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Abstract

In this paper we are interested in inference based on heteroskedasticity consistent
covariance matrix estimators, for which the appropriate bootstrap is a version of
the wild bootstrap. Simulation results, obtained by a new very efficient method,
show that all wild bootstrap tests exhibit substantial size distortion if the error
terms are skewed and strongly heteroskedastic. The distortion is however less,
sometimes much less, if one uses a version of the wild bootstrap, belonging to
a class we call “tamed”, which benefit from an asymptotic refinement related to
the asymptotic independence of the bootstrapped test statistic and the bootstrap
DGP. This version always gives better results than the version usually recom-
mended in the literature, and gives exact results for some specific cases. However,
when exact results are not available, we find that the rate of convergence to zero
of the size distortion of wild bootstrap tests is not very rapid: in some cases,
significant size distortion still remains for samples of size 100.
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1. Introduction

Inference on the parameters of the linear regression model
y = XB +u,

where y is an n-vector containing the values of the dependent variable, X is an
n X k matrix of which each column is an explanatory variable, and 3 a k-vector of
parameters, requires special precautions when the error terms u are heteroskedas-
tic. In that case, the usual OLS estimator of the covariance of the OLS estimates ,@
is in general biased, and so conventional ¢ and F' tests do not have their name-
sake distributions, even asymptotically, under the null hypotheses that they test.
The problem was solved by Eicker (1963) and White (1980), who proposed a het-
eroskedasticity consistent covariance matrix estimator, or HCCME, that permits
asymptotically correct inference on 3 in the presence of heteroskedasticity of un-
known form.

MacKinnon and White (1985) considered a number of possible forms of HCCME,
and showed that, in finite samples, they too, as also ¢ or F' statistics based on
them, can be seriously biased, especially in the presence of observations with high
leverage; see also Chesher and Jewitt (1987), who show that the extent of the bias
is related to the structure of the regressors. But since, unlike conventional ¢ and
F tests, HCCME-based tests are at least asymptotically correct, it makes sense to
consider whether bootstrap methods might be used to alleviate their small-sample
size distortion.

Bootstrap methods normally rely on simulation to approximate the finite-sample
distribution of test statistics under the null hypotheses they test. In order for
such methods to be reasonably accurate, it is desirable that the data-generating
process (DGP) used for drawing bootstrap samples should be as close as possible
to the true DGP that generated the observed data, assuming that that DGP
satisfies the null hypothesis. This presents a problem if the null hypothesis admits
heteroskedasticity of unknown form: If the form is unknown, it cannot be imitated
in the bootstrap DGP.

A technique that has been used to overcome this last difficulty is the so-called wild
bootstrap. The wild bootstrap was developed by Liu (1988) following a suggestion
of Wu (1986) and Beran (1986). Liu established the ability of the wild bootstrap to
provide refinements for the linear regression model with heteroskedastic errors, and
further evidence was provided by Mammen (1993). Both Liu and Mammen show,
under a variety of regularity conditions, that the wild bootstrap is asymptotically
justified, in the sense that the asymptotic distribution of various statistics is the
same as the asymptotic distribution of their wild bootstrap counterparts. They
also show that, in some circumstances, asymptotic refinements are available, which
lead to agreement between the distributions of the raw and bootstrap statistics
to higher than leading order asymptotically. However, neither Wu nor Mammen
considered the case of HCCME-based statistics in a regression model with several
regressors.

In this paper, we consider a number of implementations both of the Eicker-White
HCCME and of the wild bootstrap applied to them. We show that, when the error
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terms are symmetrically distributed about the origin, and when both the HCCME
and the wild bootstrap DGP are based on residuals obtained by estimation under
the null hypothesis, statistics based on all of the implementations that we study
of the HCCME are asymptotically independent of the random elements that de-
termine the wild bootstrap DGP. Davidson and MacKinnon (1999) have shown
that such asymptotic independence leads to asymptotic refinements of bootstrap
inference. We are able to go further when the hypothesis under test is that all
the regression parameters are zero. In that event, we show that one version of the
wild bootstrap gives essentially perfect inference.

In general, this version of the wild bootstrap suffers from some size distortion, but,
it would appear, never more than any other version, as we demonstrate in a series
of simulation experiments. For these experiments, our policy is to concentrate on
cases in which the asymptotic tests based on the HCCME are very badly behaved,
and to try to identify bootstrap procedures that go furthest in correcting this bad
behaviour. Thus, except for the purposes of obtaining benchmarks, we look at
small samples of size 10, with an observation of very high leverage, and a great
deal of heteroskedasticity closely correlated with the regressors. We use a method
recently developed by Davidson and MacKinnon (1999), applicable in cases in
which the test statistic and the bootstrap DGP are asymptotically independent,
in order to perform efficient simulations that estimate the difference between the
true and nominal rejection probabilities of bootstrap tests.

Another question of some importance is what happens when the error terms are
not symmetrically distributed. The asymptotic refinements found by Wu and
Mammen for certain versions of the wild bootstrap are directed at taking account
of such skewness. However in this case, the asymptotic independence of the statis-
tic and the bootstrap DGP no longer holds. In addition, we can no longer use the
Davidson-MacKinnon trick for efficient estimation of the bootstrap size distortion.
However it is possible, by a procedure we call taming, to restore asymptotic inde-
pendence. Simulation experiments, including some more costly ones, in which a
full bootstrap test is performed on each replication, show the extent of the degra-
dation in performance with asymmetric error terms, but confirm that taming leads
to somewhat better behaviour, and that our preferred version of the wild boot-
strap, which is tamed by construction, continues to work at least as well as any
other.

In section 2, we review the properties of bootstrap P values, and the circum-
stances in which they may benefit from refinements of various sorts. In section 3,
we discuss a number of ways in which the wild bootstrap may be implemented,
and show that, with symmetrically distributed error terms, a property of asymp-
totic independence holds that gives rise to an asymptotic refinement of bootstrap
P values. In some special cases, the refinement can give rise to essentially exact
inference. Section 4 reviews a method presented by Davidson and MacKinnon
(1999) whereby the size distortion of bootstrap tests can be efficiently estimated
by simulation without needing to do Monte Carlo on the bootstrap, and, in sec-
tion 5, a series of experiments are described in which this method is used wherever
possible. Section 6 contains the results of these experiments, and there are a few
conclusions in section 7.



2. Bootstrap P Values

Beran (1988) showed that bootstrap inference is refined when the quantity boot-
strapped is asymptotically pivotal. It is convenient to formalise the idea of piv-
otalness by means of a few formal definitions. A data-generating process, or DGP,
is any rule sufficiently specific to allow artificial samples of arbitrary size to be
simulated on the computer. Thus all parameter values and all probability dis-
tributions must be provided in the specification of a DGP. A model is a set of
DGPs. Models are usually generated by allowing parameters and probability dis-
tributions to vary over admissible sets. A test statistic is a random variable that
is a deterministic function of the data generated by a DGP and, possibly, other
exogenous variables. A test statistic 7 is a pivot for a model M if, for each sample
size n, its distribution is independent of the DGP 1 € M which generates the data
from which 7 is calculated. The asymptotic distribution of a test statistic 7 for a
DGP p is the limit, if it exists, of the distribution of 7 under u as the sample size
tends to infinity. The statistic 7 is asymptotically pivotal for M if its asymptotic
distribution exists for all 4 € M and is independent of p.

In hypothesis testing, the null hypothesis under test is represented by a model, as
defined above. A test statistic is said to be pivotal or asymptotically pivotal under
the null hypothesis if it is a pivot or an asymptotic pivot for the model that repre-
sents the hypothesis. Most test statistics commonly used in econometric practice
are asymptotically pivotal under the null hypotheses they test, since asymptot-
ically they have distributions, like standard normal, or chi-squared, that do not
depend on unknown parameters. Conventional asymptotic inference is based on
these known asymptotic distributions.

Even if a statistic is an exact pivot for a model M, asymptotic inference may be
only approximate, since the finite-sample distribution of the statistic may be the
same for all p € M, but different for different sample sizes. A simple example
is the use of an exact t statistic with asymptotic standard normal critical values.
Bootstrap inference corrects this by relying on the finite-sample distribution of
some specific DGP in the model M that represents the null hypothesis. Since
for a pivot the choice of that DGP has no influence on the distribution, exact
inference is possible. Usually, of course, the finite-sample distribution is estimated
by simulation, with the consequent introduction of simulation error. Since this
error can be made arbitrarily small by increasing the number of simulations, we
will not concern ourselves with it here.

If an asymptotic pivot 7 is not an exact pivot, its distribution depends on which
particular DGP p € M generates the data used to compute it. In this case,
bootstrap inference is no longer exact in general. The bootstrap samples used
to estimate the finite-sample distribution of 7 are generated by a bootstrap DGP,
which, although it usually belongs to M, is in general different from the DGP that
generated the original data.

It is possible to use the bootstrap either to calculate a critical value for 7 or to
calculate the marginal significance level, or P value, associated with a realisation
of it. In this paper, we prefer the latter approach, as it greatly simplifies the
analysis. Suppose that data are generated by a DGP po belonging to M, and used
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to compute a realisation 7 of the random variable 7. Then, for a test that rejects
for large values of the statistic, the P value we would ideally like to compute is

p(7) = Pry (7 > 7). (1)

In practice, (1) cannot be computed, or estimated by simulation, because the
DGP pg that generates observed data is unknown. If 7 is an exact pivot, this does
not matter, since (1) can be computed using any DGP in M. In this case, p(7)
is a drawing from the U(0, 1) distribution. If 7 is only an asymptotic pivot, the
bootstrap P value is defined by

p*(7) = Pry(r > 7), (2)

where [ is a (random) bootstrap DGP in M, determined in some suitable way
from the same data as those used to compute 7. We denote by p* the bootstrap
P value (2), and by p* the random variable of which it is a realisation. Similarly,
p* denotes the random DGP of which f is a realisation.

Let the asymptotic CDF of the asymptotic pivot 7 be denoted by F. At nominal
level «, an asymptotic test rejects if the asymptotic P value 1 — F(7) < a. In
order to avoid having to deal with different asymptotic distributions, it is con-
venient to replace the raw statistic 7 by the asymptotic P value 1 — F(7), of
which the asymptotic distribution is always U(0,1). Henceforth, 7 denotes such
an asymptotic P value.

For the sample size of the observed data, the “rejection probability function,” or
RPF, provides a measure of the true rejection probability of the asymptotic test.
This function, which gives the rejection probability under p of a test at nominal
level «, is defined as follows:

R(a,p) =Pr,(r < a). (3)

It is clear that R(-, ) is the CDF of 7 under p. The information contained in the
function R is also provided by the “critical value function,” or CVF, @, defined
implicitly by the equation

Pr, (7 < Q(a, p)) = a (4)

Q(a, p) is just the o quantile of 7 under p. It follows from (3) and (4) that

R(Q(Oé, ,Ll.), ,U,) = aq, a'nda conversely, Q(R(Ot, /"’)a ,LL) = G, (5)

from which it is clear that, for given u, R and @) are inverse functions.

The bootstrap test rejects at nominal level o if 7 < Q(a, p*), that is, if 7 is
smaller than the the a-quantile of the bootstrap DGP. By acting on both sides
with R(-, #*), this condition can also be expressed as

R(Ta N*) < R(Q(aa /1’*)’ “*) = Q.

—4 —



This makes it clear that the bootstrap P value is just R(7, u*). It follows that, if
R actually depends on p*, that is, if 7 is not an exact pivot, the bootstrap test is
not equivalent to the asymptotic test, because the former depends not only on 7,
but also on the random p*.

In Davidson and MacKinnon (1999), it is shown that bootstrap tests enjoy a fur-
ther refinement, over and above that due to the use of an asymptotic pivot, if
7 and p* are asymptotically independent. In addition, such asymptotic indepen-
dence makes it possible to obtain an approximate expression for the size distortion
of a bootstrap test. Suppose first that 7 and p* are fully independent under the
true DGP pg. Then the rejection probability under py of the bootstrap test at
nominal level « is

Pr,, (1 < Q(a, p*)) = E,, (PruO (T < Qa, p*) | /1,*))
= Euo <R(Q(O!, u*)a MO)) .
Let the random variable ¢ be defined by

q = R(Q(c, u*), o) — R(Q (v, o), o) = R(Q(ax, p*), po) — cx. (6)

This random variable depends on the true DGP po and the nominal level o. In
terms of ¢, the rejection probability is

Epo(a+a) = a+ By (q)- (7)

This is an exact result if 7 and p* are independent. It is useful because, as we see
in section 4, E, (q) can be estimated easily by simulation.

3. The Wild Bootstrap
Consider the linear regression model
Yt = 11+ XpaB2 +ug, t=1,...,n, (8)

in which the explanatory variables are assumed to be strictly exogenous, in the
sense that, for all ¢, z;; and X;s are independent of all of the error terms wug,
s = 1,...,n. The row vector X, contains observations on k£ — 1 variables, of
which, if £ > 1, one is a constant. We wish to test the null hypothesis that the
coefficient (3, of the first regressor z;; is zero.

The error terms are assumed to be mutually independent and to have a common
mean of zero, but they may be heteroskedastic, with E(u?) = o2. We consider
only unconditional heteroskedasticity, which means that the o2 may depend on
the exogenous regressors, but not, for instance, on lagged dependent variables.
With such heteroskedasticity, the usual ¢ statistic is not even asymptotically piv-
otal for model (8), since its distribution depends on the pattern of the 2. For
both linear and nonlinear regression models, some variant of the Eicker-White het-

eroskedasticity consistent covariance matrix estimator, or HCCME, can be used
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for asymptotically correct inference on the parameters of the regression function
in the presence of heteroskedasticity of unknown form.

Both the usual ¢ statistic and asymptotic ¢ statistics based on an HCCME are
pivotal if the model is restricted in such a way that the o? are fixed. In other
words, these statistics are (exactly) pivotal with respect to variations in the values
of the regression parameters (3; and (B, but not with respect to the skedastic
parameters o2. On the other hand, HCCME-based statistics are asymptotically
pivotal with respect to all the parameters of (8), and all possible error distributions
satisfying mild regularity conditions, which must at least include the existence of

the variances of these distributions.

We write x; for the n-vector with typical element x4, and Xs for the n x (k—1)
matrix with typical row X;s. By X we mean the full n x k matrix [@; Xz]. Then
the basic HCCME for the OLS parameter estimates of (8) is

(XTX)'XT2Xx(XTX)™, (9)

where the n x n diagonal matrix 2 has typical diagonal element @2, where the
G are the OLS residuals. We refer to the version (9) of the HCCME as HC,.
Bias is reduced by multiplying the 4; by the square root of n/(n — k), thereby
multiplying the elements of £2 by n/(n—k); this procedure, analogous to the use in
the homoskedastic case of the unbiased OLS estimator of the error variance, gives
rise to form HC; of the HCCME. In the homoskedastic case, the variance of
is 1 — hy, where hy = X3 (X TX)71X{, the t*® diagonal element of the orthogonal
projection matrix on to the span of the columns of X. Normalising by this variance
suggests replacing the @; by @;/(1 — h¢)'/? in order to obtain £2. If this is done,
we obtain form HC'; of the HCCME. Finally, arguments based on the jackknife
lead MacKinnon and White to propose form HCj, for which the 4, are replaced
by /(1 — h). MacKinnon and White, and Chesher and Jewitt, show that HCy
is outperformed by HC4, which is in turn outperformed by HCs and HC5. The
last two cannot be ranked in general, although H(C'3 has been shown in a number
of Monte Carlo experiments to be superior in typical cases.

As mentioned in the introduction, the problem with bootstrapping a ¢ statistic
based on any HCCME is that, since the heteroskedasticity is of unknown form,
it cannot be mimicked in the bootstrap distribution. The wild bootstrap gets
round this problem as follows. In order to generate a bootstrap sample, we use a
bootstrap DGP such that, fort =1,...,n,

where ,@ is the vector of OLS parameter estimates, and the bootstrap error terms
are given by

up = fe(li)es, (11)

where f;(4;) is a transformation of the OLS residual 4, and the &; are mutually
independent drawings, completely independent of the original data, from some
auxiliary distribution, with CDF F', defined so as to satisfy

E(et) =0 and E(e?) = 1. (12)
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Thus, for each bootstrap sample, the exogenous explanatory variables are reused
unchanged, as are the OLS residuals #; from the estimation using the original
observed data. The transformation f;(-) can be used to modify the residuals, for
instance by dividing by 1 — hy, just as in the different variants of the HCCME.

In the literature, a further condition is often added to those which F' must sat-
isfy, namely that E(e}) = 1. Liu (1988) considers model (8) with k& = 1, and
shows that the first three moments of the bootstrap distribution of an HCCME-
based statistic are in accord with those of the true distribution of the statistic
up to order O(n~1). Mammen (1993) also imposes the extra condition, but his
problem is somewhat different from the one dealt with here, in that he uses con-
ventional F' statistics rather than HCCME-based statistics, and is not concerned
with bootstrap refinements. One of his suggestions for the distribution of the &,
is probably the most popular choice in recent literature on the wild bootstrap. It
is the following two-point distribution:

Fioe = { —(V5—1)/2  with probability p = (v/5+ 1)/(2V/5)

(V5+1)/2 with probability 1 — p.

Liu mentions another possibility:
' 1 with probability 0.5
&= { —1  with probability 0.5, (13)

which, for the case she considers, satisfies necessary conditions for refinements
in the case of unskewed error terms. Unfortunately, she does not follow up this
possibility, since (13), being a lattice distribution, does not lend itself to techniques
based on Edgeworth expansion. The techniques used in this paper will allow us to
show that (13) is, for all the cases we consider, the best choice of distribution for
the ;. Another variant of the wild bootstrap that we consider later is obtained
by replacing (11) by

ui = fillie))ee, (14)

in which the absolute values of the residuals are used instead of the signed residuals.

Conditional on the random elements 3 and 4, the wild bootstrap DGP (10) clearly
belongs to the null hypothesis if the first component of ,3, corresponding to the
regressor xi, is set equal to zero. The regression function has the correct form,
and the error terms have mean zero, and are heteroskedastic, for both formula-
tions, (11) or (14), and with any distribution for the &; satisfying (12). Since any
of the HCCME-based statistics we have discussed is asymptotically pivotal, infer-
ence based on the wild bootstrap using such a statistic applied to model (8) should
be asymptotically valid. In fact, in the linear case, it is possible to simplify (10)
further, since, except for the exogenous regressors, the test statistics depend only
on the OLS residuals, and so their distributions are independent of B;. Similarly,
there is no loss of generality in testing a zero restriction on (; rather than testing
for some nonzero value. In the case of a nonlinear regression, of course, the distri-
bution of the test statistic depends on the specific value of 3, and so a consistent
estimator of these parameters should be used in formulating the bootstrap DGP.
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The arguments in Beran (1988) show that bootstrap inference benefits from asymp-
totic refinements if the random elements in the bootstrap DGP are consistent es-
timators of the corresponding elements in the unknown true DGP. For (10), that
is the case for B9, but not for the 4;. Although the HCCME is consistent for the
covariance matrix of the OLS estimator, its diagonal elements, based on the 42,
are not consistent estimators of the o2.

On the other hand, the additional refinement discussed by Davidson and Mac-
Kinnon (1999), based on the asymptotic independence of the statistic 7 and the
bootstrap DGP p*, is available for the wild bootstrap, if some precautions are
taken. As discussed in that paper, an essential step in achieving this asymptotic
independence is to base p* exclusively on estimates under the null hypothesis.
Thus (10) becomes just

Yr = ug, uy = fi(Ut)es, (15)
where the OLS residuals u; are obtained from the regression

yr = X282 + us

that corresponds to the null hypothesis. The transformation f may involve taking
the absolute value of the argument. It is not only convenient but desirable to
use the restricted residuals u; not only for the bootstrap DGP, but also in the
construction of the HCCME.

We now show that, if the model (8) is restricted so that the error terms have distri-
butions that are symmetric about the mean of zero, all HCCME-based ¢t statistics
for 4, = 0 are asymptotically independent of some versions of the wild bootstrap
DGP (15). First, an easy Lemma.

Lemma 1: A mean-zero random variable u which has zero probability
mass on the origin and the density of which is symmetric about the origin
is the product of two independent random variables: the absolute value
|u| and the sign sgn(u).

Proof:  Denote the density of u by f(u). Since f(—u) = f(u), the density of |u|
is g(Ju]) = 2f(Jul). The density of sgn(u) can be written in terms of indicator
functions as 0.5I(u < 0) + 0.5I(u > 0) = 0.5. Here we use the fact that there is
no positive probability mass on the origin itself. The product of the two densities
is 2f(Jul).0.5 = f(|u]) = f(u), the density of u itself. The factorisation of this
density shows that |u| and sgn(u) are independent. [

Theorem 1:  Consider the linear regression model
Yt = T4101 + Xp2 B2 + uyg, (16)

where the regressors are strictly exogenous, and the error terms are mutu-
ally independent with mean zero and distributions symmetric about the
origin with no positive probability mass on the origin. The statistic based
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on the form HCy of the HCCME, computed using restricted residuals, for
the hypothesis that #; = 0 can be written as

T= a:lTMQy/(wlTMQ.()Mle)l/2. (17)

Here y is the n-vector with typical element 1y, 2 is the n x n diagonal
matrix with typical diagonal element the square of i, the ¢*! residual
from the OLS estimation of the restricted regression

yr = X282 + uy,

and My = I— X5(X3' X5) "1 Xy is the orthogonal projection matrix on to
the orthogonal complement of the span of the columns of Xj.

If the regressors obey the usual regularity condition that n~*XTX tends
as n — oo to a deterministic positive definite finite matrix, and if, in
addition, there exist positive bounds ¢? and o2 such that g2 < af < g2
for all ¢, then the statistic 7 of (17) is asymptotically independent, under
the null hypothesis, of the absolute values |u;| of the restricted residuals,
and consequently also of the wild bootstrap DGP p* defined by (15) if the
transformation f depends only on the absolute value of its argument.

Proof: By the Frisch-Waugh-Lovell theorem (see, for instance, Davidson and
MacKinnon (1993), Chapter 1), the OLS estimate of 8; from (16) is the same as
the OLS estimate from the regression Myy = Msx13; + residuals, that is,

,31 = ($FM2$1)_1$1_|_M2?J- (18)

The form HCj of the HCCME of the variance of 3y is obtained by applying (9)
to the regression (18). The estimated variance is thus

@, My Q Moz (2 Moxz,) 2, (19)

where the diagonal elements of 2 are the squares of the residuals from the re-
stricted regression, that is, the squares of the elements of the vector Myy. Equa-
tion (17) follows from (18) and (19).

Because £2 is diagonal, we can express the matrix product x;' My f)MQazl as

D (Ma)F(May);.

t=1
Under the null, Myy = Msu, and so the statistic (17) can be written as
D ote1 (Maz1):(Mau),
(1 (Mo (Myu)?)

Let us write (Mau); = ||, where s, the sign of 4, is equal to either +1 or —1.
In addition, let us write z; = (Max1)¢|ts|. Then (20) becomes

(20)

Ztnzl Zt3t1/2 . (21)
(Xt 22)
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Asymptotically, the residuals u; are equal to the error terms u;. Thus asymptoti-
cally, the statistic is equivalent to (21) with z; and s; defined using the u; instead
of the u;. In that case, the z; and the s; are independent, by Lemma 1, and so,
conditional on the z;, the s; are mutually independent and distributed according
to the law Fy of (13). Under the regularity conditions of the second part of the
theorem, the central limit theorem can be applied to show that the asymptotic
distribution of (21) conditional on the z; is standard normal. Since this asymp-
totic distribution is independent of the z; and so of the |u,|, it follows that 7 is
asymptotically independent of the |u;|, and so also of any p* defined exclusively
in terms of the exogenous regressors and the |i;|. |

Remarks and Corollaries:  Note that the theorem applies to any wild boot-
strap defined by (15) and based on the absolute values of the residuals, whatever
may be the distribution of the e, satisfying (12). If this distribution is itself
symmetric about the origin, like F5, then the theorem applies with any trans-
formation f that is either even or odd, because then the vector with typical ele-
ment f;(4;)e; has the same distribution as that with typical element f;(|i:|)e;. We
refer to any wild bootstrap DGP that can be expressed, implicitly or explicitly, in
terms of the |i;| only as a tamed wild bootstrap DGP.

It is easy to adapt the above proof so that it applies to the case in which a joint
hypothesis is tested with more than one degree of freedom. The statistic takes on
a chi-squared form. If we replace the single column x; by a matrix X;, we may
define a matrix Z with typical row (MyXj):|t:|, and the n-vector s with typical
element s;. The statistic becomes

$'Z(Z'Z)'Z's = 5" Pys, (22)

where Pz is the orthogonal projection on to the columns of Z. Since s and Z
are asymptotically independent, the asymptotic distribution of (22) conditional on
the |G| is chi-squared with as many degrees of freedom as X; has columns, and,
since this does not depend on the |4, |, the statistic is asymptotically independent
of the |1 and so of any tamed bootstrap DGP p*.

Since the other versions, HC to HC3, of the HCCME all depend only on the
absolute values of the residuals, the theorem applies equally well to statistics
computed using them. This is particularly obvious for HC,, which differs from
HCy only by a multiplicative factor. For HC5 and HCj3, it suffices to note that
the h; depend only on the exogenous regressors.

In the case of nonlinear regression, the bootstrap DGP must be constructed using
a consistent estimate of B5. The NLS estimate B2 obtained by estimating the
restricted model with 3, = 0 is asymptotically independent of the NLS residuals
from the same regression. A tamed bootstrap DGP can thus be defined exclusively
in terms of ,32 and the |t;|. The statistic 7 is then asymptotically independent of
this tamed bootstrap DGP.

There is an important special case in which the wild bootstrap using Fj yields
almost perfect inference. This case arises when the entire parameter vector 3
vanishes under the null hypothesis.
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Theorem 2:  Consider the linear regression model
yr = Xi0 + uy (23)

where the n x k matrix X with typical row X; is independent of all the
symmetrically distributed error terms u;, which satisfy the same regularity
conditions as for Theorem 1. Under the null hypothesis that 3 = 0,
the x? statistic for a test of that null against the alternative represented
by (23), based on any of the four HCCMEs considered here, has exactly
the same distribution as the same statistic bootstrapped, if the bootstrap
DGP is the wild bootstrap (15), with f(u) = u or equivalently f(u) = |u/,
for which the ¢; are generated by the symmetric two-point distribution Fy
of (13).

For sample size n, the bootstrap P value p* follows a discrete distribution
supported by the set of points p; = /2™, ¢ = 0,...,2" — 1, with equal
probability mass 27" on each point.

Proof:  The OLS estimates from (23) are given by 8 = (X'X) X Ty, and
any of the HCCMEs we consider for 3 can be written in the form (9), with an
appropriate choice of £2. The x? statistic thus takes the form

r=y X(X'RX) X Ty. (24)

Under the null, y = u, and each component u; of w can be written as |u|s;, where
|ut| and s; are independent. Define the 1 x k row vector Z; as |us| X, and the
n X 1 column vector s with typical element s;. It follows from Lemma 1 that the
entire n X k matrix Z with typical row Z; is independent of the vector s. The
statistic (24) becomes

~1

n

s'Z (Z ar Zy Zt) Z's, (25)
t=1

where a; = 1 for HCy, n/(n — k) for HCy, 1/(1 — hy) for HCy, and 1/(1 — hy)?

for HCj.

If we denote by 7* the statistic generated by the wild bootstrap with Fs, then 7*
can be written as

n -1
e'Z (Z A Zt> Z'e, (26)
t=1

where € denotes the vector containing the ¢;. The matrix Z is exactly the same
as in (25), because the exogenous matrix X is reused unchanged by the wild
bootstrap, and the wild bootstrap error terms uf = +uy, since, under Fy, e = £1.
Thus, for all ¢, |uj| = |us|. By construction, € and Z are independent under the
wild bootstrap DGP. But we saw in the proof of Theorem 1 that, under the null
hypothesis, s follows exactly the same distribution as €, and so it follows that
7 under the null and 7* under the wild bootstrap DGP with F3 have the same
distribution. This proves the first assertion of the theorem.
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Conditional on the |u;|, this common distribution of 7 and 7* is of course a discrete
distribution, since € and s can take on only 2™ different, equally probable, values,
with a choice of +1 or —1 for each of the n components of the vector. The statistic 7
must take on one of the 2™ possible values, each with the same probability of 27™.
If we denote the 2" values, arranged in increasing order, as 7;, ¢ = 1,...,2" with
T; > 7; for j > i, then, if 7 = 7;, the bootstrap P value, which is the probability
mass in the distribution to the right of 7;, is just 1 — i/2™. As ¢ ranges from 1
to 2™, the P value varies over the set of points p;, 1 = 0,...,2" — 1, all with
probability 2=™. This distribution, conditional on the |u;|, does not depend on
the |u¢|, and so is also the unconditional distribution of the bootstrap P value p*. ||

Remarks: For small enough n, it may be quite feasible to enumerate all the
possible values of the bootstrap statistic 7*, and thus obtain the exact value of
the realisation p*.

Although the discrete nature of the bootstrap distribution means that it is not
possible to perform exact inference for an arbitrary significance level «, the prob-
lem is no different from the problem of inference with any discrete-valued statistic.
For the case with n = 10, which will be extensively treated in the following sec-
tions, 2™ = 1024, and so the bootstrap P value cannot be in error by more than
1 part in a thousand.

It is possible to imagine a case in which the discreteness problem is aggravated by
the coincidence of some adjacent values of the 7; of the proof of the theorem. For
instance, if the only regressor in X is the constant, the value of (25) depends only
on the number of positive components of s and not on their ordering. For this
case, of course, it is not necessary to base inference on an HCCME. Coincidence of
values of the 7; will otherwise occur if all the explanatory variables take on exactly
the same values for more than one observation. However, since this phenomenon
is observable, it need not be a cause for concern. A very small change in the values
of the components of the X; would be enough to break the ties in the 7;.

The exact result of the theorem is specific to the wild bootstrap with F;. The
proof works because the signs in the vector s also follow the distribution F5.

In terms of the analysis in section 2, the result of Theorem 2 can be interpreted
as the vanishing of the random variable g of (6) for all values of & equal to the
dyadic numbers 7/2". Since 7 and 7* have the same distribution, the functions
R(-, po) and R(-, u*) are the same, as are Q(-, po) and Q(-, u*).

Given the exact result of the theorem, it is of great interest to see the extent of
the size distortion of the wild bootstrap with F» when the null hypothesis involves
only a subset of the regression parameters. This question will be investigated by
simulation in the following sections. At this stage, it is possible to see the reason
for which the theorem does not apply in that case. The expressions (24) and (25)
for 7 and 7* continue to hold if Z; is redefined as |4;|X;. However, although &
in 7* is by construction independent of Z, s in 7 is not. This is because the
covariance matrix of the residual vector w is not diagonal in general, unlike that
of the error terms w. In Figure 1, this point is illustrated for the bivariate case.
In panel a), two level curves are shown of the joint density of two symmetrically
distributed and independent variables u; and uy. In panel b), the two variables are
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no longer independent. For the set of four points for which the absolute values of
u1 and wus are the same, it can be seen that, with independence, all four points lie
on the same level curve of the joint density, but that this is no longer true without
independence. The wvector of absolute values is no longer independent of the vector
of signs, even though independence still holds for the marginal distribution of each
variable. Since, for each ¢, %; tends to u; as n — 0o, the asymptotic independence
of |@;| and s; still holds, and so the asymptotic distributions of 7 and 7* still
coincide.

4. Estimation of Size Distortion

In this section, we see that we can very accurately estimate the difference between
the distribution of an HCCME-based statistic 7 and that of its wild-bootstrap
counterpart 7* by simulation, if the wild bootstrap is tamed. The key to this
is the asymptotic independence of 7 and a tamed bootstrap DGP p*, given by
Theorem 1. Full independence between 7 and p* allows us to assert that the true
rejection probability of a bootstrap test at nominal level « is given by (7), so
that the error in rejection probability (ERP) is the expectation, under the true
DGP py, of the random variable ¢ given by (6).

The expectation of g can be written as
By (R(Q(a, 1), o) ) — e (27)

Now, by (5), R(Q(a, o), ,uo) = a. Thus, for given g, (27), considered as a func-
tion of «, is a bias function. In the spirit of linear bias correction, we approximate
R(Q(a, u*), o) as an affine function of its first, random, argument, and get

R(Q(a’ 1), ,UO) ~a+ Rl-(Q(aa ©*) — Q(a, /1’0))’

where R; is the derivative of R with respect to its first argument evaluated
at (Q(a7 ,LL()), HO) SlmllarlY7

R(Q(a7 /1’0)7 N*) o+ Rl'(Q(a7 :uO) - Q(O[, /J'*))a

and so, approximately, the expectation of ¢ is given by
o = By (R(Q(e o), 17) ). (28)

Consider a random variable 7* of which a drawing under p is generated as follows.
A sample is drawn from pg and used to compute a drawing /i of the bootstrap
DGP p*. Then a sample is drawn from f, and used to compute a bootstrap
statistic, which is then the drawing of 7*. The CDF of 7*, evaluated at argument «,
can be seen to be just K, (R(a, ,u*)): Conditional on fi, the probability that
T* < ais given by the CDF of the bootstrap statistic under fi, that is, R(c, fz). The
unconditional expectation of this probability is just E,, (R(a, u*)), as required.
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The above construction allows us to evaluate the expectation in (28) easily by
simulation. For each replication, the DGP puq is used to draw realisations of the
statistic 7 and the bootstrap DGP p*. Next the realisation g of p* is used to
draw a realisation of 7*. The quantile Q(c, 1) is then estimated as usual as the
a-quantile of the drawings of 7, and the expectation of R(Q(a, Ko), u*) as the
proportion of the drawings of 7* that are less than the estimate of Q(«, pg). This
method of estimating the expectation of ¢ was first suggested by Davidson and
MacKinnon (1999).

In fact, by a manipulation frequently used in bias correction, a more accurate esti-
mate of the expectation of ¢ can be obtained by a slight modification of the above
procedure, in which the roles of the distributions of 7 and 7* are interchanged.
Drawings of 7 and 7* are made exactly as described above, but then the expecta-
tion of ¢ is estimated as the proportion of drawings of 7 less than the a-quantile
of 7, minus a. We show in the next section that this procedure does indeed yield
better estimates of the size distortion of the bootstrap test; good enough to be
almost indistinguishable, up to experimental error, from brute force estimates ob-
tained by experiments in which a complete bootstrap test is undertaken for each
replication.

It is clear that, in practice, it is not necessary to convert test statistics to approx-
imate P value form in order to estimate size distortions by the above procedure.
Drawings of the statistics are obtained in whatever form is most convenient, and
sorted in order from the most extreme values to the least extreme. For each value
of « of interest, it is then straightforward to compute the proportion of realisa-
tions of the statistic more extreme than the realisation of the bootstrap statistic
in position « in the sorted list.

5. Experimental Design and Simulation Results

In this section, we use the procedure outlined in the previous section to study the
extent of the size distortion of wild bootstrap tests based on statistics computed
with an HCCME. First, we check that we can indeed obtain results from this pro-
cedure that are almost experimentally indistinguishable from those we obtain by
much more laborious, but theoretically irreproachable, simulation methods. Hav-
ing established that, we move on to investigate how the size distortion depends
on all those aspects of the problem on which it might depend, with a view to
estimating the greatest distortion to which a wild bootstrap test might be sub-
jected in various circumstances. A point of particular importance is to compare
the performance of wild bootstrap tests that use the asymmetric F; distribution
and the symmetric F» distribution.

It was shown by Chesher and Jewitt (1987) that HCCMESs are most severely biased
when the regression design has observations with high leverage, and that the extent
of the bias depends on the amount of heteroskedasticity in the true DGP. This
implies that HCCME-based test statistics will be farthest from being pivotal, that
is, most dependent on the unknown aspects of the true DGP, when there is severe
heteroskedasticity and when there are observations with high leverage. Further,
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one expects bootstrap tests to behave better in large samples than in small. Thus,
in order to stress-test the wild bootstrap, and along with it the procedure of the
previous section, most of our experiments are performed with a sample of size 10,
which contains one regressor all the elements but one of which are independent
drawings from N (0, 1), but the second of which is 10, so as to create an observation
with exceedingly high leverage. In Table 1, the components of this regressor,
which we denote by x, are given, along with those of four other regressors, x;,

1=2,...,5, used in the experiments. In Table 2 are given the diagonal elements h;
of the orthogonal projections on to spaces spanned by x;, €1 and the constant,
and x1, the constant, and increasing numbers of other regressors x;, 1 = 2,...,5.

The h; measure the leverage of the 10 observations for the different regression
designs.

The results of two experiments are shown in Figure 2. For both, samples are drawn
from the following DGP, which plays the role of yy in the experiments:

Yt = OUg, t= 1,...,10, (29)

where o = z2, the component of x;, and the u; are normal white noise.

This pattern of heteroskedasticity leads to bias of the OLS covariance matrix; see
White (1980). Since x; contains a very high leverage observation for ¢ = 2, the
DGP (29) is very strongly heteroskedastic. Note that, since the distributions of all
the statistics we consider are independent of the parameters 3 of the regression,
we may, as in (29), set 8 = 0 without loss of generality.

tt;h

The statistic bootstrapped, 7, is an HCCME-based pseudo-t¢ statistic on x; in the
model

y = Pot + i1 + Paza + u,

where ¢ is a vector of ones representing the constant. The null hypothesis under
test can be written as

Yy = Pot + B2 + u. (30)

(This is the case labelled k£ = 3 in Table 2.) The residuals @, from (30) are used to
compute version HCy of the statistic (17), in which in this case My projects off
the constant ¢ and 5. The h; used in the statistic are the diagonal elements of the
complementary projection P,. The bootstrap DGP p* is then a wild bootstrap
with distribution F5 (which tames it):

y: = ’&t(l — ht)_1/2€t7 Er ~ FQ. (31)

For the first experiment, N = 100,000 replications were performed on each of
which drawings were made of 7 and p*, and then a drawing of the variable 7%,
as described in the previous section. For each a = 0.01,0.02,...,0.99, the ex-
pectation of the ERP of the bootstrap test was calculated approximately by the
two procedures of the previous section, in which the empirical distributions of the
drawings of 7 and 7* are used. For the second experiment, an actual bootstrap
P value was computed on each replication, with 399 bootstrap samples.

The results of the two experiments are shown in Figure 2 using P value discrep-
ancy plots, as described in Davidson and MacKinnon (1998). These plots show, as
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a function of the nominal level «, the difference between the true rejection proba-
bility and the nominal level. Since the statistic has just one degree of freedom, it
is possible to perform a one-tailed test for which the rejection region is the set of
values of the statistic algebraically greater than the critical value. We choose to
look at one-tailed tests because it is known (see, for instance. Hall (1992)) that,
in many circumstances, the errors in the rejection probabilities of one-tailed boot-
strap tests converge to zero with increasing sample size more slowly than those of
two-tailed tests. In any event, it is easy to compute the ERP of a two-tailed test
with the information for the one-tailed test: the rejection region becomes those
P values that are too close either to zero or to unity. For the experiments of
Figure 2, it is easy to see that, since the u; are symmetrically distributed, the test
statistic is also symmetrically distributed, and so twice the ERP of a one-tailed
test at nominal level « is equal to the ERP of a two-tailed test at nominal level 2a.
It can be seen that, except possibly for a significant difference for very small values
of a, the curves generated by the brute-force procedure and by the second, rapid,
procedure based on 7 and 7* are very close. On the other hand, the first of the
rapid procedures can be seen to give significantly different results, although the
overall shape of the curve is the same as for the other two.

The case treated in Figure 2 is representative of moderate size distortion. We
conducted other experiments with both very small and very large ERPs. In all
cases, the results were similar to those in Figure 2. For the remainder of our study,
therefore, we show results generated by the second rapid method whenever it is
possible to do so, that is, whenever the test statistic and the bootstrap DGP are
asymptotically independent.

Some preliminary results are shown in Figure 3, where P value discrepancy plots
are given for the conventional ¢ statistic, based on the OLS covariance matrix esti-
mate, the four versions of HCCME-based statistics, HC;, ¢ = 0,1, 2, 3, and a wild
bootstrap test based on the HC3 form of the statistic. P values for the asymp-
totic tests are obtained using Student’s ¢ distribution with 7 degrees of freedom.
To avoid redundancy, the plots are drawn only for the range 0 < a < 0.5, since
the statistic is symmetrically distributed. It can be seen that the HC; statistics
have too little mass in the tails, too much in the midrange, and too little in the
centre of the distribution, giving rise to the oscillations clearly visible in the plots.
The bootstrap test has different, considerably better, behaviour. The conventional
t statistic, which does not have even an asymptotic justification, is of course the
worst behaved of all, with far too much mass in the tails.

We now set out to try to answer the following series of questions:

(1) If we use the bootstrap, does it matter which of the four versions of the
HCCME is used? It is easy to see that it does not for £k = 1,2, but, for
k=3,4,5,6, the HC3 version is markedly better than the other three.

(2) What is the best transformation f;(-) to use in the definition of the bootstrap
DGP? Plausible answers are either the identity transformation, or the same
as that used for the HCCME, as is the case for the results in Figure 2. The
latter, at least for HC'3, seems to give slightly better results in most cases,
but not all.
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(3) Is it the case, as we might think from (22), that in order to compute the
bootstrap statistic, it is best to reuse the (Maxy):|i;| unchanged, without
generating residuals Msy* for the computation of the bootstrap HCCME?
(These residuals were in fact generated for the experiments of Figure 2.) It
turns out that, unless £ = 1 in which case it does not matter, this is not a
good idea.

(4) If the null hypothesis is that 3; = 0 for ¢ # 0, 1, rather than that 8; = 0, what
impact has this on the bootstrap test’s performance? As one might expect,
the size distortion is usually worse, but not always, for the test of 41 = 0 than
for the other tests.

(5) All the theory of this paper applies to the case of symmetrically distributed
error terms. How is performance affected if the error terms are in fact highly
skewed? We investigate the case of errors that follow a centred chi-squared
distribution with 2 degrees of freedom. In some cases, performance deteri-
orates very substantially, and size distortion can remain enough to preclude
reliable inference even for n = 100.

(6) What is the penalty for using the wild bootstrap when the errors are ho-
moskedastic and inference based on the conventional ¢ statistic is reliable, at
least with normal errors? Fortunately, the answer is that the penalty is very
small.

(7) How is performance affected if the leverage of observation 2 is reduced? We
expect the underlying statistic to be closer to pivotal when there is less lever-
age, and indeed the ERP of the bootstrap test is often substantially less in
this case, but not uniformly so. The presence or absence of heteroskedastic-
ity seems to be a much more important determinant of the ERP than the
presence or absence of leverage.

(8) How quickly does the ERP of the bootstrap test tend to zero as the sample
size n grows? The usual theory based on Edgeworth expansions does not give
a clear answer to this question, since, as we saw in section 3, Beran’s standard
argument does not apply, since we cannot estimate the o consistently. Our
experiments show that, with extreme heteroskedasticity, inference becomes
reliable only slowly as n grows. Even for n = 100, there remains significant
size distortion.

(9) The wild bootstraps that we have considered based on distribution Fy are
automatically tamed, whether or not the error terms are symmetrically dis-
tributed, because all the transformations f; used by the HC;, + = 0,..., 3, are
odd. That based on Fj is not unless the transformation f; depends only on
the absolute value of its argument. Although signed residuals are usually used
for wild bootstraps based on Fy, it is perfectly possible to replace them by
their absolute values, thereby taming them. Is it then the case that, as theory
suggests, the ERP of the tamed bootstrap tends to zero more quickly as the
sample size grows? The answer is yes, but, once more, there remains sub-
stantial size distortion even for n = 100, and more so than with the F3-based
bootstrap.

Finally, we wish to answer all these questions for the asymmetric wild bootstrap
based on F;. It turns out that, in most cases, the two wild bootstraps, based on
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F and F3, have not too dissimilar behaviour. In all cases we consider, that based
on F; has the smaller ERP, although sometimes not significantly so. In particular,
even when the error terms are highly skewed, use of F; does not seem to yield any
advantage.

6. Experimental Results

The basic results that serve as a benchmark for all others are shown in Figure 4.
P value discrepancy plots are drawn for the wild bootstrap test of 3; = 0, with the
symmetric Fy distribution and the HC3 transformation fi(us) = ug/(1—h), based
on the HCj3 version of the HCCME, where the bootstrap version of the statistic
uses residuals, Moy* rather than the unchanged (Max1):|G:|. The regressors are
those of Table 1, and the dependent variable is generated by the DGP (29), that is,
with heteroskedastic normal error terms. All experiments used 100,000 replications
and generated bootstrap ERPs by the second rapid procedure of section 4. It can
be seen that the ERP of the bootstrap test is very sensitive to specific features of
the regression design. As expected, the ERP for £ = 1 is just experimental noise,
but, for higher values of k£, the ERP is significantly different from zero, but not
with any clear pattern. It is small for £ = 2, and becomes substantially greater
for £ = 3 and especially for ¥ = 4. By what is presumably a coincidence induced
by the specific form of the data, the ERP for k¥ = 5 is much smaller, and that for
k = 6 is barely larger. Although the simulation results are quite clear, it is not
obvious just how to characterise analytically the determinants of the ERP.

Question (1) of the previous section is treated in Figure 5. Panels a and b are
completely analogous to Figure 4, except that HCCMEs of type HCy and HCs
are used instead of HCj3. It is unnecessary to draw plots for H(C for bootstrap
purposes, since the HCjy and HC statistics differ only by a constant multiplicative
factor, and so the bootstrap P values are identical for the two statistics. In order
to facilitate comparison of the three distinct versions of the statistic, panel ¢ shows
the plots for all three for k¥ = 4, which is the worst behaved case. For both k =1
and k = 2, all versions yield identical results. For k£ = 1 this is obvious, since the
raw statistics are identical. For k = 2, the only regressor other than x; is the
constant, and so h; does not depend on ¢t. The raw statistics are different, but
differ only by a constant multiplicative factor. For k > 2, significant differences
are clearly visible, and in all cases HC3 has least distortion.

Some answers to question (2) can be seen in Figure 6. The upper panel (6a) is the
analogue of Figure 4, and is obtained with the same setup as that used for that
figure, except that the bootstrap DGP is just

y: = ’lj,t&"t, Er ~v FQ. (32)

Implicitly, we set f;(us) = ug. For k = 1, there is once more no difference from
Figure 4. For other values of k, the differences are not very great, except for
k = 4. The lower panels, (6b) and (6¢), display these differences for the cases
k = 3 and k = 4 respectively. Whereas for £ = 3 the ERP is slightly smaller
with the bootstrap DGP (32), for ¥ = 4 we see that there is substantially more
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distortion here than in the base case. This would tend to suggest that the base
case setup is better, but it is not clear how general such a conclusion would be.

Answers to question (3) are found in Figure 7. The upper panel, (7a), is again the
analogue of Figure 4, but the bootstrap procedure is changed so that in the com-
putation of the bootstrap statistics, the (Msx1);|G;| are used unchanged, without
a further projection of the bootstrap dependent variable y* by M5 in order to
obtain bootstrap residuals #;. For k = 1 there is of course no difference, since
M is just the identity matrix, but for other values of k, it is clear that using un-
projected residuals leads to substantially different, usually worse, behaviour. The
lower panel, (6b), shows the comparison for £ = 3, a more striking comparison
than for k£ = 4, since k = 4 is badly behaved even in the base case. Since the norm
of the unprojected vector u is greater than that of Msy*, on average we expect
the variance estimate to be greater with the former than with the latter. However,
what is true on average is clearly not true in detail. The bootstrap tests with no
projection of the residuals underreject severely in the tails of the distribution, but
overreject equally severely in the mid-range. There seems no doubt that projecting
the residuals is a necessary step in the implementation of the bootstrap test.

Figure 8 addresses question (4). Panel (8a) is as usual the analogue of Figure 4,
where the test is of the hypothesis that 83 = 0. Results are shown only for & > 2,
because 33 does not exist for £k = 0, 1. It is clear that the distortion is usually less
than for the test of 8; = 0, (note the scale of the vertical axis) but, for £ = 5,
where that test seems to work almost perfectly, panel (8b) shows that the test for
B2 = 0 is significantly distorted. Finally, in panel (8c), a comparison is made for
k = 4 of the test for B, = 0 with HCy, HC3 and HC35. Once again, HCj is less
distorted than the other two.

In Figure 9, attention is once more focussed on the test for 81 = 0. In order
to respond to question (5), the error terms were generated using the chi-squared
distribution with two degrees of freedom, with the mean of 2 subtracted. This
distribution is very highly skewed to the right. Once more, panel (9a) shows the
P value discrepancy plots for the HC3-based bootstrap test, but for the full range
of the nominal level «, because with skewed errors, the symmetry about the origin
is destroyed, as is clear from the figure. Experimentation showed that the rapid
simulation procedure was less reliable than usual with the heavily skewed errors,
and so it seemed desirable for this figure to resort to more costly experiments
in which a full bootstrap test, with 399 bootstraps, is performed on each of the
100,000 replications. It is clear that the bootstrap test always significantly un-
derrejects. If the errors were skewed to the left, or alternatively if a one-tailed
test were performed with rejection to the left rather than to the right, we can see
that the tests would overreject. Panel (9b) compares the normal-error case and
the skewed-error case for k¥ = 4, where although even with normal errors there is
substantial distortion, there is, as expected, still more when the errors are skewed.
In panel (9¢), plots are drawn, still for k¥ = 4, with HCy and HCy. With these,
it seems that overrejection occurs in the region of interest for one-tailed tests in
either direction, although less so in the right-hand tail where H('s underrejects.

The case of normal, homoskedastic, errors, mentioned in question (6), is inves-
tigated in Figure 10. Since all the statistics considered are scale invariant, we
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can without loss of generality set the error variance to 1. In panel (10a), results
are shown for all values of k. Ome can see directly from this panel, and from
panel (10b), in which results are compared for homoskedastic and heteroskedastic
errors with k = 4, that there is little distortion when the errors are homoskedastic.
In panel (10c), the three versions of HCCME are compared, again for £ = 4, and
here we see that for once the best performer is HCY, although even H () is not very
seriously distorted. It was possible to use the rapid method for the simulations of
Figure 10.

In order to address question (7), results are shown in Figure 11 for the case in which
the observation with high leverage is replaced so as to leave an almost balanced
design. In panel (11a), the error terms have the same pattern of heteroskedasticity
as usual, and in panel (11b) the errors are homoskedastic. Errors are normal in
both cases. Panel (11c) compares, for k = 3, the four cases with or without
heteroskedasticity and with or without leverage. Although the absence of a high-
leverage observation reduces the ERP for some values of £, this panel shows clearly
that the main cause of size distortion is strong heteroskedasticity. In panel (11d),
the same comparison is made for HC\, for which the same conclusion can be
drawn, even more strongly.

Figure 12, designed to respond to question (8), is different from the preceding
figures. Here we focus on the worst case observed so far, where the errors are
skewed and heteroskedastic, there is a high leverage point, and we test §; = 0. In
order to avoid needless distortion, we use version HC5 of the HCCME. Panel (12a)
shows P value discrepancy plots for increasing values of n from 10 up to 100. As
n grows, it appears that the distortion lessens, but very slowly. Even for n = 100,
it remains highly significant, and of a comparable order of magnitude as for n = 10.
It should be noted that the value of z3; is increased along with n in such a way
that hy remains roughly constant at 0.93, as in the sample for n = 10. If x4, were
kept constant as the sample size grew, then the sample design would become much
more balanced for larger n. On the other hand, the value of o3 is kept the same
as for n = 10, whatever the sample size: It does not increase in proportion to ;.
In panel (12b), results are shown, just for n = 10 and n = 100, for the case with
normal, but still heteroskedastic error terms. The size distortion is much less, and
falls off more rapidly for larger n.

In Figure 13, some answers are provided for question (9). In panel (13a), results
are shown for k£ = 3, and in panel (13b) for k = 4. P value discrepancies are plotted
for HC'3 and the wild bootstrap based on F}, and the four possible cases in which
signed residuals (wild) or absolute values (tame) are used, and errors are symmetric
or skewed. With untamed bootstraps, it was necessary to use experiments with
full bootstrap tests on each replication. For both symmetric and skewed errors,
the two bootstraps have different behaviour, more so when the errors are skewed,
but it is hard to say that one is better than the other. Panel (13c) shows the same
set of results for £ = 4 and n = 100. While it is clear that the ERP of the tamed
bootstrap is less than that of the wild bootstrap, as expected, perhaps the main
point to emerge clearly from these figures is that, even for n = 100, the distortion
is very significant with the Fj-based bootstrap. For the case of symmetric errors,
the distortion is in fact greater for n = 100 than for n = 10.
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The results in Figure 13, particularly panel (13b), indicate that the F}-based boot-
strap, wild or tamed, never does as well as the Fs-based bootstrap, which is always
tamed by construction. In order to see this in a little more detail, Figure (14) pro-
vides in panel (14a) results like those for the base case in Figure 4, but for the
tamed Fi-based bootstrap. It can be seen that the ERP is very substantial for
k =1 and k = 2, where the F3-based bootstrap gives essentially perfect inference
for k = 1 and very good inference for £ = 2. In panel (14b), a comparison is made
of the two bootstraps for £k = 3 and k = 4, the two cases in which the behaviour
of the Fs-based bootstrap is worst. In these cases also, the Fy-based bootstrap
has substantially less size distortion. Panels (14c) and (14d) repeat the exercise
with skewed errors, with qualitatively similar results. In particular, the Fs-based
bootstrap maintains its better performance, even though distortion remains sub-
stantial. It seems reasonable to conclude that the F,-based bootstrap is never
any worse than other variants in all circumstances in which the wild bootstrap is
appropriate.

7. Conclusion

The wild bootstrap is commonly applied to models with heteroskedastic error
terms and an unknown pattern of heteroskedasticity. Standard results on boot-
strap refinements obtainable when the statistic bootstrapped is asymptotically
pivotal do not apply to the wild bootstrap, since it is impossible to estimate the
unknown pattern of heteroskedasticity consistently. However, another refinement
is shown to be available if the statistic that is bootstrapped is asymptotically in-
dependent of the bootstrap DGP. If the hypothesis under test is that all the model
parameters are zero, we show that, with symmetrically distributed error terms, a
version of the wild bootstrap gives exact inference, up to small errors due to a dis-
crete distribution of the bootstrap statistic. The properties of the same version of
the wild bootstrap are investigated in various circumstances in which inference is
not exact, and it is found that, provided the property of asymptotic independence
is satisfied, this version of the wild bootstrap is never any worse behaved than
any other, even in cases in which the contrary might be expected on the basis of
conventional bootstrap theory. Although our experiments cover a good number of
cases, some caution is still necessary on account of the fact that the extent of the
size distortion of wild bootstrap tests appears to be very sensitive to details of the
regression design and the pattern of heteroskedasticity.

In this paper, we have tried to investigate worst case scenarios for wild bootstrap
tests. This should not lead readers to conclude that the wild bootstrap is an
unreliable method in practice. On the contrary, as Figures 11 and 12b in particular
make clear, it suffers from very little distortion for samples of moderate size unless
there is extreme heteroskedasticity. In most practical contexts, use of the Fs-based
wild bootstrap should provide satisfactory inference.
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Table 1. Regressors

Obs T T3 T4 5 s

1 0.616572 0.511730 0.210851 -0.651571 0.509960

2 10.000000 5.179612 4.749082 6.441719 1.212823

3 -0.600679 0.255896 -0.150372 -0.530344 0.318283

4 -0.613076 0.705476 0.447747 -1.599614 -0.601335

) -1.972106 -0.673980 -1.513501 0.533987 0.654767

6 0.409741 0.922026 1.162060 -1.328799 1.607007

7 -0.676614 0.515275 -0.241203 -1.424305 -0.360405

8 0.400136 0.459530 0.166282 0.040292 -0.018642

9 1.106144 2.509302 0.899661 -0.188744 1.031873

10 0.671560 0.454057 -0.584329 1.451838 0.665312

Table 2. Leverage measures

Obs k=1 k=2 k=3 k=4 k=5 k=6
1 0.003537 0.101022 0.166729 0.171154 0.520204 0.560430
2 0.930524 0.932384 0.938546 0.938546 0.964345 0.975830
3 0.003357 0.123858 0.128490 0.137478 0.164178 0.167921
4 0.003497 0.124245 0.167158 0.287375 0.302328 0.642507
5 0.036190 0.185542 0.244940 0.338273 0.734293 0.741480
6 0.001562 0.102785 0.105276 0.494926 0.506885 0.880235
7 0.004260 0.126277 0.138399 0.143264 0.295007 0.386285
8 0.001490 0.102888 0.154378 0.162269 0.163588 0.218167
9 0.011385 0.100300 0.761333 0.879942 0.880331 0.930175
10 0.004197 0.100698 0.194752 0.446773 0.468841 0.496971

Notes: For k = 1, the only regressor is @1, for £ = 2 there is also the constant, for
k = 3 there are the constant, &1, and x2, and so forth.
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