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Abstract

This paper models managerial human capital as the ability to predict future
events. My assignment model shows that a manager who has high prediction
ability goes into a risky industry, because risk increases the marginal produc-
tivity of prediction ability. This conclusion contrasts with that of Lucas (1978).
In Lucas's model talented managers simply manage bigger ¯rms. The data
supports my view: talented B-school graduates choose to work in risky indus-
tries, and the correlation between an ability measure and a risk measure is 0.75.
The simulated assignment model ¯ts B-school placement data quite well, and
a 1 percent increase in the GMAT score of a B-school graduate implies a 158
percent increase in the risk of the ¯rm to which the graduate is assigned.
I also employ a dynamic analysis, which shows that prediction ability in-

creases a ¯rm's expected Tobin's Q and allows a ¯rm to attain a higher expected
growth rate. The COMPUSTAT dataset con¯rms these points as well.

¤I am grateful to Andrew Abel, John Core, Jason Cummins, Joao Gomes, Johannes Horner,
Boyan Jovanovic, Richard Kihlstrom, Rafael Rob and Masako Ueda for important comments. I also
wish to thank seminar participants at the 1999 annual meeting of Econometric Society, the 1998/1999
annual meeting of the Society of Economic Dynamics, the Kansai Macroeconomics Workshop, Kobe
University of Commerce, Nagoya City University, Osaka City University, Tokyo University and the
University of Pennsylvania.
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Figure 1: Risk vs Ability

1 Introduction

This paper lays a micro foundation for one important component of a manager's hu-
man capital: the ability to predict future events that a®ect the pro¯ts of a ¯rm. The
idea is simple. In an uncertain world, managers receive noisy signals about the market
the ¯rm faces. It is natural to assume that a good manager discerns better signals
than does a bad manager { a good manager is one who predicts accurately. Hence
this paper measures a manager's prediction ability by the quality of the information
that the manager observes and uses to predict future pro¯tability.

A puzzle: Figure 1 depicts a puzzling phenomenon. Top B-school graduates get jobs
in risky industries.
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The vertical axis measures the risk of an industry. To measure this risk, I calculate
the sample variance of a ¯rm's operating income over its net capital stock during the
period 1988-1997 and then compute a weighted average of the variance by industry
with the ¯rm's net capital stock in 1997 as its weight. I take the logarithm of this
weighted average. The data come from COMPUSTAT.1 The horizontal axis measures
the cognitive skill of managers who entered an industry in 1998. On their website, US
News & World Report provides placement data of the top 50 business schools in the
US. From that site I obtained the average GMAT score of students in a school, the
fraction of graduates who entered each industry and the total number of graduates.
I, then, estimate the log of a weighted average of GMAT score by industry, using the
number of graduates who chose a job in an industry as the weight. The ¯gure shows
that a smart graduate prefers to go into a risky industry. The correlation between
risk and ability is 0.75.

An answer: My theory predicts that a manager who can predict future investment
opportunities goes into a risky industry, because risk increases the marginal produc-
tivity of prediction ability, and therefore a risky ¯rm demands a manager with high
prediction ability. Think about a project which has no risk. Since everyone knows
what will happen, additional information has no value. That is, prediction ability
is of no use. We need prediction ability because there is uncertainty. If a manager
has a clearer vision under uncertainty, his ability is appreciated. In other words,
the return to prediction ability is higher when a project is riskier. Hence, as long
as a cognitive ability increases prediction ability, it is natural that a talented person
chooses a risky industry.
Based on the presented model of prediction ability, I show that there exists a pos-

itive assortative assignment equilibrium between ¯rms' risk and managers' prediction
ability. The simulation of my assignment model ¯ts B-school placement data quite
well. Consider Figure 1 again. The solid line represent the ¯t of my assignment
model. My simulation results predict that a 1 percent increase in the GMAT score
of a B-school graduate brings about a 158 percent increase in the risk of the ¯rm to
which the graduate is assigned. That is, a slightly higher di®erence in ability pushes
a manager into a much more complex environment.

Related papers: This prediction contrasts with that of Lucas (1978), whose span
of control model implies that a talented manager will run a large ¯rm. This may
well be true. Murphy (1998) provides robust results that show a strong positive
correlation between the size of a ¯rm and the compensation of its CEO. The span of
control model, however, is silent about risk. Kihlstrom and La®ont (1979) emphasize
the importance of the risk taking behavior of an entrepreneur, but they focus on the
attitudes of an entrepreneur but not on an entrepreneur's ability.

1For a more detailed description of the data construction, please see Appendix 3.
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My view is close to Schultz (1975, 1980). Based on rich empirical studies such as
Welch (1971), he emphasizes that education raises the ability \to interpret new infor-
mation and to decide to reallocate their resources to take advantage of new and better
opportunities".2 He called it \the ability of entrepreneurs to deal with disequilibria".3

Since my measure evaluates a manager's reaction to future pro¯tability, as I show
later, my measure can be interpreted as a measure of entrepreneurial ability.4

My results also explain certain aspects of CEO compensation. The ¯nance and
accounting literatures found not only that ¯rm size has a positive impact on CEO
compensation, but also that the existence of investment opportunities has a positive
e®ect on CEO compensation (Smith and Watts [1992] and Gaver and Gaver [1993]).
Typically, greater opportunity to invest makes a ¯rm more risky. In fact, researchers
sometimes use the variance of total return on a ¯rm as a measure of investment
opportunity (Smith and Watts [1992] and Gaver and Gaver [1993]). These literatures
usually explain this fact using contract theory: in order to ensure that a manager
takes more risk rewards must be higher. My theory provides a di®erent explanation:
Since the results of a talented manager are easier to observe in a risky ¯rm, it is not
surprising to see higher rewards for such a manager.

Other contributions
A dynamic investment model in this paper makes contributions to two other research
topics: (1) the empirical estimation of the value of information in a ¯rm and (2) the
theory of investment under uncertainty.

Empirical estimation of the value of information in a ¯rm: I construct an ob-
servable measure of a manager's prediction ability. Although many economists apply
the Blackwell theorem (1953) to analyze the economic impact of accurate informa-
tion, nobody estimates it.5 I show that, given a particular production function, the
quality of information can be estimated by the correlation coe±cient between future
pro¯tability and current decisions. Since Tobin's Q re°ects the future pro¯tability
of capital, I construct a measure of prediction ability from the correlation between
a ¯rm's future Q and its current growth rate. Using this measure I show that a
manager's prediction ability has a positive impact on a ¯rm's expected Tobin's Q with
evidence from the COMPUSTAT dataset.

Investment under uncertainty: My dynamic investment model shows that a

2Schultz (1980).
3Schultz (1980).
4Holmes and Schmitz (1990) also formalize Schultz's view of entrepreneurship. They emphasize

the importance of the division of labor based on the comparative advantage of an entreprenur.
5Marschak and Miyasawa (1968) and Kihlstrom (1984) have excellent discussions about Black-

well's theorem. Arthey and Levin (1998) intensively investigate the ordering of information struc-
tures in a particular class of utility functions and distribution functions.
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manager who expects to receive more valuable information attains a higher expected
growth rate. If current investment decreases future adjustment costs, a good manager
has incentive to invest more on average in order to prepare for future investment
opportunities.6 This result is in contrast to that of Demers (1991), who argued that,
when investment is irreversible, the more valuable information a manager expects to
receive, the less on average he invests. Using my measure of prediction ability, the
COMPUSTAT data conforms to my theory.

The organization of this paper
This paper is organized as follows. The next section develops a basic static model that
describes why information is valuable. Here I will introduce a measure of prediction
ability and show that risk and ability are complementary. The complementarity
provides the basis for an assignment model. Section 3 provides my assignment theory
based on the model of prediction ability. Here I will show that a talented person will
be assigned to a risky industry. I will also provide some simulation results. Section
4 formalizes the dynamic investment model. Section 5 extends the results of the
static model to the dynamic model under i.i.d. random shocks. Section 6 extends
the measure of the static model so that the analysis applies under a Markov process
with stationary transitions. Section 7 provides assumptions that facilitate empirical
application of the model. Here I discuss the issue of heterogeneous managers. Section
8 o®ers some empirical evidence for the e®ect of accurate information on expected
Tobin's Q and the expected growth rate. The last section concludes the main results
and discuss possible extensions.

2 Preliminaries: The Complementarity Between

Risk and Prediction Ability

In this section I develop a static investment decision model that describes why in-
formation is useful and how it is captured.7 The model will show that risk and
prediction ability are complementary, which will provide the groundwork for the as-
signment analysis in section 3.

6The logic is clearer if one assumes that the adjustment cost represents the cost of training new
workers on new machines: a superior manager has more incentive to keep more skilled workers to
prepare for future investment opportunities.

7After completing this section, I found Nelson (1961). The structure of the model in this section
is the same as that in Nelson (1961). Although his emphasis is di®erent from mine, he established
some of the results in this section.
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2.1 Static formulation

Consider a manager's investment decision problem with investment adjustment costs
under uncertainty. I focus on an isolated ¯rm's behavior in this section.
Suppose that a representative ¯rm solves the following problem:

¼ (E (zjs)) = max
I

"R
zdG (zjs) I

r
¡ I ¡ AI

2

2

#
; (1)

where r is the interest rate, I is the amount of investment, z is a random shock,
s is a signal and G (zjs) is the conditional distribution of z given s. The term
[
R
zdG (zjs) I] =r is the present value of the expected revenue from investment and

I+AI2=2 is a cost of investment. Speci¯cally, I is investment expenditure and AI2=2
is the associated adjustment cost. I assume that the price of investment is 1 and that
z ¸ r. A manager observes a signal s, infers z and decides how much he will produce.
It can be shown that the pro¯t function is given by

¼ (E (zjs)) = [
R
zdG (zjs)¡ r]2

2r2A
: (2)

Notice that the pro¯t function is a convex function of the conditional expectation
of the random shock. This is key to understanding why prediction ability brings
about more pro¯t. The following extreme example explains the importance of the
convexity.

2.2 Extreme case

Now assume that z takes only two values z¡ and z; where each occurs with probability

1=2. Suppose that the joint distribution is given by G (z; sg; sb). Suppose that
Mr.Gates observes a signal sg that perfectly predicts the realization of the random
shock. Hence, Z

zdGG (zjsg) = z¡; if z¡ occurs;

= z; if z occurs;

where GG (zjsg) is the conditional distribution given sg. On the other hand, suppose
that Mr. Bean observes a signal sb that has no predictive power. Then

Z
zdGB (zjsb) =

z¡ + z

2
always;

where GB (zjsb) is the conditional distribution given sb. Figure 2 illustrates the two
managers' pro¯t functions.
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The key point is that each pro¯t function is a convex function of the conditional
expectation of the random shock. Gates can increase his investment when he expects
that z is high and decrease it when he expects that z is low. On the other hand,
Bean cannot exploit this bene¯t, since his signal does not reveal anything about z.
Figure 2 shows that since the pro¯t function is convex, Gates can make more pro¯t
than Bean on average. The di®erence between Gate's expected pro¯ts and Bean's
represents the value of information.8
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Figure2: The Value of Information

2.3 The measure of ability

In order to analyze the e®ect of prediction ability under a more general information
structure, I need to construct a suitable measure to capture the value of the signal.

8The importance of the convexity of the pro¯t function in investment problems is emphasized by
Hartman (1972) and Abel (1983).
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The above extreme example indicates that the more the conditional expectation of a
random shock given the signal varies, then the more accurate the signal will be. I
will show that the measure developed in this paper has this property. The measure
is as follows.

De¯nition 1 The basic measure of prediction ability, h, is de¯ned by

h ´ 1¡
R
V ar (zjs) dGs (s)

¾2z
; (3)

where ¾2z =
R
(z ¡ R

zdGz (z))
2Gz (z), V ar (zjs) = R fz ¡ R

zdG (zjs)g2 dG (zjs), and
Gz (z) and Gs (s) are the marginal distribution of z and s, respectively.

9

This measure captures how well a signal is able to predict z on average. The uncon-
ditional variance, ¾2z , is just an adjustment factor that makes it possible to compare
prediction ability under di®erent environments. I subtract [

R
V ar (zjs) dGs (s)] =¾2z

from 1, which is the maximum value that [
R
V ar (zjs) dGs (s)] =¾2z can attain. In this

way, the measure attains its highest value for the best manager. Thus, if a manager
can perfectly predict z, then h = 1; if the signal is useless for prediction, then h = 0.
This is my proxy for human capital in this paper.

Example: Suppose z = ze + sg + sb, where sg and sb are independent of each other.
Assume that E (si) = 0, V ar (si) = ¾

2
i , where i = g or b, and ¾

2
g > ¾

2
b . Assume that

a manager can observe only one signal, say sg. For this manager, sb is just noise. In
this case,

h =
¾2g

¾2g + ¾
2
b

: (4)

Since everyone knows the unconditional variance of z, ¾2g + ¾
2
b , this measure implies

that the variance of the good signal explains a large proportion of the unconditional
variance of z. In other words, the noisy term becomes insigni¯cant when one observes
a good signal.

The following theorem provides an important property of this measure.

Theorem 1 The above basic measure of prediction ability can be written as follows

h =
V ar (E(zjs))

¾2z
; (5)

where V ar (E (zjs)) = R
[
R
zG (zjs)¡ R

zdGz (z)]
2 dGs (s).

9This measure can be also found in Nelson (1961).
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Proof. Using the identity equation,

¾2z = E (V ar (zjs)) + V ar (E (zjs)) ; (6)

the result is immediate.

This new expression clearly shows that the measure has a high value when the
variance of the conditional expectation is high. This is exactly the property that the
previous extreme example indicates.

2.4 The complementarity between ¾2z and h

Using this measure I can analyze a more general information structure. The next
theorem shows that prediction ability has a positive e®ect on expected pro¯t, and
that it can be estimated by the correlation between z and I. It will also show that
¾2z and h are complements.

Theorem 2 Expected pro¯t is an increasing function of prediction ability given by

V
³
h : ¾2z

´
´
Z
¼ (E (zjs)) dGs (s) = (ze ¡ r)2 + ¾2zh

2r2A
; (7)

where ze =
R
zGz (z). Moreover prediction ability h can be estimated by

h = (½zI)
2 ; ½zI ¸ 0; (8)

where ½zI =
R
[z¡ze][I(s)¡Ie]dG(z; s)qR

[z¡ze]2dGz(z)
R
[I(s)¡Ie]2dGs(s)

and Ie =
R
I (s) dGs (s).

Proof. The proof is similar to the proof of Theorem 10 in Appendix 1. I do not
repeat it here.

The theorem shows that expected pro¯t is increasing in prediction ability. The
theorem has four important implications.

1. All the e®ects of the noisy signal in theorem 2 are captured by h. This means
that the more accurate the information in the sense of Blackwell, the larger the
value of h. However, a higher h does not imply more accurate information in
the Blackwell sense.

2. Prediction ability has a strictly increasing relationship with the correlation co-
e±cient between investment and the random shock. Since a good manager has
an accurate signal with which to predict z, he knows the optimal time at which
to invest. That is, a good manager can increase his investment during a boom
and reduce it during a recession. This is the basic value of prediction ability.
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3. Prediction ability h has a stronger e®ect on expected pro¯ts when ¾2z is larger.
That is, ¾2z and h are complements. This complementarity brings a positive
assortative assignment between ¾2z and h in the following assignment model.

4. Prediction ability h has a larger e®ect on expected pro¯t, when A is small.
Since the advantage of a good manager is to time investment well, if A is small,
a good manager can easily change his decision and take advantage of his ability.
This observation provides intuition into why a manger attains a high expected
growth rate in the dynamic model. I will explain this in section 4.

3 The Equilibrium Assignment of Ability to Risk

Consider the labor market for managers. To which ¯rm (or industry) does a good
manager go, and how much will a good manager earn? I will show that a person who
has good prediction ability not only becomes a manager, but also prefers to work in
a risky ¯rm (industry). My proof is based on assignment theory. Because ¾2z and h
are complements, assignment theory predicts that a talented person (high h) will be
assigned to a risky ¯rm.10

Suppose that each ¯rm (industry) is characterized by risk ¾2z and that each man-
ager is characterized by prediction ability h: Suppose that ¾2z is distributed on"
¾2z¡
;
¡
¾2z

#
with distribution function ª (¾2z), where ª

0 > 0. For simplicity, suppose

that each ¯rm has the same ze.11 Assume that h is distributed over
·
h¡
; h

¸
with a

distribution function ¡ (h), where ¡
0
> 0.

Suppose that a person can obtain a reservation wage of wl as a worker if he does
not become a manager. On the other hand, a ¯rm's owner will get 0 pro¯t if he
does not employ a manager. Consider the following problem of the ¯rm which is
motivated by theorem 2:12

max

h2
·
h
¡
; h

¸ nV ³h : ¾2z´¡ w (h)o ;

where V
³
s : ¾2z

´
=
(ze ¡ r)2 + ¾2zh

2r2A
and

w (¢) is a wage function.
10Refer to Koopmans and Beckmann (1957), Becker (1973) or Sattinger (1993).
11The result follows even with the more general assumption that ze = f

¡
¾2z
¢
, where f 0 ¸ 0.

12This formulation implies that \manager" in this paper includes analysts. This notion of a
manager is suitable to B-school data.
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De¯ne an assignment function a (¢) so that ¾2z = a (h). An assignment function
is a mapping which dictates which person should be assigned to which ¯rm. Using
this assignment function, I will de¯ne a positive assortative assignment equilibrium.
In this equilibrium, a talented person not only becomes a manager, but also prefers
to work in a risky ¯rm.

De¯nition 2 A positive assortative assignment equilibrium consists of an assignment
function a (¢), a wage function w (¢) and a unique cuto® point h¤ which satisfy:
1. A positive assortative assignment condition:

1¡ ¡ (h) = 1¡ª(a (h)) ; for all h ¸ h¤; (9)

2. A ¯rm's maximization problem must be consistent with the assignment:

arg max

h2
·
h
¡
; h

¸ nV ³h : ¾2z´¡ w (h)o = a¡1 ³¾2z´ ; for all ¾2z ; (10)

3. A cut o® point condition:

V (h¤ : a (h¤)) = w (h¤) = wl; (11)

and if h ¸ (·) h¤, then a person becomes a manager (a worker). Moreover a
¯rm enters the economy only if ¾2z ¸ a (h¤).

The following theorem not only shows that there exists a positive assortative as-
signment equilibrium, but also characterizes the manager's wage function.

Theorem 3 Assume that
(ze¡r)2+¾2z

¡
h
¡

2r2A
· wl · (ze¡r)2+¡¾

2

z

¡
h

2r2A
. Then there exists a posi-

tive assortative assignment equilibrium. Moreover a manager's wage satis¯es:

w (h) =
Z h

h¤

a (¿)

2r2A
d¿ + wl;

where a (h) = ª¡1 (¡ (h)).

Proof. See Appendix 1.

There are two important properties of this equilibrium. First, a0 (h) > 0. That
is, if you have more ability to predict z, then you will be assigned to a ¯rm which has
more risk. Second, the wage function is increasing and convex in h. This implies
that the manager's wage will be skewed right.
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3.1 Fitting a log-uniform example to data

I want to know how an assignment model ¯ts B-school placement data. In order to
do so, I need some additional assumptions.

Assumption 1: Suppose that ¡ (h) and ª (¾2z) are log uniform.
Assumption 2: h = ± £ (score), where ± > 0 and score represents cognitive skill,
which is measured by GMAT score or GPA score.

Assumption 1 and 2 imply that the log of GMAT (GPA) score is also log uniform.
Consider the ¯gures in Appendix 4. They show estimates of the cumulative distri-
bution of log (¾2z) and log (score) by industry, where ¾

2
z is a weighted average of the

variance (of operating income over net capital stock) by industry, and score is the av-
erage GMAT or GPA score of B-school graduates by industry. I estimate log (¾2z) and
log (score) as explained in the introduction. The ¯gures show that the distributions
of log (¾2z) and log (score) can be approximated by a uniform distribution.

An assignment function: I want to investigate the ¯t of the assignment model.
First, I need to show the quantitative results of the assignment function. Next, I will
investigate the wage function. Let mlog ¾ and ¾

2
log ¾denote the mean and variance of

log ¾2z , respectively, and let mlog(score) and ¾
2
log(score) denote the mean and variance of

log(score), respectively. The next theorem shows that log a (h) jh=±(score) is an a±ne
transformation of log (score).

Theorem 4 Suppose that Assumptions 1 and 2 are satis¯ed.13 Then

log a (h) jh=±(score) = » log (score) + µ;
where

» =

vuut ¾2log ¾
¾2log(score)

and

µ = mlog ¾ ¡ »mlog(score):

Proof. See Appendix 1.

Theorem 4 shows that there is a clear relationship between the cognitive ability
of a manager and the risk of the industry to which he is assigned. Since it is easy

13For the more general case, Assumptions 1 and 2 are not necessary for Theorem 4. For simplicity,
I construct an assignment model between prediction ability and risk. But for this empirical study
we need an assignment between GMAT (GPA) score and risk. If we assume that prediction ability
is an increasing twice di®erentiable function of GMAT (GPA) score, the log uniformity of the risk
distribution and the log uniformity of GMAT (GPA) score is su±cient for Theorem 4.

12



to estimate » and µ from data, it is possible to see the quantitative results of the
assignment model.
Table 1 provides simple statistics of the data. It shows quite a high correlation

between the risk measure and the ability measures; the correlation between the log
of ¾2z and the log of an average GMAT (GPA) is 0.75 (0.68).

Table 1: Simple Statistics of the Data
log ¾2z log GMAT log GPA

mean -0.893 6.486 1.210
standard deviation 2.213 0.014 0.008
correlation coe±cient
log ¾2z 1 0.751¤¤ 0.679¤

log GMAT 1 0.937¤¤¤

log GPA 1
» 158 267
µ -1029 -324
¤ signi¯cant at 1 % level.
¤¤ signi¯cant at 0.1 % level.
¤¤¤ signi¯cant at 0.01 % level.

Using estimated » and µ, I simulate the model. Figure 3 shows that the assignment
model ¯ts the data extremely well. Di®erent measures of cognitive ability, GMAT
and GPA, show quite similar results.14 The simulation results strongly support an
assignment between cognitive ability and risk.
Table 1 also shows that the relatively large standard deviation of log ¾2z as com-

pared to the standard deviation of log GMAT or log GPA induces a high ». A high
» has one important implication: A 1 percent increase in GMAT score of a B-school
graduate brings about a 158 percent increase in the risk of the ¯rm to which he is
assigned. If I use GPA as a measure of cognitive ability, the result becomes even
more extreme: a 1 percent increase in GPA score of a B-school graduate brings about
a 267 percent increase in the risk of the ¯rm to which he is assigned. This implies
that a small increase in a manager's ability causes a large change in the risk of his
work.

14I also repeated the same exercise computing the sample variance of the shock over a di®erent
time period. I also tried the same exercise using an estimated idiosyncratic shock. Although I do
not report them here, the results are quite similar. Hence the conclusion that there is a positive
assignment between risk and ability is robust.
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The wage function: Now I will examine the quantitative results regarding the
wage function in the assignment model. The following theorem derives a closed form
solution for the wage function.

Theorem 5 Suppose that Assumptions 1 and 2 are satis¯ed. Then

w (h) jh=±(score) =
±eµ

h
(score)»+1 ¡ (score¤)»+1

i
2r2A (» + 1)

+ wl;

where

» =

vuut ¾2log ¾
¾2log score

and

µ = mlog ¾ ¡ µmlog score:

Proof. See Appendix 1.

In order to simulate this function I need to estimate r, A, ±, score¤ and wl. I
simply assume r = 0:05. This value has little e®ect on the results. The adjustment
cost parameter, A, according to the ¯rst order condition for the investment decision,
is given by

A =
ze ¡ r
rIe

:

I estimate a ¯rm's ze and Ie by the sample means of shocks and investment over
the period 1988-1997. The above equation provides the estimation of the ¯rm's
adjustment cost. I calculate the weighted average of the cost where the weight is net
capital stock in 1997.
The parameter ± can be estimated by h= (score) where h is average prediction

ability and score is average GMAT score or GPA score. To estimate the average
h, I ¯rst estimate a ¯rm's correlation coe±cient between investment and operating
income/net capital stock over 1988-1997. Then I take a weighted average of the
correlation with net capital stock as the weight. Finally, I square the results as
implied by Theorem 2:15 Average score at the aggregate level is estimated by a
simple average of an industry's average GMAT (GPA).

15Estimated h is quite a rough measure of prediction ability at the aggregate level. First, the
investment decision will depend not only on the current shock, but also on the future shock. I
consider this possibility more seriously in the dynamic context. As I will show in next section, as
long as I assume that the shock is close to i.i.d., this measure has no problem. Second, you may
wonder whether the measure is biased by a liquidity constraint. This is possible, but less likely.
Since h is weighted by the net capital stock, a bigger ¯rm's correlation is weighted more heavily.
Since a bigger ¯rm is less likely to su®er from a liquidity constraint, I expect that my measure will
roughly re°ect the prediction ability of a ¯rm's manager at the aggregate level.
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Since the chemical industry has the lowest average GMAT and GPA scores, I
choose score¤ and wl from the chemical industry. In other words, I choose score¤

and wl so that the theory and the data coincide for the chemical industry. This does
not mean that the average GMAT (GPA) score of the chemical industry must be the
cuto® point between a manager and a worker. In fact, Theorem 5 implies that

w (h) jh=±(score) =
±eµ

·
(score)»+1 ¡

³
score#

´»+1¸
2A (» + 1)

+ w (h) jh=±(score#);
8score# ¸ score¤:

I estimate the median initial year base salary by industry from 1998 placement
data at US News & World Report website. It, however, provides the median base
salary only for the service and manufacturing industries for each B-school. I assume
that each industry's median wage by B-school is the same as the service or manufac-
turing median wage by B-school. Then I calculate a weighted average of the median
wage by industry with the weight taken to be the number of graduates who go into
the industry. Table 2 shows my estimate of h, A, ±, score# and w (h) jh=±(score#).

Table 2: Parameter estimates
h A ¯ score# w (h) jh=±(score#)

GMAT 0:0004 2£ 10¡7 6£ 10¡7 642 67642
GPA 0:0004 2£ 10¡7 1£ 10¡4 3:31 67642

A small h implies that the manager's average prediction ability is small. If h
is small, ± is as well. This implies that increases in GMAT (GPA) score have little
e®ect on prediction ability. That is, the ability di®erences among people are small.
This, however, does not imply that di®erences in ability have no economic impact.
Remember that » is large, and therefore a small ability di®erence may have a large
impact.
In fact, it does. Figure 5 compares the wage function of the assignment theory

to the data. The theory ¯ts quite well. In particular, it captures the convexity
of the wage/talent relationship. It also shows that a small di®erence in ability may
correspond to a large income di®erence due to the large value of ». Although the
di®erence in ability itself may be small, because a talented person works in a risky
industry where his ability can be better exploited, the wage di®erence is huge.
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Although I tried several estimations, the theory often produces a more convex
wage function than does the data. Part of the reason may come from my mea-
surement of the compensation data. I assume that each industry's median wage by
B-school is the same as the service sector or manufacturing sector by B-school. Typ-
ically, the higher the average GMAT (GPA), the larger the fraction of students going
into the service sector. There is higher variance of the wage in the service sector
than in the manufacturing sector. As long as we expect that graduates will go to
the industry that o®ers the highest wage, we should expect that more accurate data
will bring about more convexity in the median wage.

3.2 Size vs Risk

Table 3 compares the results of this section with those of Lucas (1978). The theory
presented in this paper predicts that a person who has higher prediction ability can
time investment well, and that his ability will be of more use in a more risky ¯rm.
This result contrasts with that of Lucas (1978). In his model talented managers can
increase the productivity of a ¯rm, and this ability is appreciated more by bigger
¯rms.

Table 3: Comparison between Lucas (1978) and this paper
Lucas (1978) This paper

Role of a manager To increase productivity To time investment well
Allocation of talent Able persons run a big ¯rm Able persons run a risky ¯rm
Compensation Increasing and convex in ability Increasing and convex in ability

The CEO compensation literatures support both views. Murphy (1998) sum-
marizes this literature and insists that there is a strong, robust positive correlation
between the size of a ¯rm and the compensation of the ¯rm's CEO. On the other
hand, Smith and Watts (1992) and Gaver and Gaver (1993) ¯nd that investment
opportunities have a positive e®ect on CEO compensation. This paper highlights
that these two di®erent e®ects may come from two di®erent types of ability.
In fact, my data does not show any size e®ect. Table 3 shows that a ¯rm's size has

a negative impact on risk, the talent of B-school graduates and initial base salary. A
¯rm's size is measured by average sales or net capital stock by industry. A negative
correlation between a ¯rm's size and a ¯rm's risk is not surprising. For instance,
Mans¯eld (1962) shows a negative relationship between the size of a ¯rm and the
variance of the ¯rm's growth rate. However, a negative correlation between the size
of the ¯rm and the compensation of B-school graduates contrasts with the positive
size e®ect on CEO compensation. This may indicate that talented B-school grad-
uates ¯rst choose risky projects to determine their ability to manage projects or to
learn the skills to handle di±cult tasks, and then end up with a large ¯rm that com-
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pensates them generously. This is an interesting future research project.

Table 4: Size E®ect
log(risk) log(GMAT ) log(GPA) log(wage)

log(Capital) -0.51¤¤ -0.33 -0.27 -0.44¤

log(Sales) -0.56¤¤ -0.39 -0.36 -0.54¤¤
¤ signi¯cant at 10 % level.
¤¤ signi¯cant at 5 % level.

4 Dynamic Model

In this section I formally describe a dynamic investment model. In order to un-
derstand the di®erence between the static model and the dynamic model, I will ¯rst
show that prediction ability does not a®ect the level of investment on average in the
static model. This result is in contrast to that of the dynamic model.

Theorem 6 Suppose a ¯rm solves problem (1). The expected amount of investment
does not depend on prediction ability:

Ie =
ze ¡ r
rA

:

Proof. This follows directly from the ¯rst order condition.

This theorem con¯rms that prediction ability does not a®ect the level of invest-
ment on average in the static model.16 However, a good manager invests more on
average in the dynamic model. In fact, I will show that a manager who has high
prediction ability attains a high expected growth rate. A key assumption is that a
larger current capital stock reduces adjustment costs. I now describe the dynamic
model.

Production function: Assume that the production function is linear in the capital
stock:

yt = ztkt;

16This result is not robust even in the static model. Takii (1999 a) shows that the extent to which
prediction ability a®ects expected investment depends on the third derivative of the adjustment cost
function. When the adjustment cost function is quadratic, the third derivative is 0; and prediction
ability has no impact on expected investment. Since I want to emphasize the dynamic e®ect in this
paper, a quadratic speci¯cation is an appropriate benchmark.
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where yt is output, zt 2
·
z¡; ¹z

¸
is a random shock and kt is the capital stock in period

t. You can think of zt as the marginal productivity of capital at period t in this
dynamic context.

Signals: Assume that a manager observes a signal, st, at date t, and infers the
stream of future pro¯tability, fzsg1s=t+1. De¯ne a vector ut = (zt; st). Assume that
futg follows a Markov process with stationary transition function F (ut+1j ut). Let
Fu (u) denote the marginal distribution of u.

Adjustment costs: Assume that adjustment costs, xt, take the following form:

xt =
AI2t
2kt

; (12)

where It is investment in period t, and A is the adjustment cost parameter. Adjust-
ment costs are evaluated by the investment price, which is assumed to be 1 over time
to simplify the analysis. This adjustment cost function has two common properties:
it is convex in It and exhibits constant returns to scale in kt and It.
A key assumption here is that adjustment costs are decreasing in the current

capital stock. The static model implied that the marginal productivity of prediction
ability is larger when A is small. Hence I expect that a good manager has more
incentive to accumulate capital in order to reduce adjustment costs.

Firm's Problem: The ¯rm's pro¯t maximization problem is

V ¤ (u0; k0) = maxfkt+1g1i=i E
·P1

t=0

³
1
1+r

´t
[ztkt ¡ It ¡ xt] ju0

¸
s:t: xt =

AI2t
2kt
and

It = kt+1 ¡ kt;
(13)

where r is a constant interest rate. For simplicity, I temporarily assume that the
depreciation rate is 0. This assumption does not a®ect the main results at all. I
discuss the treatment of the depreciation rate for empirical purposes in Appendix 2.
Since the production function and adjustment cost function exhibit constant re-

turns to scale in kt and It, I can divide both sides of (13) by k0:

V ¤ (u0; k0)
k0

= max
fgtg1i=0

(
E

" 1X
t=0

³
¦ts=0¯s

´ ·
zt ¡ gt ¡ A

2
g2t

¸
ju0
#)
;

where ¯s =
1+gs¡1
1+r

for s ¸ 1; ¯0 = 1 and gt = kt+1¡kt
kt

.
I can now de¯ne the Bellman equation, which is expected to be equivalent to (13):

Q (u) = max
g

·
z ¡ g ¡ A

2
g2 + ¯

Z
Q (u0) dF (u0ju)

¸
; (14)
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where z 2
·
z¡; ¹z

¸
and ¯ = 1+g

1+r
. I will show that Q (u) is equivalent to Tobin's Q.

Maximization conditions: Now I present two basic equations that characterize
the investment decision. In order to do so, I need two technical conditions:

gt 2 [0; ®] ; ® < r (15)

and

z¡ > r; (16)

¹z <
Ar2

2
+ r:

The upper bound of equation (15) prevents the optimal solution from exploding. The
lower bound of equation (15) does not need to be 0, but for simplicity I assume that
it is. Equation (16) guarantees that the solution is interior.
The following well-known theorem simply restates the results of Lucas and Prescott

(1971), Hayashi (1982) and Hayashi and Inoue (1991) in this special formulation.

Theorem 7 Suppose that equation (15) and some other technical conditions (de-
scribed in Appendix 1) are satis¯ed. Then equation (14) has a unique solution Q (¢)
and

Q (u) =
V ¤ (u; k)

k
for any (u; k) : (17)

Moreover, suppose that assumption (16) is also satis¯ed. Then Q (¢) and the associ-
ated unique policy function g (¢) satisfy

g (u) =
1

A

·
1

1 + r

Z
Q (u0) dF (u0ju)¡ 1

¸
(18)

and

Q (u) =
·
z + 1 +Ag (u) +

A

2
g2 (u)

¸
: (19)

Proof. See Appendix 1.

This Q (u) is nothing more than Tobin's average Q.17 Equation (18) is the
¯rst order condition, which says that all future information that a®ects the ¯rm's
investment decision is summarized by the expected value of Tobin's Q. Equation
(19) is the Bellman equation, which tells how Q is determined.

17Tobin's Q is usually de¯ned as Q# (u) = 1
1+r

R
Q (u0) dF (u0ju). That is, Q# (u) is evaluated

before the random shock is realized; Q (u) is evaluated after the shock is realized. You can also refer
to Ueda and Yoshikawa (1986), who show that investment is positively related to the expectation
of future Tobin's Q rather than current Tobin's Q when there are time-to-build or delivery lags.
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5 The Case when zt is I.I.D.

Let us assume that a sequence f(zt+1; st)g is i.i.d.. Then I can rewrite the transition
function such that F (ut+1jut) = G (zt+1jst)Gs(st+1), where G (zjs) is the conditional
distribution of z given s and Gs (s) is the marginal distribution of s. In this case,
given st, the manager can only predict zt+1. Hence, I can directly apply the basic
measure in the static model to the dynamic model.

Theorem 8 Suppose f(zt+1; st)g is an i.i.d. sequence. The present value of expected
pro¯ts and the expected growth rate are increasing in h:Z Z

V ¤ (z; s; k0) dGz (z)Gs (s) = Qek0; (20)

Qe = (1 + r) [Ar + 1]¡
q
(1 + r)2A [Ar2 + 2 (r ¡ ze)]¡ ¾2zh;

and

ge = r ¡
vuutr2 + 2r ¡ ze

A
¡ ¾2zh

A2 (1 + r)2
; (21)

where Qe =
R R
Q (z; s) dGz (z)Gs (s) and g

e =
R
g (st) dGs (st). Moreover prediction

ability can be estimated by
h = (½zg)

2 ; ½zg ¸ 0; (22)

where ½zg =
R
[zt+1¡ze][g(st)¡ge]dG(zt+1; st)qR

(zt+1¡ze)2dGz(zt+1)
R
[g(st)¡ge]2dGs(st)

.

Proof. The proof is a similar to the proof of Theorem 10 in Appendix 1. I do not
repeat it here.

This theorem says that prediction ability has a positive e®ect on expected Tobin's
Q. Since Tobin's Q is the shadow price of capital under a constant returns to scale
assumption, prediction ability has a positive impact not only on the present value of
expected pro¯ts but also on the expected growth rate.
Since current investment not only increases future pro¯ts but also reduces future

adjustment costs, a superior manager has more incentive to invest today in order to
establish a °exible position in the future. This is why we have a growth e®ect in the
dynamic context.

² The implications of the static model can be extended to the dynamic model:

1. All of the e®ects of the signals in equations (20) and (21) are captured by
h. That is, more accurate information in the Blackwell sense must have
a larger value of h.
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2. Prediction ability h has a stronger e®ect on expected pro¯ts when ¾2z is
larger and when A is smaller.

² The dynamic model brings about a pro¯tability e®ect and a scale e®ect: pre-
diction ability has a large impact on the present value of expected pro¯t when
ze is large and the initial capital stock is large.

² The dynamic model also implies that h has a stronger e®ect on the expected
growth rate when ze and ¾2z are large and when A is small.

6 The Case when zt is a Markov Process

6.1 A generalized measure of prediction ability

Let us return to the general case. If a random process futg follows a Markov process
with stationary transitions, then predicting next period pro¯tability is not enough to
determine the investment decision. A manager must predict the whole path of future
pro¯tability. Since Theorem 7 suggests that the entire path of future pro¯tability
is captured by only one variable, Tobin's Q, it is natural to construct a measure of
ability to predict Tobin's Q in the next period in a fashion similar to the way I derived
h.
One di±culty comes from the fact that Tobin's Q is an endogenous variable. A

signal not only helps to predict next period's Tobin's Q, but also a®ects the degree
of °uctuation of Tobin's Q. In order to take care of this problem, I need one more
de¯nition.

De¯nition 3 The benchmark Q, Q¤ (z) ; is de¯ned by the Q (u) that solves equation
(14) along with technical conditions (15) and (16) without observing any signal. That
is, Q¤ (:) is the unique function that satis¯es

g¤ =
1

A

·
¯
Z
Q¤ (z) dFm (z)¡ 1

¸
(23)

and

Q¤ (z) = z + 1 +Ag¤ +
A

2
(g¤)2 : (24)

Using this benchmark Q, I can de¯ne the generalized measure of prediction ability
as follows.
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De¯nition 4 The generalized measure of a manager's ability to predict Q, hQ, is
de¯ned by

hQ =
¾2Q
¾2Q¤

¡
R
V ar (Q (u0) ju) dFu (u)

¾2Q¤
; (25)

where ¾2Q =
Z ·
Q (u)¡

Z
Q (u) dFu (u)

¸2
dFu (u) ;

¾2Q¤ =
Z ·
Q¤ (z)¡

Z
Q¤ (z) dFm (z)

¸2
dFm (z) and

V ar (Q (u0) ju) =
Z ·
Q (u0)¡

Z
Q (u0) dF (u0ju)

¸2
dF (u0ju) :

The crucial di®erence between this and the previous measure is that here I use
the unconditional variance of the benchmark Q instead of the observable Q as an
adjustment factor. The reason is that Tobin's Q is an endogenous variable and the
unconditional variance of the observable Q already re°ects the e®ect of the signal.
In order to separate the e®ect of the signal from the adjustment factor, I use the
benchmark Q. As a result, the maximum value of [

R
V ar (Q (u0) ju) dFu (u)] =¾2Q¤

is not 1 but ¾2Q=¾
2
Q¤. That is why I subtract [

R
V ar (Q (u0) ju) dFu (u)] =¾2Q¤ from

¾2Q=¾
2
Q¤ .

Identity of hQ and h: I want to show that hQ is a natural extension of h.

Theorem 9 If the random sequence f(zt+1; st)g is i.i.d., then hQ = h.

Proof. See Appendix 1.

The theorem says that if the random sequence is i.i.d., the value of two measures
coincides. Hence it is fair to say that the generalized measure is a natural extension
of the basic measure.18

18I must agree that this is just one possible practical treatment. In fact, I cannot claim that the
generalized measure is adjustment cost parameter free. That is, since Tobin's Q is an endogenous
variable, a change in the adjustment cost parameter varies the value of the generalized measure.
Hence, from now on, I must assume that every ¯rm has the same adjustment cost function.
I have three comments on this problem. First, empirical studies in the investment literature

usually assume that every ¯rm has the same adjustment cost parameter (Summers [1981], Salinger
and Summers [1983], Fazzari, Hubbard and Petersen [1988] and Cummins, Hassett and Hubbard
[1994]). Second, if I assume a quadratic adjustment cost function,

xt =
A

2
I2t ;
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6.2 The e®ects of prediction ability

Now I am ready to analyze prediction ability under a Markov Process with stationary
transitions. The following theorem summarizes the main results of the dynamic
model.

Theorem 10 Suppose that a random shock and a signal follow a Markov process
with stationary transitions. The present value of expected pro¯ts and the expected
growth rate are increasing in h:Z

V ¤ (u; k0) dFu (u) = Qek0;

Qe = (1 + r) [Ar + 1]¡
q
(1 + r)2A [Ar2 + 2 (r ¡ ze)]¡ ¾2zhQ

and

ge = r ¡
vuutr2 + 2r ¡ ze

A
¡ ¾2zhQ

A2 (1 + r)2
:

Moreover hQ is estimated by

hQ = a (½Qg)
2 ; a =

¾2Q
¾2z
; ½Qg ¸ 0; (26)

where ½Qg =
R
[Q(ut+1)¡Qe][g(ut)¡ge]dF (ut+1; ut)p

¾2
Q
¾2g

.

Proof. See Appendix 1.

The results are the same as in the i.i.d. case except that hQ is estimated by a
weighted correlation coe±cient between future Tobin's Q and the current growth
rate, as opposed to a simple correlation coe±cient. This weight re°ects the fact that
Tobin's Q is an endogenous variable. Since a good manager has the ability to change
his investment decision aggressively based on his own signal, he will also change the
value of Tobin's Q. This weight re°ects this e®ect. Notice that more accurate
information in the Blackwell sense must a have high value of hQ in this formulation.

then I can prove that marginal Q does not depend on the parameter A. In this case, the generalized
measure assesses the value of information for any adjustment cost parameter A. Third, as Theorem
10 will show, it is still true that more accurate information in the Blackwell sense must have a larger
value of h.

25



7 Assumptions for an Empirical Analysis: The Is-

sue of Heterogeneous Managers

If managers observe di®erent signals, I immediately encounter several problems. A
manager may try to develop a good reputation for his ability. A manager may ignore
his own signal and mimic other managers' behavior. Also it is di±cult to see how
the capital market will clear. An empirical study needs to avoid these problems. I
make the following assumptions:

1. Everyone knows every other manager's value of h.

2. The random shocks include ¯rm speci¯c-shocks. Hence prediction ability in-
cludes a ¯rm-speci¯c ability.

3. A manager's wage in period t is a ¯xed proportion Â of pro¯ts in period t.

4. Managers and shareholders have linear utility functions.

5. People make their decisions in the following order:

(a) A random shock of the ith ¯rm, zit, and a signal for the jth manager, s
j
t ,

are realized.

(b) Managers announce their investment decisions simultaneously. After the
announcements are made they cannot change their decisions.

(c) Shareholders make their investment decisions.

6. A manager does not know what signals managers in other ¯rms observe. Each
manager incurs a su±ciently large educational ¯xed cost of learning the rela-
tionship between an alternative signal and a random shock.

7. There is an externality among managers in a ¯rm, and they can share the same
signal within a ¯rm.

Given these assumptions I claim:

² No reputation problem: No manager has an incentive to create a reputation
since everyone knows his ability (Assumption 1).19

² No \herd" behavior: Managers announce their investment decisions simulta-
neously (Assumption 5). Therefore, no manager can mimic other managers'
behavior.

19The reputation problem is a concern of Scharfstein and Stein (1990) and Prendergast and Stole
(1996). They consider the case where a manager's investment decision reveals his prediction ability.
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² No learning problem: Since a manager does not know the signals that managers
in other ¯rms observe (Assumption 6), other ¯rms' behavior does not reveal
which signal they observe. Moreover a large ¯xed cost of learning an alternative
signal (Assumption 6) discourages a manager from ¯nding better signals.

² Capital market condition: Since shareholders are risk neutral (Assumption 4),
in equilibrium the return to their shares must be equal to r:

r =
Divt +

R
V (ut+1; kt+1) dF (ut+1jut)¡ Vt

Vt

=
Divt + (1 + r) [Agt + 1] (1 + gt) kt ¡ Vt

Vt
;

where Divt is the dividend at period t. The second equality holds because
shareholders invest after knowing the growth rate of capital (Assumption 5).
Therefore, if a manager maximizes the present value of expected pro¯ts, share-
holders can calculate conditional expected pro¯ts from the growth rate of capital
by equations (17) and (18). In fact, a manager maximizes the present value as
will be shown later.

² A ¯rm keeps the same ability: Assumption 2 prevents a manager from changing
jobs. Assumption 7 says that a ¯rm can keep the same level of prediction
ability even after the replacement of a manager. Hence, a ¯rm maintains the
same level of prediction ability over time.

² A manager maximizes pro¯ts: Assumption 3 and 4 ensure that a manager max-
imizes the present value of expected pro¯ts. Therefore, I can derive equations
(18) and (19).

8 Empirical Evidence

This empirical study has two purposes. One is to examine whether or not prediction
ability has a positive e®ect on pro¯t; the other is to examine whether or not more
accurate information increases investment.
Theorem 10 derives the following empirical equations:

Qe = a+ bze + c¾2zhQ + ";

ge = d+ eze + f¾2zhQ + ¹;

where a, b, c, d, e and f are parameters, Qe is expected Tobin's Q, ge is the expected
growth rate of the capital stock, ze is the expected random shock, which measures
the pro¯tability of exogenous investment opportunities, ¾2z is the variance of the
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random shock, which measures the riskiness of investment opportunities, and hQ is
the generalized measure, which is estimated by equation (26). The theory predicts
that all parameters should be positive. I am especially interested in the parameters
c and f , which show the impact of prediction ability.
The data consists of a 20 year (1975-1994) panel of ¯rms from the COMPUSTAT

data base. Appendix 3 shows how I construct variables Q, g and z. Using these
three variables I can estimate Qe, ge, ze, ¾2z and hQ by calculating sample means,
variances and correlation coe±cients over time. I regress over cross sections of the
data using these estimates.

8.1 Econometric issues

Selection bias: For the measure of prediction ability, I use the generalized measure
hQ. Constructing the measure requires a positive correlation coe±cient between
the current growth rate and future Tobin's Q. But 29% of the ¯rms in the sam-
ple do not satisfy this condition. These omissions may cause a serious selection
bias. In order to address the selection bias problem, I also investigate the regres-
sion using the simple correlation between future Q and the current growth rate:

½Qg = [
R
[Q (ut+1)¡Qe] [g (ut)¡ ge] dF (ut+1; ut)] =

q
¾2Q¾

2
g . Although this measure

does not have any direct connection with the theory, it has the bene¯t of allowing us
to use every observation.

Measurement error and simultaneous equation bias: Since my measure of
prediction ability is constructed using endogenous variables, a simple OLS may have
a problem. Moreover, the sample means may not be accurate proxies of expected
values. Hence, my prediction measure and the error term may be correlated. In order
to consider this issue, I also apply two stage OLS over the last ten years of the data,
1985-1994. I use the sample mean over the period 1975-1984 of each variable as
an instrument of the corresponding variable, which is estimated by the sample mean
over 1985-1994.

8.2 Results

Summary statistics: Table 5 shows summary statistics of Qe, ge, ze, ¾2z , hQ and
½Qg. My estimation of the prediction measure hQ has a mean of 14, a standard
deviation of 38 and a median of 3.07 in 1975-1994 and a mean of 20, a standard
deviation of 45 and a median of 4 in 1985-1994. The large standard deviations
indicates a huge di®erence in prediction ability across ¯rms. Moreover, the large gap
between the mean and median implies a huge skewness of ability.
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Table 5: Summary statistics
Qe ge ze ¾2z hQ ½Qg

1975-1994 mean 1.57 0.09 0.27 0.09 14.49 0.22
standard deviation 1.28 0.07 0.25 0.30 37.94 0.39
median 1.09 0.07 0.21 0.01 3.07 0.24
# of observations 1059 1059 1059 1059 756 1059

1985-1994 mean 1.30 0.05 0.21 0.04 19.58 0.22
standard deviation 1.35 0.06 0.22 0.27 45.17 0.43
median 0.74 0.04 0.13 0.003 4.32 0.28
# of observations 441 441 441 441 316 737

Qe is expected Tobin's Q.
ge is the expected growth rate of capital stock.
ze is the expected random shock (measure of pro¯tability).
¾2z is the variance of the random shock (measure of risk).
hQ is the measure of prediction ability.
½Qg is the simple correlation between future Q and the current growth rate.

Table 6.1: The pro¯t e®ect (1975-1994)
Dependent variable is expected Tobin's Q
intercept 0.636¤¤¤ 0.700¤¤¤ 0.664¤¤¤

(0.057) (0.051) (0.052)
ze 3.118¤¤¤ 3.020¤¤¤ 2.708¤¤¤

(0.148) (0.127) (0.141)
hQ 0.008¤¤¤

(0.001)
½Qg 0.208¤

(0.084)
¾2z £ hQ 0.474¤¤¤

(0.038)
Adj ¡R2 0.385 0.349 0.450
obs 755 1058 755
¤ signi¯cant at 5 % level.
¤¤ signi¯cant at 0.5% level.
¤¤¤ signi¯cant at 0.05% level.
standard error in parentheses.
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Table 6.2: The pro¯t e®ect (1985-1994)
Dependent variable is expected Tobin's Q
OLS
intercept 0.299¤¤¤ 0.350¤¤¤ 0.338¤¤¤

(0.069) (0.050) (0.066)
ze 4.683¤¤¤ 4.776¤¤¤ 4.47¤¤¤

(0.214) (0.148) (0.22)
hQ 0.002¤

0.001
½Qg -0.003

(0.077)
¾2z £ hQ 0.221¤¤¤

(0.063)
Adj ¡R2 0.604 0.586 0.614
obs 315 736 315
¤ signi¯cant at 5 % level.
¤¤ signi¯cant at 0.5% level.
¤¤¤ signi¯cant at 0.05% level.
standard error in parentheses.

2SLS
intercept -2.598 -1.546¤ 0.328

(2.090) (0.732) (0.402)
ze 6.049 4.539¤¤ -0.617

(2.547) (1.430) (3.374)
hQ 0.136

(0.096)
½Qg 8.923¤

(3.960)
¾2z £ hQ 5.106¤

(2.503)
Adj ¡R2 0.014 0.046 0.042
obs 315 736 315
¤ signi¯cant at 5 % level.
¤¤ signi¯cant at 0.5% level.
¤¤¤ signi¯cant at 0.05% level.
standard error in parentheses.
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Prediction ability raises expected Q: Table 6.1 reports the e®ect of prediction
ability on expected Tobin's Q. The second and third column show the e®ect of
prediction ability. The last column shows the e®ect of the product of prediction
ability and the variance of the random shock that is implied by the theory. All
coe±cients on prediction ability are positive and signi¯cant, which is indicated by
the theory. The table shows that prediction ability raises expected Q of the ¯rm.
Table 6.2 reports the same regression over the period 1985-1994. It also reports

the result of two stage OLS. For the most part, coe±cients are still signi¯cant and
positive, but a simple OLS with the simple correlation as the measure of prediction
ability has a negative coe±cient. However, two stage OLS recovers the positive
signi¯cant relation. Notice that 2SLS increases the magnitude of the coe±cients.
This indicates that simple OLS underestimates the importance of prediction ability.

Prediction ability raises the expected growth rate: Table 7.1 discloses the
e®ect of prediction ability on the expected growth rate. Again the ¯rst two columns
show the e®ect of prediction ability and the last column shows the e®ect of the prod-
uct of prediction ability and the variance of the random shock. All of the results of
the simple OLS are positive and signi¯cant, which is expected. This indicates that
prediction ability has a positive impact on the expected growth rate.

Table 7.1: The growth e®ect (1975-1994)
Dependent variable is an expected growth rate
intercept 0.061¤¤¤ 0.053¤¤¤ 0.062¤¤¤

(0.004) (0.003) (0.004)
ze 0.112¤¤¤ 0.111¤¤¤ 0.102¤¤¤

(0.010) (0.008) 0.010
hQ 2x10¡4¤¤

(6£10¡5)
½Qg 0.029¤¤¤

(0.005)
¾2z £ hQ 0.012¤¤¤

(0.003)
Adj ¡R2 0.148 0.177 0.160
obs 755 1058 755
¤ means signi¯cant at 5 % level.
¤¤ means signi¯cant at 0.5% level.
¤¤¤means signi¯cant at 0.05% level.
standard error in parentheses
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Table 7.2: The growth e®ect (1985-1994)
Dependent variable is an expected growth rate
OLS
intercept 0.022¤¤¤ 0.022¤¤¤ 0.023¤¤¤

(0.004) (0.003) (0.004)
ze 0.126¤¤¤ 0.135¤¤¤ 0.128¤¤¤

(0.013) (0.009) (0.013)
hQ 4x10¡5

(7£10¡5)
½Qg 0.002

(0.005)
¾2z £ hQ -0.002

(0.004)
Adj ¡R2 0.234 0.236 0.233
obs 315 736 315
¤ means signi¯cant at 5 % level.
¤¤ means signi¯cant at 0.5% level.
¤¤¤means signi¯cant at 0.05% level.
standard error in parentheses

2SLS
intercept -0.054 -0.025 0.015

(0.107) (0.016) (0.008)
ze 0.178¤ 0.108¤¤ 0.083¤

(0.08) (0.033) (0.040)
hQ 0.003

(0.005)
½Qg 0.246¤¤¤

(0.069)
¾2z £ hQ 0.075¤

(0.033)
Adj ¡R2 0.012 0.033 0.071
obs 315 736 315
¤ means signi¯cant at 5 % level.
¤¤ means signi¯cant at 0.5% level.
¤¤¤means signi¯cant at 0.05% level.
standard error in parentheses
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Table 7.2 reports the results of the same regression and the two stage OLS over
1985-1994. Although all of coe±cients on prediction ability using simple OLS lose
signi¯cance and some are negative, 2SLS recovers a positive relation and shows sig-
ni¯cance. Moreover, two stage OLS again increases the magnitude of the coe±cients.
Again, OLS underestimates the importance of prediction ability.
Let me estimate the impact of prediction ability on the expected growth rate.

2SLS results in Table 7.2 show that the coe±cient on ¾2z ¤ h¤ is 0.075. Since the
median of ¾2z over the period 1984-1993 is 0.003, the e®ect of h

¤ on the median ¯rm
is about 0.0002. The standard deviation of h¤ is 45.17. This means that a one
standard deviation change in prediction ability increases the expected growth rate
by 1%. Hence, considering the median person and ¯rm, a one standard deviation
increase in h¤ increases the expected growth rate from 4% to 5%.

9 Conclusion and Extensions

In this paper I constructed a micro foundation of one type of human capital: a
manager's ability to predict the future pro¯tability of a ¯rm. My theory predicts
that a manager who has high prediction ability goes into a risky industry, because risk
increases the marginal productivity of prediction ability. I simulated my assignment
model and found that the results ¯t B-school placement data quite well. I also
employed a dynamic analysis, which shows that prediction ability increases a ¯rm's
expected Tobin's Q and allows a ¯rm to attain a faster expected growth rate. The
COMPUSTAT dataset con¯rms these points as well.
I am working on three di®erent extensions: (1) generalization of the adjustment

cost function, (2) the ability of a manager to learn and (3) consideration of an infor-
mation collection cost. Each is discussed in turn.
One of problems in this paper is that the measure is model speci¯c. Hence,

it is di±cult to answer several questions. How much does a tax policy a®ect the
marginal productivity of prediction ability? Does capital market imperfection a®ect
the marginal productivity of prediction ability? How does irreversible investment
change the results? Despite this limit, the intuition behind the measure is quite
robust. Takii (1999 a) extends the method to the case with more general adjustment
costs. A key point is that the conditional expectation given a good signal must be
constructed by a mean preserving spread of the conditional expectation given a bad
signal. This approach can be applied to various analytical topics like search theory
and technology adoption.
Another interesting question is the relationship between learning and prediction

ability. In fact, Takii (1999, b) shows that knowing a good signal increases not
only prediction ability but also the speed at which a manager learn an unknown
parameter using Bayesian analysis, like in Jovanovic and Nyarko (1995), and Foster
and Rosenzweig (1995). As long as you believe that education can increase our
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ability to determine a good signal, I can isolate two e®ects of education: an increase
in prediction ability and an increase in learning speed. This shows that the e®ect on
prediction ability is a persistent e®ect, although the e®ect on learning speed shrinks
as time goes by. This may provide a testable framework in which to analyze the
e®ect of education.
I also extend this model by adding a cost of collecting information. Takii (1999,

c) shows that if Information Technology (IT) reduces costs, then IT and prediction
ability are complementary. Complementarity is a crucial assumption in the skill-
biased technological change argument. IT strengthens the value of prediction ability,
because a good manager can access good information more often. This approach also
shows that IT does not need to improve productivity, but it helps a manager to time
investment better. This result helps to explain the productivity slowdown puzzle.
Thus, my approach may reveal the economic value of IT.

10 Appendix 1

Proof of Theorem 3: I ¯rst construct a candidate equilibrium and then show that
the candidate satis¯es three equilibrium conditions.
First, construct a (¢) so that a (h) = ª¡1 (¡ (h)). Then a is a mapping from·

h¡
; h

¸
into

"
¾2z¡
;
¡
¾2z

#
; it satis¯es (9) and a0 > 0 by construction given the assumptions

that ¡0 > 0 and ª0 > 0.
Second, de¯ne h¤ such that

(ze ¡ r)2 + a (h¤)h¤
2r2A

= wl:

There exists a unique h¤ 2
·
h¡
; h

¸
since a (h) is a strictly increasing continuous

function of h and

("
(ze ¡ r)2+ ¾2z¡ h¡

#
=2r2A

)
· wl ·

½·
(ze ¡ r)2+ ¡

¾
2

z

¡
h

¸
=2r2A

¾
by

assumption. Notice that V (h¤ : ´ (h¤)) = wl.
Third, construct w (¢) so that

w (h) =
Z h

h¤

a (¿)

2r2A
d¿ + wl:

The function exists since a (h) is bounded. Notice that w (h¤) = wl and w0 (h) > 0.
Hence, if h ¸ (·) h¤, a person becomes a manager (a worker).
If I show that the candidate equilibrium satis¯es condition (10), the proof is

complete. Since
V 0
³
h : ¾2z

´
¡ w0 (h) jh=a¡1(¾2z) = 0 for 8¾2z
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and

V 00
³
h : ¾2z

´
¡ w00 (h) = ¡a

0 (h)
2r2A

< 0 for 8¾2z ;
the ¯rst order condition is always satis¯ed at h = a¡1 (¾2z), and a ¯rm will attain the
global maximum at this point. Hence the candidate satis¯es condition (10).

Proof of Theorem 4: Suppose that ¡ (h) and ª (¾2z) are log uniform. ThenZ log a(h)

log

µ
¾2z
¡

¶ 1

log

Ã ¡
¾2z

!
¡ log

Ã
¾2z¡

!dv = Z log h

log

µ
h
¡

¶ 1

log
µ¡
h

¶
¡ log

µ
h¡

¶d¿:
Hence

log a (h) =

log

Ã ¡
¾2z

!
¡ log

Ã
¾2z¡

!µ
log (h)¡ log

µ
h¡

¶¶
log

µ¡
h

¶
¡ log

µ
h¡

¶ + log

Ã
¾2z¡

!
(27)

= » log (h) + £;

where » =

log

Ã ¡
¾2z

!
¡ log

Ã
¾2z¡

!

log
µ¡
h

¶
¡ log

µ
h¡

¶ and

£ = log

Ã
¾2z¡

!
¡ » log

µ
h¡

¶
:

Therefore,

log a (± (score)) = » log (score) + £ + » log (±) ;

where » =

log

Ã ¡
¾2z

!
¡ log

Ã
¾2z¡

!

log
µ

¡
score

¶
¡ log

µ
score¡

¶ and
£ = log

Ã
¾2z¡

!
¡ » log

µ
score¡

¶
¡ » log (±) :

Since log (¾2z) and log (score) are distributed uniformly,

log
¡
¾2z = mlog ¾ +

q
3¾2log ¾;

log ¾2z¡
= mlog ¾ ¡

q
3¾2log ¾;

log
¡

score = mlog(score) +
q
3¾2log(score) and

log score¡ = mlog(score) ¡
q
3¾2log(score):
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Hence

» =

vuut ¾2log ¾
¾2log(score)

and

£ = mlog ¾ ¡
q
3¾2log ¾ (28)

¡
vuut ¾2log ¾
¾2log(score)

³
mlog(score) ¡

q
3¾2log(score)

´
¡ » log (±)

= mlog ¾ ¡ »mlog(score) ¡ » log (±)
= µ ¡ » log ±;

where µ = mlog ¾ ¡ »mlog(score). Finally, log a (± (score)) = » log (score) + µ:

log a (± (score)) = » log (score) + µ:

Proof of Theorem 5: By Theorem 3, equation (27) and equation (28),

w (± (score)) =
Z ±(score)

±(score)¤

e£¿ »

2r2A
d¿ + wl

=
(±)»+1 e(µ¡» log ±)

h
(score)»+1 ¡ (score¤)»+1

i
2r2A (» + 1)

+ wl

=
±eµ

h
(score)»+1 ¡ (score¤)»+1

i
2r2A (» + 1)

+ wl:

Proof of Theorem 7: Suppose that the space of u, U , is a compact Borel set and
that F (u0ju) has the Feller property. Suppose that Q (¢) 2 C where C is the space
of bounded measurable continuous functions with the sup norm.
Since the reward function is continuous and the space of the state variable, U ,

and the strategy space, [0; ®] ; are compact, the reward function is bounded. Since
¯ = [1 + g] = [1 + r] · [1 + ®] = [1 + r] < 1, there exists a unique function Q (u) =
V ¤ (u; k) =k (See Harris [1987], and Stokey and Lucas [1989]): Since the reward
function is strictly concave in g, the associated policy function g (u) is continuous
and unique.
Now I need to show that the solution is interior. If this is true, it is obvious that

the unique solution is characterized by the ¯rst order condition (18) and the Bellman
equation (19).
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First, consider the upper bound. Denote ¹g = maxu g (u) and ¹u = argmaxu g (u).
They exist because g (u) is continuous and the set U is compact. Consider the
maximization of the Bellman equation without any boundary conditions. Then the
¯rst order condition and the Bellman equation imply that

1 +A¹g =
1

1 + r

"
E (z0j¹u) + 1 +AE (g (u0) j¹u)

+A
2
E
³
g (u0)2 j¹u

´ #

· 1

1 + r

·
¹z + 1 +A¹g +

A

2
¹g2
¸
:

Hence,

¹g ¸ r +

s
r2 + 2

½
r ¡ ¹z
A

¾
; or (29)

¹g · r ¡
s
r2 + 2

½
r ¡ ¹z
A

¾
:

Condition (16) ensures the existence of ¹g 2 R and the existence of ® such that

¹g · r ¡
s
r2 + 2

½
r ¡ ¹z
A

¾
does not attain the upper bound, ®, since g · ® < r: I ¯nd the maximizer of
the unconstrained problem ¹g at the interior. Hence this is also a maximizer with
the boundary constraint. Since g (u) · ¹g, for any u, g (u) never attains the upper
bound.
Similarly denote g

¡
= minu g (u) and u¡= argminu g (u). Then similarly it can be

derived that

g
¡
¸ r ¡

vuuutr2 + 2
8<:r¡

z¡
A

9=;:
Condition (16) ensures that g

¡
> 0. Using the same logic as above, since for any u,

g (u) ¸g
¡
, g (u) does not attain the lower bound.

Proof of Theorem 6: In the i.i.d. environment, zt does not include any information
with which to predict zt+1. Hence the growth rate, g, only depends on the signal st.
Hence, by (18) and (19),

E [Q (u0) js] = E (z0js) + 1 +AE [g (s0)] + A
2
E
h
g2 (s0)

i
and
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E [Q (u0)] = E (z0) + 1 +AE [g (s0)] +
A

2
E
h
g2 (s0)

i
:

Hence
V ar [E (Q (u0) js)] = V ar [E (zjs)] :

The following lemma completes the proof.

Lemma 1 The generalized measure can be rewritten as:

hQ =
V ar (E (Q (ut+1jut)))

¾2z
: (30)

Proof. Using equation (6), I can rewrite equation (25) to be

hQ =
V ar (E (Q (ut+1jut)))

¾2Q¤
:

To complete the proof of Lemma 1, consider Lemma 2.

Lemma 2 ¾2Q¤ = ¾
2
z .

Proof. Taking expectations on both sides of (24)Z
Q¤ (z) dFm (z) =

Z
zdFm (z) + 1 +Ag

¤ +
A

2
(g¤)2 ;

Combining (24) and this equation, I can calculate the unconditional variance of Q¤.
The proof of Lemma 2 follows.
Using Lemma 2, the result of Lemma 1 is immediate.
By equation (30), the proof of Theorem 6 follows.

Proof of Theorem 10: First I show that prediction ability positively a®ects the
variance of the growth rate. Using this result I will show all of the results in Theorem
10.

Lemma 3 The variance of the growth rate is a strictly increasing function of predic-
tion ability:

¾2g =
¾2zhQ

A2 (1 + r)2
:
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Proof. Taking the expectation on both sides of (18),

1 +A
Z
g (u)Fu (u) =

1

1 + r

Z
Q (u) dFu (u) and

A2¾2g =
V ar (E (Q (u0ju)))

(1 + r)2
:

By equation (30),

¾2g =
¾2zhQ

A2 (1 + r)2
: (31)

² First I prove the e®ect on the expected growth rate.

By (18) and (19)

1 +Ag (u) (32)

=
1

1 + r

(
E [z0ju] + 1 +AE [g (u0) ju]

+A
2
E [g2 (u0) ju]

)
;

whereE [zju] = R
zF (u0ju), E [g (u0) ju] = R

g (u0)F (u0ju) andE [g2 (u0) ju] = R
g2 (u0)F (u0ju).

Taking expectations on both sides,

0 = ge2 ¡ 2rge + 2 (A)¡1 [ze ¡ r] + ¾2g :

Hence,

ge = r §
s
r2 + 2

r ¡ ze
A

¡ ¾2g :

Since g · ®¡ 1 < r,
ge = r ¡

s
r2 + 2

r ¡ ze
A

¡ ¾2g : (33)

I know that for any u there exists a unique g (u) such that g (u) 2
·
g
¡
; ¹g
¸
; in turn the

expectation exists.

² Next, I prove the e®ect on expected Tobin's Q.
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By (18), (31) and (33)

Z
Q (u) dFu (u)

= (1 + r)
µ
A
Z
g (u) dFu (u) + 1

¶
= (1 + r) [Ar + 1]

¡
q
(1 + r)2A [Ar2 + 2 (r ¡ ze)]¡ ¾2zhQ:

Moreover,
E [V ¤ (u0; k0)]
= E [Q (u0) k0]
= Qek0:

² Finally, I show how the prediction measure can be estimated.

By multiplying (18) by g (ut) and taking expectations on both sides,

ge +A
Z
g2 (ut)Fu (ut) =

1

1 + r

Z
Q (ut+1) g (ut) dF (ut+1; ut) : (34)

By taking expectations on both sides of (18) and multiplying the result by ge,

ge +A (ge)2 =
1

1 + r

Z
Q (u) dFu (u) g

e: (35)

Then subtracting (35) from (34) gives

Cov (g (ut)Q (ut+1)) = (1 + r)A¾
2
g :

Hence,

½gQ =
Cov (g (ut)Q (ut+1))q

¾2g¾
2
Q

=
(1 + r)A¾2gq

¾2g¾
2
Q

=

vuut¾2zhQ
¾2Q

and

hQ =
¾2Q
¾2z
(½gQ)

2 :
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11 Appendix 2: Heterogeneous Depreciation Rate

Since Tobin's Q is an endogenous variable, several factors could a®ect the value of
the generalized measure. Typically a di®erent ¯rm has a di®erent capital stock and a
di®erent rate of physical depreciation. The following theorem, however, says that I
can compare managers' ability over ¯rms with di®erent economic depreciation rates.
Suppose that there are adjustment costs on net investment20 such that

xt =
(kt+1 ¡ kt)2

kt
; if kt+1 ¸ kt; (36)

= 0; if (1¡ ±) kt · kt+1 · kt;
= 1; otherwise;

where ± is the physical depreciation rate.

Theorem 11 The generalized measure of prediction ability, hQ, is depreciation rate
invariant. That is, a change in ± does not a®ect the value of hQ.

Proof. Using the adjustment cost function (36), I can derive

Q (u) = z + 1¡ ± +Ag (u) + A
2
g2 (u) ;

instead of equation (19). The following lemma proves the theorem.

Lemma 4 Suppose that Q¤ (u) = aQ (u) + b and z¤ = az + c; then hQ¤ = hQ.

Proof. Using equation (30)

hQ¤ =
V ar (E(aQ (ut+1) + bjut))R

((az + c)¡ R
(az + c) dFm (z))

2 dFm (z)
= hQ:

The proof of Theorem 11 follows.

20With depreciation, the capital accumulation function is replaced by

kt+1 = It + (1¡ ±) kt;
where kt+1 2 [(1¡ ±) kt; ®kt] :

Finally, the technical conditions are replaced by

¹z <
Ar2

2
+ r + ± and

z
¡> r + ±:
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12 Appendix 3 : Data constructions

12.1 Some detail on the construction of the measure of risk

I did not consider data with any of the following features:

1. The absolute value of (investment / net capital stock) is greater than 1.

2. The number of observations are less than or equal to 5.

3. The mean of (operating income / net capital stock) is less than -30.

I need Condition 1 to avoid large mergers. I use Condition 2 to avoid an unreliable
mean and correlation coe±cient. Condition 3 avoids use of ¯rms that are extremely
poor performers.

12.2 Tobin's Q

Tobin's Q

Qt =
St +Dt ¡ pinvt

ptkt
;

where St is the market value of equity at the beginning of period t, Dt is the market
value of ¯rm debt at the beginning of period t, pinvt is the replacement cost of
inventory at the beginning of period t and ptkt is the replacement cost of capital at
the beginning of period t.

Growth Rate: g

gt =
ptIt
ptkt

¡ 1=L;
where ptIt is capital expenditure, ptkt is the replacement cost of capital at the begin-
ning of period t and L is average lifetime of capital.

Random Shock: z

zt =
OIt
ptkt

where OIt is operating income before depreciation in period t and ptkt is the replace-
ment cost of capital at the beginning of period t.

Market Value of Equity: S

1. the market value of common stock (the common stock outstanding at the end
of the previous year multiplied by the end of the previous year's common stock
price)
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2. the market value of preferred stock (the ¯rm's preferred dividend payout at the
end of the previous year divided by the previous year's average Standard and
Poor's preferred dividend yield)

Debt: D

1. short term debt at the end of the previous year (the book value)

2. long term debt at the end of the previous year (the book value)

Capital Stock (Replacement Cost): pk

pt+1kt+1 = (ptkt (1¡ 1=L) + ptIt) pt+1
pt
;

L =

PT L¤t
T

and

L¤t =
GPPEt
DEPt

;

where L¤t is the lifetime of capital, GPPEt is the book value of gross property, plant
and equipment in year t, ptIt is nominal investment and DEPt is book depreciation
in year t. The ratio pt+1=pt is the in°ation rate of investment goods from the survey
of current business.

Inventory (Replacement Cost): pinv
If a ¯rm uses FIFO, the book value of the end of the previous period is the replacement
cost. If a ¯rm uses LIFO,

pt+1invt+1 = ptinvt
pt+1
pt

+BINVt+1 ¡BINVt; if BINVt+1 ¸ BINVt
= (ptinvt +BINVt+1 ¡BINVt) pt+1

pt
; if BINVt+1 < BINVt

where BINVt is the book value of inventory at the end of period t¡1. Again, pt+1=pt
is the in°ation rate of investment goods from the survey of current business.

Some details

1. For the process of estimating the replacement cost of the capital stock and
inventory,
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(a) I assume that the book value of the initial year is equal to the replacement
value.

(b) if I encounter negative values or missing variables, I delete the observation.

2. I exclude extreme values by the following rules:

(a) If the absolute value of the growth rate is greater than 1, I delete the
observation.

(b) If the absolute value of a random shock is greater than 10, I delete the
observation.

(c) If the absolute value of Tobin's Q is greater than 10, I delete the observa-
tion.

Cummins, Hassett and Hubbard (1994) discussed that these extreme values
mainly occur because of (1) large mergers, (2) extraordinary ¯rm shocks or (3)
COMPUSTAT coding errors.

3. I estimate the expected value, the variance and the correlation coe±cient of
the population using the mean, the variance and the correlation coe±cient of
the random sample over 1975-1994 for each ¯rm. In order to calculate these, I
delete samples which have fewer than 10 observations.

4. Finally I delete all observations, where the absolute value of the prediction
ability measure is greater than 1000 to avoid extreme cases. This procedure
eliminates only 2 or 3 observations.
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13 Appendix 4
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