 =1,
essentially does the same and eliminates cyclical behavior of TT°.}

Our interest is in the perturbed learning process II°, given by an ¢ > 0, for
e small. Since we use the general definition of II° to the particular game studied
here, a consequence is, as discussed in Section 3.2, that in the e-eventuality of a
tremble, all bids, including the dominated, have positive probability. This may
be problematic for some interpretations of the trembling. In the complete proof of
Theorem 1 we therefore show that under the alternative assumption, that trembling
can only be to bids on the "right” side of a player’s reservation price, the theorem
still holds.

1Tt is open for discussion, if the redundant types should be present in an appropriate formal-
ization of the bilateral monopoly with uncertainty about opponents’ reservation prices. We have
included them here to preserve the full symmetry from the game with a continuum of types.
However, a buyer of type a = 0, for instance, does not really want to buy from any present type
of seller. The issue is whether it could happen in a ”realistic” description of the trade situation,
that in an encounter a seller does not really meet an opponent, here represented by meeting type
a = 0, and therefore ”bids out in the open air”, so to say. We think that in some situations that
could happen and in others not. Therefore, in the complete proof of Proposition 3 below stating
convergence to a convention we demonstrate that also without the redundant types, one would
still have convergence to a convention provided k < 2. It follows that the equilibrium selection
described in Theorem 2 would, under these alternative circumstances, also be the same.
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A state h now consists of four records h, and four records hg, each being a list
of the bids from M observed the last m times the type in question were picked
for actual play of the game. Each semi-strict Bayesian equilibrium 7(-), ¢(-) defines
the convention with ”constant” records h, = (r(«),...,7()) for each o, and hg =
(c(B),...,c(3)) for each 3, and there are no other conventions than the so defined;
there is a one-to-one correspondence between conventions and semi-strict equilibria.
This is just a repetition of general properties described in Section 3. A state can
also correspond to an equilibrium that is not semi-strict, if it has constant records
only listing actions in accordance with the equilibrium, but such a state is not a

convention.
Proposition 3. The basic learning process converges to a convention.

Let h* be the convention that corresponds to the particular two-step equilibrium
given by (1) with z = %, and z = 2; from Proposition 1, this is indeed a semi-strict

equilibrium as long as N > 2.

Theorem 2. The convention h* is stochastically stable. If n and k are suffi-

ciently large, then h* is the only stochastically stable state.

In words Theorem 2 says: If conventional behavior evolves gradually as described
by the evolutionary learning process with small trembling probability ¢, and there
is not too little sampling (or too few allowed bids), then the only behavior that will

be observed frequently in the long run is behavior in accordance with the inefficient

two-step equilibrium given by x = i and z = %.

That conventional behavior is in accordance with a simple, inefficient equilib-
rium with clustered bids has only been demonstrated for the version of the game
with four types, three of which are non-redundant. Obviously a result for a version
with 7" non-redundant uniformly distributed types would be more general and there-
fore to prefer, but also extremely difficult to derive.'? From the present Theorem

2, however, one can safely conclude that if the uncertainty of the trading situation

12The game we consider is quite complicated as it is. It contains the kind of equilibrium
multiplicity in bids known from the Nash demand game, for which Young (1993b) characterizes
conventional behavior in an elegant, but also lengthy proof. In addition it contains the multiplicity
in bid clustering originating from incomplete information.

22



is properly formalized by only "a few” types, and observed behavior is ”conven-
tional”, then there is no reason to expect the outcome of the considered trading
mechanism to be efficient (or second-best). We think this is of relevance. Note in
particular, that the simple game considered here is not a special case of the game
with a continuum of types uniformly distributed over the unit interval. Despite its
simplicity it may well approximate the uncertainty in actual trade situations better
than the formalization with a continuum of types.

Theorem 1 is a statement on the limit behavior that will be observed as ¢ — 0,
if n and k are sufficiently large. One may rightfully wonder, if there is only a
reasonable degree of precision in the prediction pointed to by Theorem 1 for extreme
values of €, n, and k. We therefore performed a simulation with moderate parameter
3

values which rejects this suspicion.!’® The game studied in the simulation is as

above, only with M = {O, 1—16, e %, 1}. This is the second-smallest symmetric set

that includes the bids i and %. For the learning process we used k = m = 5, and

e = 1%. The 100 million iterations were started in the convention corresponding to
3
is, so to say, the closest three-step competitor to h*. Control simulations revealed,

the three-step equilibrium x = i, Yy==z,z2= %. From the proof of Theorem 2, this
however, that one gets almost the same figures if one starts the iterations in hA*
itself. The program counts the number of steps where the state is exactly equal
to h*. However, this underestimates how often the process is really at the two-
step equilibrium. Occasionally trembles occur which will in the subsequent rounds
pass through the records without making these essentially different from h*. The
program therefore also counts the number of rounds in which the state is such that
the best replies of all types are the same as in state h*. Finally the program counts
the number of rounds in which best replies are as in some three-step equilibrium.
The results are that in 71% of the time the state is exactly h*, and in 97% of the
time play generated by the state is (best replies are) as in A*. In 0.37% of the time
the state will generate play according to a three-step equilibrium. The conclusion

is that also for moderate values of €, n, and k, play can in most of the time the time

3

correspond to the two-step equilibrium with x = i and z = 7.

13The simulations were performed in GAUSS. The programme is available from the authors
upon request.
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6 Conclusions

The evolutionary learning process we have studied is meant to formalize the view
that agents involved in strategic conflicts expect their opponents to act more or
less as they usually do in identical or similar conflicts and therefore they form
conjectures on opponents from records of past play. They intend primarily to take
actions that are best given such conjectures, but with small probability they take
more or less arbitrary actions perhaps to test if they are right in the presumption
that alternative actions give poorer results.

We have shown in general how this view may imply (i) support for the notion
of Bayesian equilibrium, since the learning process may well generate play in ac-
cordance with the game’s (semi-strict) Bayesian equilibria most of the time, and
(71) selection among multiple Bayesian equilibria, since the learning process may
well generate play in accordance with one particular - or with several, but alike -
Bayesian equilibria most of the time.

For two specific incomplete information games of economic interest we have
shown that (i) and (4i) are indeed true and we have found the selected equilibria.
It turned out that equilibrium selection by evolutionary learning under incomplete
information could well be in favor of equilibria that are inefficient as compared
to the equilibria that were are counterparts of equilibria occurring under complete
information.

By our analyses of the specific games we hope to have convinced our readers
that evolutionary learning is an important instrument both for support of Bayesian
equilibrium, and for selection among Bayesian equilibria. One should, however, also
be aware of the limitations of this instrument. Considering a game and specifica-
tions of the learning process that make (i) and (i) hold, we think that the main
limitations are: Whatever has been obtained in terms of (i) and (ii) above, has
only been obtained for situations of recurrent play, and has only been obtained for
situations where the types and their probabilities have a physical meaning in terms
of subdivisions of player populations.

For the first of these limitations we note that this is just as the support of Nash
equilibrium, and selection among multiple Nash equilibria, obtained in work such as
Young (1993a) and Kandori, Malaith, and Rob (1993); it only pertains to situations
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of recurrent play.

For the second we note that if this is already the way one thinks about types,
etc., there is no real limitation here. However, often the types are meant to describe
a purely subjective uncertainty. There is really only one type of each player, and the
different types of a player represent the uncertainty in the head of the opponents.
In cases where this is the appropriate interpretation of types our analysis cannot be
used to motivate Bayesian equilibria or selection among multiple such equilibria. In
that case, however, it is perhaps not at all clear why one should expect to observe

behavior in accordance with Bayesian equilibrium.
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A Proofs

Proof of Theorem 1. The stochastically stable states are the conventions with
minimal stochastic potential. We find the stochastic potentials for all three con-
ventions by systematically computing the resistances in all transitions from one
convention to another.

First consider the transition from (H, H; D, D) to (D, H; D, H). Obviously, the
way to do this transition that requires the fewest trembles, the cheapest way, is
either by player 1 type 1/a trembling to D thus for possible sampling changing
the best reply of player 2 type 3 to H, or by player 2 type § trembling to H thus
changing the best reply of player 1 type 1/a to D. Assume Player 1 of type 1/a
makes [ trembles to D, that is, type 1/« is picked in | consecutive rounds and plays
D in all of them, where [ < k. For a player 2 of type 3, who samples all [ of the
Ds from the record on player 1 type 1/«, the best reply will have changed to H if
3 [0+ 5H(-1)] +3(=1) > 0, or if,

2

> mk (5)
This number of mistakes is indeed enough to get all the way from (H, H; D, D)
to (D, H; D, H), since: It has, according to the basic learning process, positive
probability that in all of the k rounds coming after the [ trembles, player 1 is of
type «, so hi/, is unchanged and keeps the [ times D in it, and player 2 is of type
B and in all k rounds samples all [ of the Ds from h;,, and hence plays H in all k
rounds. This will gradually insert £ times H in hg. The picked player 1s of type «
will with positive probability according to IT° have played H in all k rounds (they
may not have sampled any Hs from hg). After this hg contains k times H. Now it
has, according to the basic learning process, positive probability that in all of the
next m rounds player 1 is of type 1/a and samples k times H from hg, which gives
him best reply D (since %é + %(—1) < 0), while player 2 is of type (3, and all the
time samples at least [ times D from h, /., and hence plays H. Note that in these
m rounds, when some of the old Ds go out of h;,, new Ds are inserted, and when
some of the old Hs go out of hg, new Hs are inserted, which makes it possible that
best replies for possible sampling continues to be D for type 1/«, and H for type [,
during all m rounds. Then the convention (D, H, D, H) has been reached without
further trembling.
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Now assume Player 2 type 3 makes [ trembles to H. If player 1 type 1/« samples
all [ of the Hs his best reply will have changed to D if 2 +1 [1(—1) + &£1] <,
or if,

2
a+1k' (6)

After these [ trembles it has, just as above, positive probability according to the
basic process to reach (D, H; D, H). (In k rounds send in types 1/« and 1/, and
then in m rounds send in types 1/« and (3).

So, the resistance in the transition from (H, H; D, D) to (D, H; D, H) is,'*

2 2
H H:D D D, H;D,H)| = min{——k, ——k}.
P[( ) ) ) )—>( ) y 0 )] mln{ﬁ—f—l,a—f—l

By symmetry it follows that p[(D, D; H, H) — (D, H; D, H)] = min{ 23k, ﬁk},
which is the same.

Next we consider the transition from (D, H, D, H) to (H, H; D, D). It is again
evident that this is most cheaply brought about either by trembling of type 1/« of

I >

player 1, or of type [ of player 2. Assume player 1 type 1/a trembles [ times to H.
The best reply of player 2 type 8 will for positive sampling have changed to D if
LIE(-1) + =8 4+ 3(-1) <0, or if,
6—1
> ——k. 7

> 5T (7)
Again it can be shown that after these [ trembles it has, according to the basic
process, positive probability to go all the way to (H, H; D, D) (in k rounds send in
types a and (3, and then in m rounds types 1/« and f3).

Now assume player 2 type (3 trembles [ times to D. The best reply of player 1
type 1/« will for possible sampling have changed to H if %é—k% [éé + %(—1)} >0,
or if
a—1

) 8
a+1 (®)
Again, after these [ trembles it has, according to the basic process, positive proba-
bility to go all the way to (H, H; D, D). So,

l>

pl(D,H;D,H) — (H,H;D,D)]=

4 Note that here, and in what follows, we are ignoring an integer problem: The resistance is
really the smallest integer which is (weakly) above either ﬁk or %Hk It is because of the
assumption of "k sufficiently large” that this will cause no error (if a resistance as defined here is
smaller than another one, then it will also be smaller according to the correct definition if only &

is large enough).
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-1 a-—1
B+1 " a+1

k}.

min{

Due to symmetry, p[(D,H;D,H) — (D,D;H,H)|] = min{Z—ﬁk,%k} and the

same.

Finally we consider the transition from (H, H; D, D) to (D, D; H, H) (and visa
versa). It is evident that if this transition is to be initiated by trembles of player
1, then it is obtained most cheaply if it is type a who does it: Trembling by type
1/a and « are equally effective in making H a possible best reply for player 2, most
easily so for type [ (the payoffs of player 2 do not depend on the types of player 1,
and these types have the same probability). However, when this has occurred and
hs has become full of Hs, then the only possible best reply of player 1 type 1/« is
D, 5o hyq is filled up with Ds at no further cost, so it can only work to make the
transition cheaper that the Ds, that occur because of trembling, are to be found in
P

So, assume that from (H, H; D, D), player 1 type o makes [ trembles to D. From
(5) the best reply for player 2 type 3 will have changed to H for possible sampling
if [ > %k (for this it doesn’t matter if the trembles were made by type a or 1/a).
After these [ trembles it has, according to the basic process, positive probability
that in all of the next 2m rounds the types are é and [, so h, does not change, and
the samples drawn from this record contain in all 2m rounds all [ of the Ds, so all
the player 2s of type 3 play H. After the first m rounds hy = H, which makes D
the only possible best reply for player 1 type 1/, so after the next m rounds also
hijo = D.

Now suppose a type 1/3 of player 2 is drawn. With positive probability the
sample drawn from h, will contain all [ of the Ds in it. In that case the best reply
of type 1/8 will be H if %% + 3 é% + %(—1)] > 0. It is already required that
[ > %k’ By inserting this number of trembles we find that it also suffices for the
now considered best reply shift exactly if —3% 4+ 23 + 3 > 0, that is, if 5 < 3.

Therefore first consider the case § < 3. It then has, according to the basic
process, positive probability that in all the next m rounds the types are 1/« and
1/, and that, since already hs = H, all the player 1, type 1/as play D, keeping
hi1/o unchanged, and all the player 2s of type 1/8 play H, so after these rounds
hi/s = H. Finally, with positive probability the types  and § are drawn in the
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next m rounds, and since now hi;3 = hg = H, with positive probability all the
player 1s of type a will play D, which can only work to keep H a best reply for the
player 2s of type 3, so all of these play H. The state will then be the convention
(D,D;H, H). So, when § < 3, only the %kz trembles are required for transition.

Then consider the case § > 3. Further trembling is required. There are two
possibilities: either type « of player 1 trembles further such that the best reply for
type 1/ of player 2 does shift to H (for possible sampling), or type 1/8 trembles
such that the best reply for type o changes to D.

In the first case, given that already hy/, = D, the total number of Ds required
in h, to ensure that H is a possible best reply for type 1/ is [ such that %% +
S+ D) 200

6—1

R R (9)

If this were the (larger) number of trembles first made by type «, then just as above

we would with positive probability first over 2m rounds get hi/, = D and hgy = H

==

and then, in the same way as for 3 < 3, over the next 2m also get hy/g = H and
he = D. So, the convention (D, D; H, H) would then have been reached with %k
trembles.

In the second case, the best reply changes to D for type « of player 1, if player 2
type 1/ makes [ trembles to H, where 3 [+(—1) + &Za] +3(-1) <0, 0rl > 21k,
By a similar argument as above one can verify that after these further trembles
there is positive probability according to the basic process of reaching the convention
(D,D; H, H). So, in the second case the total number of trembles needed is,

2 a—1
B+1 + a+1 b
We have now shown that if transition from (H, H; D, D) to (D, D; H, H) is to

be initiated by trembling of player 1, then if 3 < 3, the number of trembles required

(10)

is as given by (5), whereas if § > 3, it is the minimum of the expressions in (9) and
(10).

If the transition is to be initiated by trembling of player 2, the trembling should
be done by type 1/ to make the transition cheapest (since it is more easy to make
type (3 play H by best reply). So, assume that player 2 type 1/ makes [ trembles to
H. Then from (6), the best reply for player 1 type 1/a will (for possible sampling)
have changed to D if [ > QLHIC
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As above it now has positive probability according to II° to reach a state with
hija = D, ho = H, hg = H, and in hy/g the [ entries of H are still there (in 2m
rounds send in types 1/a and ). Now (as with § < 3 above), if a < 3 then for
possible sampling, D will be a best reply also for type a of player 1, and (still as
above) one can construct a sequence of positive probability events leading all the
way to (D, D; H, H). If @« > 3, more trembling is required. (Still as above), this
can either be further trembling to H by player 2 type 1/3, which does make D a
possible best reply for player 1 type a, the total number of trembles (including both
initial and further) required for this being { such that 1 [£(—1) 4+ £ta] +3(-1) <0,

or,
a—1

11

T a+1’ (11)

or it can be trembling to D by player 1 type a until H becomes a possible best

reply for type 1/ of player 2. This requires [ additional trembles where %% +
: é% + %(—1)] >0,orl> %k So, in the last case an overall of,
p B—1

k
a+1 - g+1
trembles are needed. In both cases there will, after the additional trembling, be

k (12)

transition all the way to (D, D; H, H) with positive probability according the basic
process.

We have now shown that if transition from (H, H; D, D) to (D, D; H, H) is to
be initiated by trembling of player 2, then if o < 3, the number of trembles required
is as given by (6), whereas if @ > 3, it is the minimum of the expressions in (11)
and (12).

The resistance in the transition from (H, H; D, D) to (D, D; H, H) is the min-
imum over the numbers of trembles required for transition when trembling is first

done by player 1, and when it is first done by player 2. So,
pl(H,H;D,D) — (D,D;H, H)| =

min{%ﬂ,%} ifa<3,8<3

: -1 _2 B-1 2 :
e mln{%,@—f—ﬁ—ﬁ,ﬁ} ifa>3,8<3
mln{a—ﬂ,m g—;l,m} lfOé§3,/6>3

. -1 2 =1 2 -1 pB—-1 :
min{g, 5+ Foea e et fa>30>3

which is equivalent to,

pl(H,H;D,D) —s (D,D;H H)|=
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ifa<3,0<3
ifa>3,0<3
ifa<3,0>3
ifa>3,8>3

min{—2-

L mln{a+1,ﬁ+1}

min{—2-

atD’ ﬁ+1}

a+1’ /8+1 }

mm{aH, ﬁ+1}

From symmetry we get by permuting o and (3 in the expression above that p[(D, D; H, H) —

In the following we assume wlog. that o > 3 (again by symmetry the result is

the same if B > a). The expression above is then reduced to,

pl(H,H;D,D) — (D,D;H, H) =
pl(D,D;H,H) —s (H,H;D,D)

a21 ifa<3
k- mm{aﬂ’ﬁ?ﬂ ifg<3<a .
T if >3

Now note that p[(D, D; H H) — (H, H; D, D)| > p[(D,D; H,H) — (D, H; D, H)],
which together with the symmetry property p[(D, H; D,H) — (D,D;H,H)| =
pl(D,H; D,H) — (H, H; D, D)] imply that their can be no (H, H; D, D)-tree with
less total resistance than the one consisting of the transitions from (D, D; H, H) to
(D,H;D,H) and from (D, H; D, H) to (H, H; D, D). The stochastic potential of
(H,H; D, D) is then,

V(H, H;D,D)] =

pol(D,D;H,H) — (D,H;D,H)|+ p[(D,H;D,H) — (H,H;D,D)].
By symmetry, v[(D, D; H, H)| = p[(H, H; D, D) — (D, H; D, H)|+p[(D, H; D, H) —
(D,D; H,H) = ~[(H, H; D, D), where the last equality also uses p[(H, H; D, D) —
(D,H;D,H)| = pl(D,D;H,H) — (D, H; D, H)].

Again, since p[(D, D; H,H) — (H,H; D, D)| > p|(D,D; H,H) — (D, H; D, H)]

etc., there can be no cheaper way to go to (D, H; D, H), than to go from each of

the other conventions separately, so

V[(D,H;D,H)] =
pl(H,H;D,D) — (D,H;D,H)|+p[(D,D;H,H) — (D,H; D, H)].

Then we simply arrive at the conclusion that both of (H, H; D, D) and (D, D; H, H),
and only those conventions, are stochastically stable if and only if p[(D, H; D, H) —
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(H7HaD’D)] < p[(H7H7D’D) - (D’HaDaH)L and (D’HaD’H)7 and Only
that, is stochastically stable if p[(D, H; D, H) — (H, H; D, D)] > p[(H, H; D, D) —
(D, H; D, H)| (where it is again used that k is sufficiently largej.

Finally, from o > 3 it follows that p[(D, H; D,H) — (H,H;D,D)| = %k;,
and p[(H,H;D,D) — (D,H;D,H)] = 27k. Since 221 < 4=, if and only if

a+1 m’
(a —1)(8 — 1) > 4 etc., the conclusion of Theorem 1 follows. [

Sketch of Proof of Proposition 3. (A detailed proof is available from the
authors upon request). We need to prove that from any state it has, according to
the basic learning process I1Y, positive probability to reach a convention in a final

number of rounds. The proof of that involves the following steps:

1. From any state it has, according to II°, positive probability to reach in a final
number of rounds, a state in which all records are ”constant” (meaning that
each record on each type is a list of m times one and the same action), and
where in particular the record on buyer type o = 0 only contains the bid
zero, and the record on seller type § = 1 only contains the bid one. This is
true since from any state it has positive probability that in all of the next m
rounds a buyer of type a = 0, and a seller of type § = 1, are picked for play,
and they bid 0 and 1 respectively (these are always the unique undominated
best replies). After that, the state will have constant records on these two
types. Now it has positive probability that in all of the following m rounds,
the buyers are again of type a = 0 and bid 0, and the sellers are of type 3 = 0,
and sample in all m rounds exactly the same from the buyer records (note that
this is possible since the buyer records do not change during the m rounds,
since buyer @ = 0 bidding zero appears all the time), and hence play the same
best reply in all m rounds. Then a state is reached in which the record on
seller type # = 0 is also constant. Continuing in this way the process reaches,

in at most 7m rounds, a state in which all records are constant.

2. From any state with the property described in 1, it has, according to II°,
positive probability to reach in a final number of rounds a state, also with this
property, in which any non-zero bid appearing in a buyer record also appears
in a seller record, and any bid different from one appearing in a seller record

also appears in a buyer record. This holds because, obviously, for any buyer
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type, the set of best replies to samples drawn from constant seller records
either contains the bid zero (if the buyer type does not want trade), or, if it
does not contain zero, only contains actions which appear in the seller records.
So, if in each of the next m rounds the seller is of type 5 = 1 and bids 1, and
the buyer is of some particular type «, there is positive probability that in all
m rounds, the buyer bids zero or some other bid contained in the seller records.
By continuing with the other types of buyers, and then with the sellers, and
perhaps repeating for some rounds, one will obtain that all bids appearing in
buyer records are either zero or also appearing in seller records, and all bids
appearing in seller records are either one or also appearing in buyer records.
It is possible that the state corresponds to a zero-step equilibrium, so all seller
records only contain the bid one, and all buyer records only contain zero. It
can also correspond to a one-, two-, or three-step equilibrium. Finally, it can

be a state not corresponding to an equilibrium. In that case...

. From any state with the property described in 2, it has, according to II°,
positive probability to reach in a final number of rounds a state, also with
this property, corresponding to an equilibrium. Either the state already cor-
responds to an equilibrium, or there is some type who does not play a best
reply to the unique sampling possible on the opponent. It has positive prob-
ability that in all of the next m rounds exactly this type is picked together
with the redundant type of opponent, and will in all m rounds play one and
the same best reply to the unique sampling possible. Then a state is reached
which is an equilibrium or in which there is some other type not playing a
best reply. Continuing in this way bids can disappear from records, but they
cannot reappear, so with positive probability the process will eventually reach

a state corresponding to a zero-, one-, two-, or three-step equilibrium.

. From any state with the property described in 3, it has, according to II°,
positive probability to reach in a final number of rounds a state (also with
this property) corresponding to a semi-strict equilibrium, that is, to reach a

convention. This is shown through a series of lemmas:

Lemma 1 From the state corresponding to the zero-step equilibrium where all
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buyer types bid zero, and all seller types bid one, there is positive probability

of reaching a state corresponding to a one-step equilibrium.

Lemma 2 From a state corresponding to a one-step equilibrium with a bid

below % or a bid above %, there is positive probability of either reaching a state
corresponding to a one-step equilibrium with a bid between % and %, or to

reach a state corresponding to a two-step equilibrium.

Lemma 3 From a state corresponding to a one-step equilibrium with a bid
between % and %, there is positive probability of reaching a state corresponding

to a two-step equilibrium.

Lemma 4 From a state corresponding to a two-step equilibrium that is not

semi-strict, there is positive probability of reaching either a state corresponding

to a two-step equilibrium with a bid below % and a bid above %, or a state

corresponding to a three-step equilibrium.

Lemma 5 From a state corresponding to a two-step equilibrium with a bid

below 5 and a bid above 2,

(convention) corresponding to a semi—strict two-step equilibrium.

there is positive probability of reaching a state

Lemma 6 From a state corresponding to a three-step equilibrium that is not
semi-strict, there is positive probability of reaching a state (convention) cor-

responding to a semi-strict three-step equilibrium.

Each of these lemmas 1-6 is proved by identifying a sequence of events which

has positive probability according to I1°, that is, by identifying a specific sequence

of types entering and playing specific best replies to possible samples, which leads

to the desired outcome. We now show how this is done for For Lemma 1; the proofs

of the other lemmas are similar in structure, but admittedly more complicated.

For Lemma 1, start in the state where all buyer records only contain zero, and all

seller records only contain one. With positive probability (according to I1°), in each

of the next m rounds the seller is of type % and bids one, and the buyer is of type 1

and bids % (anything is a best reply for this type of buyer given the records on the
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seller). In each of the following m rounds with positive probability the buyer is of
type % and bids zero, and the seller is of type 0 and bids % (the unique best reply),
and in each of the then following m rounds with positive probability the buyers
are all of type % and bid 0, and the sellers are all of type % and bid % (the unique
best reply). In the following m rounds with positive probability the sellers are of
type % and bid 1, and the buyers are of type % and bid % (the unique best reply),
which leads the process to the state that corresponds to the one-step equilibrium
with y = %

Note that in this proof of Lemma 1, the redundant types were not used. In fact,
all of the Lemmas 1-6 can be proved without letting the redundant types enter.
These are only used to prove steps 1 - 3 above. In the complete proof, we show how
1 - 3 can also be proved without ”sending in the redundant types”, under a usual
assumption of not too much sampling, k < %. Basically this implies that it is has
positive probability that in the next k£ rounds only buyers of a specific type enter
and all draw the same sample and play the same best reply, even if seller records do

change during the k rounds. One can use this to arrange records ”piece by piece”.
O

Sketch of Proof of Theorem 2. We need to identify the conventions with
minimal stochastic potential. To do this we find for each convention h the smallest
number of trembles required to ”escape” the convention, that is, to reach from it
another state from which it has positive probability, according to the basic process
I1°, to reach a convention different from h. We call this smallest number of trembles
the escape resistance from h. In Section 3 we defined the resistance in any transition
hh' between two conventions. The escape resistance from h is just the minimal
resistance over all transitions hh’. If the resistance in the transition hh’ is the
escape resistance we say that hh' is an escape direction from h.

We find escape resistances and escape directions by systematically going through
all conventions, and for each convention going through all the bids it uses, for each
such bid calculating how many trembles are (minimally) required to change the best
reply of either a seller type or a buyer type using it to a higher or lower bid, and
checking that from the state reached by this trembling it has positive probability,
according to I1°, to go all the way to a new convention. By minimizing over all the

bids used in a convention one finds the escape resistance of it. For the details we
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must again refer to the complete proof on xxxx. For conventions corresponding to

two-step equilibria using bids z < % and z > % we find by this procedure,

Lemma 7 On the minimal amount of trembling required to go to another conven-
tion by first shifting best replies away from xz: (i) The number of trembles required to
go from a convention corresponding to a two-step equilibrium to a new convention
by changing some best reply away from x, is maximized for conventions with x as
close as possible to +2=L. (i1) From conventions with x above +2=2, the minimal
number of trembles is required when moving to another convention corresponding to
a two-step which either uses bids x — % and z, or (if x is sufficiently close to %)
uses bids § and z (if there is such a convention), or just uses one of the bids 5 or
z. From conventions with x below i”T_l, the minimal number of trembles is required
when moving to another convention corresponding to a two-step equilibrium which

either uses bids x + % and z, or (if bx is sufficiently close to z) just uses the bid z.

Lemma 8 About the minimal amount of trembling required to go to another con-
vention by first shifting best replies away from z: (i) The number of trembles required
to go from a convention corresponding to a two-step equilibrium to a new convention

by changing some best reply away from z, is maximized for conventions with z as

13n—1 13n—1
i - Z

number of trembles is required when moving to another convention corresponding to

close as possible to

(11) From convention with z below , the minimal

a two-step equilibrium which either uses bids x and z + %, or (if z is sufficiently
close to 2) uses bids x and %+ 4 (if there is such a convention), or just uses one of

the bids x or 5 + % From conventions with z above i3”n_1, the minimal number of

errors 1s required when moving to another convention corresponding to a two-step
equiltbrium which either uses bids x and z — %, or (if 5z — 4 is sufficiently close to

x) just uses the bid x.

Thus, within the set of conventions corresponding to two-step equilibria, the
convention with the highest escape resistance is h*, whenever n is large enough.
Further it can be concluded from the two lemmas, that for all the other conventions
in the set, escape directions are towards h*, see Figure 2. In fact, on the set of
conventions corresponding to two-step equilibria, one can now construct an h*-

subtree that only involves transitions that are escape directions. Since h* itself
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Figure 2: Escape directions for two-step equilibria

13/15

5/6

3/4

2/3

2/15 1/6 1/4 1/3

has maximal escape resistance, this subtree has the lowest possible total resistance

among all subtrees on the set, see again Figure 2.

We then go through a similar procedure for the set of conventions corresponding
to three-step equilibria. Unfortunately this case is a bit more complicated even
beyond the facts that a three-step equilibrium involves three bids, and the set of

possible equilibrium bids can therefore not be drawn in two dimensions. Keeping

1
3

and a bid y between % and %, as given by the restrictions (4) in Proposition 1, can

the bid z above % fixed, the possible equilibrium combinations of a bid z below
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Figure 3: Escape directions in the (z,y)-dimension for three-step equilibria

y
~ 5/9
(4/15,8/15)
<« + 12
X | | 419
2/9 1/4 1/3

be illustrated as in Figure 3 (not all of these combinations will form an equilibrium
with any z > 2).

Now systematic calculations similar to the ones performed for two-step equilibria
reveal that the number of trembles required for going from one convention to another
by first changing best replies away from z or y (or both) is largest close to the point
xr = i, Yy = % To get away from the other conventions by as few trembles as possible
one has to move in the directions indicated in Figure 3. Close to the boundary there
may be several directions which require the same (low) number of errors. A similar

analysis applies for getting away from a convention by first changing the value of y
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Figure 4: Escape directions in the (y, z)-dimension for three-step equilibria

y
5/9
17271 >
(11/15,7/15)
2/3 3/4 7/9

or z, see Figure 4.

Combining the above elements it is possible to see, that the maximal escape
resistance for conventions corresponding to three-step equilibria is attained in the

conventions with (z,y,2) = (3 + 2,13 - 2)and (3 + 2,1 + 1,3 — L)y and (3 +

n’ 2714 n’ 2 n’4
2 1 1 3 2 1 2 1 1 3 2 1 1 1 1 3 2 :
wrtwi—pad (345,355 —3)and (3+ 5,3 — 55— 5) Further, it

is possible to partition the set of conventions corresponding to three-step equilibria
into five different subsets each containing one of the conventions with maximal

escape resistance, such that on each subset of the partition there is a subtree that
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only involves transitions which are escape directions and the subtree leads exactly
to the convention in the subset with maximal escape resistance.

We now have a partition of the full set of conventions into six classes (one with
conventions corresponding to two-step equilibria, and five with conventions corre-
sponding to three-step equilibria), such that in each class there is a convention with
maximal escape resistance, and such that there is on the class an escape direction
subtree leading to this convention. The six conventions with (local) maximal escape
resistance we call the candidates.

The partition obtained is useful because of the following general result,
Lemma 9 Any stochastically stable state is a candidate.

This is true since if we have a full tree for some convention h that is not a
candidate, then it is possible to construct a tree for the candidate in the class to
which h belongs with lower total resistance. Just use the transitions of the h-tree
for all conventions outside the class to which A belongs, and the transitions of an
escape direction subtree for the class to which h belongs.

Now we use the subtrees (one on each class) to construct an h*-tree with very
low resistance. This tree consists of escape directions for all conventions except for
the following: the two conventions corresponding to the three-step equilibria with
bids (z,y,2) = (1 +3,3 — 2,3 — 1) and (3 + 2,3,2 — 1), and the one candidate
convention with bids (z,y,z) = (i - %,% + %,% — %) It can be calculated that
for n sufficiently large the resistance in this tree is less than (% + 0.001) k above
the sum of all the escape resistances except those for h* and for one of the five
three-step candidates. Let K be this sum of escape resistances except for h* and
one three-step candidate K.

Finally we show that for n sufficiently large any tree to a three-step candi-
date must have total resistance exceeding at least 0.15k + K, which is larger than
(% + 0.001) k + K, and the theorem follows. This is done by considering, for a
given three-step candidate h, the different possibilities of constructing a path that
connects h* to h, and then construct an h-tree, where all the other transitions in
the tree are escape transitions. It turns out, that it is impossible to construct an
h-tree with total resistance less than 0.15k + K.

If n or k is smaller than ”sufficiently large”, the h*-tree constructed still has

lowest possible total resistance, but there may be trees to other conventions with
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this resistance, so in this case there need not be a unique stochastically stable state.
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