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Abstract

The purpose of this paper is to prove the second fundamental theorem of welfare

economics and the existence of competitive equilibrium in production economies over

an in¯nite horizon with general consumption sets. In the literature the second funda-

mental theorem of welfare economics has been only approximately proved with uniform

properness assumption on preferences. In order to generalize the theorem for a model

that allows general comsumption set, the uniform properness assumption should be

reduced. We prove the theorem in the exact form not assuming the assumption. The

irreducibility of an economy and a joint assumption on consumers' preferences and

¤The author is grateful to Prof. McKenzie of University of Rochester and Prof.Yamazaki, Prof.Takekuma

of Hitotsubashi Also the author thanks University.Prof.Kubota of Shiga University and Prof. Urai of Osaka

University for their helpful comments and suggestions.
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production that makes the sustainable growth of the economy possible play the key

role.

1 Introduction

The existence of competitive equilibrium with in¯nite dimensional commodity space has been

studied since seminal papers Bewley(1972) and Peleg{Yaari(1970). On the other hand, the

second fumdamental theorem of welfare economics in in¯nite dimensional commodity spaces

was proved by Debreu(1954) when the production set has non-empty interior by applying

the separation theorem as the same way as the one in ¯nite dimensional cases. In in¯nite

dimensional commodity spaces the supporting price of Pareto optimal allocations cannot

be found by this approach. In order to overcome this di±culty the uniform properness

assumption is introduced by Mas-Collel(1986), and there are extensive researches on the

equilibrium existence problem along this line.

However there are many economically important commodity spaces where it is inap-

propriate to assume the uniform properness. Among those spaces here we focus on linear

subspaces of sn, the set of sequences of ¯nite dimensional vectors, which we use as the

commodity spaces. They are the class of commodity spaces for economies over an in¯nite

horizon. It is inappropriate to assume the uniform properness in this setting, since it is

inconsistent with myopia of preferences. For example there is no utility function on s, the

set of real sequence, which are strictly monotonic, quasi-concave, product continuous, and

at the same time uniformly product proper.1 It is well known that the product continuity

of preference in s expresses the myopia of preferences.

Economies over an in¯nite horizon have been studied by Peleg{Yaari(1970) and Boyd{

McKenzie (1993). They established the equilibrium existence theoremwith commodity space

sn. Evaluation of the feasible commodity allocations with vectors in sn which is not the dual

of the commodity space is very important for their results. We follow this approach with

the broader class of commodity spaces including theirs.

One contribution of this paper is to make clear a su±cient condition for the second

fundamental theorem of welfare economics in this setting. In the literature it is shown that a

weakly Pareto optimal allocation may fail to be supported by some non-zero linear functional

1See, Aliprantis{Brown{Birkinshaw(1989, Example 3.6.9. p. 174).
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in the dual of commodity space. Without uniform properness only "¡approximate support
theorems has been established by Aliplantis-Burkinshaw (1988) and Becker-Bercovici-Foias

(1992). With commodity price duality Khan -Vohra(1985), Aliplantis -Burkinshaw(1988)

proved "¡ approximate support property of weak Pareto optimum. The second fundamental
theorem of welfare economics in this paper is not "¡approximate version. The su±cient
condition has its origin in Boyd-McKenzie(1993). However the supportability is shown only

at the Edgeworth equilibrium in their paper, since they use the Edgeworth approach to

prove the existence theorem. Also the regularity assumption in this paper is weaker than

the assumption in Boyd-McKenzie(1993).They impose the regularity assumption to possible

net trade set with the technology of each consumer. On the other hand we impose this

assumption only to aggregate possible net trade of entire consumers with the technology. By

virtue of introducing new price normalization di®erent from the one of Boyd-McKenzie(1993)

we can weaken the regularity assumption.

Our regularity assumption is joint condition on preferences, endowments among agents

and a production set. The regularity assumption can be interpreted as follows; consumers

are su±ciently myopic and the technology is productive in the future so that slight increase

of social net trade at the ¯rst period cause some constant net supply in the future far enough

and consumers are still well o®.

Another contribution of this paper is to show that even with general consumption sets;

they do not have to contain their lower bounds, if the regularity assumption is satis¯ed ir-

reducibility is su±cient for the equilibrium existence theorem. Burke(1988) shows a counter

example to the equilibrium existence theorem in an economy over an in¯nite horizon with

general consumption sets. Boyd-McKenzie (1993) proves the equilibrium existence theorem

with general consumption sets. It, however, must pay a cost of a strong version of irre-

ducibility to assure the equal treatment property in the core allocation. This is crucial for

the non-emptiness of the equal treatment core, and so the existence of Edgeworth equi-

librium. It says that for any non-trivial partition of consumers, one group of consumers

can always spread their gains, if exist, to consumers in the other group, and the resulting

allocation is still feasible.2 This assumption holds when preferences are monotonic and con-

2Although they use net trading sets to de¯ne strongly irreducibility, it can be de¯ned in terms of con-
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sumption sets are the positive orthant. This is, however, strong in the sense that it assume

directly the existence of a special feasible allocation.

We replace strong irreducibility with usual irreducibility and establish the existence of

a competitive equilibrium in production economies with general consumption sets over an

in¯nite horizon by Negishi approach appealing to the l1-price supportability of Pareto optimal

allocations with the regularity assumption.

The procedure of this paper is as follows. In section 2, we set up our economy and

explain our assumptions. We establish the second fundamental theorem of welfare economics

in section 3 and the existence of competitive equilibrium is proved in section 4. Section 5

contains concluding remarks.

2 Economy

We are going to consider a discrete time open ended economy. Commodities are distinguished

with their physical properties, their location and the dates on delivery. At each date there

is same variation of di®erent commodities. They are indexed with k = 1; 2; ¢ ¢ ¢n. Thus our
commodity space is a subspace of sn = Rn £ Rn £ ¢ ¢ ¢. The mathematical description of
our commodity space is as follows:

Commodity space E is a subspace of sn such that there is W ½ ba where (E;W ) is a Riesz
symmetric dual system and E inherited a natural order from sn:

There are three important examples of Riesz symmetric dual system which appears in

economic literature.

i) ( sn; coo) ii) (l1; l1) iii) (l1(¯); l1(1=¯))

De¯ne kxk1 = supfjxk (t)j : t = 0; 1; 2; ¢ ¢ ¢; k = 1; 2; ¢ ¢ ¢; ng. Then l1 = fx 2 sn : kxk1
< 1g. Also coo = fx 2 sn : there is T with xk (t) = 0 for any t > Tg: De¯ne kpk1 =
P
t

P
k
jpk (t)j. Then l1 = fp 2 sn : kpk1 < 1g: Also de¯ne kxk1 (¯) = supfjxk (t)j =¯t

: t = 0; 1; 2; ¢ ¢ ¢; k = 1; 2; ¢ ¢ ¢; ng and kpk1 (1=¯) =
P
t
¯t
P
k
jpk (t)j : Then l1(¯) = fx

2 sn : kxk1 (¯) < 1g and l1(1=¯) = fp 2 sn : kpk1 (1=¯) < 1g:
sumption sets as well.
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Mathematically important property of Riesz symmetric dual system (E;E0) is that every

order interval of E is weakly compact and if (E;E0) is a Riesz symmetric dual system,

(E0; E) is likewise a Riesz symmetric dual system. Therefore the weak topology ¾ (E;E 0) can

be considered as weak star topology for dual system (E0; E): This property is convenient to

apply Alaoglu's theorem.

Economically l1 is the space which does not allow growing economy and this is a special

case of L1 which is used in Bewley (1972). sn and l1(¯) may allow growing path of the

economy. sn is used in Peleg{Yaari (1970) and Boyd{Mckenzie (1993). l1(¯) is isomorphic

to l1 and can be thought of as having the discount factor 1=¯ built in. This space is used

by Boyd(1990).

Our description of commodity space E includes all of these cases, thus it is easy to

compare the results with others.

There are ¯nite number of consumers indexed with i = 1; 2; ¢ ¢ ¢; H who have a con-

sumption set Ci ½ E and a preference P i which express strict preference over Ci. We can
interpret these consumers in two ways: as in¯nitely lived agents with open ended economy

or as ¯nitely lived agents who does not know own terminal date of life and has preference

over in¯nite horizon consumption set.

The market is complete and opens for all commodities at ¯rst date. It is possible to

consider agents have perfect foresight in the future or there is a market for contingent claim

plan over in¯nite horizon economy.

The production sector is represented with a convex cone technology over E:With constant

returns to scale technology we assume perfect competition among producers and there is free

entry and exit. Thus the number of producers cannot be set a priori.

Our price space for the market is represented with sn. This price space is ¯rst used

by Peleg{Yaari(1970) in exchange economies and later extended into production economies

by Boyd{McKenzie (1993). In in¯nite horizon economy the commodity price duality is

often used to represent price system. It evaluates each commodity bundle, but does not

necessarily evaluate each commodity itself. In contrast our price system does not necessarily

evaluate every commodity bundle, but does evaluate each goods in a commodity bundle

in a coodinatewise fashion. These two price space are the same one in ¯nite dimensional
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commodity space. This is a speci¯c issue to in¯nite dimensional commodity spaces.

Now we are ready to state and discuss our assumptions on economy. Before to do so, let

us de¯ne some notations for convenience.

a) We denote x 2 sn; x (t) 2 Rn at time period t, and
x = (x (0) ; x (1) ; ¢ ¢ ¢)

b) Let x; y 2 sn: We denote x ¸ y if xk (t) ¸ yk (t) for all t = 0; 1; ¢ ¢ ¢; k = 1; 2; ¢ ¢ ¢; n.
As the same way x > y if x ¸ y and xk (t) > yk (t) for some t; k:
c) Let e = (1; ¢ ¢ ¢; 1); an unit vector in Rn, then we use
e (0) = (e; 0; 0; ¢ ¢ ¢) and e(t) = (0; ¢ ¢ ¢; e; 0; ¢ ¢ ¢):

d) x+k (t) = maxf0; xk (t)g; x (t)+ = (x1 (t) ; ¢ ¢ ¢; xn (t)):
x¡k (t) = minf0; xk (t)g; x (t)¡ = (x1 (t) ; ¢ ¢ ¢; xn (t)):

{ Assumptions {

(1) For each consumer i, the consumption set Ci is convex and ¾ (E;W )-closed. The net

trading set Ci ¡ f!ig is bounded below by b 2 l1 for each i:

(2) For each consumer i; the strongly preferred correspondence P i is convex and ¾ (E;W )-

open valued, and has ¾ (E;W )-open lower sections relatively in C i. The preference

relation de¯ned from P i is irre°exive and transitive. The weakly preferred set Ri (x)

is the ¾ (E;W )-closure of P i (x) for all x 2 C i unless P i (x) = ;:

(3) Let x 2 Ci: If z ¸ x; then z 2 Ri (x). (weak monotonicity)

(4) The production set Y is a ¾ (E;W )-closed convex cone with vertex at the origin and

contains no straight line.

(5) De¯ne F i(xi) = R(xi) ¡ f!ig for xi 2 Ci. Then for any v 2
P
i
F i(xi) ¡ Y the following

holds.

For any ²: > 0, there exists ¿0 and ® > 0 2 Rn such that ¿ > ¿0 implies

(v(0) + ² e(0); ¢ ¢ ¢; v(¿ );¡®;¡®; ¢ ¢ ¢) 2 P
i
F i(xi) ¡ Y: (regularity assumption)

(6) For all z 2 E; the set fy 2 Y : y ¸ zg is order bounded.
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(7) For all i, there is xi 2 Ci and yi 2 Y such that (xi ¡ !i) < yi and

P
i
(y i¡ (xi¡!i)) = (°; °; ¢ ¢ ¢) for some °(2 Rn) À 0. (aggregate adequacy assumption)

(8) The economy is irreducible: whenever I1 and I2 is a nontrivial partition of f1; ¢ ¢ ¢; Hg
and

P
i2I(xi ¡ !i) 2 Y with xi 2 Ci for all i 2 I, there are

P
i2I1(zi ¡ !i) +

P
i2I2 ®i(zi ¡ !i) 2 Y with ziP ixi for i 2 I1 and,

zi 2 Ci and some ®i > 0 for i 2 I2. (irreducibility assumption)

It follows that net supply of consumer such as labor is bounded from above by an element

of l1 from assumption (1). It does not mean that a consumption bundle x 2 C i or !i is in
l1:

In assumption (1) and (2), we induce the topology ¾ (E;W ) on the consumption sets. It

depends on whether the use of it is economically natural or not. The examples described

before we can interpret the continuity of preference with respect to ¾ (E;W ) as myopia. Note

that ¾ (sn; coo) is product topology and it is well known that the continuity of preferences

with respect to the product topology expresses strong myopia of preference. The weak(¤)

¾ (l1; l1) topology has same closed convex sets as the Mackey ¿ (l1; l1) topology has. The

Mackey topology is used in Bewley (1972) and it is shown that continuity os preference with

respect to the Mackey topology can be interpreted as myopia in the paper. Since l1(¯) is

homeomorphic to l1 and l1(1=¯) is homeomorphic to l1, the same interpretation may be

possible.

The other assumptions in assumption (1) and (2) are standard in general equilibrium

theory. Especially we need assumption (2) for the existence of utility representation. Tran-

sitivity plays key role in it. Note that our consumption set C i is general in the sense it does

not necessarily include its lower bound. Thus it allows us for substitution between goods on

the boundary and we can consider labor in our commodity space.

Weak monotonicity of preferences is assumed in assumption (3). The weak monotonicity

is standard and strong monotonicity in the ¯rst period can be interpreted as a result of

myopia.

As described before our technology exhibit constant returns to scale. The irreversibility

of production process is also assumed in assumption (4). As Boyd{McKenzie (1993) showed

7



this formulation include Malinvaud technology with constant returns to scale.

Assumption (5) is important condition for our result. Consider an aggregate net supply

with consumptions weakly preferred to an original consumption. Then any slight increase of

aggregate net supply in the ¯rst period can produce constant positive aggregate net supply

permanently in the future after some period without any change in net supply of other

periods and every possible consumptions generated from the new aggregate net supply is

still weakly preferred to the original consumption. This is a joint condition on preferences

and endowments among consumers and production set. In section 5 we discuss on this

condition again.

Assumption (6) is equivalent to that for all time period and goods if net output is larger

than some real number " (t; k) > 0, there exist ± (t; k) > 0 such that net input is larger than

± (t; k) for all t; k. As the same way if net input is smaller than some real number " (t; k) >

0 there exists ± (t; k) > 0 such that net output is smaller than ± (t; k) for each t; k.

Adequacy assumption is same as the one used by Boyd{McKenzie(1993). With this

condition, we can show that the aggregate income of the economy is positive. This, however,

does not imply that each consumer's income is positive. Only some consumers have positive

incomes. Bewley(1972) uses the stronger individual adequacy assumption which is stated

as (yi ¡ (xi ¡ !i)) = (¡°i;¡°i; ¢ ¢ ¢) for some °i(2 Rn) holds for each i. This individual
adequacy assumption trivially implies the aggregate and conclude that every consumer in

the economy has a positive income.

The irreducibility assumption (8) is usual one and is not the strong irreducibility assump-

tion used by Boyd{McKenzie(1993). We need this condition to spread the positive incomes of

some consumers due to the aggregate adequacy assumption (7) over every consumer, which

is necessary in translatating a quasi-equilibrium into a competitive equilibrium. The strong

irreducibility of Boyd{McKenzie(1993) is used to establish the non-emptiness of the equal

treatment core in their economies with general consumption sets in their Edgeworth equilib-

rium approach. Since we employ in stead the Negishi approach instead, we do not need this

strong irreducibility. The usual irreducibility assumption is enough for our purpose. This is

believed to be a contribution of this paper.
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3 The Second Fundamental Theorem of Welfare Eco-

nomics

In this section we prove the second fundamental theorem of welfare economics. In the most

of literature this theorem is equivalent to the existence of supporting hyperplanes for the

weakly preferred sets of consumers and the production set at every Pareto optimal allocation.

The supporting vectors are in the dual of commodity space and determine the value of each

allocation. Appealing to the separation theorem based on this duality is powerful for the

proof of the theorem if the positive orthant of commodity space has nonempty interior. On

the other hand, however, the same argument does not apply to the commodity spaces with

empty interior. When we consider economies with ¯nite dimensional commodity spaces the

separation theorem can directly apply to prove the second fundamental theorem of welfare

economics, since any two convex subsets in ¯nite dimensional commodity spaces which have

disjoint interior can be separated at any point which is not interior to either sets. On the

other hand in in¯nite dimensional spaces we need to be more careful; the separation theorem

requires the existence points which is interior to one of the two sets. As Mas-Collel (1986)

shows a weakly preferred set of a consumption bundle in in¯nite dimensional commodity

space may fail to have interior points. The uniform properness assures that there exist

interior points we actually need.

The class of economies considered in this paper allows the commodity spaces which have

no interior points. To determine the values of allocations in commodity spaces, usually the

dual space of commodity space and valuation based on the duality are used. Here instead

coodinatewise valuation of allocations in Peleg{Yaari(1970) and Boyd{McKenzie(1993) is

adapted. In this situation, the support property of Pareto optimal allocations is considered

to hold if there is a way of social valuation of allocations satisfying the following; for each

consumer if a consumption allocation is not less preferred to the consumption of Pareto

optimal allocation, the valuation is also not less than that of the consumption at the Pareto

optimal allocation, and any production cannot yield positive pro¯ts and the production at

the Pareto optimal allocation has zero pro¯t with the valuation.

We have two versions of second theorem of welfare economics respectively with net trades
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(Theorem 3{1) and with consumptions (Corollary 3{1). It is usual to use consumptions to

state the theorem, because it should hold independently on distribution of endowments

among agents. In ¯nite dimensional commodity space or more generally in the commodity

space with price systems as the dual of it, these two versions of second theorems are necessary

and su±cient for each other. On the other hand we have our price space as sn which is not

necessarily the dual of commodity space E , these are not equivalent. With the de¯nition

of a competitive equilibrium in section 4, the version with net trade is suitable for the

interpretation such that any Pareto optimal allocation can be realized as a competitive

equilibrium by redistributing endowments properly among consumers.

The valuations of net trade and production are as follows;

Valuation of net trade
1P
t=0
p (t) (xi (t)¡ !i (t)) where xi 2 C i; p 2 sn:

Valuation of production limsup¿
¿P
t=0
p (t)y (t) where y 2 Y; p 2 sn:

It will be shown later in the proof of the theorems that the valuation of net trade has

only ¯nite value or +1 from assumption (1).

Now we de¯ne a weakly Pareto optimal allocation and Pareto optimal allocation.

De¯nition. We call (x1; ¢ ¢ ¢; xH ; y) 2 C1 £ ¢ ¢ ¢ £ CH £ Y as an allocation if
P
i
(xi ¡

!i) = y holds for some y 2 Y: An allocation (x1;¢ ¢ ¢; xH ; y) is weakly Pareto optimal,
whenever there exists no other allocation (x01; ¢ ¢ ¢; x0H; y 0) satisfying x0i 2 P i (xi) for
all i: An allocation (x1;¢ ¢ ¢; xH ; y) is Pareto optimal whenever there exists no other
allocation (x01;¢ ¢ ¢; x0H ; y0) satisfying x0i 2 Ri (xi) for all i; and there is some j such
that x0j 2 P j(xj). Obviously a Pareto optimal allocation is weakly Pareto optimal.

In the procedure of our proof we ¯rst show that there exists a separating hyperplane

between the origin 0 and (
P
i
F i ¡ Y ) \ l1 where F i = F i(xi) for a weakly Pareto optimal

allocation (x1; ¢ ¢ ¢; xH ; y) with supporting vector in ¼ 2 ba: After that we decompose ¼ by
Yosida{Hewitt theorem and the l1 part of it is the candidate of a supporting price of a weakly

Pareto optimal allocation. This method is originally developed by Boyd{McKenzie (1993)

and they use the idea to prove the supporting property of Edgeworth equilibrium.
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To get a desired separating hyperplane, we need to show the ¾(E;W )-closedness of
P
i
F i

¡ Y . The crucial fact for this result is the following Choquet's(1962) theorem. This theorem
is used by Boyd{McKenzie(1993) in the case of sN and by Ali Khan and Vohra(1988) in

general locally convex spaces.

Theorem[Choquet(1962)] : If Z ½ E is convex, ¾(E;W )-closed, and contains no straight
lines, then for any two convex and ¾(E;W )-closed subsets X and Y in Z, X + Y is

¾(E;W )-closed.3

Lemma 3{1 : For any (x1; ¢ ¢ ¢; xH) 2 C1 £ ¢ ¢ ¢ £ CH ,
P
i
F i ¡ Y is ¾(E;W )-closed :

Proof) By assumption (1) for all i Ci ¡ f!ig is bounded from below by b 2 l1: This
implies F i(xi) is bounded below by b for all i: Thus F i(xi) ¡ Y ½ b + E+ ¡ Y . We want to
show b + E+ ¡ Y is ¾(E;W )-closed, convex and contains no straight line. Since any ¯nite
sum of convex sets is convex, b + E+ ¡ Y is convex from assumption (4).

Note that if E+ ¡ Y is ¾(E;W )-closed then b + E+ ¡ Y is also ¾(E;W )-closed, since
any net in b + E+ ¡ Y has the form fb + z®g where fz®g is a net in E+ ¡ Y . Moreover if
E+ ¡Y contains no straight line b + E+ ¡ Y is also contains no straight line since E+ ¡ Y
is convex and b is a single point.

We claim

E+ ¡ Y is ¾ (E;W ) -closed and contains no straight line.

Suppose E+ ¡ Y has elements z; ¡z. Then there are y; y0 2 Y such that z ¸ ¡y and ¡z ¸
¡y0: This implies y + y0 ¸ 0. Since Y is a cone, for any ¸ ¸ 0; ¸(y + y0) 2 Y: However by
assumption (6), fy 2 Y : y ¸ 0g has an upper bound. Therefore y + y 0 should be 0, and y
= ¡y0: From assumption (5), Y contains no straight line. Thus y = ¡y0 = 0: It implies z =
0 and E+ ¡ Y contains no straight line.
Next we claim that E+ ¡ Y is ¾ (E;W )-closed. Let fz®g be a net which z® 2 E+ ¡ Y

and z® ! z in ¾ (E;W ) as ® ". Fix some order interval such as z 2 [a; c]: Then there is
a converging subnet fz®(k)g such that z®(k) 2 [a; c] and z®(k) ! z as k " since (E;W ) is

3This is a specialization of a theorem in Choquet(1962). The original statement of this theorem uses

the ¾(E;W )-completeness of Z . Since (E;W ) is Riesz sysmetric dual, indeed, we can replace it with its

¾(E;W )-closedness.
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a Riesz symmetric dual system and hence [a; c] is ¾ (E;W )-compact. Note that there are

v®(k) 2 E+; and y®(k) 2 Y satisfying z®(k) = v®(k) ¡ y®(k): This implies that c ¸ z®(k) ¸
¡y®(k), so y®(k) ¸ ¡c. Thus fy®(k)g has uniform lower bound. From assumption (6), fy®(k)g
has uniform upper bound. Thus fy®(k)g is in a compact set, and so has limit y 2 Y: Since
¾ (E;W ) is a Hausdor® topology, the limit of fz®(k)g equals to z: Note z®(k) = v®(k) ¡ y®(k)

and z®(k) ¸ ¡y®(k) implies that z ¸ ¡y and v = z + y ¸ 0 2 E+: Thus z 2 E+ ¡ Y , and
so E+ ¡ Y is ¾ (E;W )-closed. Thus, (1 { 1) holds.
Now we can apply Choquet's theorem and

P
iF

i ¡ Y is ¾ (E;W )-closed.

Lemma 3{2 : For any weakly Pareto optimal allocation (x1;¢ ¢ ¢; xH; y) there exist ¼ 2 ba
such that

¼ ¢ v ¸ 0 holds for all v 2 (P
i
F i (xi) ¡ Y ) \ l1; ¼ ¢ v ¸ 0 and,

¼ ¸ 0, ¼ 6= 0, and k¼kba = 1.

Proof) Let F i = F i (xi) for a weakly Pareto optimal allocation (x1;¢ ¢ ¢; xH ; y):We claim
that for any " > 0,

¡"e(0) =2
X

i

F i ¡ Y:

Suppose not, then there exists x0i 2 Ri (xi) ; y0 2 Y such that ¡"e (0) =
P
i
(x0i ¡ !i) ¡ y 0.

Then
P
i
(x0i ¡ !i + "=H ¢ e(0)) ¡ y0 = 0. From monotonicity assumption x0i + "=H ¢ e(0)

2 P i(xi) for each i: This contradicts to the weak Pareto optimality of (x1;¢ ¢ ¢; xH; y): Thus
¡"e(0) =2 P

i
F i ¡ Y for any " > 0.

From lemma 3{1,
P
i
F i ¡ Y is ¾(E;W )-closed. Also f¡"e(0)g is trivially ¾(E;W )-

compact. Now we can apply the separation theorem(Scheafer(1966) p.65), and there exists

f 2W such that f ¢ v > f ¢ (¡"e(0)) for any v 2 P
i
F i ¡ Y . From monotonicity assumption

and the separation theorem, f ¸ 0; f 6= 0. Let u = (e; e; ¢ ¢ ¢), a unit vector, and ¼ =
f=kfkba. (Recall that W ½ ba, so f 2 ba.) Then ¼ ¢ v > ¡"¼ (0) ¢ e(0) and since ¼ ¸ 0, ¼ ¢u
¸ ¼ (0) ¢ e (0) holds. Thus ¼ ¢ v > ¡"¼ ¢ u. Clearly ¼ ¢ u = k¼kba = 1 by de¯nition of the

norm. Consequently ¼ ¢ v > ¡" for any v 2 P
i
F i ¡ Y . De¯ne S and S (") as follows.

S(") = f¼ 2 ba : k¼kba = 1, ¼ ¢ v ¸ ¡" for all v 2 (
P
i
F i ¡ Y ) \ l1g:

S = f¼ 2 ba : k¼kba · 1, ¼ ¢ v ¸ ¡1 for all v 2 (
P
i
F i ¡ Y ) \ l1:
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Clearly for any " > 0, S(") is non-empty and S(") forms a nested set sequences, and for

any " · 1 S(") ½ S(1) ½ S. Note S(") is a subset of the unit sphere of ba-norm equals to

1 and S is the subset of unit ball of ba-norm equals to1 and the fact that the evaluation

function is continuous with respect to ¾(ba; l1) and inequality is weak. Since the closed

unit ball in ba with respect to(ba; l1) is compact by Alaoglu's theorem, S is compact. The

non-emptiness of S(") allow us to pick up ¼" 2 S(") for all (0 <)" · 1. Let [0; 1] be a

directed set with direction " ¹ "0 if and only if " ¸ "0. Then f¼"g forms a net in S. From
the compactness of S; there exists a converging subnet f¼"(¸)g in S such that ¼"( )̧ ! ¼ in

the weak ¾ (ba; l1) topology. Note that 1 =
°°°¼"( )̧

°°°
ba
= ¼"(¸) ¢u and the evaluation function

is ¾ (ba; l1) continuous. Thus ¼"( )̧ ¢ u! ¼ ¢ u: Consequently ¼ ¢u = k¼kba = 1: Also for any
± > 0 there exists "o 2 [0; 1] such that "o ¹ " (¸) implies

¯̄
¯¼"( )̧ ¢ v ¡ ¼ ¢ v

¯̄
¯ < ±. Suppose

¼ ¢ v < 0 and take ± small enough. Then there exists " (¸) which is close enough to 0 and "o
¹ " (¸) and

¯̄
¯¼"(¸) ¢ v ¡ ¼ ¢ v

¯̄
¯ > ±. Thus ¼ ¢ v ¸ 0.

Now we have a candidate for the supporting price of a weakly Pareto optimal allocation.

We are going to extend the supportability not only in l1 but over whole space.

Theorem 3{1 : For every weakly Pareto optimal allocation (x1;¢ ¢ ¢; xH ; y), there exists a
supporting price ¼c 2 l1(½ sn) such that;

(1)
1P
t=0
¼c(t) ¢ (x0i(t) ¡ !i(t)) ¸

1P
t=0
¼c(t) ¢ (xi(t) ¡!i(t)) for all x0i 2 Ri(xi),

(2)
1P
t=0
¼c(t) ¢ y(t) ¸ limsup¿!1

¿P
t=0
¼c(t) ¢ y0(t) for all y0 2 Y and

1P
t=0
¼c(t) ¢ y(t) = 0,

(3) ¼c ¸ 0, ¼c 6= 0.

Proof) First notice that by assumption (5)(the regularity assumption) and assumption

(3), we know whenever v 2 P
i
F i(xi) ¡ Y for any " > 0, there exists ¿ such that ¿ > ¿

implies

(v(0); ¢ ¢ ¢; v(¿); 0; 0; ¢ ¢ ¢) + "e(0) 2
X

i

F i(xi) ¡ Y: (1)
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For any x0i 2 Ri(xi), x0i ¡ xi = x0i ¡ !i +
P
j 6=i
(xj ¡ !j) ¡ y holds since the feasibility of

the weakly Pareto optimal allocation (x1;¢ ¢ ¢; xH ; y) implies 0 =
P
i
(xi ¡ !i) ¡ y. Thus x0i ¡

xi 2
P
i
F i(xi) ¡ Y .

Therefore from (1) we have (x0i(0) ¡ xi(0); ¢ ¢ ¢; x0i(¿ ) ¡ xi(¿ ); 0; 0; ¢ ¢ ¢) + "e(0) 2
P
i
F i(xi)

¡ Y . Then from lemma 3{1, there is ¼ 2 ba such that

¼ ¢ (x0i(0)¡ xi(0); ¢ ¢ ¢; x0i(¿ ) ¡ xi(¿ ); 0; 0; ¢ ¢ ¢) + ¼ ¢ "e(0) ¸ 0: (2)

Note that (x0i(0) ¡ xi(0); ¢ ¢ ¢; x0i(¿) ¡ xi(¿); 0; 0; ¢ ¢ ¢) + "e(0) has only ¯nite nonzero elements
and so it is in l1: From the Yosida{Hewitt theorem for this ¼(¸ 0) there is ¼c 2 l+1 such
that ¼ = ¼c + ¼f where ¼f (¸ 0) is the purely ¯nitely additive part. Since ¼f has zero values
over c00 and (x0i(0) ¡ xi(0); ¢ ¢ ¢; x0i(¿) ¡ xi(¿); 0; 0; ¢ ¢ ¢) + "e(0) is in c00, we indeed have

¿X

t=0

¼c(t) ¢ (x0i(t) ¡ !i(t)) ¸
¿X

t=0

¼c(t) ¢ (xi(t) ¡ !i(t))¡ "¼c(0) ¢ e(0) (3)

We claim that for any z 2 Ci ¡ f!ig,

lim
¿!1

¿X

t=0

¼c(t) ¢ z(t) exists and ¼c ¢ z =
1X

t=0

¼c(t) ¢ z(t) is a ¯nite value or +1. (4)

De¯ne z¡ for z(2 s) by z¡ = 0 when z ¸ 0 and z¡ = z when z < 0. When z ¸ 0, (4)

holds from the non-negativity of ¼c. When z < 0,
P¿
t=0 ¼c(t) ¢ z(t) =

P¿
t=0 ¼c(t) ¢ z¡(t) and

lim¿!1
P¿
t=0 ¼c(t) ¢ z¡(t) exists and has a ¯nite value or +1 due to z ¸ b for some b 2 l1.

Thus (4) holds and hence
1P
t=0
¼c(t) ¢ z(t) is well-de¯ned for any z 2 Ci ¡ f!ig.

From (3), we have
¿P
t=0
¼c(t)¢(x0i(t)¡!i(t)) ¸

¿P
t=0
¼c(t)¢(xi(t)¡!i(t))¡"¼c(0)¢e(0). Letting

¿ ! 1 for given ² > 0 and then letting "! 0, we have

1X

t=0

¼c(t) ¢ (x0i(t)¡ !i(t)) ¸
1X

t=0

¼c(t) ¢ (xi(t) ¡ !i(t)) for all x0i 2 Ri(xi): (5)

Let y0 2 Y . Then we have y ¡ y0 = P
i
(xi ¡ !i) ¡ y 2

P
i F

i(xi) ¡ Y from the feasibility
of the weak Pareto allocation (x1;¢ ¢ ¢; xH ; y),

P
i
(xi ¡ !i) ¡ y = 0. By the same argument

as before, we can show that for any " > 0 there is ¿o such that ¿ > ¿o implies

¿X

t=0

¼c(t) ¢ y(t) ¸
¿X

t=0

¼c(t) ¢ y0(t) ¡ "¼c(0) ¢ e(0). (6)

14



By the feasibility of weakly Pareto optimal allocations, y =
P
i
(xi ¡ !i) 2 Ci ¡ f!ig

holds. Thus (4) implies that ¼c ¢ y =
1P
t=0
¼c(t) ¢ y(t) is a ¯nite value or +1. By letting ¿ !

1 and then taking "! 0, we obtain

1X

t=0

¼c(t) ¢ y(t) ¸ lim sup
¿

¿X

t=0

¼c(t) ¢ y0(t) for all y0 2 Y . (7)

Next we claim

¼c ¢ y =
1X

t=0

¼c(t) ¢ y(t) = 0: (8)

Since 0 2 Y is assumed, (7) implies
1P
t=0
¼c(t) ¢ y(t) ¸ 0. Note that ¡y =

P
i
(xi ¡ !i) ¡ 2y 2

P
iF

i(xi) ¡ Y from the feasibility of the weak Pareto allocation (x1;¢ ¢ ¢; xH ; y),
P
i
(xi ¡ !i)

¡ y = 0. By using the argument similar to that for getting (7), we have
1P
t=0
¼c(t) ¢ (¡y(t)) ¸

0 and so
1P
t=0
¼c(t) ¢ (y(t)) · 0. Thus we get the other part of the inequality in (8) and hence

(8).

Now we claim

¼c 6= 0: (9)

Suppose contrary that ¼ = ¼f . From assumption (5), v 2
P
i
F i(xi) ¡ Y implies that for any

² > 0 there is ¿ 0 such that (v(0); ¢ ¢ ¢; v(¿ );¡®;¡®; ¢ ¢ ¢) + "e(0) 2 P
i
F i(xi) ¡ Y holds for

any ¿ > ¿ 0. Since ® > 0 in Rn, (v(0); ¢ ¢ ¢; v(¿ );¡®;¡®; ¢ ¢ ¢) + "e(0) is in l1. Then we have

¼ ¢ [(v(0); ¢ ¢ ¢; v(¿ );¡®;¡®; ¢ ¢ ¢) + "e(0)]

= ¼f ¢ [(v(0); ¢ ¢ ¢; v(¿ );¡®;¡®; ¢ ¢ ¢) + "e(0)]

= ¼f ¢ (v(0); ¢ ¢ ¢; v(¿); 0; 0; ¢ ¢ ¢) + ¼f ¢ "e(0) + ¼f ¢ (0; ¢0 ¢ ¢; 0;¡®;¡®; ¢ ¢ ¢)

= ¼f ¢ (¡®;¡®; ¢ ¢ ¢ ¢ ¢) ¸ 0 (10)

since ¼f has only zero values over c00. On the other hand, ¼ = ¼f ¸ 0 and ® > 0 imply

¼f ¢ (¡®;¡®; ¢ ¢ ¢ ¢ ¢) · 0. (11)

Thus, ¼f ¢ (¡®;¡®; ¢ ¢ ¢ ¢ ¢) = 0 and hence ¼ = ¼f = 0 holds from (10) and (11). This is,

however, a contradiction to ¼ 6= 0. Therefore we establish (9).

Theorem 3{1 is a form of the second fundamental theorem of welfare economics with

net trades. This theorem holds whenever the net trading sets are convex, closed, bounded
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from below by b 2 l1, even if the endowments cannot be expressed with points in E: We
will revisit this point in section 5. We indeed obtain the usual second theorem which is

independent of the distribution of endowments for consumers.

Corollary 3{1 : For every Pareto optimal allocation (x1; ¢ ¢¢; xH ; y), there exists ¼c 2 l1
such that

1P
t=0
¼c(t) ¢x0i(t) ¸

1P
t=0
¼c(t) ¢ xi(t) for all x0i 2 Ri(xi) and

lim sup¿
¿P
t=0
¼c(t) ¢ y0(t) · 0 for all y0 2 Y .

Proof) From the same way as that in the proof of Theorem 3{1, we have the inequality

(3 - 1) with letting ¼c a supporting price in theorem 3{1 since a Pareto optimal allocation is

weakly optimal. Thus, we have

¿X

t=0

¼c(t) ¢ x0i(t) ¸
¿X

t=0

¼c(t) ¢ xi(t)¡ "¼c(0) ¢ e(0):

Since it is easy to see Ci is bounded from below by b 2 l1 from assumption (1),
1P
t=0
¼c(t) ¢

x0i(t) and
1P
t=0
¼c(t) ¢ xi(t) has only ¯nite value or +1 as the same way as before. By letting

¿ ! 1, and then taking " ! 0, we have

1X

t=0

¼c(t) ¢ x0i(t) ¸
1X

t=0

¼c(t) ¢ xi(t) for any x0i 2 Ri(xi).

From theorem 3{1 we already have

lim sup
¿

¿X

t=0

¼c(t) ¢ y0(t) · 0 for all y0 2 Y

and ¼c ¸ 0, ¼c 6= 0.

Both theorem 3{1 and corollary 3{1 do not exclude the case where
1P
t=0
¼c(t) ¢ (xi(t) ¡

!i(t)) = +1 and
1P
t=0
¼c(t) ¢ xi(t) = +1. If

1P
t=0
¼c(t) ¢ (xi(t) ¡ !i(t)) = +1, then such

allocation xi is neither a quasi-equilibrium nor a competitive equilibrium. On the other

hand if
1P
t=0
¼c(t) ¢ xi(t) = +1, then such allocation cannot be a valuation equilibrium. It

is easy to see that
1P
t=0
¼c(t) ¢ (

P
i
xi(t)) =

1P
t=0
¼c(t) ¢ (

P
i
!i(t)) holds for every Pareto optimal

allocation by assumption (4). Thus if there is some i with
1P
t=0
¼c(t) ¢ xi(t) = +1, then
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the valuation of aggregate endowments equals to +1, and so it is possible to distribute
any amount of income among consumers. Thus it is impossible for this allocation to be a

valuation equilibrium.

4 The Existence of a Competitive Equilibrium

In this section we prove the existence of a competitive equilibrium. As discussed in the

previous section we take price system in sn which is not the dual of the commodity space.

With this price system there is commodity bundle which does not have the value.

We de¯ne a competitive equilibrium as follows:

De¯nition: A pair of an allocation and a price system ((x1; ¢ ¢ ¢; xH ; y); p) 2 C 1 £ ¢ ¢ ¢
£ CH £Y £ sn is a competitive equilibrium if ;
1. For each i; xi 2 Bi(p) = fx 2 Ci :

1P
t=0
p(t) ¢ (x(t) ¡ !i(t)) · 0g and

x0 2 P i(xi) implies
1P
t=0
p(t) ¢ (x0(t) ¡ !i(t)) > 0.

2. y 2 Y , p ¢ y = 0, and limsup¿
¿P
t=0
p(t) ¢ y0(t) · 0 for y0 2 Y .

3.
P
i
(xi ¡ !i) = y

The positive part of valuation is net expenditure and the negative part of it is net income

from trade. As usual net expenditure cannot exceed the net income in the budget set Bi.

De¯nition 1 means that the allocation in the budget set is not strictly preferred to the

equilibrium allocation for each consumer.

De¯nition 2 is a form of the pro¯t maximization condition with constant returns to scale

technology. It is not necessary for every production plan to be evaluated by the equilibrium

price system. Thus de¯nition 2 requires that no production plan in the technology set can get

strictly positive pro¯t in the long run. De¯nition 3 expresses the feasibility of a competitive

equilibrium allocation.

The step of our proof is the following: we use Negishi approach to ¯nd a quasi-equilibrium

by exploiting theorem 3{1. After that we show the quasi-equilibrium is actually a competitive

equilibrium 8by using monotonicity and adequacy assumption. In order to apply Negishi

approach we must show the utility possibility set is compact in the ¯rst place.
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Lemma 4{1 : De¯ne F = f(z1;¢ ¢ ¢; zH) : zi 2 C i for all i and (z1; ¢ ¢ ¢; zH) · (x1;¢ ¢
¢; xH) where

P
i
(xi ¡ !i) 2 Y; xi 2 C i for all ig. We call F a feasible set. F is non-

empty, convex, and compact in the product
Q
H
E with respect to the product

Q
H
¾ (E;W )

topology.

Proof) From assumption (7) (adequacy assumption), there is xi 2 C i and yi 2 Y such
that xi ¡ !i < yi. Let x0i = xi + (yi ¡ xi + !i) = y i + !i. By the monotonicity assumption,
x0i 2 Ci holds. Since

P
i
(xi ¡ !i) =

P
i
yi 2 Y , F is non-empty. Clearly F is convex by the

convexity of Ci and Y .

Let F = f(x1;¢ ¢ ¢; xH) : xi 2 Ci for all i and
P
i
(xi ¡ !i) 2 Y g. We claim that F is a

closed subset of the topological product of
Q
H
E. Let fx® = (x®1 ; ¢ ¢ ¢; x®H)g a converging net

in F with the limit exi with respect to ¾ (E;W ) for each i. Since C i is ¾ (E;W )-closed, exi 2
Ci for each i. Consider the topological sum of E ,

P
H
E . Then an open set V in

P
H
E can be

represented as V =
P
i
Vi where Vi is an open set in E for each i: Since the sum of open sets

is open (Scheafer(1966) p.13) , V is ¾ (E;W )-open. Since Y is closed it follows that
P
i
(exi ¡

!i) 2 Y . Thus (ex1; ¢ ¢ ¢; exH) 2 F , and hence F is closed.
Note that (

P
i
(Ci ¡ f!ig)) \ Y is bounded from assumptions (1) and (6). Indeed

P
i
(Ci

¡ f!ig) is bounded below by Hb. Then from assumption (6), (
P
i
(C i ¡ f!ig)) \ Y has an

upper bound a 2 E. Then if (x1; ¢ ¢ ¢; xH) 2 F , we can see that b · xi · a ¡
P
j 6=i
xj · a ¡ (H

¡ 1)b for all i. It follows that F is a compact set due to F ½ Q
H
[b; a¡ (H ¡ 1)b]. Recall that

any order interval of Riesz symmetric dual space is ¾ (E;W )-compact. Then by Tychono®'s

theorem
Q
H
[b; a ¡ (H ¡ 1)b] is compact in the product topology Q

H
¾ (E;W ). Therefore F is

compact since any closed set in a compact set is compact.

Let fz® = (z®1 ; ¢ ¢ ¢; z®H)g in F which is converging net with the limit ez = (ez1; ¢ ¢ ¢; ezH).
Then we can take (x®1 ; ¢ ¢ ¢; x®H) such that x®i 2 C i for all i and

P
i
(x®i ¡ !i) 2 Y (thus (x®1 ; ¢

¢ ¢; x®H) 2 F ) and (z®1 ; ¢ ¢ ¢; z®H) · (x®1 ; ¢ ¢ ¢; x®H). Since F is compact there exist a converging
subnet of fx®(k)g such that x®(k)i ! exi and ( ex1; ¢ ¢ ¢; exH) 2 F . Then (z®(k)1 ; ¢ ¢ ¢; z®(k)H ) ·
(x®(k)1 ; ¢ ¢ ¢; x®(k)H ) and a subnet fz®(k)i g converges to ezi since z®i ! ezi and ¾ (E;W ) is Hausdor®

topology. Thus (ez1; ¢ ¢ ¢; ezH) · (ex1; ¢ ¢ ¢; exH) holds: Also ezi 2 Ci from the ¾ (E;W )-closedness
of Ci for each i. Thus F is closed. As the same way as before, F ½ Q

H
[b; a ¡ (H ¡ 1)b] holds,

and so F is compact.
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Next lemma shows that there is a utility representation for our preference. We need this

because we use Negishi approach to prove the existence of a competitive equilibrium.

Lemma 4{2 : De¯ne Gi = ¼i(F ) : the projection of F into Ci: Then for all i there exists

a ¾ (E;W )-continuous function ui : Gi ! R such that xi 2 P i(zi) if and only if ui(xi)
> ui(zi).

Proof) From lemma 4{1, F is compact. Since ¼i is continuous,Gi is compact. Moreover,

the preference P i is continuous, transitive, irre°exive, and convex, and Ri(x) is the closure

of P i(x) for all x 2 Ci. Thus, we can apply Proposition 1 in Boyd{McKenzie (1993).4 It
assures the existence of a desired continuous function ui.

De¯ne 4 = fs = (s1; ¢ ¢ ¢; sH) 2 RH+ : s1 + ¢ ¢ ¢+ sH = 1g and U = f(u1(x1); ¢ ¢ ¢; uH(xH))
: (x1; ¢ ¢ ¢; xH) 2 Fg, and ½(s) = supf® > 0 : ®s 2 Ug.

Lemma 4{3 : ½ (s) is well de¯ned for s 2 4 and ½ : 4 ! R is a continuous function.

Proof) Since Gi is compact and ui :Gi!R is ¾(E;W )-continuous, Weiersraus's theorem

implies that there exists ai; bi 2 Gi such that ui(ai) · ui(x) · ui(bi) for x 2 Gi: Thus without
loss of generality we can assume ui(ai) = 0 for each i: From the adequacy assumption there

exists xi 2 Ci and y i 2 Y such that xi ¡ !i < yi. Let x0i = yi + !i. Then x0i 2 Gi and ui(x0i)
> ui(xi) ¸ 0 hold for each i. Thus f(z1; ¢ ¢ ¢zH) : 0 · (z1;¢ ¢ ¢; zH) · (u1(x01); ¢ ¢ ¢; uH(x0H))g
½ U and hence ½ (s) is well de¯ned.
We claim that ½(s) is continuous. Let ® > 0 satisfying ®s 2 U and let 0 < ¯ < ®. Pick

(x1; ¢ ¢ ¢; xH) 2 F such that ®s = (u1(x1); ¢ ¢ ¢; uH(xH)). Then by continuity of the function
ui there exists some 0 < ± < 1 such that (u1(±x1); ¢ ¢ ¢; uH(±xH)) > ¯s. let sn ! s, then

we know that (u1(±x1); ¢ ¢ ¢; uH(±xH)) > ¯sn holds for su±ciently large n. Note that 0 ·
(z1; ¢ ¢ ¢; zH) · (z¤1; ¢ ¢ ¢; z¤H) and (z¤1; ¢ ¢ ¢; z¤H) 2 U implies that (z1; ¢ ¢ ¢; zH) 2 U from the

construction. Therefore ¯sn 2 U and so ¯ · ½ (sn) holds for su±ciently large n. Thus ¯ ·
lim infn!1 ½ (sn) holds for all 0 < ¯ < ®. Consequently ® · liminfn!1 ½ (sn) for all ® >

0 with ®s 2 U . Therefore ½ (s) · lim infn!1½ (sn) holds.
4Although they use the product topology on s, the argument same as theirs still applies to our setting

with ¾(E;W ) as well. The crucial fact in their argument is the connectedness of unit interval [0;1].
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Next let ½ (s) < ¯. Fix r with ½ (s) < r < ¯. Since sn! s and rs < ¯s, rs < ¯sn holds for

su±ciently large n. Suppose ¯sn 2 U , then rs 2 U . This, however, contradicts to ½ (s) < r.
Therefore ¯sn =2 U holds for su±ciently large n. It follows that limsupn!1½ (sn) · ¯ for all
¯ with ½ (s) < ¯ since ½ (sn) · ¯ holds for su±ciently large n. Therefore lim supn!1 ½ (sn)
· ½ (s) holds. Together with the previous results we have lim ½ (sn) = ½ (s) and so ½ (s) is
continuous.

De¯ne a quasi-equilibrium as follows:

De¯nition: The pair of an allocation and price system ((x1; ¢ ¢ ¢; xH;y); p) 2 C1 £ ¢ ¢ ¢£
CH £Y £ sn is a quasi equilibrium if :
1. For each i,

1P
t=0
p(t) ¢ (x(t) ¡ !i(t)) · 0 and x 2 Ri(xi) implies

1P
t=0
p(t) ¢ (x(t) ¡ !i(t)) ¸ 0.

2. y 2 Y ,
1P
t=0
p(t) ¢ y0(t) = 0, and y0 2 Y implies lim sup¿

1P
t=0
p(t) ¢ y0(t) · 0.

3.
P
i
(xi ¡ !i) = y:

Lemma 4{4 : There is a quasi-equilibrium ((x1;¢ ¢ ¢; xH ; y); ¼c) with a price system ¼c 2
l+1 nf0g(½ sn):

Proof) For each s 2 4 there exists an allocation (xs1; ¢ ¢ ¢; xsH; ys) satisfying ½ (s) s =
(u1(xs1); ¢ ¢ ¢:uH(xsH)) and

P
i
(xsi ¡!i) = ys. Note that any allocation which satis¯es the above

equalities is weakly Pareto optimal.

From lemma 3{2, we can well de¯ne the following set :

P (s) = f¼ 2 ba : k¼kba = 1; ¼ ¢ v ¸ 0 for all v 2 (
X

i

F i(xsi )¡ Y )\ l1; ¼ 6= 0; ¼ ¸ 0g:

P (s) is nonempty and convex. Now for each s 2 4 we de¯ne the set :

©(s) = f(z1(s); ¢ ¢ ¢; zH(s)) 2 RH : zi(s) =
1X

t=0

¼c(t)(x
s
i (t)¡ !si (t)) for all i,

where ¼c satis¯es ¼ = ¼c + ¼f for some ¼ 2 P (s):g

Since P (s) is nonempty from lemma 3{2 and it is convex, ©(s) is nonempty and convex.

We claim that ©(s) is uniformly bounded in RH independent of s and © has a closed graph.
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First we show that ©(s) is uniformly bounded. Since P (s) ½ P = f¼ 2 ba+ : k¼kba · 1g.
By Alaoglu's theorem (Dunford and Schwartz(1958) p. 424), P is ¾ (ba; l1)-compact. By

the ¾ (ba; l1)-continuity of ¼ ¢ f for f 2 l1, we can apply Weierstraus' theorem and conclude
that there exists ¼ 2 P such that ¼ ¢ b · ¼ ¢ b for all ¼ 2 P . Remember b 2 l1 is a lower

bound of the net trading sets and b · xsi ¡ !i for any s 2 4. Since ¼ ¸ 0 implies zi(s) =
1P
t=0
¼c(t) ¢ (xsi (t) ¡ !i(t)) ¸

1P
t=0
¼c(t) ¢b(t), zi(s) has a uniform lower bound. Note that

P
i
zi(s)

=
1P
t=0
¼c(t) ¢ (

P
i
(xsi (t) ¡ !i(t)) =

1P
t=0
¼c(t) ¢ ys(t) · lim sup

¿P
t=0
¼c(t) ¢ ys(t) · 0 holds. Therefore

zi(s) = ¡
X

i 6=j
zj(s) ·¡(H ¡ 1)

1X

t=0

¼c(t) ¢ b(t)

follows. Let ± = H
¯̄
¯̄
1P
t=0
¼c(t) ¢ b(t)

¯̄
¯̄. Then z(s) 2 © (s) implies jzi(s)j · ± for each i and s 2

4. Thus © (s) is uniformly bounded independent of s in RH .
Next we de¯ne a nonempty, compact, and convex subset of RH :

T = ft = (t1; ¢ ¢ ¢; tH) 2 RH : ktk1 =
X

i

jtij · H±g:

From the uniform boundedness of © (s), © (s) ½ T holds for every s 2 4. Recall that U(F )
is compact by the compactness of F and the continuity of ui for all i. Thus U(F ) ½ RH has
upper bound ® = (®1; ¢ ¢ ¢; ®H) 2 RH+ . Fix some ´ > H2±A where A =

P
i
®i. Let r(s) =

P
i
ui(xsi) and de¯ne the function f : 4 £ T ! 4 by

f(s; t) = ([s1 + ´
¡1t1r(s)]

+=
X

i

[si + ´
¡1tir(s)]

+; ¢ ¢ ¢;

[sH + ´
¡1tHr(s)]

+=
X

i

[si + ´
¡1tir(s)]

+),

where x+ = maxf0; xg for x 2 R. We claim f is well de¯ned. Indeed
P
i
[si + ´

¡1tir(s)]
+

¸ P
i
(si + ´¡1tir(s)) = 1 + ´¡1

P
i
tir(s) holds. We know that ¡H± · ti · H± and 0 ·

P
i
ui(xsi) = r(s) · A. Then ¡H±A · tir(s) · H±A holds for any s 2 4. Therefore

1 + ´¡1
X

i

tir(s) ¸ 1¡ ´¡1A±H2 > 0

holds. Consequently f is well de¯ned and continuous over 4 £ T .
Finally we de¯ne the nonempty correspondence ª : 4 £ T ! 24£Tnf;g by

ª(s; t) = ff(s; t)g £© (s) :
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ª is convex valued. The fact © has a closed graph together with the continuity of f implies

that ª has also closed graph. Thus we can apply Kakutani's ¯xed point theorem and the

correspondence ª has a ¯xed point (s; t) 2 4 £ T such that s = f (s; t) and t 2 ©(s).
Pick some ¼ 2 P (s) such that ti =

1P
t=0
¼c(t) ¢ (!i(t) ¡ xsi (t)). We claim ti = 0 for each

i. Suppose si = 0. Then [si + ´¡1tir(s)]+ = [´¡1tir(s)]+ = 0. Since ´¡1 > 0 and r(s) ¸
0, ´¡1tir(s) = 0 or ti < 0 must hold. On the other hand,

X

i

ti =
X

i

1X

t=0

¼c(t) ¢ (!i(t)¡ xsi (t)) =
1X

t=0

¼c(t) ¢ (
X

i

(!i(t) ¡ xsi(t))

=
1X

t=0

¼c(t) ¢ ys(t) = 0:

Thus there must exists some j with tj > 0, and [sj + ´¡1tjr(s)]+ = sj + ´¡1tjr(s) = sj

follows. Then tjr(s) = 0 and tj = 0 or r(s) =
P
i
ui(xsi ) = 0 holds. But tj > 0 implies

P
i
ui(xsi )

= 0. Since for each i, xi 2 Ci implies ui(xi) ¸ 0, if
P
i
ui(xsi ) = 0, then ui(x

s
i ) = 0 holds for

each i. Also by the adequacy assumption there exist xi 2 Ci, yi 2 Y such that xi ¡ !i < yi
for each i. Let x0i = yi + !i > xi. Then by the monotonicity assumption, ui(x

0
i) > u(x

s
i ) and

P
i
(x0i ¡ !i ¡yi) = 0 hold. This, however. contradicts to the weakly Pareto optimality of

(xs1; ¢ ¢ ¢; xsH ; ys). Thus r(s) 6= 0 holds and it implies si > 0 for all i.
Therefore [si + ´¡1tir(s)]+ > 0 holds and this implies si + ´¡1tir(s) = si, or tir(s) = 0

for all i. Since r(s) 6= 0 holds for all i, thus ti =
1P
t=0
¼c(t) ¢ (!i(t) ¡ xsi(t)) = 0 must hold for

all i. Since theorem 3 { 1 implies
1P
t=0
¼c(t) ¢ (x0i(t) ¡ !i(t)) ¸

1P
t=0
¼c(t) ¢ ((t) ¡ !i(t)) for all x0i

2 Ri(xsi ), therefore
1X

t=0

¼c(t) ¢ (x0i(t) ¡ !i(t)) ¸ 0 holds for all x0i 2 Ri(xsi ).

The pro¯t maximization condition and the feasibility condition are already established in

theorem 3{1. Therefore we obtain a quasi-equilibrium (xsi ; ¢ ¢; xsH ; ys; ¼c).

Theorem 4{1 : There exists a competitive equilibrium ((x1; ¢ ¢ ¢; xH;y); p) with a price
system p(¸ 0) 2 l1; p 6= 0:

Proof) From lemma 4{4 we have a quasi-equilibrium ((x1; ¢ ¢ ¢; xH ; y); ¼c). We claim this
is actually a competitive equilibrium. Since the feasibility (condition 3. in the de¯nition of a
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competitive-equilibrium) and pro¯t maximization condition (condition 2. in the de¯nition)

are already met, we only have to show condition 1. holds at quasi-equilibrium.

By assumption (7)(the aggregate adequacy assumption), there exists xi 2 C i and yi 2
Y such that xi ¡ !i < y i and

P
i(yi ¡ (xi ¡ !i)) = (°; °; ¢ ¢ ¢) for some °(2 Rn) > 0. Then

we have xi 2 F ,
1X

t=0

¼c(t) ¢ (xi(t)¡ !i(t)) · lim sup
1X

t=0

¼c(t) ¢ yi(t) · 0

for all i, and

X

i

(
1X

t=0

¼c(t) ¢ (xi(t)¡ !i(t)) =
1X

t=0

¼c(t) ¢ (
X

i

(xi(t) ¡ !i(t))

< limsup
1X

t=0

(¼c(t) ¢
X

i

y i(t)) · 0:

Thus there exists at least for some j satisfying

1X

t=0

¼c(t) ¢ (xj(t)¡ !j(t)) < 0. (12)

Then from lemma 4{4 we know xj =2 Rj(xj) for j 2 I1. For x0j 2 P j(xj), de¯ne zµ = µx0j
+ (1 ¡ µ)xj for each µ 2 (0; 1). Note that from lemma 4 - 4,

1P
t=0
¼c(t) ¢ (x0i(t) ¡ !i(t)) ¸ 0

holds. Now since P j is ¾(E;W )-open valued in Cj from assumption (2) and x0j is in P
j(xj),

there exists µj 2 (0; 1) such that zµj 2 P j(xj). Moreover,
1X

t=0

¼c(t) ¢ (zµj (t) ¡ !j(t))

=
1X

t=0

¼c(t) ¢ [µj(x0j(t) ¡!j(t)) + (1 ¡ µj)(xj(t) ¡ !j(t))]

= µj
1X

t=0

¼c(t) ¢ ((x0j(t) ¡ !j(t)) + (1¡ µj)
1X

t=0

¼c(t) ¢ (xj(t)¡ !j(t))

holds since
1P
t=0
¼c(t) ¢ (xi(t)¡ !i(t)) < 0 holds and has a only ¯nite value (or +1). Thus, if

1P
t=0
¼c(t) ¢ (x0j(t) ¡ !j(t)) = 0 holds, then we have

1P
t=0
¼c(t) ¢ (zµj (t) ¡ !j(t)) < 0. This implies

zµj =2 Rj(xj) from lemma 4{4. This is, however, a contradiction. Thus
1P
t=0
¼c(t) ¢ (x0j(t) ¡

!j(t)) 6= 0 and hence we have for every j 2 I1 that

x0j 2 P j(xj) implies
1X

t=0

¼c(t) ¢ (x0j(t) ¡!j(t)) > 0. (13)
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Condition 3. of competitive equilibrium holds for the consumers in I1.

Denote I1 for the set of consumers satisfying ¼c ¢ (x0i ¡ !i) < 0 for some x0i 2 Ci. From
(12) we know I1 6= ;. Let I2 be its complementary set in I. From the de¯nition, for any

i 2 I2,
x0i 2 Ci implies ¼c ¢ (x0i ¡ !i) ¸ 0. (14)

By using the argument similar to the one yielding (13) from (12), we can show that (13)

holds for the consumers in I1. Thus, it is enough to show I = I1 to prove that ((x1; ¢ ¢
¢; xH ; y); ¼c) is a competitive equilibrium.
Suppose I2 is non-empty. From the irreducibility assumption, we know that there are ®i

> 0 and xi with xi 2 Ci for i 2 I2, and xj 2 P j(xj) for j 2 I1 such that y 0 =
P
j2I1(x

j ¡!j)
+
P
i2I2 ®i(x

i ¡!i) 2 Y . Since ¼c ¢ (xi ¡ !i) ¸ 0 holds for any i 2 I, we have

¼c ¢ y 0 = ¼c ¢
X

j2I1
(xj ¡ !j) + ¼c ¢

X

i2I2
®i(x

i ¡ !i) · 0 (15)

from the pro¯t maximization condition in lemma 4{4. Since (13) holds for any j 2 I1,
¼c ¢ (xj ¡ !j) > 0, and hence

X

j2I1
¼c ¢ (xj ¡ !j) > 0 (16)

holds.

Now consider i 2 I2. Then, the fact that xi 2 Ci ¡ f!ig for some ¾i > 0 yields

¼c ¢ ®i(xi ¡ !i) ¸ 0 for any i 2 I2,

and so
X

i2I2
¼c ¢ ®i(xi ¡ !i) ¸ 0 (17)

holds. (16) and (17) are, however, a contradiction to (15). Thus, this contradiction implies

I2 = ; or I1 = I. Therefore condition 3. of competitive equilibrium holds for each consumer
i at ((x1; ¢ ¢ ¢; xH ; y); ¼c), and ((x1; ¢ ¢ ¢; xH ; y); ¼c) is a desired competitive equilibrium.

5 Conclusion

It has been shown that the regularity assumption is su±cient condition for the second fun-

damental theorem of welfare economics with general consumption sets in economies over an
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discrete time in¯nite horizon. There is a combination of the separate conditions on pref-

erences, consumption sets and the production set which implies the regularity assumption.

If preferences are ¾(E;W )- continuous, consumption sets contain the lower bounds in l1

and the aggregate adequacy assumption is satis¯ed then the exclusion assumption on the

production set implies the regularity assumption. In other words if consumers are myopic

enough to supply some constant positive net supply in the far future and a production can

be stopped at some period then the regularity assumption is satis¯ed. In order to obtain

an equilibrium with price system in l1, Bewley(1972) assumed the exclusion assumption ,

consumption set is positive orthant of l1; and !i is in the interior of positive orthant of l1:

Our theorem assures that equilibrium price system is actually in l1 with general consumption

set without interiority assumption for endowment whenE = l1 andW = l1: Thus our result

is a generalization of Bewley's result in the case of l1.

Assumption 7 in Boyd{McKenzie(1993) implies that both of the regularity assumption

and the aggregate adequacy assumption holds. They use their assumption 7 in order to

translate Edgeworth equilibrium into a competitive equilibrium. Our separation argument

shows that we can substitute the regularity assumption of Boyd{McKenzie(1993) with our

regularity assumption for the same purpose. This is possible by virtue of our new price

normalization instead of theirs. Thus in the setting of this paper Edgeworth equilibrium can

be translated into a competitive equilibrium based on our regularity assumption. It implies

the equivalence of a competitive equilibrium allocation and Edgeworth euilibrium allocation

under our regularity assumption and irreducibility. The equivalence holds with stronger

regularity assumption and the strong irreducibility assumptiom in Boyd{McKenzie(1993) .

Our results might be extended to economies with general convex production set drawing

on the regularity assumption and the same approach used here.

Comparing the uniform properness assumption with the regularity assumption would be

interesting. Both assumptions are closely relevant to the marginal rate of substitutions of

preferences and production.
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