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1 Introduction

Large traders such as institutional investors (e.g. mutual funds) play an important role
in many financial markets. To begin with, institutional ownership of common stocks
is quite substantial. For instance, Gompers and Metrick (1999) report that at the end
of 1996, large institutions held discretionary control over more than half of the U.S.
equity market. Furthermore, institutions account for a substantial fraction of trading
volume in a number of exchanges. Schwartz and Shapiro (1992) estimate that in 1990
institutions accounted for over seventy percent of the trading volume among the New
York Stock Exchange, the London Stock Exchange and the Tokyo Stock Exchange.
Importantly, their trades can significantly affect price dynamics. Holthausen, Leftwich
and Mayers (1990) find a price impact of about one percent for the largest buy and sell
trades for randomly selected NYSE firms in 1983, while Keim and Madhavan (1996)
find a price impact of around eight percent for block trades on small NYSE, AMEX
and NASDAQ firms from 1985-1992.! Hence, a better understanding of the economics
of asset trading by large traders can help deepen our understanding of many financial
markets.

An influential framework for thinking about asset trading by large traders is devel-
oped in Kyle (1985). There, a risk-neutral, informed trader (or an “insider”) trades
with risk-neutral market makers to speculate on private information about asset pay-
offs. The informed trader submits market orders taking into account the effect of trades
on prices. Market makers trade with the informed trader because of the presence of
liquidity (“noise”) traders, and set prices efficiently conditional on the order flow. Kyle
shows that the informed trader trades so as to reveal information slowly until the time
when the private information is made public. This basic result has been extended in a

number of dimensions.?

1See also Kraus and Stoll (1972), Scholes (1972), Holthausen, Leftwich and Mayers (1987), Haus-
man, Lo and MacKinlay (1992), and Chan and Lakonishok (1993).

2Admati (1991) and O’Hara (1995) provide surveys of this growing literature on strategic trading.
Relatedly, a number of other papers in the market-microstructure literature have shown that strategic
trading is an important part of explanations for a number of empirical findings regarding intra-day
return and volume patterns (see, e.g., Admati and Pfleiderer (1988), Foster and Vishwanathan (1990)).
We discuss these extensions in more detail in Section 7 below.



This view of asset trading by large traders, however, is not wholly consistent with a
number of findings in the empirical literature on institutional trading (see, e.g., Chan
and Lakonishok (1993, 1995), Keim and Madhavan (1995)). While there is evidence
that institutional traders execute their trades slowly (presumably to reduce price im-
pact), there are a number of more basic stylized facts about institutional trading that
do not fit easily into the rational trading models following the Kyle framework. First,
if large traders had such a significant informational advantage over market makers (as
is presupposed in the basic variants of the Kyle model), then they ought to outper-
form the market or various passive benchmarks. This, however, does not appear to
be the case.® Second and relatedly, this “implementation shortfall” may be due to
the costliness of executing trades (see, e.g., Perold (1988)). Indeed, many institutions
expend considerable resources on trading facilities and personnel engaged in acquiring
information not about asset payoffs per se but also about the trading environment and
the various costs of executing large trades. There is not an explicit role for such behav-
ior in Kyle like models since large traders for the most part have perfect information
about the trading environment. For instance, an important determinant of the cost of

trading—the supply of liquidity (or variance of noise trades)—is known to all.

But in reality, large traders often face incomplete information regarding the sup-
ply of liquidity. First, traders generally do not have information on market makers’
inventory fluctuations or other characteristics of order flow which would affect market
liquidity. Also, market liquidity may vary substantially across trading days for a va-
riety of reasons (e.g. episodic shutdowns of online brokerage systems like Schwab or
E-Trade). Such shocks are probably more directly observable to market markers who
are constantly observing order flow than large traders who participate in the market

on a less frequent basis.

Motivated by these observations, we develop a multi-period, equilibrium model of

strategic trading in which there are shocks to the supply of liquidity that are observed

3Numerous studies have documented portfolio managers’ inability to outperform various passive
benchmarks, despite considerable effort to analyze and select stocks (see, e.g., Jensen (1969), Fama
(1991) and Carhart (1997)).



by market makers but unobservable to informed traders. As such, the informed traders
face uncertainty regarding the price impact of their trades since they have incomplete
information about the true state of liquidity. However, they can extract valuable
information about the true state of liquidity by learning from past market prices.
This learning about liquidity on the part of informed traders comes closer to behavior
observed in the real world on the part of institutional traders. In contrast, informed
traders in the basic Kyle framework have no need to learn from past prices since
they have superior information to market makers. More importantly, since informed
traders’ beliefs about the true state of liquidity change over time depending on the
path of prices, past prices then help to predict how aggressively informed traders trade
and, in turn, trading volume and the informational efficiency of prices.

More specifically, our model is similar to a version of the Kyle model, in which
risk-neutral informed traders strategically trade against risk-neutral and competitive
market makers to exploit their short-lived private information (see, e.g., Kyle (1985)
and Admati and Pfleiderer (1988)). Noise trades are generated from either a distri-
bution with high variance or a distribution with low variance. The true distribution
from which noise trades are drawn is known to market makers but imperfectly observed
by informed traders.? In general, informed traders can learn about the true state of
liquidity from past prices since the price distributions under high versus low variance
of liquidity trades have different expected returns and volatility conditional on the
informed traders’ information set.

Below, we fully characterize the dynamics of the informed traders’ beliefs about
the state of liquidity. One result that emerges is the dependence of the revision of
these beliefs on past prices. Intuitively, averaging over realizations of private signals,
the sensitivity of price to order flow will depend on the true liquidity state—it will be
higher when the variance of noise trades is small (i.e., when the market is less liquid).
The price in any trading round is simply the forecast of terminal asset value based

on previously released public news plus a component related to the order flow in that

4This assumption is a simple way of capturing large traders’ incomplete information about aspects
of the order flow better known to market makers. See Section 2.4 below for a more thorough discussion.
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round. All else equal, informed traders (on average) tend to revise their beliefs in favor
of the low liquidity state when past prices deviate significantly from the forecasted
terminal asset value based on public news.

In turn, the dependence of revisions in beliefs on past prices implies that strategic
trading, informational efficiency and trading volume will also be path dependent. When
informed traders are uncertain about the liquidity in the market, they trade as if the
price impact were an average of those in the high and low variance states, weighted by
their beliefs about the likelihood of each state occurring. The more confident they are
that the true state is low, the lower the liquidity they expect and the less aggressively
they trade on their private information. If recent price deviations from fundamentals
have been large, then informed traders tend to revise their beliefs in favor of a low
liquidity market and end up trading less aggressively on their private information. In
turn, extreme deviations of price from fundamentals in one period tend to be followed
by lower informational efficiency and lower trading volume in the subsequent period.

Beyond the dependence of strategic trading on the path of past prices, we also find
that liquidity uncertainty has interesting effects on the time path of strategic trading.’
We identify several effects. One effect is for informed traders to trade gingerly early
on and to trade more aggressively over time as their uncertainty about the variance of
liquidity trades is resolved gradually. Another effect is that the low variance state may
be so bad (i.e. so illiquid) in comparison to the high variance state that on average
informed traders end up trading less aggressively over time. We characterize how these
effects interact to determine the time path of strategic trading. Of course, liquidity
uncertainty is most likely to have persistent effects on the time path when learning
is slow. We show that this is the case when the difference between the high and the
low variance of noise trades is sufficiently small and the number of informed traders
sufficiently large.

Our model is related to a large literature on strategic trading following Kyle (1985).

We carefully compare our model to those in this literature and other related models

5By the time path of strategic trading, we mean the following: how does the aggressiveness of
trades on private information vary unconditionally over time?
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in Section 7. The big difference between our model and most in this literature is that
we consider the consequences of liquidity uncertainty for dynamic patterns in strategic
trading. We emphasize the effects of learning from past prices (in particular, about
non-fundamental information), which are absent from these models. As such, most of
our results are very different from those derived in the literature.

In the following section, we develop a simple dynamic model to capture these ideas.
Equilibrium trading and pricing strategies are derived in Section 3. The emphasis of
Section 4 is on understanding how traders learn from prices about market liquidity.
In Section 5, we discuss the time variation in strategic trading induced by learning
about liquidity. In Section 6, we draw out the empirical implications of our model for
strategic trading. We contrast our work with related models in Section 7. Section 8

concludes. All proofs are in the Appendix.

2 The Model

In this section, we analyse a simple model of strategic trading. We consider a setup
similar to that of Kyle (1985). One risky security is traded by three types of traders:
N informed, risk-neutral traders who possess identical private information about the
liquidation value of the risky security, liquidity (“noise”) traders who trade for idiosyn-

cratic or liquidity reasons, and competitive, risk-neutral market makers.

2.1 Timing and Information Structure

The single asset is traded over a span of time equal to T" trading rounds. It is assumed
that the ex post liquidation value of the asset at the end of round T is exogenously

given by

"= (1)

6One paper from this literature which shares our goals is Lindsey (1992). He develops a dynamic
model with long-lived private information in which the low variance state can only be the extreme case
of zero variance (i.e., no noise trades whatsoever). We will carefully contrast our model to Lindsey’s
in Section 7. It turns out that in his model there is little learning in the sense that we describe. As
such, the results that we derive are very different from his.



where v; for t = 1,...,T are independently distributed normal random variables each

2

having a mean zero and variance o;. Any trader holding a share of the asset at the
end of round T receives a liquidating dividend of v dollars. At the beginning of round
t, vy is observed by the informed traders. At the end of round ¢, v; becomes public
information to all market participants. In other words, the informed traders have a
short-lived informational advantage in each round. One can think of v; as public news,
which the informed traders get to peek at the period before it is released. By the end
of round T, the value of the asset will be known by all.

The quantity traded by noise traders in round ¢, denoted by u;, is drawn from a
normal distribution with mean zero and a variance o2 that nature determines prior to
any trading. This variance can assume two values, o7 or o7, with 0? > ¢2 > 0. The
variables vy, ..., vr are independent of the noise trades and, conditional on o2, the
variables w1, ..., ur are independent as well.

In each round, trading takes place in two steps as follows. In step one, the exogenous
values of v; and u; are realized and the N informed traders choose the quantities they
want to trade, z,,; (n=1,...,N). Before doing so, they observe v;. But the informed
traders do not know u; when placing an order, nor do they know from which of the
two possible distributions it was drawn. In step two, the market makers determine the
price p; at which they trade the quantity necessary to clear the market. When doing so,
they observe the total order flow y;, = 27]:[:1 Znt + w; but not the z,, or u, separately.

However, unlike the informed traders, they do know from which distribution u; was

drawn. That is, they know the realization of 2.

2.2 Pricing

Competitive, risk neutral market makers determine the price in period ¢ based on
the history of public information, vq,...,v; 1, and on past and current order flows,
Y1y Yp Let Vi = (vg, va,. .., v;) and Y; = (y1, Y2, - -, ¥). The zero expected profit

condition implies that p;, the price set in period ¢ by the market makers, satisfies

p=Ev] ol Vi, Yi]. 2)
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For future convenience, let P, = (p1,...,p;) be the history of prices.

2.3 Informed Trading and Learning

Now consider an informed trader’s decision. We assume that each informed trader, in
each period ¢, chooses a trade z,; to maximize the expected time ¢ profits, which are
given by

Elz,: (v —p) [ Vi, Pl (3)
Because of the nature of the short-lived private information, issues related to the timing
of informed trading, which are important in Kyle (1985), do not arise here.” In our
model, periods are only linked through the informed traders” updating of beliefs about
the current variance of noise trades.

In the equilibrium that we consider below, the revelation of v; makes the trades
Znt, and hence total informed order flow, publicly known at the end of round ¢. Each
informed trader then uses this information to update his belief about the variance of
noise trades according to Bayes’ Law. Suppose that informed traders begin trading
round ¢ with the common belief assigning probability m; to the event that o2 = o?. At
the end of round ¢, they update this belief on the basis of the price p; given the orders
x,¢ that they placed. This updated belief 7, is then taken into trading round ¢ + 1,
and the process repeats itself. At the end of each round, the market makers know
everything that the informed traders know, so they can infer the informed traders’

updated belief.

2.4 Comments on the Model

An important assumption of our model is that market makers have more information
regarding the variance of liquidity trades than informed traders. This assumption is
a simple way to model the natural asymmetry in information between market makers
and traders regarding certain characteristics of the order flow. For instance, liquid-

ity trades may include interdealer trading motivated by risk sharing (see, e.g., Reiss

"Moreover, by assumption, we are shutting down active learning (optimal experimentation) by
informed traders. In other words, they optimize profits without taking into account that their actions
could affect the informativeness of prices. We will revisit this point in Section 2.4.
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and Werner (1998)). One can also think of the private information about variances
as information about discretionary liquidity trading (see, e.g., Admati and Pfleiderer
(1988)). It is reasonable to assume that market makers have better information about

the distribution of such trades.®

A potentially more problematic assumption is the one to shut down optimal ex-
perimentation by the informed traders. Given the “myopic” objective function (3),
the informed traders do not take into account the fact that their trades will generate
information for them. That is, we preclude the possibility of the informed traders en-
gaging in active learning or optimal experimentation.® While it would be interesting to
consider this effect, we can justify our assumption on at least two grounds. Even if we
gave our traders a forward-looking objective function, the resulting equilibrium would
be qualitatively similar to the one we have constructed. This is because every trade
has the potential to reveal some information, so the traders have no incentive to engage
in large deviations from their myopic best response.'® Additionally, the deviations of
traders’ policies under optimal experimentation from their myopic ones are less promi-
nent if there are more traders as there is an incentive to free-ride on the information

generated by others.!! As such, our results are likely to remain qualitatively similar.

Other possible extensions of our model would be to consider long-lived private
information and diverse information. While there is little doubt that considering these
richer information structures would enhance our model and potentially allow us to
address more issues, our basic results are likely not to be affected. In fact, the learning
problem of informed traders is unaffected by whether their private information is long-

lived, while the possibility of diverse information complicates the learning problem

8Like many other rational expectations models, we assume that competitive market makers do not
sell or compete on their private information. One can think of many different rationales behind this;
see the many related models of trading on private information following Grossman (1976).

9See Leach and Madhavan (1993) for a study of optimal experimentation in a financial markets
context. These authors consider optimal experimentation by a monopolistic market maker.

10Tn the terminology of the economics literature on optimal experimentation, this means that there
are no “confounding” (i.e. completely uninformative) actions in our model; cf. Easley and Kiefer
(1988). For examples of single-agent decision problems where there are such actions and where the
resulting optimal strategy is qualitatively very different from the myopic one, see Kiefer (1989) and
Keller and Rady (1999).

1 See Bolton and Harris (1999) for an analysis of this effect in a model of strategic experimentation.
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without altering its main properties. Neither of these richer information structures
would therefore change the fact that informed traders can learn from past prices about
non-fundamental information (i.e. the variance of liquidity trades). So future strategic
trading and informational efficiency would again be path dependent on past prices, as

in the simple model we present here.

3 Equilibrium
3.1 Prices and Trading Strategies

We characterize the unique linear equilibrium of the trading game. In a linear equilib-
rium, the informed traders place orders z,,; = 3, ,v; and the market makers employ a
pricing rule of the form

.

> _ o2 (4)

=07.

j 1o+ Aoy if 02 =0,
Pt = .
j 1/Uj+)\1tyt lfO'

Our notation conforms with that in Kyle (1985). Here, Ay (k = 0,1) measures the
responsiveness of price to order flow when the noise trades are drawn from the distri-
bution with variance oZ. As news v; about the terminal value of the asset gets revealed
over time, the expected liquidation value of the asset changes. Market makers adjust
the price in response to current order flow, which conveys some of the informed traders’
short-lived private information.

Given the pricing rule (4), the informed traders’ uncertainty about the variance
of noise trades translates directly into price impact uncertainty. The average \; =
miAe + (1 — 7)Ao measures the informed traders’ expected price impact. As in Kyle
(1985), the inverse 1/)\; captures the market depth dimension of market liquidity: this
is the order size that, from the perspective of an informed trader, will on average move
the price by one unit. Of course, actual market depth depends on the true variance of
noise trade and is measured by 1/\;; with £ =0 or 1.

The following result describes equilibrium strategies as a function of current beliefs.
To state it, we define

ol = moi + (1 —m)op. (5)
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This is the variance of uninformed order flow that informed traders expect in trading

round ¢ given that their belief at the beginning of the trading round is ;.

Lemma 3.1 The dynamic trading game has a unique linear equilibrium. In this equi-
librium, all informed traders submit identical market orders, x; = Byvy, expecting to
achieve trading profits of Byv? /(N + 1) per trader. Market makers use a pricing strat-

egy as in (4) with the informed traders’ expected price impact given by

1

)\t = 7Tt)\1,t + (1 — 7Tt))\(),t = m
t

(6)

The equilibrium B;, Aoy and M1, are

_ _
ﬁt—ﬁ(ﬂt)—\/ﬁav (7)

and

/N~ o,
)\k,t = )\k(ﬂ't) = N’yt—ﬁ—yifaQ (8)
k

where v = () is the unique positive root of the quadratic equation
Nv* +[of + 07 — (N +1) 67| y — o507 = 0. (9)
The equilibrium law of motion for beliefs is given by

1 —m (Ny +03)oy

T = |1+
o . (N +0%)og
0%—03 2 2 2 2 = i
exp V020207 (og01 — N*v;) pt—;vj (10)

-1
+ 2Ny, (pt - vj) — N2y202
=1

fort=1,....T — 1.

3.2 Simple Properties of the Equilibrium

First, we point out some properties of the equilibrium price function. Since the market

makers always know the true distribution from which the liquidity trades are drawn,
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the price set by the market makers is more sensitive to order flow (and the market is less
deep) when the variance of noise trades is low: A\g; > A;;. Furthermore, competition
between the risk-neutral market makers ensures that, conditional on the true variance
of noise trades, price is an unbiased estimator. So by taking the expectation over that
variance, we see that price is also an unbiased forecast unconditionally. These results

are stated formally in the following proposition.

Proposition 3.1 In the equilibrium with price impact uncertainty, the price is more
sensitive to order flow when the variance of noise trades is low. However, price is

always an unbiased forecast of the liquidation value:
pe =B | Vi, pid. (11)

We next point out a few basic properties of the informed traders’ equilibrium
strategies. To develop some intuition, consider first the special case where the in-
formed traders have full information on the state of the variance of noise trades, i.e.
7 =k € {0,1}. Then 4, = o7 and 3, = 01 /(V/'N 0,), which is exactly the equilibrium
strategy for the N-player one-period Kyle model with commonly known variance o}.
For non-degenerate beliefs, equation (7) shows that the informed traders behave as if
they were in an N-player one-period Kyle model with known variance ;. In this sense,
v; is the “certainty equivalent variance” for the informed traders. A second useful in-
terpretation of the variable 7; emerges when we calculate the variance of the informed
order flow: Var[N G |Vi_1, Pr_1] = N?B202 = N~,. Thus, the variance of informed
order flow is proportional to =, the factor of proportionality being the number of in-
formed traders. Finally, we note from equation (6) that the trading aggressiveness (3;
of an informed trader is inversely related to the expected price impact of his trades,
A¢. This generalizes a well-known property of the standard Kyle model to the case of
price impact uncertainty:.

We have the following intuitive results on informed investors’ trading strategies.

First, v; and ; increase in m;. That is,

Proposition 3.2 The informed traders trade more aggressively as they become more

confident that the variance of noise trades is high.
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When informed traders trade more aggressively, the informed order flow becomes
an increasingly important component of total order flow. The trading strategies of
informed traders, given by (;, change over time as they learn from past prices and
update their beliefs m; about the distribution that generates the noise trades. The
market makers condition their pricing rule on the variance of noise trades as well as
the beliefs of the informed traders. Consequently, the equilibrium price functions,
characterized by their slopes )¢, also change over time. How beliefs are updated, i.e.

equation (10), will be the focus of the next section.

4 Learning about Liquidity

In this section, we study how informed investors learn about the variance of liquidity
trades over time. While informed traders do have private information on stock payoffs,
they cannot perfectly infer the true variance of liquidity trades from prices since they
do not observe the noise trades. However, the price distributions under high versus
low variance of liquidity trades will in general have different expected returns and
volatility conditional on the informed traders’ private information; so informed traders

can extract valuable information about the likelihood of each state from market prices.

4.1 The Basics of Updating

More precisely, given the belief 7; held at the beginning of trading round ¢, and condi-

tional on the realization of v; and the true variance o2 = o7, the price innovation

t—1

T e ZUJ‘ = Mt (N Byvg + wy) (12)

=1

is normally distributed with mean

N
Elz |7, v, 03] = Moy NGy = ———— v, =: jup(my) v 13
[t‘ t; Ut k] kit By N”yt—l—a,z t /Mc( t) t ( )
and variance
N 2 2
Var|z|m, vt, 0,3] = )xﬁﬂ,% = QA =: Yy (m)% (14)

We call z; a price innovation in the sense that given the forecasted fundamentals Y-/~} v;

or the fair price for the asset entering period ¢, z; can be thought of as the deviation

12



or innovation from fundamentals. We denote the corresponding density functions by
fr(z¢|me,v) (K =0,1). It follows that the likelihood ratio is given by

fl(zt‘ﬂ-tavt)
fO(Zt‘ﬂ-ta/Ut)

Yo () L2 — pa () vy ! 2 — o () vt ?
~ Si(m) P (‘5[ SN ] *5[ Zo(m) ]) 15)

f(zt\ﬂ't,vt) =

By Bayes’ rule, the belief held after observing v; and z; is

-1

thl(zt‘ﬂ't, /Ut) [ 1— Tt 1 ]
Tyl = = |1 , 16
L R Gl + (L= folalmeor) Wl (16)

which increases with the likelihood ratio. In particular, we have m,,; > 7 if and

only if £(z¢|m,v;) > 1, i.e. if and only if the observed price is more likely to have been
generated from the distribution associated with the high variance of noise trades. With
some straightforward algebra, the expression in equation (16) reduces to the right hand

side of the updating equation (10) in Lemma 3.1.

4.2 Dynamics of Beliefs

The dynamics of beliefs depend on a number of factors: among them are the observed
price innovation z;, the private information v;, the difference between the two possible
variances o7 and o7, and the number N of traders. We will address the impact of each
of these factors in this sub-section, which aims to provide some qualitative insights into
the dynamics behind equation (10).

Given the belief 7; and the private information v;, the price signal z; is drawn from
one of two possible normal distributions. As p1(m) < po(m), these two distributions
have different means (unless v; = 0, which is a null event). The informed traders thus
expect to see price innovations closer to zero when the market is deeper. If the two
possible price distributions had the same variance, informed traders would therefore
put more weight on the high variance state whenever they saw a price innovation close
to zero. Examination of (14) shows, however, that the two distributions will in general
have different variances.

Small absolute price innovations will still be evidence in favor of the deeper market if

a deeper market has a smaller price variance. Yet, as we shall see shortly, this need not

13



be the case. Nor is a deeper market necessarily associated with a higher price variance.
While this would hold true if the market makers used the same pricing strategy in both
states, they actually choose a flatter pricing strategy when the variance of noise trades
is high (Ao > A1+). As the variance of price innovations is the product of the squared
slope of the pricing strategy and the variance of noise trades, it is not clear, without
further analysis, in what state the variance of price innovations will be higher. As a
consequence, a small absolute price innovation, for example, is not necessarily evidence
for a deeper market.

To determine which of the two possible price distributions has the higher variance
we have to compare the difference in the squared slopes of pricing strategies, )\(2)7,5 — A%vt,
with the given difference in the variances of noise trades, 0% —o3. It is straightforward to
show that A(Q),t_)‘%,t decreases monotonically in N+;, the variance of informed order flow.
This is very intuitive: a growing variance of informed order flow means that orders from
the informed traders become a larger component of total order flow, while the orders
from noise traders become less important; consequently, the market makers’ incentive
to vary their pricing strategy according to the true variance of noise trades diminishes.
The higher the variance of informed order flow, therefore, the less pronounced is the
flattening of the market makers’ pricing strategy when the true variance of noise trades
is high, and the higher is the price variance in the high liquidity state relative to the
price variance in the low liquidity state. More precisely, the ranking of these two price
variances depends on whether N+, exceeds ogo; or not. We thus need to distinguish
between two cases.

The first case is when Nv; < opoy. In this instance, ¥1(m) < Xo(m), and so the
deeper market is associated with a smaller variance of price innovations. The quadratic
in the exponent of the likelihood ratio (15) is then strictly concave in z;, with a global

maximum at

So(me)pua () — B () pao () N2y2
- =: . 17
Bo(me)? — X (me)? v N24E — 080} ve =3 pulm) v (17)

Thus, the informed traders update the stronger in favor of the state where the market

is deeper, the closer the realized innovation is to u(7;) v;. Price innovations far off this

14



mark are more likely to have been generated from the price distribution with higher
variance, Yo (m;)?, hence lead the traders to update in favor of o2.

The second case is when N+; > 0go;. In this instance, 3 (7;) > So(7;), and so the
deeper market is associated with a higher variance of price innovations. The quadratic
is now strictly convex in z;, with a global minimum at p(m;)v;. Price innovations far
off this mark are more likely to stem from the price distribution with variance ¥ (m,)?,
hence lead the traders to update in favor of 7.

The borderline between these two cases is given by the equality Nv; = ogo1. By
equation (9), this is equivalent to 02 + 0% — (N +1) 52 — (N — 1) 090y = 0, which holds
if and only if the current belief is

01 —NO'()
(N +1)(o1 —00)

In this instance, ¥ (m;)? = Xo(m)? = 0901/(0¢ + 01)%, and the updating equation

(18)

Ty =

simplifies to

1—m o? — o} -
7Tt+1 = [1 + ! exp <1—§ (0 {Zt — %Ut}>] . (19)
Tt 00010,

This is strictly decreasing in z; if v; > 0, and strictly increasing if v; < 0, in accordance
with our earlier statement that for identical price variances, a price innovation close
to zero is indicative of a deeper market. Of course, if v; = 0, then the two possible
distributions for z; are identical, and there is no updating at all.

Note that, whatever the position of N~, relative to opoy, a larger (in absolute
value) realization of the private information v; allows the informed traders to learn
more about the true variance of noise trades. This is because an increase in |v;| drives
the means of the two possible price distributions further apart while keeping their
variances unchanged, and so makes the observed prices more informative.

Note also that the right-hand side of (18) equals % for N =1, decreases in N and oy,
and increases in 0. If o1 < Nog (which requires at least two traders, and will always
hold for sufficiently large N) the right-hand side of (18) is non-positive, so Nvy; > 00,
at all beliefs 7;,. As the number of traders or the spread between the two possible
variances of uninformed order flow grows, therefore, we see that for a larger range of

beliefs, the state with a high variance of noise trades (and thus a deeper market) is
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characterized by more variable equilibrium prices. In this range, a very high or very
low price innovation z; is evidence of a deeper market, hence reason for the informed

traders to revise m; upward.

4.3 Revisions of Beliefs and Past Prices

In this sub-section, we consider a simpler case in which we integrate m;; with respect
to v;. In other words, we consider updating by an observer who starts with the belief 7,
and observes z;, but not v;. This is an important and empirically relevant case because
the perspective of the outside observer will be the appropriate one when we consider
how past price realizations affect future trading behavior and informational efficiency.

Conditional on the true variance being 02 = o2, such an observer anticipates the
equilibrium price innovation, z; = Ag¢ (NByvy + u¢), to be normally distributed with
mean zero and variance 3y (m)? = Nyo2/(Nv, + 02). Note that this variance is
unambiguously smaller in the state where the market is deeper: 3 (m,) < 3o(m,). This
is because now the variance of price innovations is the product of the squared slope
of the market makers’ pricing strategy and the variance of total order flow (not just
uninformed order flow as in the previous sub-section). Thus, the variance of price
innovations has two components: one stemming from informed order flow (A7 ,Nv),
the other from uninformed order flow (Af,0%). When the variance of informed order
flow is small (N~; < 0¢01), then both these components are smaller in the state where
the market is deeper: A}, N7 < AJ Ny and A ,07 < A\j,05. When the variance of
informed order flow is large (N~; > 0901), the “informed component” is still smaller
in the state where the market is deeper, but the “uninformed component” is larger in
this state: AT ,Nvy, < A\§ ;N and A] .07 > A ,05. Yet precisely because the variance of
informed order flow is large, the “informed component” dominates, and we obtain the
same ranking of the two possible price variances as before. When we do not condition
on the private information v, therefore, a deeper market unambiguously means a lower
variance of equilibrium prices.

Consequently, an observer who sees a price innovation close to zero will put more

weight on the state where the variance of uninformed order flow is high. Conversely, a

16



very high or very low price innovation is ascribed to a lack of market depth, and more
weight is put on the state where the variance of uninformed order flow is low. In fact,
the same arguments as above imply that in response to seeing an innovation z;, the

observer updates his belief to

-1
. l—m | Ny +o03 (0f —03) 2}
= |1 —_— 20
it [ * 7\ N, +o? P 2N, 02 ’ (20)

which is strictly decreasing in |z].

Note that 7; is the conditional mean of the informed traders’ updated belief: 7, =
E[m1]m, 2¢]. So our last result suggests that after a small price innovation, an informed
trader will tend to be more confident that liquidity is high. To formalize this idea, we

use the conditional median of the updated belief as a measure of its central tendency.?

Proposition 4.1 After a small absolute price innovation, an informed trader is more
likely to revise his beliefs in favor of the high liquidity state than in favor of the low
liquidity state.

More precisely, the median of m;,; conditional on m; and z; exceeds 7 if and only if
|z¢| is below some threshold. The conditional probability of the event m;,; > m; then
exceeds one half.

The implications of this result for strategic trading, informational efficiency and

trading volume will be spelled out in Sections 5.1-5.3.

4.4 Speed of Learning and Convergence in the Long Run

In this sub-section, we first consider the speed of learning, and then the asymptotics
of learning when the number of trading rounds becomes large. The results we obtain
will be useful in characterizing the empirical content of our model as far as the time

path of strategic trading is concerned.

12The main advantage of using the median rather than the mean will become apparent when we
ask how trading aggressiveness varies with past price observations. As trading aggressiveness [,
depends monotonically but nonlinearly on the belief 7, 1, it is difficult to translate statements about
the mean of 741 into statements about the mean of 3;;1. Doing this for the medians is trivial.
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The speed of learning, i.e., how much adjustment in beliefs one should expect to
see in any given trading round, depends on how much information about the variance
of noise trades the informed traders can extract from equilibrium prices. This in turn
depends on key factors such as the difference between the high and the low variance of
noise trades, and the number of informed traders.

A measure of the difference between the two possible price distributions, and hence
of the information content of observed prices, is the entropy of one price distribution
relative to the other. To keep matters simple, we proceed as in Section 4.3 and average
over the realizations of the private information v;. Suppose that the true variance of

noise trades is o7. The entropy of interest is then defined as

f1(z]m)
fO(Zt‘ﬂ't)

where fi(2¢|m;) is the density function for the price innovation z; if 62 = o7. The

e(m) = /_°:O fi(zlm) In dz (21)

entropy e(m;) is always non-negative, and equals zero if and only if the two density
functions coincide. Moreover, a higher entropy means a higher information content of
observed prices, and hence a faster revision of beliefs.'?

As in Section 4.3, fi(z|m) is a normal density with mean zero and variance

Sk(m)? = Nyo?/ (N4, + 02). Tt is thus straightforward to calculate

13 (m)? Sy (7)2
e(m) == |= 1(m) —1n = 1(m) -
2 E0(7rt)2 E0(7rt)2

and perform comparative statics for the speed of learning.
We first consider the effect of widening the difference between the high and the low

variance of liquidity trades.

Proposition 4.2 The speed of learning increases with the difference between the two

possible variances of noise trades.

This finding is intuitive given the results in Section 4.3. The larger the spread be-

tween the two possible variances of noise trades, the larger is the spread between the

13In a simple example with binary uncertainty about the fundamental asset value, binary signals
(sale or purchase) and i.i.d. trades, O’Hara (1995, pp. 82-86) shows that beliefs converge exponentially
at a rate equal to the entropy. Our setup here is more complicated insofar as the entropy itself changes
as beliefs change, but the basic relationship between speed of learning and entropy carries over.
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corresponding price volatilities, and the easier it becomes to distinguish the two states
(given that both price distributions have mean zero). As a consequence, beliefs tend
to move more in response to observations.

Another interesting parameter that affects the speed of learning is the number of

informed traders in the market, N. We find the following.
Proposition 4.3 The speed of learning decreases with the number of informed traders.

Again, this is fairly intuitive. As the number of informed traders grows, the distribution
of noise trades becomes less important to the overall order flow and the formation of
prices. As a consequence, the difference between the two possible price distributions
shrinks, and price observations reveal less about the variance of noise trades.

Next, we analyze the behavior of beliefs as the number of trading rounds grows large,
i.e., T'— oo. Since the noise trades each period are drawn from the same distribution
with a variance o2 determined before trading begins, and each trading round reveals
some information unless v; = 0 (which is a zero-probability event), it is natural to
expect that, given a sufficiently large number of trading rounds, the informed traders
will get arbitrarily close to certainty about 2. This intuition need not hold in general:
the equilibrium could be badly behaved in a way that allows for incomplete learning
even in the very long run. We can confirm, however, that our equilibrium is such that

the above intuition holds.

Proposition 4.4 As the number of trading rounds becomes large, the informed traders

learn the true variance of noise trades with probability one.

The implications of the above results for the time path of strategic trading are

addressed in Section 5.4.

5 Time Variation in Strategic Trading

Having established an understanding of the dynamics of beliefs, we turn to the im-
plications of learning by informed traders for their trading strategies and in turn for

informational efficiency and trading volume.
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5.1 Past Prices and Strategic Trading

The first implication of our model is that past prices help predict how aggressively
informed traders trade on their private information. To see this, recall from Proposition
3.2 that as the informed investors’ confidence in the high variance of liquidity trades
increases, they trade more aggressively. From the analysis in Section 4.3 and more
precisely Proposition 4.1, we know that after small absolute price innovations, beliefs
tend to be revised in favor of the high liquidity state. Putting these two results together,

we immediately obtain the following proposition.

Proposition 5.1 After a small absolute price innovation in a given period, informed
traders tend to trade more aggressively on their private information in the following

period.

The intuition for this result is clear. Small absolute price innovations tend to indicate
a deeper market, and informed traders take advantage of a deeper market by trading

more aggressively.

5.2 Past Prices and Informational Efficiency

When the informed traders face uncertainty about the variance of liquidity trades, they
are no longer able to trade exactly the “right” amount, and informational efficiency
depends on the extent to which informed traders over- or underestimate market depth.
If they overestimate it, they will trade too aggressively and reveal too much information.
If they underestimate market depth, they will trade too gingerly and reveal too little
information. After seeing the price, the outside observer can draw inferences as to which
of the two scenarios is more likely, and how much information has been incorporated
in the price.

In this regard, a measure of informational efficiency in trading round t is
q: = Var vy | 1, Vi1, pe) = Var [y | 7, 2] - (22)

Higher informational efficiency means a lower “residual variance” ¢;. This is the ap-
y

propriate measure for an observer whose information set is the same as that of an
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informed trader, except that he has no privileged information about v; at the begin-
ning of each trading period. From the revelation of v; at the end of each trading period
(and the prior belief of the informed traders at ¢ = 1), this observer can reconstruct
the sequence of beliefs 7y (t = 2,...,T) held by the informed traders at the beginning
of each trading round.

It is well known that in the Kyle model, the informed traders trade in such a way
as to reveal exactly the fraction N/(N + 1) of their private information, i.e., the above
measure of informational efficiency equals 02/(N + 1). Interestingly, under certainty,
informational efficiency is constant, and it does not depend at all on the (known)
variance of liquidity trades. The main intuition behind this result is that the informed
traders trade just aggressively enough to take advantage of any additional variance.

With uncertainty about liquidity, however, informed traders are unable to fine-tune
their trades in this way, and informational efficiency becomes a stochastic variable
depending on beliefs and price innovations. In fact, when the absolute price innovation
|z¢| is large, it is quite likely, given the analysis in Section 4.3, that the market is less
liquid. So the informed traders probably overestimated the variance of noise trades
(and in turn market depth) and traded too aggressively. Hence, when |z| is large, it
is likely that the informed traders revealed too much information and so prices are
more informationally efficient than in the certainty benchmark. Conversely, when |z|
is small, it is quite likely that the informed traders underestimated the variance of noise
trades (and in turn market liquidity) and traded too gingerly. Hence, when |z;| is small,
the informed traders probably did not reveal enough information and so prices are less
informationally efficient than if there were complete information about liquidity trades.

The following proposition confirms this.

Proposition 5.2 With price impact uncertainty, informational efficiency of prices,
as measured in (22), depends on the price and is strictly increasing in the absolute

magnitude of the price innovation.

More precisely, the proof shows that there is a cutoff level |Z;| such that for abso-

lute price innovations above |Z;|, informational efficiency is higher than under complete
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information, i.e., ¢ < 02/(N + 1); whereas for absolute innovations below |Z;|, infor-
mational efficiency is lower than in the benchmark, i.e., ¢, > 02/(N + 1). The proof
of the proposition also shows that average informational efficiency is exactly as under

complete information: E[g/|m;] = 02/(N + 1).

5.3 Past Prices and Trading Volume

We next consider the effects of liquidity uncertainty and learning on trading volume.
Following Admati and Pfleiderer (1988), we use the standard deviation of order flow
to measure the contribution of each group of traders to the total trading volume. As
before, we adopt the perspective of an observer whose information set is the same as
that of an informed trader, except that he has no privileged information about the
underlying asset value at the beginning of the trading period. This leads us to define

N
» = $Var [Z Tt

n=1

Tty %—1] )

YU = \/Var[ut\ﬂt,l/;_l], M = \/Var[yt\ﬂt,l/;_l], and 3, = X! + 3V + ¥M_ Tn other
words, X! and XY measure the expected volume of trading of the informed and liquidity
traders, respectively, and M measures the expected trading done by the market maker.
The total expected trading volume, ¥;, is simply the sum of the individual components.

Unlike the case of complete information in which past prices are uninformative
as to the level of volume, past prices do help predict future levels of trading volume
when there is liquidity uncertainty. To see this, recall from Section 5.1 that past prices
help predict the intensity of trading on private information — small absolute price
innovations tend to be followed by increased confidence in the high liquidity state,
hence more aggressive trading in the subsequent round. It follows easily then that the
expected trading volume generated by informed traders, X!, increases also following
small price innovations. By definition, increased confidence in the high liquidity state
also implies higher expected trading volume from uninformed traders, V. Finally,
the market maker has to accomodate more trades as the expected order flows from
informed and uninformed traders increase. So, M will tend to increase after small

price realizations as well. Hence, we have the following proposition.
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Proposition 5.3 Small absolute price realizations tend to be followed by higher ex-

pected trading volume.

5.4 The Time Path of Strategic Trading

Up to this point, we have primarily emphasized the path dependence of strategic trad-
ing, informational efficiency and trading volume on past prices. In this sub-section, we
consider the implications of the model for the time path of trading. To this end, we
want to isolate the pure effect of uncertainty about liquidity. We fix an expected level
of liquidity 67 and vary the spread between the two possible variances of noise trades.
The higher this spread, the more uncertain informed traders are about liquidity. We

have the following result.

Proposition 5.4 As the informed traders’ uncertainty about liquidity increases (hold-
ing expected liquidity constant), they expect a higher price impact of their trades, trade

less aggressively, and expect lower profits.

In fact, the proof shows that, given an expected variance of noise trades 52, the certainty
equivalent variance 7; is strictly decreasing in the difference o7 —02. In view of equation
(7), therefore, the aggressiveness of informed trading, measured by [, also decreases
in 0 — o2. In particular, informed traders trade less aggressively than if the variance
of noise trades were 7 for sure.

This uncertainty effect, which is already discussed in Lindsey (1992), is easy to
understand. Suppose that the informed traders are uncertain about liquidity, but use
the trading strategy z; = B, with 3, = \/6_,52 /(v/N 0,) that would be the equilibrium
strategy if the variance of noise trades were commonly known to be 2. The market
makers, who know the true variance o, determine the slope of their pricing strategy
by estimating the asset value on the basis of the order flow. By the projection formula
for normal variables, this slope coefficient turns out to be strictly convex in 2. By
Jensen’s inequality, therefore, the expected slope Ay = mA1; + (1 — m)Ag exceeds

X = VNo,/[(N +1),/52], which would be the equilibrium slope if the variance of

noise trades were g2 for sure. Since it is the expected slope that determines the price
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response anticipated by the informed traders, they face higher expected costs to trading,
and are thus better off trading less aggressively. At the same time, higher expected
trading costs mean lower expected profits.

We first note that the uncertainty effect identified in Proposition 5.4 becomes less
important over time: trading aggressiveness resembles more and more that in the
hypothetical “certainty benchmark” equilibrium where the variance of liquidity trades
in round ¢ is commonly known to be 7. This is formalized in the next result, which is

an immediate corollary of Proposition 4.4.

Proposition 5.5 The difference Br — Br, which measures the effect of uncertainty
about liquidity on trading behavior, converges to zero almost surely as the number of

trading rounds becomes large.

That is, as the informed traders’ uncertainty about market liquidity diminishes over
time, these traders tend to trade more aggressively relative to the benchmark 3, =

52/(V/'N o,). At the same time, market depth tends to increase relative to the bench-
mark, and so do the traders’ expected profits.

While the informed traders tend to trade more aggressively over time relative to
the certainty benchmark, this does in general not imply that they can expect to trade
more aggressively in absolute terms. In fact, the upward trend from the diminishing
uncertainty effect could be more than offset by a downward level effect should the
true state be the one where noise trades are less volatile. Thus, the process (; is
generally not a submartingale relative to the informed traders’ information set, i.e., it
is in general not true that E[Gy1|m, Vi1, Pi1] > By

2

For a small number of informed traders and a small spread between o? and o3,

however, we are able to show the submartingale property for (;.

Proposition 5.6 Let N =1 or 2, and suppose that o3 < 302/N. Then the informed
traders expect to trade more aggressively and earn higher per-period profits as time

Passes.

The stated condition on o2, 0? and N guarantees convexity of ; in m;. As the belief

process is a martingale from the informed traders’ point of view (E[m1|m, Vi1, P41 =
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7¢), the result then follows from Jensen’s inequality. In other words, the condition
ensures that the equilibrium shares a crucial property with single-agent optimization
problems: a positive value of information. This positive value manifests itself in the
convexity of the expected profit function (which is proportional to ; here). While
the value of information in single-agent learning problems is always positive, it can
be negative when there is competition and information spillover. In fact, if N > 2,
then the expected profit (and ;) as a function of m; always has a concave segment at
the right end of the unit interval — the value of information is negative when informed
traders are very optimistic about market depth.

The second role of the above condition is to ensure that the spread between the two
possible variances is small, implying small level effects. Beliefs can converge to zero
but this will not have an impact large enough on average to overcome the upward drift
from the resolution of uncertainty. Conversely, when o > 302/N, the low liquidity
state can be so illiquid that informed traders with sufficiently optimistic beliefs must
expect to be trading at their most aggressive early on.

Note that markets with slow learning are more likely to experience persistent effects
from liquidity uncertainty. We saw in Section 4.4 that learning will be the slower, the
smaller the spread between the two possible variances and the greater the number of
informed traders. When the spread between the variances becomes very small and
the number of informed traders very large, however, the importance of these effects in
terms of prices and profits diminishes. Hence, our results on the time path of strategic
trading are most likely to be relevant in markets with a variance spread and a number

of informed traders that both lie in an intermediate range.

6 Empirical Implications

In this section, we draw out the empirical implications of our model. Without bela-
boring the point, our model matches a number of basic stylized facts about strategic
trading that are absent from many of the existing models. First, from the results in

Section 5.4, liquidity uncertainty decreases the profitability of informed trading. That

25



informed traders do not have such a significant advantage over all others is more in ac-
cord with the empirical evidence that presumably informed mutual fund managers find
it hard to beat various passive benchmarks. Of course, there can be many other reasons
for the poor performance—for instance, there could be multiple informed traders who
compete their informational advantage away. However, it seems to us that a lack of
information about the costs of trading is an ex ante reasonable factor since there is ev-
idence that large traders expend considerable resources to gather information on their
trading environment. In this vein, the idea that informed traders can learn about non-
fundamental information from past prices fits nicely with evidence that institutions do
look to prices for information about the cost of trading.

Beyond this general observation, our model generates a number of testable implica-
tions. The most basic is how past prices affect future strategic trading. Extreme price
innovations, reflecting a market with low liquidity, will lead to less aggressive trading
by informed traders in the next period. One could test this prediction using data sets
on institutional trades similar to those in Keim and Madhavan (1995) and Chan and
Lakonishok (1993, 1995).

For instance, Keim and Madhavan use data on buyer and seller initiated trades
for the period of January 1991 to March 1993. This data includes the date when the
trading decision was made, the desired number of shares in the order at the time of the
trading decision with a buy-sell indicator, the number of broker releases per order, the
duration before orders were filled and the choice of order type (active market orders
or more passive limit orders). Keim and Madhavan study various aspects of trading
behavior motivated by models such as Kyle (1985) and more generic trading behavior
such as feedback trading.

Here, we propose that one could use this data to get a reasonable measure of
aggressiveness of trading on private information (i.e., estimate ; using desired order
size or order type) and test the prediction of the model by regressing this measure on
a measure of illiquidity derived from past prices (higher moments or some measure of
deviation from forecasted fundamentals). Of course, one would need to control for a

variety of factors, but seeing how future strategic trading depends on past prices would
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be interesting.

In a similar vein, it would not be hard to implement the predictions regarding
the path dependence of trading volume on past prices. The result on informational
efficiency is of course more difficult to test, though not entirely impossible with more
data. The results on the time path of trading are also potentially testable but much
harder; one might need to appeal to methods developed in Ellison and Mullin (1997),

who identify events in which there is likely to be speculation.

7 Comparison with Related Models

The goal of our paper is broadly related to the large literature on strategic trading
following Kyle (1985)—to understand the nature of strategic trading and its effects
on price and volume. To mention just a few papers from this literature: Back (1992)
extends Kyle’s results for more general distributions of asset payoffs; Holden and Sub-
rahmanyam (1992) consider the case of many informed traders who have the same
information; Foster and Vishwanathan (1996) and Back, Cao and Willard (1998) as-
sume many informed traders who have different pieces of information.

For the most part, this literature has maintained the assumption that the parame-
ters of the model (such as the variance of noise trades) are known to all. Thus, there
is no scope for traders to learn about non-fundamental information from prices, and
past prices have little effect on future decisions of the agents in these models. The
existence of such a link between past prices and future actions is perhaps the most
distinguishing feature of our model. This link generates many empirical implications
that are not obtainable under the assumption of perfect information about liquidity.

As alluded to in the introduction, Lindsey (1992) comes closest to our model. He
also considers a market where informed traders do not know the variance of noise trades
whereas market makers do. Unlike us, he develops a dynamic model with long-lived
private information in which the low variance state can only be the extreme case of zero

variance (i.e., no noise trades whatsoever).!* In each period, there is some probability

4He also develops a static model in which the low variance state need not be zero. This static
version pre-dates the static version of our model.
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that the low variance state is drawn—everyone finds out immediately and the informed
traders make no trading profits after that point. So, the informed trader always knows
that he is in the high variance state as long as the trading game continues. There
is little learning from past prices. The model is like Kyle (1985) except that there
is a certain probability that the game will end each period and informed traders lose
out on further speculative opportunities. Hence, informed traders tend to trade more
aggressively on their private information than in the Kyle benchmark.

In our model, the low variance state is not necessarily zero variance, so there is
scope for genuine learning from past prices. Hence, our results on learning about the
variance of noise trades are absent from Lindsey (1992), as are all of our implications
regarding the path dependence of strategic trading, informational efficiency and trading
volume on past prices.

More broadly, our model is similar to a few other models that consider parameter
uncertainty of a similar form. Forster and George (1992) consider a static model in
which market makers have better information regarding liquidity trades. They examine
the consequences of anonymity of liquidity trading on various welfare measures. Kumar
and Seppi (1994) examine a model of arbitrage in index futures, in which the precision
of heterogeneous signals received by market makers at different geographic locations
is private information. And more recently, Gervais (1997) and Spiegel and Subrah-
manyam (1999) consider models in which market markers not only lack information on
an informed trader’s signal about the mean of the asset value but also have to infer the
ex-ante value (variance) of his private information. While the set-ups of these models

share some similarities to ours, their focus and results are entirely different from ours.

8 Conclusion

In this paper, we develop a model to study the effects of price impact uncertainty on
the optimal trading strategies of large traders as well as the equilibrium feedback to
prices. In our model, risk-neutral informed traders strategically trade against risk-

neutral competitive market makers to exploit short-lived private information. Unlike
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market makers, these informed traders have incomplete information about the distribu-
tion from which liquidity (“noise”) trades are drawn. As a result, they face uncertainty
about the price impact of their trades (i.e. market liquidity). They optimally take into
account this uncertainty in their trades and learn about market liquidity from past
prices.

To summarize, we find the following. First, prices that deviate markedly from
the forecast of terminal asset value based on public news tend to lead to revisions of
informed traders’ beliefs in favor of the low liquidity state. Furthermore, this revision in
beliefs results in less aggressive trading on private information by informed traders. In
turn, informational efficiency and trading volume are dependent on the path of prices.
Finally, learning about liquidity has interesting effects on the unconditional properties
of optimal strategic trading policies.

Even though the model is highly stylized, it does exhibit an attractive property:
past prices affect future market liquidity and trading strategies. This feature is missing
in most of the existing models of strategic trading. Hence, a careful study of the
dynamics may yield more insights into return and trading patterns. Moreover, we
can also incorporate richer dynamics by allowing for the variance of liquidity trades
to change over time. For instance, we can allow the variance of liquidity trades to
follow a two-state Markov chain and study the dynamics generated in this changing
environment.

Our focus is purely on the speculative motive for trade on the part of large traders.
In reality, large traders probably trade to both speculate and hedge. This dual trading
motive is captured in a number of papers such as Admati and Pfleiderer (1988), Foster
and Vishwanathan (1990), Seppi (1990), and Vayanos (1998). Additionally, we have
ignored the dynamics in the unwinding of large positions, which is an important prob-
lem encountered by large institutions. This problem is better addressed by Bertsimas
and Lo (1998) who study the dynamic strategies of large traders who have a fixed time
horizon to complete a trade. To fully understand the importance of uncertainty about

market liquidity, a model should incorporate these other motives for trade as well.
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Appendix

A Proofs

Proof of Lemma 3.1

Given the informed traders’ strategies x,; = B,v¢ (n = 1,..., N) in trading round ¢,
the market makers can calculate the conditional expectation of v; as

Cov {vt, SN Bagvr + Ut) 03]
Var {22[:1 B g0t + Uy 05}

B [ g (A1)

N
027 Z BtV + Uy = yt] =
n=1

Thus, if 02 = o} with k € {0, 1}, the market makers use the pricing rule p, = 3>/~ v; +
ity Where

N 2
Zn:l 671,750-1)
D) .
N
(anl 671775) 0-3 + 0-13

Taking this pricing rule and the linear strategies of other informed traders as given,

|

Tt + Z ﬁmvtvt]> (A.3)

m#n

)\k,t =

(A.2)

informed trader n’s objective in round ¢ is to maximize

E [xn,t (U - pt)“/;:, Pt—l]

T
Tt (Ut + Z Vj — )\k,t

j=t+1
= Tnt (Ut — A

)\t =E [)\k,t“/;fa Pt—l] =E [)\k;,t“/;f—la Pt—l] = ﬂ-t)\l,t + (1 — ﬂ-t))\O,t' (A4)

(Since E [y u|V;, 02 = 03] = 0 for k = 0, 1, we have E [\, ;u;|V;] = 0.) This expression
for expected profits has the following interpretation. Informed traders face incomplete

= B Tt + Z BtV + Ut Vi, P

m#n

with

information about the type of market maker they are trading with, where “the type”
is given by Ax;. In a linear equilibrium, they effectively trade with the average type,
which is \; as given in (A.4).
The first-order condition yields z,; = {1 = Xt Yomtn 6m,t} v/[2N\], hence (,; =
L=\ Zm;én 6mt} /[2)\(7)] orl =X\ Pﬁn,t + Zm;én ﬁmt} =\ {67115 + 27]7\[1:1 ﬁmt} . This

implies that 3, ; is the same for all informed traders and equal to

1

b = (N + 1)\

(A.5)

By (A.3), therefore, each informed trader’s expected profit in trading round ¢ (condi-
tional on v;) equals [B;v;] (vy — N[N Bevy]) = Bv2 /(N + 1).
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Using (A.4) and (A.2), we can rewrite (A.5) as

1 < Nﬁtag

By +(1—m) (A.6)

T N+1 WtNQﬁfog—l—o%

Nﬁtag -1
N2(202 + 0} ’

Simplifying this equation, we see that it is a quartic in (;, with only the even powers
of B; appearing. Writing v = N 3202, we find that (A.6) transforms into the quadratic
equation (9). As the left-hand side of (9) is negative at v = 0, this equation has a
unique positive root. Since a negative §; would imply a negative \; in contradiction to
the informed traders’ second-order condition, we then obtain (7) and (8). This is the
unique linear equilibrium.

The updating equation (10) is derived in Section 4.

Proof of Proposition 3.1

The claim that \g; > A1+ follows directly from equation (8).

By the definition of equilibrium, p, = Efv|o2, Vi_y, y]. As p, = S5Z) v + Mg
when 02 = ¢ (k = 0 or 1), conditioning on (¢2,V;_;, ;) is equivalent to conditioning
on (062, Vi_1,ps), so p = Ev|o?, Vi_1,ps]. This in turn implies p; = E [v|V;_1, pe].

Proof of Proposition 3.2

Equation (A.6) characterises 3; as the unique fixed point of the function

1 < NfBa? Npo?

—1
F(8) = 1—m)—%e )

As Fi(f) increases in 7y, so does the fixed point f;, and with it ;.

Proof of Proposition 4.1

We want to show that the median of 7,4, conditional on 7; and z; exceeds m; when |z|
is sufficiently small. By continuity, it suffices to show this for z; = 0. In this case, the
likelihood ratio simplifies to

(N7 + 0%)og Ny [ 1 1] v}
£(0 — Lo djey
( ‘ﬂ-ta /Ut) (N'%f + 0'(%)0'1 exXp 9 9 9 0_3

09 01

The random variable v?/0? has a x*(1) distribution, with median m lying between
0.45493 and 0.45494. The median of ¢(0|m;, vy) is

(N%JFU%)UOGXP Ny [1 1 .
(Nve + 08)on 2 ’

o ot

and we are done if we can show that it always exceeds 1.

31



To this end, we consider the expression

L_Mexp@ H_%lm>

(A + 08)oy 2 |og oF

for arbitrary A > 0. Clearly, L — 1 as 07 — 0. It is therefore enough to prove
that L is strictly increasing in o;. Now, straightforward computation shows that the
partial derivative of L with respect to o; has the same sign as the quadratic Q) =
A’m + A(1 —m)o? + o}, which is obviously positive.

Proof of Proposition 4.2

It is straightforward but rather tedious to show that e(mr,) is increasing in o? and

decreasing in o2. We therefore omit the details.

Proof of Proposition 4.3

As 3y (m)? < So(m)?, the entropy e(m) is easily seen to be decreasing in the ratio
21 (m)? /S0 (m,)?. This ratio increases with N+, which in turn can be shown to increase
with N.

Proof of Proposition 4.4

With probability one, none of the actions chosen by informed traders in the linear
equilibrium is “confounding” (i.e. completely uninformative) in the sense of Easley and
Kiefer (1988). By a straightforward extension of Easley and Kiefer (1988, Theorem 8,
p. 1057) to a multi-agent setting, therefore, the posterior belief at the end of the last
trading round, w1, converges to the “truth” with probability one as T" — oc.

Proof of Proposition 5.2

To ease notation, we suppress the dependence of various quantities on the current
belief 7r;. Conditional on ¢ = o2, the variables v; and z; = \.; (N Byvy + 1) are jointly

normal with E[v;|o? = 0f] = E[z|0? = o] = 0, Var|vy|o? = 0}] = 02, Var[z|o? =
op] = Ay (N?Bio? + op) and Covlvy, |0 = o] = MyNBio.. By the Projection
Theorem,

Cov|vy, z 02 ?
Var[v;|o7, 2] = Var[v,|o7] — Va[YET\tU‘Z]]

hence _— )
N

R L (A7)

N2(io2 + o2 N~ + o2

Var[vi|o?, z] = o
with the last equality following from equation (7).
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Since E[vi|02, 2] = 2z by (11), we have Var[E[v|o2, z]|m, 2:] = 0, so the Law of
Tterated Variances reduces to Var[vy|my, ;] = E[Var[v|o2, z]|m, 2¢]. In Section 4.3 we
calculated the conditional probability 7; that o2 = o3 given z; and the belief 7; held
at the beginning of trading round ¢. By (A.7), we then have

o2
Va’r[vt‘ﬂ-t?’zt] = 0-’3 E[N”y :_0_2 7Tt7’%;|
t u
= 42 ﬁta—%+(1_ﬁt)a—g ’ (A.8)
! Ny +o? Ny, + o3

which is strictly increasing in 7;. Straightforward algebra using (9) shows that
Var|vi|my, 2] = 02/(N + 1) if and only if #; = m. By equation (20), 7, is strictly
decreasing in |z;|, so there is a unique cutoff level |z;| for the absolute price innovation
such that 7; = m; if and only if |z;| = |Z;|, and Var[v|ms, 2] > 02/(N + 1) if and only if
|z¢| < |Z|. Finally, note that E[#;|m;] = 7, hence E[Var|v|m;, z/]| 7] = 02/(N + 1) by
equation (A.8) and the remark immediately after it.

Proof of Proposition 5.3

By Lemma 3.1 and the definition of 67 in equation (5), we have ¥/ = Nf,0,, 2V = /57
and XM = \/N2%02 + 2. Since (3; and 67 are increasing in m;, so is 3y = B/ +3V +32M.

The result thus follows from Propositions 3.2 and 4.1.

Proof of Proposition 5.4

Define
0
Nt = 87:7;
k 6f:constant
for k = 0,1. Differentiating equation (9) with respect to o7 while holding &2 fixed, we
obtain
(2N + 013) Mt = 013/ L

where £’ is the element of {0, 1} different from k. At non-degenerate beliefs, 02 < 7; <
o?, hence 1, < 0 < 9. The proposition now follows from Lemma 3.1.

Proof of Proposition 5.6

We will show that for o7 < 303 /N, the function /7 is convex. As the informed traders’

beliefs follow a martingale, this will imply that §; = \/v(7;)/0, is a submartingale by
Jensen’s inequality. The submartingale property for expected profits then follows from
the fact that the these profits are proportional to trading agressiveness.
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The second derivative of /7 is

,.}// ,.)/// ,.}//
2\ <7’ 27) ’
which has the same sign as the term in parentheses. Tedious but straightforward
algebra shows that this term in turn has the same sign as 2¢(m) + \/c(7)? + 4030}
where ¢(7) = 02 +0? — (N + 1) [ro? + (1 — 7)o?] is the coefficient of v in the quadratic
equation (9) for m; = 7.

Therefore, the second derivative of | /7 is positive at 7 if and only if ¢(7) > 0 (which
is the case for 7 close to 0, but not for 7 close to 1) or 0 < —c(7) < 2,/N/30¢0;. As
c(m) is strictly decreasing in 7, the function /¥ is thus convex throughout if and only
if —c(1) < 2y/N/30g01. With —c(1) = No? — o2, one sees easily that this condition is
equivalent to o7 < 303/N.
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