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Abstract

In this paper we examine the properties of some simple criterion-based,
likelihood ratio type tests of parameter restrictions for standard GMM
estimators in linear dynamic panel data models. A comparison is made
with recent test proposals based on the continuously-updated GMM crite-
rion (Hansen, Heaton and Yaron, 1996) or exponential tilting parameters
(Imbens, Spady and Johnson, 1998). The preferred likelihood ratio type
statistic is computed simply as the difference between the standard GMM
tests of overidentifying restrictions in the restricted and unrestricted mod-
els. In Monte Carlo simulations we find this has similar properties to the
two computationally more burdensome tests.
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1. Introduction

The problems with doing inference based on the efficient two-step GMM estimator
for panel data are well known. Due to the fact that asymptotic standard errors
are downward biased in small samples, standard Wald tests are oversized, see for
example Arellano and Bond (1991) and Koenker and Machado (1999). Because
of this, it has become standard practice to use the one-step estimation results
for more reliable inference. However, as this estimator is not efficient, one would
expect the power properties of tests based on it to be sub-optimal.

In this paper we compare the size and power properties of some alternative
tests of parameter restrictions. Recent papers by Hansen, Heaton and Yaron
(1996), (HHY), and Imbens, Spady and Johnson (1998), (ISJ), have proposed
testing procedures and shown that the small sample properties of these are su-
perior to those of the standard GMM Wald test, albeit not in the context of
(dynamic) panel data models. HHY advocate use of a criterion-based test, using
the continuously-updated GMM estimator, which is equivalent to robust LIML.
This estimator requires numerical methods for optimisation, which is documented
to have convergence problems and multi modality, see HHY, Arellano and Alonso-
Borrego (1999) and ISJ (1998). ISJ use the empirical likelihood framework and
advocate use of a weighted optimisation criterion, exponential tilting, and show
that their criterion-based Hansen-Sargan test for overidentifying restrictions has
better size properties than two-step, iterated and continuously-updated GMM.
They also show superior size properties for the exponential tilting test of parame-
ter restrictions compared to the Wald statistic in their model, but do not compare
it to the HHY test.

We compare the properties of these test statistics with some simple tests based

on the standard GMM criterion. These tests are of the “likelihood ratio” form,



comparing the minimised GMM criterion function under the null to the criterion
function under the alternative, as documented in for example Davidson and MacK-
innon (1993). As the moment conditions we consider are linear in the parameters,
different choices of weight matrices in the restricted and unrestricted models give
rise to different LR statistics with LM and Wald test equivalences. The Monte
Carlo investigation shows that the LR statistic that is computed simply as the
difference between the standard GMM tests for overidentifying restrictions in the
restricted and unrestricted models behaves well. This is found to have similar size
and power properties as the computationally more burdensome tests based on the

continuously-updated estimator or the exponential tilting parameters.

2. GMM and Test Statistics
Consider the moment conditions
E [9 (Xza 90)] =F [Qz' (90)] =0,

where g (.) is vector of order ¢ and 6y is a parameter vector of order k. The GMM

estimator 0y for f, minimises!
1 X ' 1 X
[N ;92' (9)1 Wy [N ;92' (9)1 :
with respect to 8; where Wy is a positive semidefinite weight matrix which satisfies
plimy . Wx = W, with W a positive definite matrix. Regularity conditions
are assumed such that limy_ & Y g; (8) = E[g; (9)] and ﬁ SN g (0y) —

N (0,%). Let T'(8) = E [9g: (0) /06] and Ty = T (6y), then /N (x — 0y) has a
limiting normal distribution, v N @N — 90> — N (0, Vi), where

Viy = (TyWTo) " ToWEWT, (D W) " (2.1)

!See Hansen (1982).



The efficient GMM estimator is based on a weight matrix that satisfies plim,_, .
Wy = UL, with Vi = (T,0 Ty)~". A weight matrix that satisfies this property

is given by
-1

~ 1 N _ N/
— gyl - | = ) .
Wy = B3 = (N > (9) 0 (0) ) , (2.2
where 0y is a consistent estimator for 6.

Denote g () = & S~ ; g; (f). The standard test for overidentifying restrictions

is N times the minimised GMM criterion, given by
J <§N> = Ny @N),‘T’Xrlg @N) :

and has an asymptotic chi-squared distribution with ¢ — k& degrees of freedom
when the moment conditions are valid.

For testing r restrictions of the form
r(6p) =0,
the criterion-based test statistics we consider are given by
Dan =N (9 (0) A9 (64) — 9 (2) B9 (65))

where Ay and By are consistent estimates of ¥ under the null, 0 4 is the GMM
estimator imposing the restrictions under the null and using the weight matrix
Ayl and 05 is the unrestricted GMM estimator using the weight matrix By'.
Under the null, D45 has an asymptotic chi-squared distribution with r degrees of
freedom.

We consider the following three choices of weight matrices Ay and By:

Dyy AN=BN=\TJN§
Drr : Ay = By = Uy;

Dry : Ay =Uy, By =y,
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where Wy is the estimator for ¥ in the unrestricted model based on an initial
consistent estimator 0y, as in (2.2), and Wy is the estimator for ¥ in the restricted

model based on an initial consistent estimator of the restricted parameter vector,

On.

As shown by Newey and West (1987), in the case of moment conditions that
are linear in the parameters, Dy is equivalent to the standard Wald test, Dgzg
is equivalent to a Wald test in the unrestricted model using the efficient weight
matrix under the null,> and is further equivalent to the LM test. Dpgy is the
“likelihood ratio” equivalent for GMM, see also Davidson and MacKinnon (1993,
pp. 614-620).

HHY proposed the use of a statistic similar to Dpgy for the continuously-
updated GMM estimator. This estimator is equivalent to robust LIML and is
defined as the value of ¢, denoted @ZU, that minimizes

-1

1 N
1 0) =g 0) (3000 07) 50).
i=1
The test statistic D$Y is then defined as
DS = N <JCU <§§U> — g <§JCVU)) ,
where @ZU is the continuously updated GMM estimator for the unrestricted model
and 'éZU is the continuously updated GMM estimator for the restricted model.
The ISJ test statistic is based on the empirical likelihood method. Their
“exponential tilting” estimator for , minimises the Kullback-Leibler information
criterion

N N N
mien Zm In7; subject to Zgi (0)m; =0 and Zm = 1.
oY=l i=1 i=1

2For example, if the null hypothesis is Ho : 6o = 6, we form the weight matrix in (2.2) using
gi (6) in place of g; (fn).



The estimated probabilities have the form

exp (7'g: (9))
> exp (v'g; (9))

where v are the tilting parameters. Intuitively these measure how much the sample

T, =

has to be re-weighted in order for the moment conditions to hold exactly. Tilting
parameters can also be estimated conditional on the standard GMM estimator of
the parameters 6. A test based on the restricted and unrestricted GMM estimators

is the difference

Dﬁg =N (’~Y/N(GMM)RN (éN ) ’~YN(GMM) - ’%V(GMM)RN @N ) FAVN(GMM))

where N
:}\/N(GJV[M) —max % Z exp (’Y’gz' (aN)) )
i=1

and @y is the efficient two-step GMM estimator in the unrestricted model; YN (G
is the equivalent estimator of the tilting parameters based on the efficient two-step
GMM estimator in the unrestricted model, §N; and

-1

smore] ymmore] [t a0

Both DGY and DEL have an asymptotic chi-squared distribution with r degrees
of freedom, and have been shown by respectively HHY and ISJ to have better
finite sample properties than the conventional Wald tests in particular contexts.
Also, the corresponding tests of overidentifying restrictions have been shown to
have better finite sample behaviour than the standard GMM test. Sofar as we
are aware, the HHY <D§g> and ISJ (Dg?}) tests of linear restrictions have not
been compared to either the LM (Dpgp) test or the criterion-based test using the
standard GMM criterion (Dgy). We consider this in the context of linear dynamic

panel data models.



3. AR1 Process with Individual Effects

To evaluate the finite sample behaviour of the various test statistics described in
the previous section, we consider the linear first order autoregressive panel data

model with individual effects (7;)
Yie = i1 + 1; + Uit

where ¢ = 1,..., N and t = 2,..., T, with T fixed. Under some basic assumptions
(see Ahn and Schmidt, 1995) the following (7" — 1) (T' — 2) /2 linear moment con-
ditions are valid

E {yf_2 (Ayie — OéAyit—l)} =0; (3.1)

where y' % = [yi1, Y2, ..., Yir_2]. We call these moment conditions the DIFF mo-
ment conditions, see Arellano and Bond (1991). Under some further assumptions
on initial conditions (see Blundell and Bond, 1998), the additional (7" — 2) linear
moment conditions

E[Ayir-1 (yie — oie—1)] =0 (3.2)

are valid. The joint moment conditions (3.1) and (3.2) are the so-called SYSTEM
moment conditions, see Arellano and Bover (1995) and Blundell and Bond (1998).

Let Z; be the matrix of instruments for observation 7, then the moment con-
ditions can be written as E [Z/v («)] = 0. The efficient one-step GMM weight
matrix for the DIFF moment conditions when the u;; are homoscedastic and not
serially correlated is given by Wy = <% >N ZZV’HZZv)il, where H is a (T — 2)
square matrix which has 2’s on the main diagonal, -1’s on the first subdiagonals
and zeros elsewhere. For the SYSTEM moment conditions there is no simple
one-step efficient weight matrix, and often the one-step weight matrix is set to

-1
Wy = (% N Z;Zi) . The efficient weight matrix for both estimators under



- ~1
general conditions is given by W' = <% N Zh; (@) v (6)'Zi) , with @ the
consistent one-step GMM estimator of a.

In Table 1 we present some Monte Carlo results for the AR1 panel data process.

The data generating process is

Yit = QUYi—1+1; + Ui
n, ~ N(Oal) ; uitNN(()?l)

) 1
Y = s +U¢;Ui’”N<O )

1—a "1—a?

The sample size is N = 100, T = 6, and we report the size properties of the
test statistics for 10000 samples. We consider tests of the null hypothesis Hy :
a = ag. Note that the test of overidentifying restrictions in the restricted model
(i.e. imposing this null), using the efficient weight matrix under the null, is in
this case the same as the Anderson-Rubin test statistic. Further, the Dy, or LM
test statistic is in this case similar in spirit to the Ty statistic of Wang and Zivot
(1998),? see also Pagan and Robertson (1997).

Table 1 compares the size properties of the various test statistics for o = 0.3.
The statistic W; is the Wald test based on the one-step GMM estimator and its
asymptotic standard error. Dy /W is the Wald test based on the efficient two-
step GMM estimation results. Wy is the Wald test based on the continuously-
updated GMM estimation results. Drp/LM is the LM test, and Dgy, Dgg and

DL are the criterion-based tests described above.*®

3The Dgpr statistic is the same as the Ty statistic of Wang and Zivot (1998) for the DIFF
moment conditions under the assumption of homoscedlasticity and non-serial correlation of the
Uz, using weight matrix Wy = (812}% Zf;l ZgHZi) with 812, estimated using the value of «
under the null.

4The test statistics Dry and DEL can be negative in finite samples. When a statistic is
negative, we interpret this as a non-rejection of the null hypothesis.

For the calculation of the continuously-updated estimator and the exponential tilting para-
meters we used Maxlik 4.0 in Gauss with analytical derivatives.



Table 1. Size comparisons, AR1 model, N =100, T'=6, o = 0.3,
10000 replications

DIFF

size W1 DUU/W2 DRR/LM DRU Dgg Dgg
0.20 | 0.2300  0.3071 0.2174  0.2119 0.2323 0.2174
0.10 | 0.1252  0.1917 0.1170  0.1086 0.1211 0.1176
0.05 | 0.0676  0.1245 0.0578  0.0517 0.0592 0.0626
0.01 | 0.0189  0.0453 0.0096  0.0088 0.0108 0.0124

SYSTEM

Wi  Dyu/Ws Drr/LM  Dgpy  DSY  DET
0.20 | 0.2185  0.3553 0.2198  0.2357 0.2355 0.2128
0.10 | 0.1178  0.2364 0.1129  0.1186 0.1227 0.1175
0.05 | 0.0610  0.1583 0.0556  0.0636 0.0666 0.0609
0.01 | 0.0164 0.0637 0.0115  0.0135 0.0152 0.0168

For this value of «, the test statistics perform quite similarly, with the ex-
ception of the Dy /W, statistic which is substantially oversized. For the DIFF
moment conditions, Dgy has the best overall size properties, whereas for the
SYSTEM moment conditions, Drr/LM performs best in terms of size. Figures
1 to 6 show p-value plots (see Davidson and MacKinnon, 1996) for the sizes of
the various test statistics for both the DIFF and SYSTEM moment conditions.
We consider values of o of 0, 0.4, and 0.8 respectively, and the results are based
on 10000 Monte Carlo replications. For high values of a the size properties of
the statistics for the DIFF moment conditions diverge, with only Dgy and DEL
having good size properties, and all other tests being oversized. This is due to the
fact that the GMM estimator based on the DIFF moment conditions is downward
biased in small samples for high values of a.. This affects the standard Wald tests,
and also the Dgr/LM test, as this is a Wald test on the unrestricted GMM es-
timator using the restricted weight matrix. The continuously-updated estimator

has some convergence problems for the DIFF moment conditions when « is high.%

0For the DIFF moment conditions, when o = 0.8, the continuously-updated estimation
procedure did not converge in 0.3% of the samples. When this occurred, we discarded the



These problems are all due to the fact that instruments become weak for high a.
We will discuss weak instruments further in section 5.

The GMM estimator based on the SYSTEM moment conditions has been
shown by Blundell and Bond (1998) to have much smaller small sample bias, even
for high values of a. As these moment conditions are much more informative, the
Drr/LM test statistic has superior size properties. The simple Dy, test behaves
similarly to the tests based on the continuously-updated estimator and the tilting
parameters. When a = 0.8, the one-step Wald test is oversized, whereas DL
tends to be undersized. The continuously-updated estimator has no convergence
problems in this case, but the D§f test statistic is oversized, more so than the
Drgyr test.

Figures 8 to 10 display the power of the tests at the 5% level of significance test-
ing Hy : « = 0 and Hy : @ = 0.6 respectively, again based on 10000 Monte Carlo
replications. The power function is calculated for the values of o = 0,0.1,...,0.8,
and corrected for size distortions. For the DIFF moment conditions, the Dgp/LM
power properties for Hy : o = 0 are worst, due to the fact that the use of the
weight matrix under the null biases the estimator towards zero, particularly at
high values of a. The one-step Wald test has the best power for these moment
conditions, as the efficient one-step weight matrix is used here.

The power properties of the criterion based test statistics are all very similar
in the case of the SYSTEM moment conditions. The one-step Wald test now has
least power when testing Hy : & = 0. It seems to have high power for the test

Hy : a = 0.6, when « is large, but for these case its size properties are poor.

results and generated a new sample. However, the distribution of the converged estimation
results shows some extremely outlying estimates.
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In conclusion, the results of these Monte Carlo simulations show that the sim-
ple Dgy test, based on the standard GMM criterion, performs quite well, very
similar and often better than the recently proposed computationally more bur-
densome test statistics DGY and DEL. The Dypr/LM statistic has very good size
properties, and also reasonable power properties, in models where weak identifi-

cation is not an issue.
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4. AR2 Process with Individual Effects

For the AR1 process, there were no unknown parameters to be estimated in the
restricted model. To evaluate the performance of the test statistics in the case

where there are unknown parameters under the null, consider the AR2 process
Yit = Q1 lYip—1 + QoYi—2 +1; + U

and the simple test Hy : ay = 6. There are various ways to construct the weight
matrix under the null. We propose use of the weight matrix based on the one-step

GMM estimate for «; in the restricted model
Yit — OYir—2 = Q1 ¥Yit—1 + 1; + Ui,

which we denote by @14, giving the two-step weight matrix

-1
Wi (7268) = B3¢ = (3 3 2o (T ) s (7000 1)
i=1

The statistic Dy is then simply the difference between the GMM tests of overi-
dentifying restrictions in the restricted and unrestricted model, keeping the num-
ber of moment conditions constant.

Table 2 reports sizes and some size-corrected power properties of the various
test statistics for the test Hy : as = 0, for both the DIFF and SYSTEM moment
conditions. The other parameters of the DGP are the same as in the previous
section. Again, N = 100, but now 7' = 7. Results are largely the same as before.
For the DIFF moment conditions, Dpg; possesses the best size properties, and
has power very similar to the power of DEY and DEL. DGY seems to have better
power for high values of a;, but this is accompanied by convergence problems for
the continuously-updated estimator. The Dyr/LM test again shows problems

similar to the one-step Wald test, being oversized and having very low power. For

12



the SYSTEM moment conditions, the Dggr/LM test has superior size properties
with similar power as the other criterion-based tests. For higher values of «; the
one-step Wald test is the most powerful, but its size properties deteriorate with
increasing v, as in the AR1 model. Size and power properties of Dgyr, DS, and
DEL are quite similar, with Dyy having possibly the best overall size and power

properties of the three.

Table 2. Size and size-corrected power comparisons, AR2 model

N =100, T' =7, 10000 replications, Hy : ap = 0.

DIFF

Qg = 0
size W1 DUU/W2 DRR/LM DRU chgg DJE{J[I;
0.10 | 0.1435  0.2253 0.1291 0.1162 0.1285 0.1313

a; =03 0.05]0.0851  0.1506 0.0701 0.0585 0.0654 0.0762
0.01 | 0.0257  0.0630 0.0166 0.0132 0.0143 0.0199

0.10 | 0.1572  0.2439 0.1416  0.1199 0.1291 0.1280
o =05 0.05]0.0945 0.1663 0.0794  0.0625 0.0692 0.0746
0.01 | 0.0309  0.0744 0.0205  0.0143 0.0147 0.0204

0.10 | 0.1845  0.2691 0.1608  0.1291 0.1409 0.1357
o; =0.7 0.05]0.1122  0.1939 0.0920  0.0710 0.0756 0.0778
0.01 | 0.0404  0.0926 0.0250  0.0166 0.0156 0.0221
Qg = 0.1
Wr  Dyu/Wa Drr/LM Dpy DY DED
0.10 | 0.1021  0.1003 0.1237  0.2322 0.2429 0.2327
a; =03 0.05|0.0456  0.0410 0.0607  0.1393 0.1487 0.1427
0.01 | 0.0060  0.0051 0.0134  0.0397 0.0458 0.0447

0.10 | 0.0480  0.0466 0.0726  0.1854 0.2129 0.1970
a; =05 0.05(0.0152 0.0146 0.0341  0.1070 0.1298 0.1172
0.01 | 0.0014  0.0008 0.0056  0.0292 0.0351 0.0310

0.10 | 0.0126  0.0140 0.0300  0.0979 0.1615 0.1129
op =0.7 0.05|0.0037 0.0057 0.0092  0.0458 0.0899 0.0554
0.01 | 0.0002  0.0001 0.0008  0.0046 0.0176 0.0106
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Table 2 continued. Size and size-corrected power comparisons, AR2 model

N =100, T' =7, 10000 replications, Hy : as = 0.

SYSTEM

Qg = 0

size W1 DUU/W2 DRR/LM DRU ch%g DJE{J[I;
0.10 | 0.1205  0.2723 0.1034  0.1301 0.1311 0.1432

a; =03 0.050.0652 0.1938 0.0539  0.0691 0.0702 0.0849
0.01 | 0.0177  0.0935 0.0091  0.0132 0.0156 0.0224

0.10 | 0.1211  0.2909 0.1000  0.1308 0.1326 0.1406
a; =05 0.05]0.0662 0.2114 0.048  0.0677 0.0710 0.0837
0.01 | 0.0186  0.1037 0.0084  0.0141 0.0153 0.0259

0.10 | 0.1448  0.3204 0.0961 0.1271 0.1338 0.1356
o; =0.7 0.05]0.0837 0.2393 0.0468  0.0665 0.0704 0.0786
0.01 | 0.0253  0.1306 0.0092  0.0161 0.0186 0.0256
Qg = 0.1
W,  Dyu/Wa Dpr/LM  Dgy DS DET
0.10 | 0.3539  0.3850 0.3683  0.3646 0.3465 0.3713
o; =03 0.05]0.2270 0.2531 0.2581  0.2571 0.2286 0.2567
0.01 | 0.0739  0.0908 0.1050  0.1071 0.0787 0.0996

0.10 | 0.4314  0.4168 0.3537  0.3560 0.3309 0.3639
a; =05 0.05]0.3116 0.2856 0.2373  0.2574 0.2254 0.2495
0.01 | 0.1354 0.1032 0.0856  0.0982 0.0761 0.0841

0.10 | 0.5807  0.5187 0.3727  0.3573 0.3123 0.3571
o =0.7 0.05|04573  0.3875 0.2544  0.2521 0.1989 0.2462
0.01 | 0.2234  0.1605 0.0999  0.0916 0.0656 0.0905

5. Weak Instruments

Under weak instruments, in the sense of Staiger and Stock (1997), the asymptotic
distributions of the Dgp/LM and Dpy parameter tests are nonstandard. Follow-
ing Dufour (1997), Wang and Zivot (1998) derive the asymptotic distributions of
the boundedly pivotal TSLS LM and LIML LR statistics for IV regressions under

14



weak instruments. They advocate the use of a pre-test method to determine the
identification of the model, and the use of different critical values according to the
outcome of the pre-test.

Consider the AR1 model with the parameter test Hy : o« = ag. Both Drg/LM
and Dy are bounded by the Anderson-Rubin statistic Ng (co) ¥ (cg) g ()
which is asymptotically xﬁ distributed under the null, regardless of identification
issues. A pre-test of identification for GMM in panel data models is the Arellano,
Hansen and Sentana (1999) test for underidentification. The Wang-Zivot strategy
is to use the x? critical values for the tests if the underidentification test does not
indicate identification problems, and the use the x§ critical values when it does.

For the AR1 model the test for underidentification is based on the moments

and the model is underidentified if the test statistic for overidentifying restric-
tions is smaller than the specified critical value of the x? distribution, with
s=T(T—-1)/2.

Table 3 shows the size properties for the two tests together with the results of
the underidentification test. When the adjustment is made for underidentification,
the size properties of the Dggr/LM test improve considerably. The adjusted D gy

test is undersized.
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Table 3. AR1 model, N = 100, T' = 6, size properties for test results
unadjusted and adjusted (*) for underidentification, DIFF moment conditions,
10000 replications

size DRR/LM DRU SU DER/LM* DEU

0.10 0.2164 0.1139 0.2731 0.1621 0.0873
a=08 0.056 0.1305 0.0628 0.4056 0.0825 0.0425

0.01  0.0363 0.0164 0.6833 0.0141 0.0065

0.10 0.3680  0.1741 0.7366 0.1092 0.0533
a=09 0.05 02438 0.1105 0.8447 0.0466 0.0212
0.01  0.0807  0.0314 0.9632 0.0048 0.0014

0.10 04537  0.2248 0.8533 0.0890 0.0499
a=095 005 03164 0.1438 0.9242 0.0388 0.0194
0.01  0.1135  0.0478 0.9856 0.0046 0.0018

SU is test for underidentification. Results indicate frequency of underidentification.

6. Conclusions

In this paper we have considered the properties of a simple test of parameter
restrictions based on standard two-step efficient GMM estimators. The test is
computed simply as the difference between the minimised values of the GMM
criterion function in the restricted and unrestricted models. We compared this to
criterion-based tests of parameter restrictions based on the continuously-updated
GMM estimator of Hansen, Heaton and Yaron (1996) and the exponential tilting
proposal of Imbens, Spady and Johnson (1998), as well as to standard asymptotic
Wald tests, and to the LM test statistic which is easily computed in the case of
moment conditions that are linear in the parameters.

We investigated the properties of these tests using Monte Carlo experiments in
the context of simple parameter restrictions in linear dynamic panel data models.
Our main finding is that the test based on the standard GMM criterion function

has very similar properties to the computationally more burdensome alternatives.
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In future research we will investigate whether this finding holds in more gen-

eral settings, for example in the context of non-linear restrictions and non-linear

models.
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