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Abstract

We consider a time series model with autoregressive conditional heteroskedas-

ticity that is subject to changes in regime. The regimes evolve according to a

multistate latent Markov switching process with unknown transition probabilities,

and it is the constant in the variance process of the innovations that is subject to

regime shifts. The joint estimation of the latent process and all model parameters

is performed within a Bayesian framework using the method of Markov Chain

Monte Carlo simulation. We perform model selection with respect to the number

of states and the number of autoregressive parameters in the variance process

using Bayes factors and model likelihoods. To this aim, the model likelihood is

estimated by the method of bridge sampling. The usefulness of the sampler is

demonstrated by applying it to the data set previously used by Hamilton and

Susmel who investigated models with switching autoregressive conditional het-

eroskedasticity using maximum likelihood methods. The paper concludes with

some issues related to maximum likelihood methods, to classical model selection,

and to potential straightforward extensions of the model presented here.

Keywords: Bayesian analysis, bridge sampling, MCMC estimation, model selec-

tion, switching ARCH-models

1 Introduction

The basic switching ARCH-model has been introduced independently in Cai

(1994) and Hamilton and Susmel (1994) and has been generalized in Gray (1996).

In these papers the basic switching ARCH-model is derived from the classical
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ARCH-model

ht = 
 + �1u
2
t�1 + � � �+ �mu

2
t�m; (1)

where the parameter 
 is time invariant, by assuming that 
 changes over time.

From now on we will use the notation 
t rather than 
 to emphasize its time

varying nature:

ht = 
t + �1u
2
t�1 + � � �+ �mu

2
t�m: (2)

The classical ARCH-model (1) obviously is that special case of (2), where 
t � 
.

Note that there exists an alternative way to parameterize the ARCH-model (1),

namely:

ut =
p

 � ~ut; ~ut =

p
ht � vt;

ht = 1 + �1~u
2
t�1 + � � �+ �m~u

2
t�m: (3)

Again we could introduce a time varying parameter 
t rather than a constant

parameter 
. It is easy to verify that such a model could be rewritten as:

ut =
p

tht � vt;

ht = 1 + �1
u2t�1

t�1

+ � � �+ �m
u2t�m

t�m

: (4)

For a constant parameter 
t � 
 the alternative parameterization is equivalent

to parameterization (1). However, obviously model (2) and (4) are di�erent, if 
t
is time dependent.

To get an identi�ed model one needs further assumptions on the way how 
t
changes over time. In Cai (1994), Hamilton and Susmel (1994) and Gray (1996)

changes of 
t are described by the framework of Markov switching models intro-

duced by Hamilton (1989). One assumes that 
t takes one out of K di�erent

values according to a hidden Markov chain It taking values between 1 and K:


t = 
It.

The switching ARCH-model of Hamilton and Susmel (1994) is obtained by in-

troducing such a switching parameter into parameterization (4):

ut =
p

It � ht � vt;

ht = 1 + �1
u2t�1

It�1

+ � � �+ �m
u2t�m

It�m

: (5)

In the present paper we study the slightly di�erent switching ARCH-model where

the switching parameter is introduced into parameterization (2):

ut =
p
ht � vt;

ht = 
It + �1u
2
t�1 + � � �+ �mu

2
t�m: (6)
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It is easy to verify that the switching ARCH-model of Cai (1994) which is re-

stricted toK = 2 and uses the state dependent formulation 
t = 
0+St
1, with St
either 0 or 1, is a special case of (6). Gray (1996) also uses this parameterization,

and introduces additionally switching into the coe�cients of the ARCH-process.

In the present paper we carry out a fully Bayesian analysis of the basic switching

ARCH-model (6). The joint estimation of the latent Markov switching process

and all model parameters for �xed orders K and m of the switching ARCH-

model is performed using the method of Markov Chain Monte Carlo simulation

(see e.g. Smith and Roberts, 1993 for a general introduction to MCMC meth-

ods). The design of suitable MCMC methods to generate a sample from the

posterior of a switching ARCH-model has not been studied before, previous pa-

pers used maximum likelihood methods for parameter estimation. We combine

well-known results for multi move sampling of a hidden Markov process (Carter

and Kohn, 1994; Shephard, 1994; Chib, 1996) with recent results available for

MCMC estimation of ARCH-models (Nakatsuma, 2000). One iteration of the

sampler involves �rst a multi-move step to simulate the latent process out of its

conditional distribution. The Gibbs sampler can then be used to simulate the pa-

rameters, in particular the transition probabilities, for which the full conditional

posterior distribution is known. For most parameters, however, the full condition-

als do not belong to any well-known family of distributions. The simulations are

then based on the Metropolis-Hastings algorithm with carefully chosen proposal

densities.

For practical volatility modeling the order parameters, however, will be unknown.

We perform model selection with respect to the number of states K and the

number of autoregressive parameters m in the variance process using Bayes fac-

tors and model likelihoods. We derive an estimate of the model likelihood for

a given order K and m from the MCMC output by combining the candidate's

formula (Chib, 1995) with importance sampling, where the importance density

is constructed from the MCMC sample. An alternative Bayesian approach, not

pursued in the present paper, would be the inclusion of K and m into the MCMC

scheme along the lines of the jump-di�usion-approach outlined by Richardson and

Green (1997).

The next section presents the basic switching ARCH model along with the prior

speci�cation. MCMC Estimation is discussed in detail in section 3, followed by

issues on Bayesian model selection in section 4. The usefulness of the Bayesian

approach is illustrated in section 5 by reanalyzing the data set used in Hamil-

ton and Susmel (1994). The paper concludes in section 6 with some comments

on maximum likelihood versus Bayesian methods, some issues related to classi-

cal model selection, and with some potential straightforward extensions of the

methods presented here.
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2 The Basic Switching ARCH Model

2.1 Model formulation

Let yN = (y1; : : : ; yN) denote a sequence of N observations yt. We assume that

the observations yt are generated by the following model:

yt = z
0

t� + ut; (7)

where the predictor zt may contain exogenous variables as well as lagged values

of yt. ut has the following normal distribution:

ut =
p
ht � vt; (8)

where vt is an iid normal sequence with zero mean and unit variance: E(vt) =

0; E(v2t ) = 1. We assume that ht follows the switching ARCH model de�ned in

(6):

ut =
p
ht � vt;

ht = 
It + �1u
2
t�1 + � � �+ �mu

2
t�m: (9)

As in Cai (1994) and Hamilton and Susmel (1994), It is a latent discrete variable

modeled as a stationary, irreducible Markov process with discrete state space

f1; : : : ; Kg and unknown transition probabilities �ij = PrfIt = jjIt�1 = ig. I0 is
assumed to have some starting distribution PrfI0 = i0g = �(i0). For convenience,

we refer to the K-state, m order Markov switching ARCH model de�ned by (9)

as SWARCH(K;m).

Subsequently we will use the following notations: � = (�1�; : : : ; �K�
), where

�i� = (�i1; : : : ; �iK) is the conditional transition distribution, collects all prob-

abilities of the transition matrix of It; � = (�; �; 
; �) summarizes all unknown

model parameters, with � = (�1; : : : ; �m) and 
 = (
1; : : : ; 
K); and �nally

IN = (I0; I1; : : : ; IN) denotes the whole sequence of switching variables and cor-

respondingly iN denotes a realization of IN . The SWARCH(K;m)-model has the

structure of a hierarchical model including latent variables:

1. Conditionally on known realizations iN of the switching process IN and

on a known model parameter � the conditional distribution of y1; : : : ; yN
factorizes in the following way:

f(y1; : : : ; yN jiN ; �) =
NY
t=1

f(ytjyt�1; �; �; 
it); (10)
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where the one-step ahead predictive densities are Gaussian:

f(ytjyt�1; �; �; 
it) =

s
1

2�ht(�; �; 
it; y
t�1)

exp

�
�(yt � z

0

t�)
2

2ht(�; �; 
it; y
t�1)

�
: (11)

2. For each �, the latent switching process IN is a Markov chain with transition

matrix depending on � = (�1�; : : : ; �K�
). The density �(iN j�) of the prior

distribution of IN w.r.t. the counting measure is equal to

�(iN j�) = �(iN j�) /
NY
t=1

�it�1;it�(i0j�) =
KY
j=1

KY
i=1

�
Nij

ij �(i0);

Nij = #fIt = jjIt�1 = ig:

3. � has a prior distribution with density �(�).

The factorization (10) shows that the observation density f(ytjyt�1; iN ; �) de-

pends only on the present value it of the switching process IN . This property

results from introducing the switching parameter directly into the parameteriza-

tion of ht given by (2). For the parameterization (4) which has been used by

Hamilton and Susmel (1994) the conditional density f(ytjyt�1; iN ; �) depends on
it as well as on the lagged values it�1; : : : ; it�m.

Note that the �rst two layers of the model are su�cient to compute the marginal

likelihood L(yN j�) which could be maximized such as in Hamilton and Sus-

mel (1994) to obtain ML-estimates of the model parameters �. For a complete

Bayesian analysis of the model the third layer specifying the prior �(�) on the

model parameters � has to be added (see subsection 2.3 for further details).

We conclude this section with discussing the marginal model implied by the

basic SWARCH(K;m)-model. Under the well-known condition that the absolute

values of all eigenvalues of the matrix A, where A is de�ned from the transition

matrix � of It by Ajl = �lj � �Kj, j; l = 1; : : : ; K � 1, are smaller than one, the

switching process It has got a stationary distribution �? = (�?1; : : : ; �
?
K), where

(�?1; : : : ; �
?
K�1)

0

= (I �A)�1(�K1; : : : ; �K;K�1)
0

and �?K = 1�
PK�1

j=1 �
?
j . Then the

marginal distribution of yt, where the latent process IN is integrated out, is a

mixture of normal distributions with weights �?j :

F (ytjFt�1) =

KX
j=1

�?j�

�
yt � z

0

t�

ht

�
;

where F (ytjFt�1) denotes the distribution function of Yt given information up to

t � 1, and �(�) is the standard Gaussian distribution function. Thus the basic

7



SWARCH(K;m)-model could be regarded as a special case of the MAR-ARCH-

model discussed in Wong and Li (1999). From Theorem 2 of that paper we

obtain covariance stationarity of the process ut = yt � z
0

t� under the necessary

and su�cient condition that the roots of the equation

1�
mX
l=1

�lx
l = 0 (12)

are all outside the unit circle. The second unconditional moment of ut is given

by:

E(u2t ) =

PK

j=1 
j�
?
j

1�
Pm

l=1 �l
: (13)

For the SWARCH(2; m)-process this result has been proven already by Cai (1994).

Further applications of the results derived in Wong and Li (1999) lead to the

conclusion that the third order moment of ut is zero, impling symmetry of the

unconditional distribution, and that for a SWARCH(K; 1)-model u2t is covari-

ance stationary if �2
1 < 1=3 and the autocorrelation function of u2t is given by

E(u2tu
2
t�l) = �l1.

2.2 Identi�ability

It is well known that for any model including a latent, discrete structure, an

identi�ability problem is present, since the labeling of the states of the switching

variable It can be permuted without changing the (marginal) likelihood: 9� 6= ~�

such that L(yN j�) = L(yN j~�) (see e.g. Frühwirth-Schnatter (2000) for a recent

discussion of this issue). Therefore the unconstrained SWARCH(K;m)-model is

not identi�able in a strict sense. It is possible to estimate quantities from the

unconstrained SWARCH(K;m)-model which are invariant to relabeling, the most

important examples being the time-varying parameter 
It and the volatility ht
de�ned in (9). Invariance of 
It follows from:


It = 
1S
1
t + : : :+ 
KS

K
t = 
�(1)S

�(1)
t + : : :+ 
�(K)S

�(K)
t ;

where �(1); : : : ; �(K) is an arbitrary permutation of 1; : : : ; K. Thus extracting

volatility estimates from a SWARCH(K;m)-model is possible without identifying

a unique labeling.

If focus lies on estimating the variance 
i of each state i individually, and to

estimate the probability of being in a certain state at a certain time, however,

it is necessary to introduce a unique labeling. To render the model identi�ed

usually an identi�ability constraint is put on the state speci�c parameters. For a

8



SWARCH(K;m)-model a standard constraint based on the notion that the �rst

state is the state of lowest volatility whereas the last state is the state of highest

volatility would be a constraint on the state speci�c variances 
1, : : : , 
K:


1 < : : : < 
K: (14)

Such a standard constraint, however, may turn out to be a poor constraint es-

pecially for a higher number of classes. We found in our case study in section 5

within the 4-state model two states of about medium volatility which were dif-

�cult to separate through 
j. We found that the main di�erence between these

states is primarily not the level of volatility but the persistence of remaining in

the current state. For such a model a suitable identi�ability constraint would be:


1 < min(
2; : : : ; 
4); 
4 > max(
2; 
3); �22 > �33: (15)

2.3 Choice of the prior

In this paper the focus lies on Bayesian estimation in situations where we in

general do not have strong prior information. From a theoretical point of view,

being completely non-informative about � is possible only for state independent

parameters such as � and �. Theoretically, being non-informative about 
 =

(
1; : : : ; 
K) and � is not possible, as improper priors on 
 and � result in improper

posteriors. There is always the possibility that no observation is allocated to a

certain state, say j. Improper priors on 
j and �j� will then lead to improper

posterior distributions.

In what follows we will make use of the following independence assumptions

concerning the prior distribution of �: �(�) = �(�)�(�)�(
; �). As common with

regression types models such as (7) we assume a normal prior N (b0; B0) for the

regression parameter �. The choice of the prior on � should re�ect important

constraints such as that all �l are positive and
Pm

l=1 �l, which is the persistence

parameter, is smaller than 1.4 Therefore we assume that (�; �m+1), where �m+1 =

1 �
Pm

l=1 �l, follows a Dirichlet distribution D(a1; : : : ; am+1). Note that the

Dirichlet distribution ensures that the constraints mentioned above are ful�lled

with probability 1. Furthermore this choice implies that the marginal distribution

of the persistence parameter
Pm

l=1 �l is a Beta distribution and could therefore

be regarded as an extension of the Beta prior imposed in Kim et al. (1998) on

the persistence parameter of a GARCH(1,1)-model.

Concerning the priors for the state dependent parameter � and 
 we discuss two

possible choices. First we could assume that the parameters corresponding to
4We want to thank the referee for drawing our attention to the fact that the normal prior

N(0; �I) we assumed in a previous version of the paper has been a particularly poor choice in

this respect.
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the various states are independent apriori and the hyperparameters of the state

speci�c priors are the same for all states. A natural choice for the distribution

of each 
i is an inverse gamma prior IG(g0; G0), with g0 and G0 being state

independent, whereas it is standard to assume that each conditional transition

distributions �i� follows a Dirichlet distribution D(e1; : : : ; eK), with e1; : : : ; eK
being state independent. This choice leads to a symmetric prior in the sense that

the resulting prior is invariant to relabeling the states and gives equal probabil-

ity to each labeling pattern. The prior integrates to 1 over the unconstrained

parameter space and to 1=K! over each subspaces corresponding to a unique

labeling.

This prior may be unsatisfactory, if we have vague prior ideas concerning the

di�erences between the states. With a state independent prior we could not

include, for instance, the prior belief, that one state correspond to a persistent,

low volatility state, whereas another state corresponds to a non-persistent, high

volatility state. To include such information we could take the priors used above

and make the hyperparameters state dependent: IG(g0;i; G0;i); D(ei1; : : : ; eiK),

i = 1; : : : ; K. The problem is now, how to associate these state dependent

priors with the various components of 
 and �. Based on some apriori labeling

we could connect each state dependent prior with a certain component through


i � IG(g0;i; G0;i) and �i� � D(ei1; : : : ; eiK). This strategy, however, leads to a

prior which is no longer invariant to relabeling. To preserve invariance of the

prior, on the one hand, and to include state speci�c information on the other

hand, we use the following mixture prior:

�(
; �) = 1=K!

K!X
m=1

KY
i=1

IG(
i; g0;�m(i); G0;�m(i))

KY
i=1

D(�i�; e�m(i);�m(1); : : : ; e�m(i);�m(K));(16)

where �m(1); : : : ; �m(K), m = 1; : : : ; K! correspond to the K! possible ways of

relabeling the states with �1(�) being the identity. With such a prior is possible

to express, for instance, the belief that one state has higher variance and lower

persistence than another state without being speci�c which state this will be.

Note that this prior implies apriori dependence between 
 and � whenever the

hyperparameters are actually di�erent. If all hyperparameters are the same, it

collapses to the state independent prior discussed above. The mixture prior (16)

is by de�nition invariant to relabeling the states, gives equal probability to each

labeling pattern, integrates to 1 over the unconstrained parameter space and to

1=K! over each subspaces corresponding to a unique labeling.
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3 MCMC Estimation of the Basic Switching ARCH-

Model

In what follows we are going to estimate the augmented parameter vector  =

(�; IN) by sampling from the posterior density �( jyN) by means of MCMC

methods. We combine well-known results for multi move sampling of a hidden

Markov process (Carter and Kohn, 1994; Shephard, 1994; Chib, 1996) with re-

cent results available for MCMC estimation of ARCH-models (Nakatsuma, 2000).

Doing so we end up with the following sampling scheme.

Blocked MCMC Sampling for the SWARCH(K;m)-model. Generate the various

blocks of  from the following conditional densities:

(i) �(iN j�; �; 
; �; yN)
(ii) �(�jiN ; 
)
(iii) �(�j�; 
; iN ; yN)
(iv) �(
; �j�; �; iN ; yN)

Sampling IN and �. Step (i) and (ii) are standard steps occurring in the MCMC

estimation of models including a latent Markov switching variable and are easily

adapted to the framework of a SWARCH-model. Step (i) is carried out in a

multi move manner as in Chib (1996). First we run a (forward) �lter to com-

pute �(itj�; yt) starting for t = 1 from the prior distribution �(i0). This step is

straightforward as the observation density f(ytjyt�1; iN ; �) depends on the past

iN through it, only:

�(itj�; yt) / f(ytjyt�1; 
it; �; �)�(itj�; y
t�1) (17)

where the predictive density f(ytjyt�1; 
it; �; �) is equal to the observation density
appearing in (11) and �(itj�; yt�1) is given by extrapolation:

�(itj�; yt�1) =
KX

it�1=1

�(it�1j�; yt�1)�it�1;it:

Given the �lter probabilities we run a backward sampler starting from t = N

with sampling iN from �(iN j�; yN). For t = N � 1; : : : ; 0 we sample from

�(itjit+1; : : : ; iN ; �; yN) which is given by:

�(itjit+1; : : : ; iN ; �; yN) = �(itjit+1; �; yt) / �(itj�; yt)�it;it+1

One way to sample it from some (eventually non-normalized) distribution pit =

�(itj�) is to sample from the conditional probabilities qj = PrfIt = jjIt � j; �g,

11



which are given by

qj = PrfIt = jjIt � j; �g = pj=

KX
l=j

pl:

This is carried out by starting from j = 1 by sampling a uniform number U . If

U � qj, then it = j and stop sampling. Otherwise increase j to j+1 and continue

sampling another uniform number U .

Sampling � is completely standard, if the hyperparameters of the Dirichlet prior

on � are state independent. In this case the conditional posterior �(�j ; yN)
depends only on the prior structure of IN and the conditional transition distri-

butions �1�, : : : , �K�
are independent a posteriori given IN with each �i� following

a Dirichlet distribution D(ei1 +Ni1; : : : ; eiK +NiK):

�(�i�jiN) /
KY
j=1

�
eij+Nij�1

ij ; Nij = #fIt = jjIt�1 = ig:

The easiest way to sample from this Dirichlet posterior distribution D(ei1 +

Ni1; : : : ; eiK +NiK) is to sample K independent non-normalized values ~�i1, : : : ,

~�iK from the Gamma distributions G(ei1 + Ni1; 1), : : : , G(eiK + NiK; 1) and to

normalize: �ij = ~�ij=
PK

j=1 ~�ij. Sampling is slightly more envolved for the mix-

ture prior (16) with state dependent hyperparameters. In this case the posterior

�(�j ; yN) is a mixture of Dirichlet distributions and we use the Metropolis-

Hastings algorithm (Hastings, 1970) with the proposal density

q(�) =

KY
i=1

D(�i�; ei1 +Ni1; : : : ; eiK +NiK) (18)

to sample from this distribution. A proposal value �? from q(�) is accepted with

probability

�(�?j�(old)) = min

(QK

i=1D(�?i�; ei1; : : : ; eiK)�(
; �
(old))QK

i=1D(�
(old)
i� ; ei1; : : : ; eiK)�(
; �?)

; 1

)
;

where �(
; �) is equal to the mixture prior (16). If �? is rejected, the new sampled

value is taken to be equal to the old value �(old).

Sampling the regression parameters and the ARCH parameters. MCMC sam-

pling of the parameters (�; �) of a regression model with ARCH errors has been

studied before only for the classical ARCH model without switching. Bauwens

and Lubrano (1998) use the griddy Gibbs sampler (Ritter and Tanner, 1992)

for sampling the parameters of a GARCH(1,1) in a single move manner. Single

12



move samplers, however, might exhibit slow convergence if the parameters are

highly correlated. This problem is avoided in Kim et al. (1998) who use sin-

gle move ARMS rejection sampling (Gilks et al., 1995) by reparameterizing the

GARCH(1,1)-model in terms of a persistence parameter and a moving average

type parameter. Multi move sampling of all ARCH-parameters using a multi-

variate Metropolis-Hastings algorithm is discussed in Nakatsuma (2000). In the

present paper we also use a multivariate Metropolis-Hastings algorithm within

step (iii) and (iv) which for K = 1 is equivalent to the sampler suggested in

Nakatsuma (2000).

No direct method of sampling the regression parameters � exists, even if the

ARCH parameters (�; 
) are known. Recall that we started from model (7) with

heteroskedastic error term: V (ut) = ht. The crucial point for inference on the

regression parameter � is the fact that ht itself depends on � through the lagged

residuals ut�1; : : : ; ut�m. If ht were independent of �, we would be faced with a

model with heteroskedastic, but independent errors and the conditional posterior

of � would be a normal density. In the present paper we use a Metropolis-

Hastings-algorithm with a proposal density which is derived by substituting ht(�)

by the estimate ĥt = ht(�
(old)). �(old) is the previously sampled value. This leads

to the following proposal density q(�j�(old)):

q(�j�(old)) � N (�; bN(�
(old)); BN(�

(old))); (19)

bN (�) = BN (�)(Z
0

W (�)y +B�1
0 b0); BN(�) = (Z

0

W (�)Z +B�1
0 )�1;

W (�) = Diag
�
w1(�) � � � wN(�)

�
; wt(�)

�1 = ht(�) = 
it +

mX
l=1

�l � (yt�l � z
0

t�l�)
2:

y and Z are the observation vector and the predictor matrix of model (7), re-

spectively. A value �? sampled from q(�j�(old)) is accepted with probability

�(�?j�(old)) = min

�
�(�?j�; 
; iN ; yN)
�(�(old)j�; 
; iN ; yN)

�
q(�(old)j�?)
q(�?j�(old))

; 1

�
;

where �(�j�; 
; iN ; yN) is proportional to f(y1; : : : ; yN j�; �; 
; iN)�(�) (see (10)).
If �? is rejected, the new sampled value is taken to be equal to the old value

�(old).

For joint sampling of 
 and � we reformulate the switching ARCH-models as

generalized linear model. From ut =
p
ht � vt, where vt is standard normal, we

obtain:

u2t
ht

= v2t ; (20)

where v2t is a �
2
1 random variable with one degree of freedom. v2t may be expressed

as v2t = 1 + "t, where E("t) = 0 and V ("t) = 2. Therefore (20) can be rewritten
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as:

u2t = ht + ht"t:

As ht is linear in � and 
, we obtain the following linear regression model with

independent, however non-normal and heteroskedastic errors:

u2t = 
1S
1
t + : : :+ 
KS

K
t + u2t�1�1 + : : :+ u2t�m�m + ht"t; (21)

where we used a 0/1-coding for It by introducing dummy variables S1
t ; : : : ; S

K
t

which for each j = 1; : : : ; K and each t are de�ned by S
j

t = 1 i� It = j and S
j

t = 0

otherwise. Again we are faced with a regression model with heteroskedastic,

however non-normal errors. A simple multivariate proposal for (
; �) may be

derived from model (21), if the variance of the error term, which is equal to

2 � h2t , is estimated from the previous draw of � and 
 by ĥt = ht((
; �)
(old)) and

non-normal errors are substituted by normal ones:

q(
; �j(
; �)(old)) � N (cN((
; �)
(old)); CN((
; �)

(old))); (22)

cN(
; �) = CN(
; �)(Z
0

W (
; �)~u+ C�1
0 c0);

CN(
; �) = (Z
0

W (
; �)Z + C�1
0 )�1;

W (
; �) = diag(w1(
; �) � � �wN(
; �));

wt(
; �)
�1 = 2 � ht(
; �)2 = 2 � (
it +

mX
l=1

�lu
2
t�l)

2:

~u and Z are the observation vector and the predictor matrix of model (21):

~ut = u2t and Zt� = (S1
t � � �SK

t u2t�1 � � �u2t�m). For each MCMC move it may happen

that none of the sampled indicators (I1; : : : ; IN) takes a certain value, say j. Then

at the next move the approximate model (21) will not contain any information

on 
j. In order to avoid problems with sampling 
j in such a case the prior on


 has been included into the construction of the proposal density through the

parameters c0 and C
�1
0 containing the mode and the information matrix of each

inverted gamma prior IG(g0;i; G0;i):

c0 =

0
BBBB@

G0;1

1+g0;1
...

G0;K

1+g0;K

0m�1

1
CCCCA ; C�1

0 =

 
diag

�
(1+g0;1)

3

G2
0;1

; : : : ;
(1+g0;K)3

G2
0;K

�
0K�m

0m�K 0m�m

!
:

As all observations contribute to the information on � we did not include infor-

mation from the prior �(�) into the construction of the proposal. A proposal

value (
; �)? sampled from q(
; �j(
; �)(old)) is accepted with probability

�((
; �)?j(
; �)(old)) = min

�
�((
; �)?j�; �; iN ; yN)
�((
; �)(old)j�; �; iN ; yN)

q((
; �)(old)j(
; �)?)
q((
; �)?j(
; �)(old))

; 1

�
;(23)
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where �(
; �j�; �; iN ; yN) proportional to f(y1; : : : ; yN j�; �; 
; iN)�(
; �)�(�) (see
(11)). If (
; �)? is rejected, the new sampled value is taken to be the old value

(
; �)(old). Note that although parameters sampled from the normal proposal

might violate important parameter restrictions such as 
j; �l > 0, the inclusion

of the prior into the acceptance probability (23) will lead to an automatic rejection

of such values.

We may run through the steps (i)�(iv) in two ways, depending on whether we esti-

mate the unconstrained or a constrained model, using the permutation sampler of

Frühwirth-Schnatter (2000), where each iteration is concluded by a permutation

� of the current labeling:

(
1; : : : ; 
K) := (
�(1); : : : ; 
�(K)); (24)

iN := (�(i0); �(i1); : : : ; �(iN ));

� := (~�1�; : : : ; ~�K�
); ~�i� := (��(i);�(1); : : : ; ��(i);�(K)):

If we want to estimate the unconstrained model, we select this permutation ran-

domly from allK! possible ones. For a random permutation sampler under a prior

with state dependent parameters, the best acceptance rates in the Metropolis-

Hastings algorithm are obtained, if the state dependent parameters are permuted

as well. If we want to estimate the model under an identi�ability constraint such

as (14) a permutation is applied only, if the identi�ability constraint is violated

and in this case the permutation is selected in such a way that the identi�ability

constraint is ful�lled (for more details see Frühwirth-Schnatter, 2000).

4 Issues in Model Selection

For practical volatility modeling the two order parameters K and m will be

unknown and some comments are in order concerning model selection. In the

present paper we use Bayes factors and model likelihoods to infer on K and m.

For �xed K and m the model likelihood is de�ned by:

L(yN jK;m) =

Z
f(y1; : : : ; yN j ;K;m)�( )�(d ); (25)

with r.t. an appropriate measure �. Analytical integration of (25) with respect

to the whole parameter  = (�; IN) is not possible, however, the dimension of

integration can be reduced substantially, as it is possible to integrate analytically

with respect to IN :

L(yN jK;m) =

Z
L(y1; : : : ; yN j�;K;m)�(�)d�; (26)
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where an explicit formula for the marginal likelihood L(y1; : : : ; yN j�;K;m) is

available. The computation of the marginal likelihood follows along the lines of

Hamilton and Susmel (1994), however due to the alternative parameterization of

the model the marginal likelihood is easier to compute than for the SWARCH

model de�ned in Hamilton and Susmel (1994). For more details see the appendix.

Model likelihoods may be estimated from the MCMC output using methods such

as the candidate's formula (Chib, 1995), importance sampling based on mixture

approximations (Frühwirth-Schnatter, 1995), combining MCMC simulations and

asymptotic approximation (Gelfand and Dey, 1994; DiCiccio et al., 1997) and

bridge sampling (Meng and Wong, 1998). The application of these methods to

computing the model likelihood for switching and mixture models has been dis-

cussed in detail in Frühwirth-Schnatter (1999) with the following main results:

�rst, estimation of the model likelihood turns out to be sensitive to the problem

of label switching. Especially the candidate's formula (Chib, 1995) should not

be applied, if label switching is present, and is a suitable estimation method only

for identi�ed models. Second, it is not necessary to identify the model in order

to compute the model likelihood. Third, the best result with the lowest stan-

dard error is obtained by using the method of bridge sampling where a MCMC

sample obtained by random permutation sampling is combined with an iid sam-

ple from an importance density q(�). In the present paper we will apply bridge

sampling to compute the model likelihood of a SWARCH-model. The impor-

tance density q(�) is constructed in an unsupervised manner from the MCMC

output ( (1); : : : ;  (M)) of the random permutation sampler using a mixture of

the following conditional densities:

q(�) = 1=ML

MLX
m=1

q(�j (m))q(�j (m); yN)q(
; �j (m); yN); (27)

where q(�j (m)) is equal to the Dirichlet proposal density in (18), whereas q(�j (m); yN)

and q(
; �j (m); yN) are equal to the normal proposal densities in (19) and (22),

respectively. Note that the components q(
; �j (m); yN) are not normalized over

the range of admissible parameters (
; �). The normalising constants are com-

puted simultaniously with sampling from each component. For further details

the reader is referred to Frühwirth-Schnatter (1999).
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5 A Case Study

5.1 Data and model speci�cation

For illustration we will apply the constrained permutation sampler for the SWARCH(K;m)

model presented in the previous section to the data set investigated in Hamil-

ton and Susmel (1994).5 The series originates from the CRISP data tapes and

consists of a value-weighted portfolio of stocks traded on the New York Stock

Exchange. Figure 1 shows weekly returns starting with the week ending Tuesday,

July 3, 1962 and ending with the week ending Tuesday, December 29, 1987. We

use the whole sample so that each model estimated in the following uses 1330

observations.

The models will be extended to include a leverage e�ect in the ARCH speci�ca-

tion. This will account for the fact that price decreases tend to increase volatility

subsequently by more than would a stock price increase. Hamilton and Susmel

(1994) also used this extension that has been suggested by several authors before

(see e.g. Black, 1976 and Nelson, 1991):

yt = �0 + �1yt�1 + ut (28)

ut =
p
htvt vt � N (0; 1)

ht = 
It + �1u
2
t�1 + � � �+ �mu

2
t�m + �dt�1u

2
t�1 It = 1; : : : ; K (29)

where dt = 1 if ut � 0, dt = 0 if ut > 0 and � > 0. In the following, we

will denote the speci�cation of SWARCH(K;m) model with leverage e�ect as

SWARCH-L(K;m).

As the additional parameters � in�uences the persistence of the model (see be-

low), we assume that (�; �=2; �m+1), where �m+1 = 1�
Pm

l=1 �l � �=2, follows a

Dirichlet distribution D(a1; : : : ; am+1; am+2). Again the marginal distribution of

the persistence parameter
Pm

l=1 �l + �=2 is a Beta distribution.

Sampling � is done within block (iv) described previously, but now out of the

conditional distribution �(
; �; �j�; iN ; yN). To this aim, the Metropolis-Hastings

step can be adjusted in a straightforward manner where the multivariate normal

proposal for (
; �; �) is now based on the following equation:

u2t = 
1S
1
t + : : :+ 
KS

K
t + u2t�1�1 + : : :+ u2t�m�m + �dt�1u

2
t�1 + ht"t; (30)

rather than equation (21).

5We kindly thank James Hamilton and Raul Susmel for making available their data set.
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5.2 Prior speci�cation and permutation

Below we investigate SWARCH-L(K;m) speci�cations for various combinations

of K = 3; 4 and m = 2; 3; 4. The priors used in particular are:

� � = (�0; �1)
0 � N (0; B0), where B

�1
0 = diag(1; 4).

� (�; �=2; �m+1), where �m+1 = 1�
Pm

l=1 �l � �=2, � D(1; : : : ; 1).

� Prior on (
; �) as in (16) with

� g0;i = 1; 8i = 1; : : : ; K;K = 3; 4;

G0;1 = 3; G0;2 = 10; G0;3 = 800 for K = 3;

G0;1 = 2; G0;2 = 10; G0;3 = 30; G0;4 = 2000 for K = 4;

� e1� = (2; 1; 1), e2� = (1; 2; 1) and e3� = (1; 1; 1) for K = 3;

e1� = (2; 1; 1; 1), e2� = (1; 2; 1; 1), and e4� = (1; 1; 1; 1), for K = 4,

with e3� = (1; 2; 1; 1) for m = 4 and e3� = (2; 1; 1; 1) for m = 2; 3,

respectively.

A few words are in order concerning the prior speci�cations of 
 and �. The choice

of the hyperparameters for the prior distribution of 
 re�ects the belief that the

states di�er in the variances and that there is one state with a considerably

higher variance than the others. The inclusion of a state with extremely high

variance turned out to be crucial, as normally, only a few observations pertain to

this state. Therefore, the proposal distribution within the Metropolis-Hastings is

driven by the prior distribution (see also section 2.2), and excess rejection rates

resulted if the normal proposal with mean and variance nearly equal to the mode

and the inverse of the information matrix of the prior, respectively, did not allow

for high enough sampled values for the highest-variance state. The choice of

the hyperparameters for the prior distribution of � re�ects apriori dependence

between persistence in a state and the associated variance. The hyperparameters

e1� and e2� account for our belief that for a low-variance state the persistence

to remain in this state is higher than the switching probability. With the prior

speci�cation on e3� we stress the belief that for a higher-variance state switching

from this state might be more probable than not switching, and if switching, the

probability to switch to a speci�c state is higher than the probability to switch

to another one.

Throughout, we use the constrained permutation sampler, sampling �rst out of

the unrestricted posterior of the parameters. The permutation step puts identi-

�cation restrictions on 
 for the 4- and 3-states models, and additionally on �

for the 4-states models. Within the 4-states models we �nd 2 states of medium

volatility that are di�cult to separate through 
j. However, they di�er in the
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persistence to remain in the respective state (see �gure 5, panel a) and b), below).

For K = 4 we set the following identi�cation restrictions:


1 < min(
2; : : : ; 
4); 
4 > max(
2; 
3); �22 > �33: (31)

The restriction


1 < 
2 < 
3 (32)

identi�es the 3-states models. The MCMC output for m = 4, however, reveals a

potential fourth state of medium volatility but lower persistence (see again �gure

5, panel c), below).

5.3 Output analysis

The most general speci�cation with K = 4 and m = 4 will serve as a baseline

case. We iterated the permutation sampler based on the constraint (31) over

40'000 times and discarded the �rst 10'000 for the posterior analysis to remove

the dependence on initial conditions. The sampler converges rather quickly so

the initial burn-in phase of 10'000 seems adequate.

The inference about the posterior distributions of the parameters presented in

table 1 is readily available from the MCMC output. Mean and standard error

are estimated by the mean and the standard deviation of the sampled values,

respectively. The 95% con�dence interval is determined using the 2.5th and

the 97.5th percentiles of the simulated values. Figure 2a plots the estimated

posterior distribution of the transition probabilities, �gure 2b and 2c reproduce

the simulated 50'000 values of 
, � and �, respectively, the respective posterior

distribution inferred from the last 30'000 iterations and the autocorrelation of

the MCMC sample up to lag 500. Whereas some of the posteriors are not too

far from normality, the posteriors of some transition probabilities are extremely

skewed. We �nd a low and a medium variance state with high persistence to

remain in the respective state, and two states with low persistence (see again

�gure 5, panel a). The switching probability from state 3 to state 2 is higher

than the switching probability to state 1.

Figure 3 displays the inferred posterior probabilities as averaged over the 30'000

sampled paths for It along with lines dating business cycle turning points accord-

ing to the NBER. Using smoothed probabilities gives us a notion about the state

variables' ability to capture speci�c time series features or to identify speci�c time

periods. Here, the �usual� state seems to be state 2, relative short periods of lower

variance (equal to state 1) interrupting it. The last state clearly captures �crash�
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or crisis periods. There is only one observation that pertains to this regime with

a probability nearly one, the 1987 October crash of the stock market. All in all

however, no clear association between stock market volatility and some speci�c

economic period can be made.

Restricting the model to m = 3, we obtain a slight, interesting change in the

results (see table 2).6 First, the posterior distributions of 
 report higher means

for the �rst two states than in the case m = 4. The estimates rise from 0.76 to

1.18 and from 2.65 to 6.19, respectively. Volatility captured previously through a

persistence parameter, �4 in particular, is now captured by the switching constant

in the ARCH equation. Note also, that the probability to switch from state 3 is

now highest for the switch to state 1. These di�erences alter the inference about

the smoothed posterior state probabilities (�gure 4). Now the �rst state seems

to be the �usual� state and usually coincides with periods of economic recovery,

the second state can be associated with recession periods. The third state seems

to capture short moments of uncertainty. Generally, the probability of this state

peaks shortly before a switch from state 1 to state 2 (or vice versa) takes place,

and especially several times before the 1987 October crash.

Next, we turn to the analysis of the more restrictive model with justK = 3 states.

We will again restrict the discussion to the speci�cation m = 4; 3 as the results

for m = 2 are very similar to those for m = 3. The posterior distributions of the

parameters for the SWARCH-L(3,4) and the SWARCH-L(3,3) models are found

in table 3 and 4, respectively. For both speci�cations, we �nd the �rst two states

to be persistent, and the third seems to have higher switching probability (from

state 3 to state 2) than remaining in the same state. Interestingly, post-processing

the MCMC output for m = 4 reveals a potential fourth state with similar 
2 but

lower persistence than state 2 (see �gure 5, panel c), hence pointing towards a

misspeci�cation of the model. This fourth state does not show up when we restrict

the model to m = 3 and m = 2 (see panel d) of �gure 5). Therefore, in �gure

6 we display the smoothed posterior state probabilities of the SWARCH-L(3,3)

speci�cation. The second and third state of the 4-states model seem to have been

subsumed in state 2 of the 3-states model. State 3 still captures unusual events

of very high volatility, the October 1987 crash being one of these and the oil price

shock being another one in this speci�cation.

6Further restricting m = 2 does not change the interpretation given in the following, so we

skip an extensive discussion of the results for the SWARCH-L(4,2) speci�cation in order to save

space.
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5.4 Ine�ciency

The ine�ciency factors reported in table 5 are based on 30'000 iterations of

the sampler after an initial burn-in phase of 10'000 iterations. Their values are

computed as the ratio of the squared numerical standard error of the MCMC

simulation and the variance estimate divided by the number of iterations (the

variance of the sample mean from a hypothetical iid sampler). The squared

numerical standard error is estimated using time series methods to account for

serial dependence in the sampled values (Geweke, 1992):

SE2 = 
0 + 2

JX
j=1

�
1�

j

J + 1

�

j;

where the bandwidth chosen is J = 1000 and 
j represents the autocovariance

at lag j of the sampled parameter values. Using 30'000 simulations out of the

posterior distribution seems appropriate if we require that the Monte Carlo error

in estimating the mean is smaller than one percentage of the variation of the

error due to the data. The very high ine�ciency factors reported for �1� and �2�
in the case of K = 3, m = 4 are re�ected in a persistent autocorrelation in the

simulated values even at very high lags. As already mentioned before, plotting the

simulated values for log 
 against persistence reveals that these high ine�ciency

factors might be due to misspeci�cation rather than an ine�cient sampler (�gure

5). Note �nally, that the acceptance probabilities of the Metropolis-Hastings

simulation step for the parameters in the ARCH equation lie in an acceptable

range between 0.13 and 0.26 for the various speci�cations.

5.5 Comparison to previous study

The evidence presented so far deviates from the �ndings documented in Hamilton

and Susmel (1994). For both the 4-states and the 3-states models they �nd

a highly persistent third state, while our results report a third state with low

persistence, the probability to switch to another state rather than remaining in

the state being much higher. The estimates for the parameters 
3 and 
4 re�ect

this di�erence. In the SWARCH-L(4,4) speci�cation we infer a mean of 12.60 and

1487.02 for 
3 and 
4, respectively, while the point estimates for the SWARCH-

L(4,2) model reported in Hamilton and Susmel are 7.59 and 92.95, respectively.

Also, the mean estimates of 
3 in our SWARCH-L(3,3) and SWARCH-L(3,2)

speci�cations are 391.45 and 375.95, respectively, while the point estimate of the

SWARCH-L(3,2) speci�cation is 7.47 in Hamilton and Susmel.

Moreover, our inference subsumes the third state into the second one when we

restrict the model to 3 states, while in the investigation of Hamilton and Susmel
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the last, the fourth, state is subsumed into state 3. Brie�y, the constrained

permutation sampler associates the highest-variance state with crash periods,

while the maximum likelihood inference suppresses this state when K is restricted

to 3.

Last, we would like to point out that standard errors of the parameters, in partic-

ular of the transition probabilities are readily available from the MCMC output,

even if the posteriors are very skewed towards the boundary space. In contrast,

numerical maximum likelihood estimation often encounters this boundary space

problem, and therefore, Hamilton and Susmel have to put zero restrictions on

seven transition probabilities to get standard errors for the parameters of the

4-state model.

5.6 Bayes factors and persistence

So far, the discussion of the various speci�cations leaves some ambiguity with

respect to the number of states present in the data and the number of lags that

are appropriate in the ARCH process of the variance. Table 6 summarizes model

likelihoods L(yN jK;m) and the Schwarz critrion for various SWARCH-L(K;m)-

models. The model likelihoods are estimated using bridge sampling as described

in section 4 by setting ML = 1000.

The computation of the Schwarz criterion is based on the maximum value L
of the log marginal likelihood logL(y1; : : : ; yN j�(l); K;m) which is obtained as a

by-product at each iteration of the sampler (see appendix):

L � k=2lnN; (33)

where k is the number of parameters, and N = 1330. The Schwarz criterion

favors the SWARCH-L(3,2) speci�cation. In section 6.2 we will brie�y argue why

the Schwarz criterion has to be used with care for model selection concerning the

number of states.

Testing between K = 3 and K = 4 using model likelihoods, however, turns out

to be problematic in this case, too. From the MCMC output of the four state

models visualized in �gure 5, panel a) and b), as well as from the evidence given

in �gure 5, panel c), which reveals a potential fourth state within a 3-states

speci�cation, we would expect the model likelihood to select a model with four

states. Interestingly, the model likelihoods reported in table 6 point towards a

SWARCH-L(3,4) speci�cation. An extensive sensitivity study, however, revealed

high sensitivity of the model selection procedure with respect to the prior on 
.

Among various other priors we tested, a prior with G0;1 = 2; G0;2 = 12; G0;3 = 600

for K = 3 and G0;1 = 1:2; G0;2 = 4; G0;3 = 20; G0;4 = 1600 for K = 4 which is
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only a slight modi�cation of the prior used so far (see Subsection 5.2), results

in favouring a SWARCH-L(4,4) speci�cation rather than the SWARCH-L(3,4) �

see the additional model likelihoods reported in table 6. This sensitivity may be

explained by the fact that for a 4-state model one of the states corresponds to

a single outlier. Thus little information on the parameters of the fourth state is

available from the likelihood and the prior dominates the posterior distribution.

Selecting the number m of lags within a speci�cation with �xed number of states,

however, is una�ected by the prior on 
. Both for the 3-states as well as for the

4-states speci�cations m = 4 performs better than m = 3 and m = 2. Overall,

from the exploratory Bayesian analysis in �gure 5 as well as from the model

likelihoods we tend to favor the SWARCH-L(4,4) model.

We proceed with a discussion of the persistence implied by each model. In analogy

to Hamilton and Susmel (1994), our measure of persistence for the SWARCH-

L(K;m) models will be the largest eigenvalue of the matrix:�
(�1 + �=2) �2 � � � �m

Im�1 0

�
;

where Im�1 is an identity matrix of dimension m� 1. The last column of table 6

summarizes this measure of persistence for each model. As expected, our results

document a considerable reduction in persistence relative to the high persistence

usually found in ARCH and GARCH models. The reported persistence measures

range from 0.40 to 0.62 and are well below values above 0.7 for Gaussian and

Student-t ARCH and GARCH speci�cations reported elsewhere in the literature

and in particular in Hamilton and Susmel (1994).

5.7 Model diagnostics

We are going to conclude our case study by discussing issues in model diagnostics

based on recursive residuals which are an important tool for model diagnostics

especially for time series models of continuous observations (see Smith, 1985;

Frühwirth-Schnatter, 1996; Gerlach et al., 1999 for a detailed discussion).

Let y1; : : : ; yN be observed time series observations generated by a modelM and

let Y1; : : : ; YN be the corresponding random variables. We use the notation yt�1 to

denote all observations fy1; : : : ; yt�1g up to t� 1. Smith (1985), following Dawid

(1984), de�ned recursive residuals for model M for time series of continuous

observations by

ut = Pr(Yt � ytjyt�1);

where Pr(Yt � ytjyt�1) is the one-step ahead predictive distribution of a future

value yt of a time series given observations up to t� 1. u1; : : : ; uN will be called

23



P-scores in the following. What makes the P-scores so useful is the property that

they are iid uniform on [0; 1] under a correct model and model diagnostics turns

out to be testing for independence and uniformness of the sequence of P-scores.

It is often more convenient to work with the transformed P-scores vt = ��1(ut),

where � is the standard normal distribution. If the model is correct, the sequence

of the transformed P-scores is iid standard normal.

It is in general impossible to compute ut explicitly, because the predictive distri-

bution of yt depends on unknown parameters � which cannot be integrated out

analytically. If � is an unknown, but �xed parameter one may proceed in two

ways. One strategy which will, however, not be pursued in the present paper is

to assume that � is a random variable with prior �(�). The exact P-scores ut are

then given by the in�nite mixture

ut =

Z
Pr(Yt � ytjyt�1; �)�(�jyt�1) d �

where �(�jyt�1) is the posterior density of � given data up to t�1. Approximate

P-scores are obtained by substituting the in�nite mixture by a �nite mixture

approximation using methods from multi-process-�ltering (Frühwirth-Schnatter,

1996) or MCMC sampling combined with importance sampling (Gerlach et al.,

1999). The second strategy is to estimate �̂ from the data, e.g. by taking the

posterior mean estimated from the MCMC simulations, and to derive the P-

scores conditional on � = �̂. Given a consistent estimate �̂ of � the P-scores

approximated from Pr(Yt � ytjyt�1; �̂) are iid uniform at least asymptotically

(Dawid, 1984).

Following Kim et al. (1998) and Kaufmann (2000) we apply the second approach

to perform model diagnostics of the SWARCH-model using to the following ap-

proximate P-scores:

ut �
KX
j=1

Pr(Yt � ytjyt�1; It = j; �̂)Pr(It = jjyt�1; �̂);

where Pr(Yt � ytjyt�1; It = j; �̂) is the distribution of the one-step ahead normal

predictive density given by (11) and Pr(It = jjyt�1; �̂) is computed by one run

of the discrete �lter described in appendix.

Various exploratory and formal tools of model diagnostics may be applied to these

approximate P-scores. A simple graphical device is a plot of the ordered P-scores

futg and of the transformed P-scores fvtg; t = 1; : : : ; N against normal order

statistic. Under the hypothesis of a correct model the P-scores as well as the

transformed P-scores should lie on a straight line. To check for remaining serial

correlation we can use the empirical correlogram of the transformed P-scores,
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while a visual inspection of the correlogram of the transformed re�ected P-scores,

2jut � 0:5j, yields an assessment about neglected volatility clustering. Figure 7

and 8 gather the respective graphics for the SWARCH-L(4,4) and SWARCH-

L(3,3) speci�cation. Obviously, both speci�cations are able to �t the data quite

well.

Table 7 reports some quantitative diagnostic measures to test for departure from

the assumed model. The indices (see Frühwirth-Schnatter, 1996) are derived from

the �rst four central moments of the transformed P-scores, Vi =
PN

t=1(vt� �V )i=N ,

where �V =
PN

t=1 vt=N , i = 2; : : : ; 4. The computed statistics can be used to check

for bias (B), for over- or underdispersion (D), for skewness (S) and for the tail

properties (T ) of the predictive density. Accordingly, they are de�ned:

B =
p
N �V DN = NV2�N+1p

2(N�1)

SN =
q

(N+1)(N+3)

6(N�2)
V3

V
3=2

2

LN =
(N+1)

p
(N+3)(N+5)p

24(N�2)(N�3)N

�
V4
V 2
2

� 3(N�1)

(N+1)

�
JN = S2

N + L2
N AN =

p
N
�
�1 +

1
N�1

� (34)

where �1 is the �rst order empirical autocorrelation coe�cient of the transformed

P-scores. The AC(1)-index AN tests whether there is some remaining autocor-

relation in the transformed residuals that has not been accounted for by the

model. The quantiles of the exact distribution have been tabulated in Frühwirth-

Schnatter (1996). Given the number of observations, however, we will compare

the statistics against standard normal statistics and against �2 statistic with two

degrees of freedom. Table 7 summarizes our results for the various SWARCH-

L(K;m) speci�cations. All models pass the diagnostic tests except for skewness

and for normality in the case for the SWARCH-L(4,4) model. However, the ex-

cess skewness might be an artefact of the data, as the crash of October 1987

produces several big, very rarely observed, negative observations.

6 Discussion

6.1 ML estimation versus Bayesian estimation

In the present paper we use Bayesian estimation rather than ML estimation. We

see several advantages of the Bayesian approach compared to ML-estimation.

First, ML estimation of the SWARCH model appears to be rather di�cult espe-

cially in situations where we are close to a boundary space problem. Hamilton and

Susmel (1994), for instance, report extreme di�culties to maximize the marginal

likelihood of a SWARCH-L(4,2)-model. These di�culties appear to be caused

by the fact that some transition probabilities are extremely small and close to
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the boundary of the parameter space. To report standard errors for their model,

Hamilton and Susmel (1994) imposed a zero constraint on seven(!) transition

probabilities.

Second, we can explore the MCMC output in a similar way as one would ex-

plore data. Standard errors of all parameters involved, for instance, are directly

available and may be estimated from the MCMC output simply by the stan-

dard deviation of the sampled values. Marginal densities and scatter plots of the

sampled parameters can be explored from the MCMC output and may lead to

hypotheses concerning order selection.

Finally, the smoothed probabilities P (It = jjyN) of being in state j at time t may

be estimated from the MCMC output I
(1)
t ; : : : ; I

(L)
t simply by 1=L#fI(l)t = jg and

no conditioning on the model parameters is necessary to obtain these estimates.

6.2 Testing for the presence of Markov switching

In the present paper we are testing for the presence of Markov switching and select

the number of states within a Bayesian framework. Testing for the presence of

Markov switching and selecting the number of states is not possible within the

classical framework of maximum likelihood. Although an ARCH(m)-model could

be viewed as a special case of a SWARCH(K;m)-model withK = 1, the regularity

conditions for justifying the �2 approximation to the likelihood ratio statistics do

not hold, as 
2 is unidenti�ed under the hypothesis that there is really one state.

For similar reasons, Schwarz's criterion should not be applied for selecting the

number of states. Schwarz's criterion is an approximation to the model likelihood

which is based on asymptotic normality of the posterior. Although they are aware

of these problems, Hamilton and Susmel (1994), Cai (1994) and Gray (1996)

based inference concerning the presence of Markov switching on likelihood ratio

statistics as well as on the Schwarz criterion.

We tried to overcome these problems by computing model likelihood from the

MCMC output using the method of bridge sampling and selecting the model with

the largest model likelihood. This method of selecting the number of states has

been applied sucessfully in the context of classical Markov switching time series

models (Frühwirth-Schnatter, 1999) and switching Gaussian state space models

(Frühwirth-Schnatter, 2001). For the case study of the present paper, however,

we encountered problems insofar, as testing between K = 3 and K = 4 turned

out to be sensitive to the prior on the switching parameters 
1; : : : ; 
K, leaving

some ambiguity with respect to the appropriate number of states also within the

Bayesian approach.
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6.3 Extensions

In the present paper we studied Bayesian analysis of SWARCH models through

MCMC methods. Details were given for the basic switching ARCH-model, where

only a switching intercept is included into the volatility equation. Extension

of the proposed MCMC method to various more general SWARCH models is

possible. As outlined in our case study, the inclusion of a �leverage� e�ect when

modeling stock returns with a SWARCH-model (Hamilton and Susmel, 1994) is

straightforward. Similarly, for the totally switching ARCH-model (Gray, 1996),

where all parameters appearing in the volatility equation are switching,

ht = 
It + �1;Itu
2
t�1 + � � �+ �m;Itu

2
t�m;

joint sampling of all parameters appearing in the volatility equation is possible.

In general, the proposed method to multi move sampling of all parameters in the

volatility equation can be applied, whenever the volatility equation remains linear

in the unknown parameters. It is also possible to include switching means into the

regression equation such as in Cai (1994) and Gray (1996). In general, extension

of the proposed method of multi move sampling of all regression parameters is

possible, whenever the regression equation is linear in the unknown regression

parameters. Note however that for a switching mean the conditional densities

f(ytjyt�1; IN ; �) will not only depend on It, but also on the history It�1, : : : ,

It�m through the lagged residuals u2t�1, : : : , u
2
t�m . Multi move sampling of IN

has to be modi�ed accordingly (see e.g. Kaufmann, 2000). Our method needs

some obvious modi�cations if we want to include t-errors such as in Hamilton

and Susmel (1994).

Unfortunately, the MCMC algorithm discussed in this paper can not be applied

to GARCH-models with Markov-switching behaviour in a straightforward man-

ner. It has been noted earlier (Hamilton and Susmel, 1994; Cai, 1994; Gray,

1996) that the combination of GARCH-models with Markov-switching models

introduces tremendous complications in estimation. The conditional observation

distribution f(ytjyt�1; IN ; �) appearing in equation (10) depends on the whole

history I0; : : : ; It. Therefore no exact �xed memory �lter for It is available.

Approximate ML-estimation by an approximate �lter has been studied in Gray

(1996). The MCMC algorithm discussed in this paper, however, can not be ap-

plied to switching GARCH-models, for the same di�culties as in ML-estimation

are encountered in the Bayesian analysis: multi move sampling of IN along the

lines of Chib (1996) is based on the existence of an exact �nite dimensional �lter

for It.
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Appendix - Computing the marginal likelihood

The marginal likelihood L(y1; : : : ; yN j�) is given by:

L(y1; : : : ; yN j�) =

NY
t=1

f(ytj�; yt�1);

f(ytj�; yt�1) =
KX
j=1

f(ytjyt�1; �; �; 
j)PrfIt = jjyt�1; �g:(35)

The probability PrfI1 = jjy0; �g is given by:

PrfI1 = jjy0; �g =
KX
i=1

�ijPrfI0 = ij�g;

For t > 1 the probability PrfIt = jjyt�1; �g is given by the following recursion:

PrfIt = jjyt�1; �g =
KX
i=1

�ijPrfIt�1 = ijyt�1; �g

PrfIt�1 = ijyt�1; �g =
f(yt�1jyt�2; �; �; 
i)PrfIt�1 = ijyt�2; �g

KX
j=1

f(yt�1jyt�2; �; �; 
j)PrfIt�1 = jjyt�2; �g

:

Note that for each t, f(ytj�; yt�1) is the normalizing constant of the �ltering

distribution �(itjyt; �). Therefore the marginal likelihood is easily computed from

(35) after one run of a discrete �lter for i0; : : : ; iN .
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Table 1: SWARCH-L(4,4). Posterior distribution of the model parameters. The

mean, standard deviation, and the median of 30'000 sampled values out of the poste-

rior are reported. The 95% con�dence intervals are estimated as the shortest interval

containing 95% of the MCMC simulations.

parms mean st.dev. median 95% conf. int.

�0 0.3187 0.05067 0.3186 0.2245 0.4241

�1 0.2664 0.02809 0.2662 0.21 0.3196


1 0.758689 0.190436 0.745121 0.451633 1.18577


2 2.52497 1.02607 2.28651 1.13217 4.46657


3 12.2664 4.03985 11.4756 5.92434 19.8874


4 1481.03 915.217 1204.73 429.545 3508.39

�1 0.04063 0.02506 0.03638 4.025e-005 0.085

�2 0.1033 0.03949 0.1013 0.03089 0.1781

�3 0.02841 0.01896 0.02352 3.71e-005 0.0634

�4 0.04158 0.02345 0.04058 0.001522 0.08414

� 0.3394 0.0784 0.3355 0.1826 0.4753

�11 0.9437 0.04447 0.9514 0.8944 0.9868

�12 0.02461 0.02015 0.0206 2.578e-006 0.06034

�13 0.02718 0.0423 0.01833 3.993e-008 0.07089

�14 0.004552 0.004806 0.003045 6.442e-008 0.01404

�21 0.01155 0.02291 0.006267 1.286e-007 0.03578

�22 0.7959 0.1268 0.8221 0.5395 0.9821

�23 0.1902 0.1254 0.1666 0.0004257 0.4369

�24 0.002391 0.002416 0.001664 3.775e-008 0.007058

�31 0.09395 0.1559 0.03877 1.845e-006 0.4713

�32 0.7428 0.2075 0.8054 0.2596 0.9904

�33 0.1488 0.1402 0.1057 5.08e-006 0.4307

�34 0.01451 0.01898 0.009174 2.296e-007 0.04494

�41 0.2437 0.1905 0.2007 7.557e-007 0.6203

�42 0.2922 0.2069 0.2573 1.129e-005 0.6797

�43 0.2763 0.2037 0.2354 1.471e-005 0.6664

�44 0.1878 0.1544 0.1482 2.689e-006 0.4951
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Table 2: SWARCH-L(4,3). Posterior distribution of the model parameters. The

mean, standard deviation, and the median of 30'000 sampled values out of the poste-

rior are reported. The 95% con�dence intervals are estimated as the shortest interval

containing 95% of the MCMC simulations.

parms mean st.dev. median 95% conf. int.

�0 0.3391 0.05214 0.3388 0.2343 0.4369

�1 0.2669 0.02899 0.267 0.2114 0.3245


1 1.15799 0.179338 1.16387 0.790343 1.49018


2 6.00349 1.30544 6.09247 3.0302 8.44209


3 11.5185 4.20424 10.6423 5.18288 20.0709


4 1252.26 717.395 1066.92 267.23 2767.39

�1 0.03459 0.02498 0.0298 7.022e-007 0.08435

�2 0.09085 0.03805 0.08797 0.01948 0.1642

�3 0.02378 0.01706 0.02046 0.0001106 0.05561

� 0.3097 0.07946 0.3056 0.1426 0.4586

�11 0.8959 0.04729 0.9048 0.8025 0.9695

�12 0.01547 0.01311 0.01244 1.283e-007 0.04066

�13 0.08648 0.05138 0.07949 5.89e-006 0.1787

�14 0.002124 0.002228 0.001461 8.248e-008 0.006344

�21 0.02072 0.01857 0.01688 4.769e-007 0.05192

�22 0.9395 0.05304 0.9532 0.8553 0.9903

�23 0.03558 0.05087 0.02112 1.432e-007 0.1188

�24 0.004232 0.004212 0.002962 1.9e-007 0.01252

�31 0.6727 0.2292 0.7365 0.1348 0.9764

�32 0.1727 0.1971 0.1011 1.182e-006 0.6628

�33 0.1283 0.1174 0.09293 1.586e-006 0.3639

�34 0.02634 0.02809 0.0183 3.365e-006 0.07702

�41 0.2152 0.1776 0.1702 6.487e-006 0.5738

�42 0.369 0.2176 0.3532 6.565e-005 0.7496

�43 0.2283 0.1849 0.1824 4.908e-006 0.5976

�44 0.1875 0.1536 0.1486 7.497e-007 0.496
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Table 3: SWARCH-L(3,4). Posterior distribution of the model parameters. The

mean, standard deviation, and the median of 30'000 sampled values out of the poste-

rior are reported. The 95% con�dence intervals are estimated as the shortest interval

containing 95% of the MCMC simulations.

parms mean st.dev. median 95% conf. int.

�0 0.3281 0.05196 0.3283 0.2254 0.4277

�1 0.2697 0.02914 0.2699 0.2114 0.3254


1 1.18075 0.195749 1.18443 0.778599 1.53868


2 6.18438 1.28628 6.05651 3.6534 8.76535


3 505.942 290.137 428.168 97.8024 1114.79

�1 0.03083 0.02635 0.02372 0.0001928 0.08418

�2 0.1097 0.04815 0.1055 0.02443 0.2045

�3 0.0275 0.02254 0.02244 3.853e-005 0.07047

�4 0.03362 0.02462 0.02833 4.47e-005 0.08117

� 0.2965 0.08175 0.2918 0.1329 0.454

�11 0.9233 0.06033 0.9422 0.7783 0.9818

�12 0.07344 0.06075 0.05448 0.01083 0.2177

�13 0.003273 0.003246 0.002328 5.842e-007 0.009552

�21 0.1356 0.1979 0.06379 0.001447 0.6868

�22 0.8576 0.1992 0.9299 0.3011 0.9928

�23 0.006809 0.005756 0.005423 4.044e-007 0.01773

�31 0.3233 0.2352 0.2791 1.375e-005 0.7714

�32 0.456 0.2435 0.4586 0.0001746 0.8541

�33 0.2207 0.1733 0.1806 1.103e-006 0.5634
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Table 4: SWARCH-L(3,3). Posterior distribution of the model parameters. The

mean, standard deviation, and the median of 30'000 sampled values out of the poste-

rior are reported. The 95% con�dence intervals are estimated as the shortest interval

containing 95% of the MCMC simulations.

parms mean st.dev. median 95% conf. int.

�0 0.3324 0.05199 0.3324 0.2287 0.4318

�1 0.2687 0.02947 0.2685 0.2091 0.3247


1 1.2755 0.170814 1.27125 0.943472 1.61533


2 6.23739 0.949275 6.10795 4.37096 8.07763


3 531.642 349.48 426.366 164.735 1419.29

�1 0.02516 0.02078 0.02064 1.51e-005 0.06632

�2 0.09174 0.03946 0.09209 0.01846 0.1694

�3 0.02287 0.01847 0.01781 7.372e-006 0.06079

� 0.2851 0.08046 0.2771 0.1369 0.4447

�11 0.9458 0.02062 0.9492 0.9088 0.9777

�12 0.05085 0.02081 0.04756 0.01842 0.08824

�13 0.003315 0.003189 0.002415 2.882e-009 0.009479

�21 0.06191 0.05084 0.05388 0.01488 0.114

�22 0.9314 0.05158 0.9394 0.8787 0.9797

�23 0.006706 0.005262 0.005506 2.698e-007 0.01677

�31 0.265 0.2124 0.2117 3.601e-007 0.6927

�32 0.5001 0.2316 0.5079 0.06054 0.9071

�33 0.2349 0.1764 0.1985 8.96e-006 0.579
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Table 5: Ine�ciency factors and mean acceptance probability of the Metropolis-

Hastings step for (�; �) for various model speci�cations.The �rst line refers to a

SWARCH-L(K;m) speci�cation where K is the number of states and m is the lag

length of the ARCH process.

parameters (4,4) (4,3) (4,2) (3,4) (3,3) (3,2)

�0 13.843 10.557 11.735 6.9378 8.349 4.165

�1 6.443 6.044 3.228 5.8186 3.472 3.176


1 307.724 137.745 40.553 158.667 86.791 42.504


2 434.248 236.163 101.577 236.259 84.454 43.514


3 171.694 226.599 105.633 79.704 185.650 70.775


4 299.036 262.599 117.600

�1 46.840 63.517 27.403 185.239 59.490 12.695

�2 81.256 34.720 24.302 123.957 71.268 32.502

�3 62.646 24.379 131.234 41.522

�4 83.311 131.289

� 120.382 41.485 26.917 30.632 62.809 31.399

�11 76.484 142.537 98.129 612.007 21.741 12.401

�12 24.038 45.919 65.162 612.858 22.674 11.615

�13 136.126 146.630 109.779 28.043 5.510 3.887

�14 18.730 4.920 6.122

�21 153.866 68.934 22.622 702.897 41.069 15.912

�22 230.325 121.992 178.093 701.746 37.840 15.224

�23 233.589 126.828 197.220 38.267 16.891 10.034

�24 33.345 7.360 5.868

�31 351.481 111.233 131.773 22.922 6.766 3.906

�32 238.969 122.137 163.780 23.090 5.362 2.079

�33 61.751 28.205 22.824 3.853 2.653 4.737

�34 55.790 19.693 11.120

�41 3.748 4.111 2.214

�42 4.824 5.423 5.802

�43 3.566 3.481 5.940

�44 0.922 1.241 1.211

acc. prob. 0.19 0.18 0.26 0.16 0.13 0.22
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Table 6: Comparison of some model selection criterions for various SWARCH-

L(K;m) speci�cations; model likelihoods are computed using the priors of Sub-

section 5.2 (�prior 1�) and Subsection 5.6 (�prior 2�).

Model/No.of L(yN j�̂;K;m) L(yN jK;m) L(yN jK;m) Schwarz Persistence

parameters (�prior 1�) (�prior 2�) criterion

SWARCH-L(4,4)/27 -2808.7 -2859.1 -2855.9 -2905.8 0.62

SWARCH-L(4,3)/26 -2815.8 -2860.7 -2859.4 -2909.3 0.47

SWARCH-L(4,2)/25 -2817.7 -2861.0 -2859.7 -2907.7 0.40

SWARCH-L(3,4)/19 -2822.1 -2857.1 -2856.4 -2890.4 0.59

SWARCH-L(3,3)/18 -2824.1 -2858.2 -2857.7 -2888.8 0.47

SWARCH-L(3,2)/17 -2825.8 -2858.5 -2858.0 -2886.9 0.40

37



Table 7: Diagnostic statistics on the transformed P-scores for the various model

speci�cation. The statistics are computed from the �rst four centered moments

of the transformed P-scores. � denotes signi�cance at the 5% level. The bottom

panel reproduces selected quantiles of the standard normal distribution and the

�2 distribution with two degrees of freedom.

BN DN SN TN JN AN

SWARCH-L(4,4) -1.28 -0.86 -1.97� -1.59 6.40a 1.07

SWARCH-L(4,3) -1.48 -1.69 -1.89� -1.12 4.82 0.92

SWARCH-L(4,2) -1.54 -1.72 -1.77� -1.19 4.53 0.76

SWARCH-L(3,4) -1.44 0.31 -1.89� -0.48 3.81 0.87

SWARCH-L(3,3) -1.59 -1.03 -2.23� 0.03 4.99 0.87

SWARCH-L(3,2) -1.61 -0.94 -2.17� -0.04 4.70 0.79

Quantiles

0.01 0.025 0.05 0.95 0.975 0.99

Standard Normal -2.33 -1.96 -1.65 1.65 1.96 2.33

�22 5.99 7.38 9.21
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8 Figures

Figure 1: Weekly returns of a value-weighted portfolio of the New York Stock

Exchange. The observation period runs from the week ending Tuesday, July 3,

1962 through the week ending Tuesday, December 29 1987.
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Figure 2: (a) SWARCH-L(4,4). Posterior density of the transition probabilities
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Figure 2: (b) SWARCH-L(4,4). Simulated values, the posterior, and the auto-

correlation of the MCMC output for 
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Figure 2: (c) SWARCH-L(4,4). Simulated values, the posterior, and the auto-

correlation of the MCMC output for (�0 �)
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Figure 3: SWARCH-L(4,4). Posterior smoothed probabilities of being in state

j, j = 1; : : : ; K. The lines refer to business cycle turning points dated by the

NBER.
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Figure 4: SWARCH-L(4,3). Posterior smoothed probabilities of being in state

j, j = 1; : : : ; K. The lines refer to business cycle turning points dated by the

NBER.
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Figure 5: MCMC output of log 
 against persistence. Top panels: K = 4; m =

4; 3, bottom panels: K = 3; m = 4; 3.
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Figure 6: SWARCH-L(3,3). Posterior smoothed probabilities of being in state

j, j = 1; : : : ; K. The lines refer to business cycle turning points dated by the

NBER.
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Figure 7: SWARCH-L(4,4). Plot of the empirical distribution function of the

P-scores (edf), of the transformed P-scores against normal order statistics (nor-

mal plot), and the correlogram of the transformed P-scores and the trans-

formed re�ected P-scores (depicted along with a con�dence band around zero

of [�1=(N � 1)� 2=
p
N;�1=(N � 1) + 2=

p
N ]).
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Figure 8: SWARCH-L(3,3). Plot of the empirical distribution function of the

P-scores (edf), of the transformed P-scores against normal order statistics (nor-

mal plot), and the correlogram of the transformed P-scores and the trans-

formed re�ected P-scores (depicted along with a con�dence band around zero

of [�1=(N � 1)� 2=
p
N;�1=(N � 1) + 2=

p
N ]).
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