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Abstract

We derive a local linear estimator of generalized impulse response (GIR) functions
for nonlinear conditional heteroskedastic autoregressive processes and show its asymp-
totic normality. We suggest a plug-in bandwidth based on the derived asymptotically
optimal bandwidth. A local linear estimator for the conditional variance function is
proposed which has simpler bias than the standard estimator. This is achieved by
appropriately eliminating the conditional mean. Alternatively to the direct local lin-
ear estimators of the k-step prediction functions which enter the GIR estimator we
suggest to use multi-stage prediction techniques. In a small simulation experiment the
latter estimator is found to perform best.

KEY WORDS: Con�dence intervals; heteroskedasticity; local polynomial; multistage
predictor; nonlinear autoregression; plug-in bandwidth.

1 INTRODUCTION

Recent advances in statistical theory and computer technology have made it possible to
use nonparametric techniques for nonlinear time series analysis. Consider the nonlinear
conditional heteroskedastic autoregressive process fYtgt�0

Yt = f(Xt�1) + �(Xt�1)Ut; t = m;m+ 1; :::: (1)

where Xt�1 = (Yt�1; :::; Yt�m)
T , t = m;m+1; ::: denotes the vector of lagged observations

up to lag m, and f and � denote the conditional mean and conditional standard devia-
tion, respectively. The series fUtgt�m represents i.i.d. random variables with E(Ut) = 0,
E(U2

t ) = 1, E(U3
t ) = m3, E(U

4
t ) = m4 < +1 and which are independent of Xt�1: Masry

and Tj�stheim (1995) showed asymptotic normality of the Nadaraya-Watson estimator
for estimating the conditional mean function f under the condition that the process is
�-mixing. H�ardle, Tsybakov and Yang (1998) proved asymptotic normality for the local
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linear estimator of f . For selecting the orderm one may use the nonparametric procedures
suggested by Tj�stheim and Auestad (1994) and Tschernig and Yang (2000) which are
based on local constant and local linear estimators of the �nal prediction error, respec-
tively. Alternatively one may use cross-validation, see Yao and Tong (1994). For further
references the reader is referred to the surveys of Tj�stheim (1994) or H�ardle, L�utkepohl
and Chen (1997).

An important goal of nonlinear time series modelling is the understanding of the un-
derlying dynamics. As is well known from linear time series analysis it is not su�cient
for this task to estimate the conditional mean function. This is even more so if the condi-
tional mean function is a nonlinear function of lagged observations. One appropriate tool
that allows to study the dynamics of processes like (1) are generalized impulse response
functions.

In this paper we propose nonparametric estimators for generalized impulse response
(GIR) functions for nonlinear conditional heteroskedastic autoregressive processes (1) and
derive their asymptotic properties. Here, we follow Koop, Pesaran and Potter (1996) and
de�ne the generalized impulse response GIRk for horizon k as the quantity by which a
prespeci�ed shock u in period t changes the k-step ahead prediction based on information
up to period t� 1 only. Formally, one has

GIRk(x; u) = E(Yt+k�1jXt�1 = x; Ut = u)�E(Yt+k�1jXt�1 = x)

= E(Yt+k�1jYt = f(x) + �(x)u; Yt�1 = x1; :::; Yt�m+1 = xm�1) (2)

�E(Yt+k�1jYt�1 = x1; :::; Yt�m = xm):

In general, the GIRk depends on the condition x as well as the size and sign of the shock
u. An alternative de�nition of nonlinear impulse response functions is given by Gallant,
Rossi and Tauchen (1993).

We propose local linear estimators for the prediction functions which are contained in
GIRk and derive the asymptotic properties of the resulting GIRk estimator. This also
delivers an asymptotically optimal bandwidth allowing to compute a plug-in bandwidth.
The estimation of GIRk also requires to estimate the conditional standard deviation �
which can be done e.g. with the local linear volatility estimator suggested by H�ardle and
Tsybakov (1997). In this paper we propose an alternative local linear estimator that
exhibits a simpler asymptotic bias. For estimating the prediction functions, we alterna-
tively suggest to apply multi-stage prediction techniques which were recently analysed by
Chen, Yang and Hafner (1999). An initial evaluation of the performance of both local
linear GIRk estimators is provided by a small Monte Carlo study where we compare the
mean squared errors of nonparametric and parametric GIR10 estimators for a logistic
autoregressive process of order one. Higher order processes are currently analyzed.

The paper is organized as follows. In Section 2 we de�ne local linear estimators for
the generalized impulse response function and investigate its asymptotic properties. The
alternative estimator for the conditional standard deviation is introduced in Section 3.
In Section 4 a GIR estimator based on multi-stage prediction is proposed. Issues of
implementation are discussed in Section 5. The results of the small Monte Carlo study
are summarized in Section 6.

2



2 AN ESTIMATOR FOR THE GIR FUNCTION

To facilitate the presentation, we use the following notation. Denote for any k � 1 the
k-step ahead prediction function by

fk(x) = E(Yt+k�1jXt�1 = x) (3)

and write
Yt+k�1 = fk(Xt�1) + �k(Xt�1)Ut;k (4)

where
�2k(x) = V ar(Yt+k�1jXt�1 = x) (5)

and where the Ut;k's are martingale di�erences since E(Ut;kjXt�1) = E(Ut;kjYt�1; :::) = 0,
E(U2

t;kjXt�1) = E(U2
t;kjYt�1; :::) = 1, t = m;m + 1; :::. Apparently, f1 = f , �1 = �. One

also denotes
�k0 ;k(x) = Cov

n
(Yt+k0�1; Yt+k�1)jXt�1 = x

o
; (6)

�k0k0 ;k(x) = Cov

��n
Yt+k0�1 � fk0 (Xt�1)

o2
; Yt+k�1 � fk(Xt�1)

�
jXt�1 = x

�
: (7)

One can now write the generalized impulse response (GIRk) function de�ned in (2)
more compactly as

GIRk(x; u) = fk�1
�
f(x) + �(x)u;x0

	� fk(x) = fk�1(xu)� fk(x) (8)

where x0 = (x1; :::; xm�1) and xu = ff(x) + �(x)u;x0g.
The estimated GIRk function is then

dGIRk(x; u) = bfk�1 (bxu)� bfk(x) (9)

where all unkown functions are replaced by local linear estimates. The estimator of xu
is bxu =

n bf(x) + b�(x)u;x0o. For de�ning the local linear estimators, K : IR1 �! IR1

denotes a kernel function which is assumed to be a continuous, symmetric and compactly
supported probability density and

Kh(x) = 1=hm
mY
j=1

K(xj=h)

de�nes the product kernel for x 2 IRm and the bandwidth h = �n�1=(m+4). De�ne further
the matrices

e = (1; 01�m)
T ; Zk =

 
1 � � � 1

Xm�1 � x � � � Xn�k � x

!T

Wk = diag fKh(Xi�1 � x)=ngn�k+1i=m ; Yk =
�
Ym+k�1 � � � Yn

�T
:

Then the local linear estimator bfk(x) of the k-step ahead prediction function fk(x) can be
written as bfk(x) = eT

�
ZTkWkZk

��1
ZTkWkYk: (10)
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The local linear estimate b�k(x) of the conditional k-step ahead standard deviation is
de�ned by

b�k(x) = �
eT
�
ZTkWkZk

��1
ZTkWkY

2
k � bf2k (x)�1=2 : (11)

For simplicity, we write bf(x) = bf1(x), b�(x) = b�1(x).
In the following theorem we show the asymptotic normality of the local linear GIRk

estimator (9) based on (10) and (11). The theorem also states the asymptotically optimal
bandwidth. We denote kKk22 =

R
K2(u)du, �2K =

R
K(u)u2du.

Theorem 1 De�ne the asymptotic variance

�2GIR;k(x; u) =
kKk2m2 �2(x)

�(x)

"
�2k�1(xu)�(x)

�(xu)�2(x)
+
�2k(x)

�2(x)
+

�
@fk�1 (xu)

@x1

�2(
1 + um3 +

u2(m4 � 1)

4

)
� @fk�1 (xu)

@x1

�
2�1k(x)

�2(x)
+ u

�11;k(x)

�3(x)

�#

�kKk
2m
2

�(x)
I (x = xu)

�
2�k�1;k(x)� 2

@fk�1 (xu)

@x1
�1;k�1(x) + u

@fk�1 (xu)

@x1

�11;k�1(x)

�(x)

�
(12)

and the asymptotic bias

bGIR;k(x; u) = bf;k�1 (xu)� bf;k(x) +
@fk�1 (xu)

@x1
fbf (x) + b�(x)ug (13)

where

bf;k(x) = �2K Tr
�r2fk(x)

	
=2

b�;k(x) = �2K
�
Trr2

�
f2k (x) + �2k(x)

	 � 2fk(x)Trr2 ffk(x)g
�
= f4�k(x)g : (14)

Tr
�r2fk(x)

	
denotes the Laplacian operator, and one abbreviates bf;1(x); b�;1(x) simply

as bf (x); b�(x). Then under assumptions (A1)-(A3) given in the Appendix, one has

p
nhm

n dGIRk(x; u)�GIRk(x; u)� bGIR;k(x; u)h
2
o
! N

n
0; �2GIR;k(x; u)

o
(15)

and so the optimal bandwidth for estimating GIRk(x; u) is

hopt(x; u) =

(
m�2GIR;k(x; u)

4b2GIR;k(x; u)n

)1=(m+4)

: (16)

In practice, some quantities in the asymptotically optimal bandwidth (16) are unknown. In
Section 5 we discuss estimators for those quantities in order to obtain a plug-in bandwidth.
This plug-in bandwidth is then used in the small Monte Carlo experiment presented in
Section 6.

Koop, Pesaran and Potter (1996) consider various de�nitions of generalized impulse
response functions. For example, one alternative to (2) is to allow the condition to be a
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compact set. Denoting by Cx and Cu compact subsets of Rm and R, respectively, the
generalized impulse response function over these compact sets is de�ned by

GIRk(Cx; Cu) = E fGIRk(Xi�1; Ui)jXi�1 2 Cx; Ui 2 Cug : (17)

For its estimation, we consider its empirical version

dGIRk(Cx; Cu) =
1

n bP (Cx; Cu)

n�k+1X
i=m

dGIRk(Xi�1; Ui)I (Xi�1 2 Cx; Ui 2 Cu) (18)

where bP (Cx; Cu) =
1

n

n�k+1X
i=m

I (Xi�1 2 Cx; Ui 2 Cu) :

The asymptotic properties of the estimator (18) for generalized impulse response functions
over compact sets (Cx; Cu) are summarized in the next theorem.

Theorem 2 Under assumptions (A1)-(A3) given in the AppendixdGIRk(Cx; Cu)�GIRk(Cx; Cu) = bGIR;k(Cx; Cu)h
2 + op(h

2) (19)

where

bGIR;k(Cx; Cu) = E fbGIR;k(Xi�1; Ui)jXi�1 2 Cx; Ui 2 Cug :
Theorem 2 shows that for the generalized impulse response functions over compact

sets there does not exist the usual bias-variance trade-o�. Within the constraint of h =
�n�1=(m+4) it is better to use a smaller h. This, of course, has to be quali�ed for �nite
samples.

While the estimator for GIRk proposed in this section has reasonable asymptotic
properties, it may cause problems in �nite samples. In the next section we discuss the
problem in more detail and present an improved estimator.

3 AN ALTERNATIVE LOCAL LINEAR ESTIMATOROF

THE CONDITIONAL VOLATILITY

The GIRk estimator (9) is based on the standard estimator (11) for the conditional volatil-
ity. This local linear estimator b�2(x), however, may produce negative values for �(x) if
f2 is estimated badly and is then not usable. This problem can also occur for other aux-
iliary functions such as b�k(x); b�1;k(x); b�11;k(x), etc., which will be needed for computing
the plug-in bandwidth based on formula (16). In this section we present an alternative
local linear estimator for the conditional standard deviation that cannot become negative
due to a badly estimated f2. The proposed method can also be used for estimating the
covariance functions �2k(x); �1;k(x); �11;k(x).

The idea for estimating �2k(x) is to base the estimator on the estimated residuals and
use e�2k(x) = eT

�
ZTkWkZk

��1
ZTkWkVk (20)

where Vk =

� n
Ym+k�1 � bfk(Xm�1)

o2 � � �
n
Yn � bfk(Xn�k)

o2 �T
. In the next lemma

it is shown that this approach is indeed useful.
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Lemma 1 Under assumptions (A1)-(A3) in the Appendix, one has

e�2k(x)� �2k(x) =
eb�;k(x)h2 + 1

n�(x)

nX
j=m

Kh(Xj�1 � x)�2k(Xj�1)(U
2
j;k � 1) + op(h

2) (21)

where eb�;k(x) = �2K
2

Trr2
n
�2k(x)

o
(22)

and p
nhm

ne�2k(x)� �2k(x)� eb�;k(x)h2o! N
n
0; �2�;k(x)

o
with

�2�;k(x) =
kKk2m2 �4k(x)

�(x)
(m4;k � 1)

where m4;k = E(U4
j;k).

This lemma basically says that by de-meaning one can estimate �2k(x) as well as if
one knew the true k-step regression function fk. As one would expect, the noise level is
the same for both b�2k(x) and e�2k(x) which can be seen from (21) and (28). However, from

comparing b�;k and eb�;k given by (14) and (22), it can be seen that e�2k(x) has a simpler
bias which does not depend on fk.

In a similar way one can de�ne estimators for the quantities (6) and (7). The following
lemma states their asymptotic properties.

Corollary 1 Under assumptions (A1)-(A3) in the Appendix, one can also estimate �11;k(x)
as e�11;k(x) = eT

�
ZTkWkZk

��1
ZTkWkV11;k

where

V11;k =

� n
Ym � bf(Xm�1)

o2 n
Ym+k�1 � bfk(Xm�1)

o
� � �

n
Yn�k+1 � bf(Xn�k)

o2 n
Yn � bfk(Xn�k)

o �
and likewise �1;k(x). The respective estimators have similar properties as e�2k(x).

The fact that e�k(x) has a simpler bias facilitates the computation of the plug-in band-
width since the asymptotic bias term in the asymptotically optimal bandwidth (16) be-
comes simpler as well. For this reason we use from now on in the GIRk estimator (9) the
new estimator (20) instead of (11) for estimating conditional volatilities. We note that
in some cases e.g. if the bandwidth is not appropriate and x is outside the range of the
observed data, e�k(x) can lead to negative estimates for the conditional variance. Then
one replaces in (20) the local linear by the local constant estimator which always produces
positive estimates.
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4 GIR ESTIMATION USING MULTI-STAGE PREDIC-

TION

The main ingredient of the GIRk estimator (9) are the direct local linear predictors bfk
and bfk�1. While they are simple to implement, they may contain too much noise which
has accumulated over the k prediction periods.

To estimate fk(x) more e�ciently, we therefore propose to use instead the multi-stage
method. It was analyzed in detail by Chen, Yang and Hafner (1999). To describe the

procedure, one starts with Y
(0)
t = Yt, and repeats the following stage for j = 1; : : : ; k � 1.

For an easy presentation, we use here the Nadaraya-Watson form.
Stage j: Estimate

efj(x) = Pn�k
t=m�1Khj (Xt � x)Y

(j�1)
t+jPn�k

t=m�1Khj (Xt � x)
;

and obtain the j-th smoothed version of Yt+j by Y
(j)
t+j = f̂j(Xt).

Then, the conditional mean function fk(x) is estimated by

efk(x) = Pn�k
t=m�1Khk(Xt � x)Y

(k�1)
t+kPn�k

t=m�1Khk(Xt � x)
: (23)

Graphically, the above recursive method can be presented as

Yt+k
(Yt+k;Xt+k�1)

=) Y
(1)
t+k

(Y
(1)
t+k

;Xt+k�2)
=) Y

(2)
t+k

(Y
(2)
t+k

;Xt+k�3)
=) � � � (Y

(k�2)
t+k

;Xt+1)
=) Y

(k�1)
t+k

(Y
(k�1)
t+k

;Xt)
=) efk(x):

The following theorem is shown in Chen, Yang and Hafner (1999).

Theorem 3 Under conditions (A1)-(A3) in the Appendix, if hj = o(hk); nh
m
j ! 1 for

j = 1; : : : ; k� 1, and hk = �n�1=(m+4) for some � > 0, and if the estimators efj(x) are all

obtained local linearly, then

q
nhmk

n efk(x)� fk(x)� bf;k(x)h
2
k

o
�!N

(
0;
kKk2m2 s2k(x)

�(x)

)

where

s2k(x) = V ar
n
f̂k�1(Xt)jXt�1 = x

o
:

The local linear GIRk estimator based on multi-stage prediction is therefore given by

gGIRk(x; u) = efk�1 (exu)� efk(x) (24)

with the multi-stage predictor efk(x) and the alternative estimator for the conditional
standard deviation e�k(x) given by (23) and (20), respectively. In the next section we turn
to issues of implementation.
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5 IMPLEMENTATION

Computing the direct or multi-stage GIR estimators (9) or (24) requires suitable band-
width estimates. Both estimators were implemented in GAUSS and use the Gaussian
kernel. We �rst discuss how to obtain a plug-in bandwidth by estimating the unknown
quantities in the asymptotically bandwidth (16) where (14) is replaced by (22) since (20)
is used. For estimating the densities �(x) and �(xu) in (12) we use a kernel density esti-

mator with the Silverman's (1986) rule-of-thumb bandwidth h� = h

�
m+ 2;

qdV ar(X)

�
where

hS(k; �) = � (4=k)1=(k+2) n�1=(k+2) (25)

and where dV ar(X) denotes the geometric mean of the variances for each regressor. The
bandwidth h� is also used for estimating all other unknown quantities and is of the correct
order except for estimating the second order direct derivatives in (13). For the latter
quantities we use a partial quadratic estimator which is a simpli�ed version of the partial
cubic estimator presented in Yang and Tschernig (1999) and for which they show that

hsd = hS

�
m+ 4; 3

qdV ar(X)

�
has the correct order.

For the multi-stage GIRk estimator (24) there does not exist a scalar optimal band-
width. According to Chen, Yang and Hafner (1999) the optimal bandwidth for the
�rst j � k � 1 predictions efj(x) has a di�erent rate. In their simulations they �nd

hMS;k�1 = bhoptn�4=(m+4)2=5 to work quite well. For the kth-step we use bhopt. If the

multi-stage predictor is used for computing the plug-in bandwidth, bhopt is replaced by h�.

6 A SMALL SIMULATION STUDY

In this section we investigate the performance of the proposed GIRk estimators based on
500 observations of the logistic autoregressive process

Yt = 0:9Yt�1 � 0:7Yt�1
1

1 + exp(�3Yt�1) + Ut; Ut � i:i:d:N(0; 1): (26)

One realization of the process is shown in Figure 1a). In the following we present results
for estimating GIRk(x; u) for k = 10, a unit shock u = 1 and x taking values from -5
to 1 in steps of 1. Figure 1b) displays the true fk(x) and fk�1(xu) functions which were
computed by simulation.

Next we conducted 100 simulations of this process and estimated GIRk(x; u) by (9)
with (10) and (20) as well as by the alternative estimator based on the multi-stage predic-
tor (23) and (20). We also �tted a linear AR(1) model and computed the corresponding
impulse responses. Finally, we estimated the impulse responses on the estimated param-
eters of the correct logistic AR model. Figure 2 displays the various estimates for the
54th simulation. The multi-stage based GIR estimate (short dashes) seems to be closest
to the true GIR function while using the one-stage predictors (long dashes) perform worse
for negative values of x. The parametric estimate of the impulse response (short dots
at the top of the plot) based on the true model is the worst. This can be attributed to
the di�culties in estimating the parameter in the exponential function. The linear im-
pulse response (dots) also misses the GIR by construction. This observations are indeed
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Table 1: Mean squared errors of various estimates of the generalized impulse responses for
k = 10 and u = 1

Estimator n x -5 -4 -3 -2 -1 0 1

linear IR 0.0118 0.0092 0.0085 0.0114 0.0238 0.0475 0.0527
local linear one-stage 0.1657 0.0838 0.0468 0.0257 0.0182 0.0125 0.0099
local linear multi-stage 0.0289 0.0211 0.0114 0.0061 0.0024 0.0042 0.0027
GIR with est. par. of (26) 0.3593 0.3960 0.4493 0.5694 0.5954 0.1860 0.1273

Table 2: Mean integrated squared errors of various estimates of the generalized impulse
responses for k = 10 and u = 1

Estimators

linear IR 0.0272
local linear one-stage 0.0257
local linear multi-stage 0.0059
GIR with est. par. of (26) 0.3767

representative. Table 1 displays the mean squared error of each estimator for each x. If
one is interested in further aggregating these performance measures, one can consider the
mean integrated squared error. It is obtained by the weighted sum of the MSE's where
the weights are given by the density of x. Inspecting the MISE's in Table 2 con�rms the
superiority of the multi-stage local linear estimator for the generalized impulse responses
GIR10(x; 1).

From this little simulation study we conclude that the proposed multi-stage estimator
may be useful in practice although much more Monte Carlo experiments are needed for
assessing the empirical applicability of the proposed methods. This is particularly true
for nonlinear autoregressive processes of higher order. In any case, these methods have
standard asymptotic properties.

APPENDIX

With regard to the process (1) we assume the following:

(A1) The vector process Xt�1 = (Yt�1; :::; Yt�m)
T is strictly stationary and geometrically

�-mixing: �(n) � c0�
�n for some 0 < � < 1, c0 > 0. Here

�(n) = E sup
n���P (AjFk

m)� P (A)
��� : A 2 F1n+k

o
where F t0

t is the �-algebra generated by Xt;Xt+1; :::;Xt0 .
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(A2) The stationary distribution of the process Xt�1 has a density �(x), x 2 IRm, which
is continuous. If the Nadaraya-Watson estimator is used, �(�) has to be continuously
di�erentiable.

(A3) The function f(�) is twice continuously di�erentiable while �(�) is continuous and
positive on the support of �(�).

A discussion of these assumptions can be found e.g. in Tschernig and Yang (2000).
For proving Theorem 1 it is necessary to derive some auxiliary results �rst and de-

compose the GIRk estimator in several terms. By H�ardle, Tsybakov and Yang (1998), we
have

bfk(x) = fk(x) + bf;k(x)h
2 +

1

n�(x)

n�k+1X
i=m

Kh(Xi�1 � x)�k(Xi�1)Ui;k + op(h
2) (27)

b�k(x) = �k(x) + b�;k(x)h
2

+
1

2n�(x)�k(x)

n�k+1X
i=m

Kh(Xi�1 � x)�2k(Xi�1)(U
2
i;k � 1) + op(h

2) (28)

Now the estimated GIR function is

dGIRk(x; u) = bfk�1 (bxu)� bfk(x)
= fk�1 (bxu)� fk(x) + fbf;k�1 (bxu)� bf;k(x)g h2+

1

n� (bxu)
n�k+2X
i=m

Kh(Xi�1 � bxu)�k�1(Xi�1)Ui;k�1

� 1

n�(x)

n�k+1X
i=m

Kh(Xi�1 � x)�k(Xi�1)Ui;k + op(h
2)

= fk�1 (xu)� fk(x) + [bf;k�1 (xu)� bf;k(x)] h
2+

1

n� (xu)

n�k+2X
i=m

Kh(Xi�1 � xu)�k�1(Xi�1)Ui;k�1

� 1

n�(x)

n�k+1X
i=m

Kh(Xi�1 � x)�k(Xi�1)Ui;k+

@fk�1 (xu)

@x1

n bf(x) � f(x) + b�(x)u� �(x)u
o
+ op(h

2)

= GIRk(x; u) + bGIR;k(x; u)h
2 + T1 + T2 + T3 + T4 + op(h

2) (29)

where bGIR;k(x; u) is as de�ned in (13) while

T1 =
1

n� (xu)

n�k+2X
i=m

Kh(Xi�1 � xu)�k�1(Xi�1)Ui;k�1
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T2 = � 1

n�(x)

n�k+1X
i=m

Kh(Xi�1 � x)�k(Xi�1)Ui;k

T3 =
@fk�1 (xu)

@x1

1

n�(x)

nX
i=m

Kh(Xi�1 � x)�(Xi�1)Ui

T4 =
@fk�1 (xu)

@x1

u

2n�(x)�(x)

nX
i=m

Kh(Xi�1 � x)�2(Xi�1)(U
2
i � 1) (30a)

by H�ardle, Tsybakov and Yang (1998). We now consider the expectations of all products
TiTj, i; j = 1; : : : ; 4 which are needed to compute the asymptotic variance. First, one has
the following �ve equations

E(T 2
1 ) = kKk2m2

�2k�1(xu)

nhm�(xu)
+ o

�
n�1h�m

�

E(T 2
2 ) = kKk2m2

�2k(x)

nhm�(x)
+ o

�
n�1h�m

�

E(T 2
3 ) =

�
@fk�1 (xu)

@x1

�2
kKk2m2

�2(x)

nhm�(x)
+ o

�
n�1h�m

�

E(T 2
4 ) =

�
u

2

@fk�1 (xu)

@x1

�2
kKk2m2

�2(x)(m4 � 1)

nhm�(x)
+ o

�
n�1h�m

�

E(T3T4) =
u

2

�
@fk�1 (xu)

@x1

�2
kKk2m2

�2(x)

nhm�(x)
m3 + o

�
n�1h�m

�
(31)

Lemma 2

E(T1T2) = ��k�1;k(x)I (x = xu)

nhm�(x)
kKk2m2 + o

�
n�1h�m

�

E(T1T3) =
@fk�1 (xu)

@x1

�1;k�1(x)I (x = xu)

nhm�(x)
kKk2m2 + o

�
n�1h�m

�
E(T1T4) = �u

2

@fk�1 (xu)

@x1

�11;k�1(x)I (x = xu)

nhm�(x)�(x)
kKk2m2 + o

�
n�1h�m

�
(32)

Proof: We take i = 3 as an illustration. By the de�nitions in (30a)

E(T1T3) =

@fk�1 (xu)

@x1

1

n2�(x)� (xu)

nX
i=m

n�k+2X
j=m

E fKh(Xi�1 � x)Kh(Xj�1 � xu)�(Xi�1)�k�1(Xj�1)UiUj;k�1g :

Take a typical term from the double sum

E fKh(Xi�1 � x)Kh(Xj�1 � xu)�(Xi�1)�k�1(Xj�1)UiUj;k�1g

11



and apply change of the random variable Xi�1 = x+hZ, the term becomes

1

hm
E

�
K(Z)K

�
Xj�1 � xu

h

�
�(x+hZ)�k�1(Xj�1)UiUj;k�1

�
:

If i 6= j, then Xj�1 = (Yj�1; :::; Yj�m)
T contains variables that are not in Xi�1 and

so further changes of variable will make the above term of order O(h�m+1). If i < j,
then both Xi�1 and Ui are predictable from Yj�1; :::; Yj�m; ::: and so by the marthingale
property of Uj;k�1 the above term equals 0. Similarly the term equals 0 if i > j + k � 2.
Hence, the only nonzero terms satisfy 0 � i � j � k � 2, and there are only O(n) such
terms. Furthermore, these nonzero terms are of order O(h�m+1) unless i = j. So one has

E(T1T3) = O(n�1h�m+1)+

@fk�1 (xu)

@x1

1

n2�(x)� (xu)

n�k+2X
i=m

E fKh(Xi�1 � x)Kh(Xi�1 � xu)�(Xi�1)�k�1(Xi�1)UiUi;k�1g :

If x = xu then by de�nition of �1k(x)

E f�(Xi�1)�k�1(Xi�1)UiUi;k�1jXi�1g = �1;k�1(Xi�1)

and so

@fk�1 (xu)

@x1

1

n2�(x)� (xu)

n�k+2X
i=m

E
n
K2
h(Xi�1 � x)�(Xi�1)�k�1(Xi�1)UiUi;k�1

o

=
@fk�1 (x)

@x1

1

n2�2(x)

n�k+2X
i=m

E
n
K2
h(Xi�1 � x)�1;k�1(Xi�1)

o

=
@fk�1 (x)

@x1

kKk2m2 �1;k�1(x)

nhm�2(x)
+ o(n�1h�m):

If x 6= xu, use the same change of variable Xi�1 = x+hZ, one gets

1

h2m
E

�
K

�
Xi�1 � x

h

�
K

�
Xi�1 � xu

h

�
�(Xi�1)�k�1(Xi�1)UiUi;k�1

�
=

1

hm
E

�
K (Z)K

�
x� xu

h
+ Z

�
�(x+hZ)�k�1(x+hZ)UiUi;k�1

�
which is of order o(h�m) as

sup
z2Rm

K (z)K

�
x� xu

h
+ z

�
! 0

The latter follows from the fact that x 6= xu makes the maximum of kzk and x�xuh + z


go to zero uniformly for all z 2Rm, the boundedness of K and that limz!1K(z) =0.
Hence, now one has

E(T1T3) = O(n�1h�m+1) + o(n�1h�m):

12



Lemma 3

E(T2T3) = �@fk�1 (xu)
@x1

�1k(x)

nhm�(x)
kKk2m2 + o

�
n�1h�m

�
(33)

E(T2T4) = �u
2

@fk�1 (xu)

@x1

�11;k(x)

nhm�(x)�(x)
kKk2m2 + o

�
n�1h�m

�
(34)

Proof: We prove (33) as an illustration. By the de�nitions in (30a)

E(T2T3) = �@fk�1 (xu)
@x1

1

n2�2(x)

nX
i=m

n�k+1X
j=m

E fKh(Xi�1 � x)Kh(Xj�1 � x)�(Xi�1)�k(Xj�1)UiUj;kg

and by the same reasoning as in Lemma 2, one has

E(T2T3) = �@fk�1 (xu)
@x1

1

n2�2(x)

n�k+1X
i=m

E
n
K2
h(Xi�1 � x)�(Xi�1)�k(Xi�1)UiUi;k

o
+o
�
n�1h�m

�
Note that by de�nition of �1k(x)

E f�(Xi�1)�k(Xi�1)UiUi;kjXi�1g = �1k(Xi�1)

and so

E(T2T3) = �@fk�1 (xu)
@x1

1

n2�2(x)

n�k+1X
i=m

E
n
K2
h(Xi�1 � x)�1k(Xi�1)

o
+ o

�
n�1h�m

�

= �@fk�1 (xu)
@x1

1

nhm�(x)
kKk2m2 �1k(x) + o

�
n�1h�m

�
which is (33).

Lemma 4

E(T1 + T2 + T3 + T4)
2 = n�1h�m�2GIR;k(x; u) + o

�
n�1h�m

�
where �2GIR;k(x; u) is as de�ned in (12).

Proof: This follows from equations (31), (32), (33) and (34), together with

E(T1 + T2 + T3 + T4)
2 =

4X
i=1

ET 2
i + 2

X
1�i<j�4

E(TiTj):

Proof of Theorem 1.

Note that all the four terms T1; T2; T3; T4 and their linear combinations can be written
as sample mean of martingale di�erences, and so one can apply Corollary 6 of Liptser and
Shirjaev (1980). Then using Lemma 4, the asymptotic normal distribution is established.
Proof of Lemma 1.

Note that by de�nitionn
Yj+k�1 � bfk(Xj�1)

o2
= fYj+k�1 � fk(Xj�1)g2 +

n
fk(Xj�1)� bfk(Xj�1)

o2
13



+2 fYj+k�1 � fk(Xj�1)g
n
fk(Xj�1)� bfk(Xj�1)

o
(35)

and that

sup
x2CX

n
fk(x)� bfk(x)o2 = op(h

2)

and so one can drop the second term when smoothing Vk in the decomposition (35). Since

Yj+k�1 � fk(Xj�1) = �k(Xj�1)Uj;k

so instead of Vk, one smoothes local linearly a vector whose terms are

�2k(Xj�1)U
2
j;k + 2�k(Xj�1)Uj;k

n
fk(Xj�1)� bfk(Xj�1)

o
=

�2k(Xj�1)U
2
j;k+2�k(Xj�1)Uj;k

(
bf;k(Xj�1)h

2 +
1

n�(Xj�1)

nX
i=m

Kh(Xi�1 �Xj�1)�k(Xi�1)Ui;k

)
+op(h

2)

Now obviously

2h2

n�(x)

nX
j=m

Kh(Xj�1 � x)bf;k(Xj�1)�k(Xj�1)Uj;k = op(h
2)

so one only needs to smooth the following term local linearly on Xj�1 = x:

�2k(Xj�1)U
2
j;k +

2�k(Xj�1)Uj;k
n�(Xj�1)

nX
i=m

Kh(Xi�1 �Xj�1)2�k(Xi�1)Ui;k:

By using the geometric mixing conditions as in H�ardle, Tsybakov and Yang (1998),
local linear smoothing of �2k(Xj�1)U

2
j;k gives the two terms on the right hand side of (21)

except the higher order term, so it remains to show that local linear smoothing of the
following term is op(h

2):

2�k(Xj�1)Uj;k
n�(Xj�1)

nX
i=m

Kh(Xi�1 �Xj�1)2�k(Xi�1)Ui;k:

Writing explicitly the local linear smoothing, one needs to show that

2

n2�(x)

X
m�i;j�n

Tij =
2X

=1

S = op(h
2)

where

Tij =

(
Kh(Xj�1 � x)

�(Xj�1)
+
Kh(Xi�1 � x)

�(Xi�1)

)
Kh(Xi�1 �Xj�1)�k(Xi�1)�k(Xj�1)Ui;kUj;k

S1 =
2

n2�(x)

X
m�i�n

Tii =
2

n2�(x)

nX
j=m

1

�(Xj�1)
Kh(Xj�1 � x)Kh(0)�

2
k(Xj�1)U

2
j;k

S2 =
2

n2�(x)

X
m�i<j�n

Tij

14



It is easy to verify that S1 = O(n�1h�m) by Corollary 6 of Liptser and Shirjaev (1980).
It is also clear that E(TijTi0j0) = 0 for all m � i < j � n;m � i0 < j0 � n; j 6= j. Thus

ES2
2 =

4

n4�2(x)

X
m�i<j�n

E(T 2
ij) +

8

n4�2(x)

X
m�i<i0<j�n

E(TijTi0j)

Now let kn = [c lnn] be such that �(kn) � n�4, then

4

n4�2(x)

X
m�i<j�n

E(T 2
ij) =

4

n4�2(x)

0@ X
m�i<j�kn<j�n

+
X

m�j�kn�i<j�n

1AE(T 2
ij)

� 4

n4�2(x)

X
m�i<j�kn<j�n

C
h2m

h4m
+

4

n4�2(x)

X
m�j�kn�i<j�n

C
hm+1

h4m

= O(n�2h�2m + n�3knh
1�3m) = O(n�1h�m) = o(h4): (36)

Meanwhile
P

m�i<i0<j�nE(TijTi0j) is decomposed into also two parts: part 1 consists of
those terms with max (i0 � i; j � i0) > kn while part 2 those terms with max (i0 � i; j � i0) �
kn. Then it is clear that terms in part 1 can be treated as if Ui;k or Ui0;k is independent of
the other variables index around j or j0, with negligible errors, so part 1 is of smaller order
than n4h4. Part 2 has at most O(nk2n) terms, so it is at most O(nk2nh

1�3m) = o(n4h4).
Hence we have proved that

8

n4�2(x)

X
m�i<i0<j�n

E(TijTi0j) = op(h
4): (37)

Combining (36) and (37), we have shown that

S1 + S2 = op(h
2)

and thus also the lemma.

7 Acknowledgements

Both authors received �nancial support from Deutsche Forschungsgemeinschaft, Sonder-
forschungsbereich 373 \Quanti�kation und Simulation �Okonomischer Prozesse", Humboldt-
Universit�at zu Berlin. Lijian Yang's research was also partially supported by NSF grant
DMS 9971186.

References

Chen, R., Yang, L. andHafner, C. (1999) Nonparametric multi-step ahead prediction
in time series analysis, preprint.

Gallant, A.R., Rossi, P.E. and Tauchen, G. (1993) Nonlinear dynamic structure,
Econometrica 61, 871-908.

15



H�ardle, W. and Tsybakov, A. (1997), Local polynomial estiomators of the volatility
function in nonparametric autoregression, Journal of Econometrics 81, 223{242.

H�ardle, W., L�utkepohl, H. and Chen, R. (1997) A review of nonparametric time
series analysis. International Statistical Review 65, 49-72.

H�ardle, W., Tsybakov, A. B. and Yang, L. (1998) Nonparametric vector autore-
gression. Journal of Statistical Planning and Inference 68, 221-245.

Koop, G., Pesaran, M.H. and Potter, S.M. (1996) Impulse response analysis in
nonlinear multivariate models, Journal of Econometrics 74, 119 - 147.

Liptser, R. Sh. and Shirjaev, A. N. (1980) A functional central limit theorem for
martingales. Theory Probab. Appl. 25, 667-688.

Silverman, B. (1986), Density estimation for Statistics and Data Analysis, Chapman
and Hall, London.

Masry, E. and Tj�stheim, D. (1995) Nonparametric estimation and identi�cation of
nonlinear ARCH time series, Econometric Theory 11, 258{289.

Tschernig, R. andYang, L. (2000) Nonparametric lag selection for time series, Journal
of Time Series Analysis, in press.

Tj�stheim, D. (1994) Non-linear time series analysis: a selective review. Scandinavian
Journal of Statistics 21, 97-130.

Tj�stheim, D. and Auestad, B. (1994) Nonparametric identi�cation of nonlinear time
series: selecting signi�cant lags. Journal of the American Statistical Association 89,
1410-1419.

Yao, Q. and Tong, H. (1994) On subset selection in non-parametric stochastic regres-
sion. Statistica Sinica 4, 51-70.

Yang, L. and Tschernig, R. (1999) Multivariate bandwidth selection for local linear
regression. Journal of the Royal Statistical Society, Series B 61, 793 - 815.

16



(a)

(b)

Figure 1: a) Realization of 500 observations of the logistic autoregressive process; b) True
k-step and k�1-step ahead prediction functions for various x for the logistic autoregressive
process.



Figure 2: Various estimates of generalized impulse response functions for the logistic
autoregressive process for 10 periods ahead, u = 1 and various x: through line: true GIR,
long dashes: local linear estimator, short dashes: local linear estimator using multi-stage
prediction, dotted line: estimated impulse responses of linear AR model, short dotted line:
GIR based on estimated correctly speci�ed logistic autoregressive model.


