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Abstract

In this paper we use a Bayesian approach to test for mean reversion in the

Swedish stock market on monthly data 1918-1998. By simply account for the het-

eroscedasticty of the data with a two state hidden Markov model of normal distri-

butions and taking estimation bias into account via Gibbs sampling we can find no

support of mean reversion. This is a contradiction to previous result from Sweden.

Our findings suggest that the Swedish stock market can be characterized by two

regimes, a tranquil and a volatile, and within the regimes the stock market is ran-

dom. This finding of randomness is in line with recent evidence for the U.S stock

market.
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1 Introduction

This paper addresses the question of whether or not the Swedish stock market is deter-

mined by random behavior. Previous research by Frennberg and Hansson (1993) concludes

this is not the case. However, Berg and Lyhagen (1996) have questioned their findings.

Notwithstanding, the evidence of mean reversion via variance ratio, VR, is controversial

because the test of the null hypothesis of random walk is only valid under the assumption

of constant expected return. The return series from financial markets are well known to

exhibit time variation, especially in volatility. Hence, mean reversion might be explained

by time-variation, or regime switches, in volatility and taking this aspect into consider-

ation the market might be efficient. Kim et al (1991, 1998a) questions the often used

assumption of homoskedastic volatility and argues the significant divergences some times

found when using VR statistic might in fact be explained by variance shifts. Their conclu-

sion is that the returns are indeed white noise. Nielsen and Overgaard-Olesen (1999) find

weak support of mean reversion when they employ Hidden Markov models and compute

variance ratio test on annual Danish stock market data. Malliaropulos and Priestly (1999)

utilize a bootstrap approach to test for mean reversion in international stock market data.

This study differs from previous studies on the Swedish stock market in that we employ

Bayesian approach to test for mean reversion on standardized excess returns as suggested

by Kim et al (1998a). The idea is to capture the time variation in the variance by a two-

state Hidden Markov Model, henceforth HMM, of Gaussian mixtures. Thus we assume

two regimes: low and high volatility.

Goldfeld and Quandt (1973) introduced the Markov switching models in economics

but its application in economics and finance came a decade ago when Hamilton (1989)

employed a two-state HMM on GDP data. The drawback with the HMM is that ordinary

optimization of the likelihood function can be cumbersome.1 Albert and Chib (1993)

address this problem with a Gibbs sampling approach in order to estimate the two-state

HMM suggested by Hamilton (1989).2 Geman and Geman (1984)’s Bayesian framework

of Gibbs sampling is very advantageous. First, we can use prior information in the estima-

tion of the conditional distribution of the parameters, without estimation of a likelihood

1Ordinary optimization algorithms often fail to estimate the true HMM correct. Another approach is
to employ the simulated annealing, SA, algorithm. This is also a MCMC approach and thus, computer
intensive.

2Kim et al (1998a, 1998b) extended Albert and Chib’s model to a three-state HMM. See the papers by
Lunginbuhl and De Vos (1999) and Dueker (1999) for other applications of the Gibbs sampling framework
of Albert and Chib (1993).
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function. This is an appealing approach as the likelihood function of hidden Markov mod-

els can be cumbersome to estimate. Second, all inferences in Gibbs sampling are made

from joint distributions of the variates and the unknown parameters of the model. Thus,

we are able to account for the parameter uncertainty of the underlying parameters in the

model.

In our analysis we find no support of mean reversion in the any of the Nordic stock

markets. Our two-state regime switching models of normal distributions suggests that

mean reversion if found in the Swedish stock market can be explained by time variation

in the volatility and within the regimes the stock markets is random.

The outline of the paper is as follows: In section 2 we describe the underlying as-

sumptions of the variance ratio test. Section 3 presents the data. The methodology is

presented in section 4. Section 4.1 describes the two-state regime-switching model. A

brief presentation of Bayesian statistics is given in section 4.2. The Gibbs sampler and

the prior distributions are specified in section 4.3. The Bayesian re-sampled variance ratio

tests are presented in section 4.4. Section 5 presents the results and section 6 concludes

the paper.

2 Variance ratio

The variance ratio test, VR, of Cochrane (1988) has been frequently used as a test of

mean reversion. Faust (1992) reports the VR-test is the optimal test for mean reversion.

The advantage of the test is that it allows us to study if returns follows a random walk

and if this property changes with the investment horizon q. The q period return yqt is

computed as the q period difference between the log of the monthly index values of the

portfolio It and It−q, in our case the Swedish stock market portfolio.

yqt = It − It−q (1)

Let rq be the monthly return including dividends of the market portfolio. Compounded

returns, It, are assumed to be a random walk. This implies the arithmetic return being a

drift µ plus a white noise term εt. In this context the q-month arithmetic return is:

yqt = qµ+ εt + . . .+ εt+q (2)

yqt = µ+ rq−1 + εt+q (3)
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The expected q period return is equal to the monthly mean return times the holding period

q and the variance of the q period return is q times the variance of monthly returns.

E [yqt ] = qµ, V ar [yqt ] = qσ2 (4)

The variance ratio statistic, VR, is defined as:

V R (q) =
V ar [yqt ]

q · V ar [y1
t ]

(5)

= 1 under random walk

In our investigation we have chosen the investment horizon q to range from two to twelve

months and yearly up to ten years. This enables us to study the random walk hypothesis

both in the short-run and the long-run.

2.1 Data

We use 80 years of monthly Swedish stock market returns including dividends and the

Swedish risk-free rate from December 1918 to December 1998. All data are from the

Frennberg and Hansson (1998) database. Using these two return series we compute the

monthly excess return of the Swedish stock market and subtract the mean of the excess

return to get a de-meaned excess return series.
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Figure 1: Distribution of de-meaned monthly stock market excess returns 1919-1998.
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3 Methodology

3.1 Two-State Hidden Markov Model

Let the monthly de-meaned excess stock returns yt be described as a two-state hidden

Markov model (HMM) of Gaussian mixtures.3 Where St is an unobserved state variable

following a Markov process.

yt ∼ N
¡
0, σ2

i

¢
(6)

σ2
t = σ2

1S1t + σ2
2S2t (7)

Pr [St = j | St−1 = i] = pij , i, j = 1, 2

2X
J=1

pij = 1, i = 1, 2

The above model is a standard Markov switching model that can be estimated with

maximum likelihood (see Hamilton (1994)).

3.2 Bayesian statistic

The fundamental idea behind Bayesian statistic is to condition on the observed data, Y ,

and regarding the parameters, θ, as random variables. Suppose that p (θ) is a probability

distribution of the parameter θ.

p (Y | θ) p (θ) = p (Y, θ) = p (θ | Y ) p (Y ) . (8)

The probability distribution of θ conditional on the observed data is expressed by Bayes

theorem:

p (θ | Y ) =
p (Y | θ) p (θ)

p (Y )
. (9)

where p (θ) is the prior probability density function and describes the information in θ

without any knowledge about the data, Y . p (θ | Y ) is the posterior probability density

3We have also done estimations using three-state hidden Markov model. The results suggest that a
two-state hidden Markov model being more appropriate. The results of the estimations are available on
request.
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function and gives a description of what is known about θ given the data, Y . Given

the data, Y , the conditional probability distribution p (Y | θ) can be seen as a function of
the parameters θ. This function is in fact proportional to the likelihood function of θ,

L(Y | θ). Let us consider p (Y ) as being constant, then we can write the above as

p (θ | Y ) ∝ p (Y | θ) p (θ) . (10)

This yields the appealing property of the Bayesian approach:

p (θ | Y ) ∝ L (Y | θ) p (θ) . (11)

The posterior probability density function is proportional to the likelihood function times

the prior probability density function. Hence we do not need a specification of the likeli-

hood function to sample from the marginal distributions of the parameters.

3.3 The Gibbs sampler

Gibbs sampling is a special case of the Metropolis (1953) and Hastings (1970) Markov

Chain Monte Carlo algorithm, the difference being that in Gibbs sampling we always

accept the candidates. Its breakthrough came with the papers by Gefland and Smith

(1990) and Gefland et al (1990) which applied the Gibbs sampling framework on various

problems. The Gibbs sampler provides the analyst with the tools to sample from the

marginal distribution of the parameters of interest. This is an appealing property when

faced with cumbersome likelihood functions. The idea behind the algorithm is to sample

from the conditional distribution of the parameter space {θ1, θ2, . . . , θk}.

Step 1: Specify arbitrary initial values,
³
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
k

´
, and set n = 1.

Step 2: Cycle through the full conditionals by drawing:

(1) θ
(n)
1 from

h
θ1 | θ(n−1)

2 , . . . , θ
(n−1)
k

i
(2) θ

(n)
2 from

h
θ2 | θ(n)

1 , θ
(n−1)
3 , . . . , θ

(n−1)
k

i
...

(k) θ
(n)
k from

h
θk | θ(n)

1 , . . . , θ(n)
k−1

i
Step 3: set n = n+ 1, and go to step 2.
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This cycle is then repeatedN times and we obtain the sample values
³
θ

(N)
1 , θ

(N)
2 , . . . , θ

(N)
k

´
.

Where N is set to a large number, in our case N is set to 20.000 iterations.4 The first

M iterations when the chains have not converged are discarded leaving us with a sample

of m useful iterations. For a large number m the simulated values
³
θ

(M)
1 , θ

(M)
2 , . . . , θ

(M)
k

´
...

³
θ

(N)
1 , θ

(N)
2 , . . . , θ

(N)
k

´
can be treated as an approximate sample from [θ1, θ2, . . . , θk](see

Tierney (1994)). Now the posterior expectation of the function of the parameters, θ can

be estimated by the ergodic average.

E (f (θ)) ' 1

m

NX
i=M+1

f
³
θ(i)

´
(12)

3.3.1 Priors and prior distributions

We use conjugate prior distributions and the specification of the prior parameters and

their distributions follows from Albert and Chib (1993), Tanner (1996), Kim et al (1998

a), Robert and Casella (1999).5

The probabilities for the Markov process to move from one state i at time t−1 to state

j at time t are called transition probabilities, pij = p (St = j | St−1 = i). The transition

probabilities pij are collected in the transition matrix P, which forms the nucleus of the

Markov model. Each row of the transition probability matrix P are generated as random

draws from a Dirichlet distribution.6

P(i) ∼ D (ui1 + ni1, ui2 + ni2) , i = 1, 2 (13)

where nik, are the number of transitions from state i to state k. We consider uik, i = 1, 2,

k = 1, 2, as non-informative priors and set them equal to 1.

4This is a computer intensive simulation. Notable is that the increase in CPU power has made this
approach feasible. All simulations are done in MATLAB and the estimation time is approximately 6
hours on a standard Intel PII 450 MHz.

5See also Gilks et al (1996) ”Markov Chain Monte Carlo in Practice” and Tanner (1996) ”Tools for
Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions”as
well as Robert and Casella (1999) ”Monte Carlo Statistical Methods”.

6The Dirichlet density function has the property it can assume a large number of various shapes in
the sample space [0, 1]. An other property of the multivariate dirichlet distribution is that the sampled
probabilities sum to unity. This makes the Dirichlet distribution family very suitable in representing any
experiments on multivariate continuous random variables in the [0, 1] space. See also Mittelhammer:
Mathematical Statistics for Business and Economics.
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In order to satisfy the constraint, σ2
1 < σ

2
2, we need to first generate σ

2
1 and re-define

σ2
2 conditional on σ

2
1.

σ2
2 = σ2

1 (1 + h) (14)

where h > 0. Where σ2
1 and h = (1 + h) are random draws from the inverse-gamma, IG,

distribution family.7

Y1t =
ytp

σ2
1 (1 + S2th)

(15)

h
σ2

1 | eY1T , eST ,eθj 6=σ2
1

i
∼ IG

Ã
v1 + T

2
,
δ1 +

PT
t=1 Y

2
1t

2

!
, (16)

Y2t =
ytp
σ2

1

(17)

We define N2 as the number of times state 2 occurs N2 = {t : St = 2} and T2 is the sum

of the elements in N2.

h
h | eY2T , eST ,eθj 6=hi ∼ IG

Ã
v2 + T2

2
,
δ2 +

PN2

t=1 Y
2

2t

2

!
I[h>1], (18)

We use non-informative priors and set v1, v2, δ1, and δ2 equal 1.

3.3.2 Missing data simmulation

We regard the states as missing data. Thus, we cannot observe the states. However, we

can compute the probability of a given observation yt belongs to state i, i = 1, 2, and from

this information construct forecast probabilities of which state i, i = 1, 2, observation yt+1

belongs to. The probabilities are computed for all observations yt, t = 1...T, via the local

updating algorithm of Robert (1993).8 This is repeated for every Gibbs run. The local

updating algorithm is a forward algorithm in which each state is simulated from the full

conditional (1 6 i 6 k). Thus we have utilized the fact that this is a first order Markov
chain as the distribution only depends on the value of two neighboring states.

7A random sample from the inverse gamma is the reciprocal of a draw of a random number from
the gamma distribution. The (inverse) gamma density function is employed as a prior distribution as it
enables the researcher to sample nonnegative real numbers. See also Mittelhammer (1995).

8We have also made runs using the forward-backward algorithm. See pages 690-693 in Hamilton
(1994) ”Time Series Econometrics”.
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p (S1 = i | S2, ...,P) ∝ ρipiS2
f (x1 | 0, σ)

p
¡
S1 = i | ..., St−1, St+1,...,P

¢
∝ pSt−1ipiSt+1

f
¡
xj | 0,σ

¢
, (1 < t < T )

p (ST = i | ..., ST−1,P) ∝ pST−1i
f (xn | 0,σ)

Where (ρi, ..., ρk) is the stationary distribution of the transitionmatrixP and f (· | 0, σ)

denotes the density of the normal distribution. Thus, the ρi’s are computed from the tran-

sition matrix at each iteration of the Gibbs sampler. Using the probabilities from the local

updating algorithm we generate the two states S = 1, 2, from a two point distribution.

The states are generated by drawing random numbers from a uniform distribution. We

set the state St = 1; if the generated number is less or equal to p1/ (p1 + p2). If it is

greater than p1/ (p1 + p2) , we set St = 2. This is repeated for all observations t = 1...T .

3.4 A Bayesian approach to variance ratio test

Remember our basic assumption that yt is heteroskedastic de-meaned return with variance

σ2
t (θ) which can be described by a mixture of two normal distributions yt ∼ N (0,σ2

i ).

θ = {σ2
1, σ

2
2, St, p11, p22} is a parameter vector describing the dynamics of σ2

t (θ). The

following two re-sampled based variance ratio tests have been suggested by Kim et al

(1998a). At the end of each run of the Gibbs sampling algorithm the following procedure

is computed:

Step 1: We divide the monthly returns yt by the standard deviation σt in order to get

the standardized returns y∗t .

Step 2: Scramble the standardized returns y∗t to yield a new randomized vector yr∗t .

Step 3: Create a new series of de-standardized randomized monthly returns yrt by scaling

the randomized-standardized returns yr∗t by the standard deviation σt.

We now have four return series, first the original returns yt, second the standardized

original returns y∗t , third a randomized standardized returns yr∗t and fourth a randomized

de-standardized returns yrt . Next we calculate the q-month variance ratio for the four

return series. The significance levels of the VR are estimated as the fraction of VR for the
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artificial returns that fall below the VR of the original historical returns. Thus we will

have two tests for every q-month horizon. First, a test based on original returns. Second,

a test based on standardized returns. At the end of the Gibbs sampling we will have

20.000 realizations of each of the two tests for each of the 20 q-month test horizons. An

advantage with our Bayesian approach is that we are able to account for the parameter

uncertainty in θ as well as the effect of the randomization.

4 Results

4.1 Bayesian inference on parameter estimates

The convergence of the Gibbs sampler or burn in time is determined via monitoring

techniques. The convergence of the Gibbs sampler or burn in time has been determined

by running several Gibbs sequences and by using different values of the priors. This

is done in order to reveal possible slow mixing of the Markov chain. We monitor all

parameters of the Gibbs sequence, figure 2, and the burn in time based on the worst

scenario, the parameter with the slowest mixing. The mixing, being based on the average

value versus the number of iterations, the transition probability p11 can been seen in figure

2. The variance parameters converge quickly, but the transition probabilities exhibits slow

convergence. Thus the burn in time is based on the latter and m is set to 8.000 iterations,

leaving 12.000 Gibbs sequences from which to make statistical inference.
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Figure2: Ergodic avererage of estimated parameters vs. # itererations
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The stability of the states is quite clear from figure 3. The graph in figure 3 is called

assignment map and plot the assignment of the states as gray levels against the iterations,

black for state 1 and white for state 2 (see Robert and Mengersen (1998)).9 Our Gibbs

sampler is able to find stable allocations for the data set. Thus, we have quite clear

allocation of the low volatility state and a bit blurred picture of the allocations to the

high volatility state. This is also confirmed by figure 4, the probabilities of a specific

observations being allocated to state 1.

Assignment map

100 200 300 400 500 600 700 800 900

2000

4000

6000

8000

10000

12000

Figure 3: Assignment map

Figure 4: Probability of low volatility per observation for Sweden

The mean, median and the 2.5 upper and lower percentiles of the posterior distribution

of the transition probabilities are presented in table 1. Given that we are in regime S we

can compute the duration of the regime by 1/
¡
1− pij

¢
conditional on i = j.10 The last

column in table 1 shows the persistence or duration of a state. The expected duration of

the states is 2.6 months and 1.7 months for state 1 and state 2. Thus, we seem to catch

the heteroscedasticty by switching between regimes with different volatility.

9Robert and Megersen refer to allocation maps. In recent literature (Bilio, Motfort and Robert (1999))
the word assignment maps are used instead of allocation maps.
10For proof see Kim and Nelson (1999) pages 71-72
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Table 1: Transition probabilities.
Parameter Posterior

mean median duration

p11 0.6210
[0.6209, 0.6210]

0.6210 2.6385

p22 0.4131
[0.4130, 0.4132]

0.4130 1.7036

Comment: 2.5 and 97.5 percentiles within brackets

Table 2: Volatlity
Parameter Posterior

mean median

σ1 7.9542
[6.6787, 9.6309]

7.8756

σ2 36.6216
[30.7490, 44.3412]

36.2594

Comment: 2.5 and 97.5 percentiles within brackets

The volatility of Swedish stock market excess return has two regimes, one with a low

and one with high standard deviation. The mean, median and the 2.5% upper and lower

percentiles of the conditional distributions of the estimated standard deviation parameters

are presented in table 2. There is a significant difference in the variance between the two

states with 8.0% and 36.6% volatility for state 1 and state 2. The posterior distributions

of the volatility parameters are presented in figure 5.

4 6 8 1 0 1 2 1 4 1 6
0

2 0 0

4 0 0

6 0 0

8 0 0
M a rg in a l D is t rib u t io n  o f L o w  V o la t i l i t y

2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0
0

2 0 0

4 0 0

6 0 0

8 0 0
M a rg in a l D is t rib u t io n  o f H ig h  V o la t i l i t y

Figure 5: Posterior distribution of low and high volatility for Sweden
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4.2 Variance Ratios

We will exemplify the sampled distributions of the different variance ratios using his-

tograms of the results from the five-year horizon, q = 60 months.

Figure 6 shows the distributions of the variance ratio test computed for the five-year

horizon on the randomized standardized returns and randomized de-standardized returns

and the standardized original returns. The mean, median and 95% interval of the variance

ratios for all twenty investment horizons is presented in table 3 and table 4.

1 1.5 2 2.5 3
0

100
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0 1 2 3
0

100

200

300

400

500
E s tim ated V R(60) on s c ram bled de-s tandard is ed returns

Figure 6: Conditional distribution of 5-year VR for Sweden

The probability values of the VR decrease as the horizon q increase. This is expected

as the randomization of the returns leads to flatter posterior distributions of the VR as

the investment horizon q increases. The maximum and minimum values of the original

VR are (V R(q)1.62342) at 24 months and (V R(q) = 0.7628) at 108 months. This is an

unexpected result especially as the high VR occur at 12, 24, and 36 months. Thus, it

justifies our approach of utilizing computations of monthly VR with short-run horizons of

2−12 months and long-run horizons of 1 to 10 years. A general result is that the p-values

from the standardized returns are lower then the p-values computed from the VR test of

the original returns. Our lowest p-value is 0.4125 at 96 months horizon for standardized

returns to be compared with the p-value of 0.8449 for original returns. Our highest p-values

are all from the short run horizons and the p-values decay with the investment horizon.
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However, we cannot reject the null hypothesis of random walk for any of horizon q and

any this result is robust to VR computed on standardized or de-standardized returns.

Frennberg and Hansson (1993) finds support of mean reversion in the Swedish stock

market and the mean reversion to increase with the length of the investment horizon. This

they conclude indicates that the risk in the Swedish stock market decrease with the holding

period. Our analysis offsets their result. By simply account for the heteroscedasticty of

the data and taking estimation bias into account we can find no support of mean reversion.

On the contrary the Swedish stock market can be characterized by two regimes, a tranquil

and a volatile, and within the regimes the stock market is random. This finding is in line

with what Kim et al (1998a) finds for the U.S. stock market 1926-1986. Thus, accounting

for time-variation in volatility and estimation bias improves the variance ratio test.11

11We have successfully employed this methodology on the Swedish, Norwegian Danish and Finnish
stock market data during 1947-1998. Again we find that a tranquil and a volatile regime can describe
the volatility. We find no support of mean reversion in these stock markets when we account for the time
variation in volatility. This version of the paper is available upon request.
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Table 3: Variance ratios
Investment horizon, Variance ratio VR(q)

q (months) Original Scrambled Prob. Value

2 1.1635 1.0011
[0.9392, 1.0676]

0.9998

3 1.2024 1.0011
[0.9092, 1.1001]

0.9994

4 1.2369 1.0011
[0.8850, 1.1280]

0.9994

5 1.2547 1.0014
[0.8685, 1.1500]

0.9987

6 1.2652 1.0014
[0.8496, 1.1679]

0.9974

7 1.2971 1.0014
[0.8331, 1.1876]

0.9976

8 1.3235 1.0012
[0.8187, 1.2061]

0.9978

9 1.3504 1.0008
[0.8059, 1.2215]

0.9981

10 1.3888 1.0005
[0.7948, 1.2351]

0.9983

11 1.4347 1.0003
[0.7833, 1.2488]

0.9986

12 1.4844 1.0002
[0.7727, 1.2645]

0.9992

24 1.6234 0.9934
[0.6774, 1.3833]

0.9977

36 1.5316 0.9822
[0.6037, 1.4671]

0.9841

48 1.4284 0.9676
[0.5453, 1.5337]

0.9507

60 1.2687 0.9512
[0.5011, 1.5924]

0.8686

72 1.0926 0.9352
[0.4572, 1.6375]

0.7325

84 0.9013 0.9180
[0.4213, 1.6840]

0.5361

96 0.7794 0.9024
[0.3866, 1.7349]

0.4126

108 0.7628 0.8880
[0.3549, 1.7687]

0.4225

120 0.7648 0.8751
[0.3287, 1.8014]

0.4485

Comment: 2.5 and 97.5 percentiles within brackets
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Table 4: Variance ratios
Investment horizon, Variance ratio VR(q)

q (months) Standardised Scrambled standardised Prob. Value

2 1.1792
[1.1403, 1.2182]

0.9986
[0.9360, 1.0618]

1.0000

3 1.2469
[1.1775, 1.3169]

0.9974
[0.9056, 1.0937]

1.0000

4 1.3025
[1.2030, 1.4031]

0.9960
[0.8827, 1.1169]

0.9999

5 1.3417
[1.2185, 1.4698]

0.9948
[0.8647, 1.1380]

0.9998

6 1.3709
[1.2242, 1.5251]

0.9935
[0.8469, 1.1543]

0.9996

7 1.4183
[1.2517, 1.5934]

0.9922
[0.8310, 1.1718]

0.9997

8 1.4669
[1.2799, 1.6625]

0.9910
[0.8171, 1.1876]

0.9996

9 1.5126
[1.3061, 1.7272]

0.9898
[0.8066, 1.2023]

0.9997

10 1.5667
[1.3428, 1.7992]

0.9886
[0.7955, 1.2142]

0.9999

11 1.6279
[1.3918, 1.8770]

0.9875
[0.7824, 1.2282]

1.0000

12 1.6907
[1.4404, 1.9540]

0.9863
[0.7707, 1.2421]

1.0000

24 2.0037
[1.6134, 2.4181]

0.9731
[0.6678, 1.3501]

0.9998

36 2.0489
[1.5883, 2.5479]

0.9609
[0.5993, 1.4346]

0.9990

48 2.0097
[1.5269, 2.5484]

0.9480
[0.5422, 1.5043]

0.9970

60 1.8537
[1.3860, 2.3900]

0.9344
[0.4892, 1.5589]

0.9877

72 1.6442
[1.1890, 2.1873]

0.9205
[0.4522, 1.6095]

0.9601

84 1.4437
[0.9822, 2.0016]

0.9060
[0.4157, 1.6521]

0.8992

96 1.3213
[0.8601, 1.8903]

0.8914
[0.3836, 1.6950]

0.8449

108 1.3087
[0.8413, 1.8856]

0.8765
[0.3541, 1.7394]

0.8406

120 1.3103
[0.8349, 1.8962]

0.8617
[0.3292, 1.7732]

0.8433

Comment: 2.5 and 97.5 percentiles within brackets
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5 Conclusion

This paper addresses the question if the Swedish stock market is subject to mean reversion.

Previous studies find support of mean reversion in the Swedish stock market and the mean

reversion to increase with the length of the investment horizon. However the result of

these studies are controversial as they ignore the assumption of constant expected return.

Resent research have found that heteroscedasticity seriously affects the probability of the

variance ratio test to reject the null hypothesis of random walk.

We model the well-known heteroscedasticity of the stock market returns with a two

state hidden Markov model of normal mixtures. The model is estimated with Bayesian

approach of Gibbs sampling, a computer intensive Markov chain Monte Carlo method.

Our two state hidden Markov model is clearly specified along with the priors and prior

distributions employed in the Gibbs sampler. Further we use the information at each

run of Gibbs sampler to compute variance ratios test on standardized as well as de-

standardized returns.

Our analysis finds no support for mean reversion and we cannot reject the null hypoth-

esis of random walk for any of the investment horizons. This result is robust to variance

ratios computed on standardized or de-standardized returns. Our two state regime switch-

ing models of normal distributions captures the variance as a tranquil and a volatile state

and suggests that mean reversion if found in the Nordic stock markets can be explained

by time variation in the volatility. Within the regimes the market is random.
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