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ABSTRACT

We consider the problem of forecasting a single time series, y, , ;, using a linear regression
model with k predictor variables, Xt’ when each predictor makes a small but nonzero marginal
contribution to the forecast. It is well known that OLS is inadmissable when k>3. Although
Bayes estimators are admissable, the associated forecasts are unappealing because they can have
large (frequentist) risk for some parameter values. We therefore consider Empirical Bayes
estimators of the regression coefficients and their associated forecasts, when both the prior and
regression error distributions are unknown. To focus attention on large k, we adopt a nesting
where k is proportional to the sample size (T), and focus on the asymptotic properties of the
true Bayes, Empirical Bayes, and OLS forecasts. We consider Bayes estimators that are
functions of the OLS estimates, and propose a nonparametric Empirical Bayes estimator that is
asymptotically optimal, in the sense that it achieves the Bayes risk of the best infeasible Bayes
estimator when the true error distribution is normal. This result suggests that the Empirical
Bayes estimator will have desirable frequentist risk as well. Both nonparametric and parametric
Empirical Bayes estimators are examined in a Monte Carlo experiment, with results that are
encouraging from both a Bayes and frequentist risk perspective. The new estimators are then
applied to the problem of forecasting a few monthly postwar aggregate U.S. economic time

series using the first 146 principal components from a large panel of predictor variables.
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1. Introduction

Modern advances in data availability make it possible to contemplate the real time
forecasting of a single time series using very many predictors. The example of immediate
interest in this paper arises in macroeconomic forecasting. Suppose one is interested in
forecasting the rate of price inflation in the United States using monthly data, using data since
1959. Economic theory and empirical experience suggests that inflation might be predicted by
many different variables, including interest rate spreads, monetary aggregates, output gap
measures, capacity utilization measures, and unemployment rates; Stock and Watson (1999)
examine 189 such potentially useful predictors of inflation, and surely other series could be
added to the list. One approach to handling these data is to suppose a factor structure exists, to
extract estimates of the latent factors, and to use the first few of these for forecasting. But
suppose that a small-dimensional factor structure does not exist and that each variable makes a
small independent contribution towards forecasting inflation. How then can one usefully
exploit the information in, say, 200 predictors to forecast inflation with approximately 400 time
series observations?

This paper considers this problem in the context of the linear regression model,
(1.1) Vieq1 = B'X; + g4, t=1...T

where X is a vector of k predictor time series and e, , | is an unforecastable i.i.d. error, which
is assumed throughout to have a distribution that does not depend on 3, has mean zero and
variance 0%, and that {e;} and {X;} are independent. In addition, throughout it is assumed

that X'X/T = I, the kxk identity matrix; in the empirical application in section 4, the X's are



the first k principal components computed from a set of predictor variables and thus are
orthonormal by construction.

We are interested in out-of-sample forecasting, specifically forecasting y , 5 using Xp . ¢
under quadratic loss. Let )~/T 19 = B’XT 11 be a candidate forecast, where {3 is an estimate of

3 based on (Xt’yt—i- 1),t=1,...,T; then the loss function is,

(1.2) LB.B) = V740 V42)" = lepyn + BB X4 (1

and the associated risk is the expected loss,

(1.3) EL(3,8) = 0% + tr[E(B-B)' (X4 1 X BB

Because the Xs are orthonormal, we assume that E[XTX]’a| {Xt’yt n 1},t=1,...,T] = Ij.. Because

a% does not depend on the estimator, the risk (1.3) is thus equivalent to the risk,

(1.4) R(3,8) = E(B-B)'(B-B).

It follows from Stein (1955) that, for k=3, ordinary least squares (OLS) is inadmissable under
the mean quadratic risk function (1.4), and indeed for large k/T the risk of OLS can be quite
large. James and Stein (1960) constructed an estimator that risk-dominates OLS using shrinkage
(although the original James-Stein estimator is not admissable). Because Bayes estimators are
admissable, one approach to this problem is to use a Bayes estimator in which a prior
distribution over (3 is posited. However this estimator depends on the prior and the
(frequentist) risk (1.4) can be quite poor for values of 3 that are unlikely under the prior. This

difficulty can be overcome by allowing the prior to adapt to the data, that is, by adopting



empirical Bayes methods (Robbins [1955, 1964]). Efron and Morris (1972) showed that the
James-Stein estimator can be derived as an empirical Bayes estimator. This all suggests that
empirical Bayes estimators provide a potentially fruitful approach to minimizing the frequentist
risk (1.4).

We therefore consider forecasting y, 5 using an empirical Bayes estimator of 3. The
elements of 3, Bi, i=1,...,k, are thus modeled as i.i.d. draws from a prior distribution, g(Bi)
(remarks about the non-i.i.d. case are made in section 2). Were the prior and the distribution
of e known, the (admissable) Bayes estimator of 8 would be the posterior mean. When the
error distribution is Gaussian with a known variance, the OLS estimators are sufficient for 8 so
the Bayes estimator is a function only of the OLS estimators. Because of the simplifications
this provides, we consider the Bayes estimator that arises under normal errors. This Bayes
estimator is infeasible because the error variance and prior are unknown; the empirical Bayes
estimator is its feasible counterpart based on estimates of the prior and of ag .

The formal results examine the asymptotic properties of this estimator when the true error
distribution is potentially nonnormal. If k is held fixed as T—=oc, the risk (1.4) of all mean
square consistent estimators converges to zero, and such a nesting does not do justice to the
empirical problem with k=200 and T=400. We therefore adopt a nesting that treats the number
of regressors as proportional to the number of observations (an assumption used, in a different
context, by Bekker [1994]). It is shown that the Bayes risk of the proposed empirical Bayes
estimator converges to the Bayes risk of the infeasible normal Bayes estimator. Thus the
empirical Bayes estimator is asymptotically admissable in this leading case.

Although this paper adopts the terminology of empirical Bayes estimation, our results can
alternatively be thought of as applying directly to the random coefficients model where (3; are
i.i.d., but the coefficient distribution is unknown. This interpretation is elaborated in section

2.



The remainder of the paper is organized as follows. Theoretical results are presented in
section 2. A Monte Carlo study of the empirical Bayes estimators in this model is given in
section 3. Empirical results, in which these methods are used to forecast several U.S.

macroeconomic time series, are given in section 4. Section 5 concludes.
2. Assumptions and Theoretical Results

2.1 Asymptotic nesting

All estimators and results are stated in a transformed version of the parameter space that is
consistent with the asymptotic nesting of k/T = p as T = o. It will be notationally convenient to
ignore integer constraints and to set k=pT. Because k and T are linked, various objects are
doubly indexed arrays, and 3 and its estimates are sequences indexed by k; to simplify notation
however this indexation is usually suppressed. It should be emphasized that all limits in this
paper are taken along this sequence unless explicitly stated otherwise.

Under this nesting, if 8 is O(1), the population R2 tends to one, which is unrepresentative
of the empirical problems of interest. We therefore adopt a nesting in which each predictor is
imagined as making a small but generally nonzero contribution to the forecast, specifically, we

adopt the local parameterization,
2.1) B = bNVT,

where b = (by,...,by) and {bi} are i.i.d. draws from the proper prior distribution g.
Accordingly, let b be the OLS estimator of b,
3

o _ BT
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so that Bi'bi =T Y F{= 1Xt€t+1- Under the maintained assumptions that {et} is serially
uncorrelated and indepedent of {Xt}’ then Eﬁi = b;, and E(B-b)b-b)’ = %Ik. Let

fk(ﬁ |b) denote the conditional pdf of b given b, which under the stated assumptions has the
location form, f} (b|b) = f, (b-b).

Under this nesting, the frequentist risk (1.4) of the estimator B is,
2.3) R(B.8) = pk T LK _ | (Bibp?,

where b =+V/TB. When j8 is a sufficient statistic, or equivalently when the Bayes estimator

is constructed as a function of f&’, then the Bayes, or average, risk of 3 given the prior g is,
2.4) r 0,8 = § [ KIEX_(b:-by%f (b-b)g(b)dbdb
. g\ lp) =P i =197 1lb-b)g :

If k were fixed as T-oo, standard central limit theory for E)‘tk implies that, under suitable
moment conditions, the OLS estimator would converge in distribution to N(O,aglk). Itis
useful to denote the pdf of this limiting distribution by d)k(ﬁ—b) =Hli<= 1¢(ﬁi—b), where ¢(®) is
the normal density with mean zero and variance ag. If the distribution of e is normal, then
fe =%

Some interesting results for the OLS estimator and forecast can now be obtained by
straightforward calculation. The asymptotic frequentist risk of the OLS estimator is R(@,B) -
pag. The asymptotic relative efficiency of the forecast based on b, relative to infeasible
forecast, B’Xt, is [ag-l-R(B,B)]/a%. Thus, the asymptotic relative efficiency of the OLS
forecast is 1+p. Because the frequentist risk of OLS does not depend on b, the Bayes risk of

OLS is rg(B’fT) = pag for all proper priors g.



2.2 Estimators
The estimators are motivated by assuming that the errors are normally distributed, so that
{Bi} are independent, and that a% is known. Then b is sufficient for b. Thus, when g is

known, the corresponding Bayes estimator of b under normal errors is,
2.5) B8 = [ bys(Bi-bpeddvy/ | o(bi-bpgbydby.

In practice g and a% are unknown, so this estimator is infeasible. The empirical Bayes
(EB) estimator is a feasible version of (2.5), with g and ag estimated. Adopt the notation
that 3) is ¢, with 3% replacing 0%, where 3% is the usual estimator of ag , 3% =
TS T (v,4 1BX)* . The EB estimator is,

2.6) B8 = [ b;3(B;-bp2bydvy/ § (bi-bpacydby.

As expressed in (2.6), computation of BEB requires estimation of g. The specific estimator
of g considered here is a deconvolution estimator of g, constructed in the manner of Fan (1991)
and Diggle and Hall (1993). Let m denote the marginal distribution of Bi' Under the

normality assumption,
2.7) m(by) = ¢(b;-b)g(b,)db;.

_ -itx R _ _
Let x,() = § m(x)e” "dx, etc. Then (2.7) implies, x, (1) = x ¢(t)xg(t)’ SO xg(t) = XmD/x <i>(t)‘
Let m be a kernel density estimator of m. This suggests the nonparametric estimator of the
characteristic function of g, )’Zg(t) = Xﬁl(t)/x$(t)' Following Diggle and Hall (1993), we
therefore consider the nonparametric deconvolution estimator of g,
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2.8) 200 = ] wORg0e™dx + [ (1-a)xgxne™dx

where w(t) is a weight function and g* is a fixed density. In particular, for the theoretical
results we follow Diggle and Hall (1991) and assume Xg*(t)=0 and w(t)=1(|t| SpT), where pr> 0

and py—=>o as T>co. Other choices for w(t) and g* are examined in the numerical work.

2.3 Results
In addition to the previous normalizations and assumptions, we make the following
assumptions. The first assumption places restrictions on moments, the second pertains to the

prior, and the third pertains to the estimator of the marginal.
Assumption 1. supitEX?t < o and Ee‘tt < 0,
Assumption 2. The prior pdf g is bounded and has compact support.
Assumption 3. ﬁl(Bi) is such that E[ﬁl(x)—m(x)]2—>0 pointwise for all x.

The next assumption restricts the asymptotic dependence between Bi' Define f t (Bi—bi)
= Hli(= lfOk(Bi—bi), where fOk denotes the marginal distribution of 61—bi, conditional on b,
for a given T and k=pT; thus f t is the product of the marginals and represents the measure
under which Bi are independent but have the same marginals as does 61—b1 under f, . For
assumption 4, we extend the measures on E)‘tk to measures on R > by completing them with
independent normals ¢, denoting this completion by ¢_.. Accordingly let the completed
measures be fk = f b, etc. We adopt the metric d  (X,y) = ¥ °1° _ 12'i | Xy;[/(1+ | x4y;]) on R

(cf. Billingsley [1968]).



Assumption 4. {F.(6-b)/F1 B-b)}§ _{ is a family of functions (on %) which is
equicontinuous under the metric d , (X,y), and is pointwise bounded by a function (on %) M(b-

b) such that | § M(b-b)d(b-b)g(b)dbdb < oo, and likewise for every ft ¢_j measure.

Our first result shows the consistency of 3%.

Proposition 1. Under assumption 1, 3% - a%.

The following theorem shows that the average risk of the EB estimator with an unknown
error distribution asymptotically attains the average risk of the infeasible normal Bayes estimator

under a normal error distribution.
. ~EB ~NB
Theorem 1. Assume that assumptions 1-4 hold. Then rg(b ,fk) - rg(b ,d)k) - 0.

Several remarks are in order. First suppose that the true error distribution is Gaussian, so
f =y Then theorem 1 states that the Bayes risk of the EB estimator asymptotically equals the
Bayes risk of the infeasible true Bayes estimator, BNB . It follows that 6EB is admissible and
is asymptotically optimal in the sense of Robbins (1965). Because the Bayes risk function was
derived from the forecasting problem, this and related statements about the properties of the EB
estimator carry over directly to the forecast based on the EB estimator.

Second, theorem 1 goes further and provides conditions under which this risk is achieved by
the EB estimator, even if the finite sample distribuiton of b is nonnormal. The key
observation here is the weak convergence of fk to J)k on ER°°, which follows from the stated
assumptions (which imply convergence of finite dimensional distributions) and from tightness
under the metric d , (cf. Billinsley [1968]).
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Third, assumption 3 is stated as a high level assumption on the consistency of the
nonparametric estimator of the marginal distribution of Bi' Such an estimator is discussed and
used in the section 3.

Fourth, assumption 4 is somewhat unusual and merits some discussion. Clearly assumption
4 holds with equality if the {Bi} are independent. This will be so for general error
distributions if the X's are Gaussian, or alternatively for general distributions of the
(orthonormal) X's if € has a Gaussian distribution. More generally, assumption 4 holds for
general error distributions if the X’s are m-dependent. This is assumption is sufficient but
does not appear to be necessary, and work is ongoing to relax this assumption.

Fifth, it is possible to provide a result similar to theorem 1 for other EB estimators. A
particularly convenient EB estimator exploits the asymptotic independence and normality of b,
so that BIIB can be computed as a so-called simple empirical Bayes (SEB) estimator (cf.

Maritz and Lwin [1989]). The SEB estimator has the form,

A

2.9) BB = b, + 5206y,

where 7 is an estimate of the score ¢ of the marginal distribution of Bi' A result like
theorem 1 for this estimator can be shown when 7 is mean-square consistent for £ under the
sequence of measures ¢;.. Such an estimator is provided by Bickel et. al. (1993). In the
numerical work, we consider both deconvolution EB estimators and SEB estimators based on

(2.9) and estimated scores.

2.4 Parametric priors
The preceding results treat g nonparametrically. An alternative is to treat g as belonging to

a finitely parameterized family, say, g=g(b;,6), where 0 is a finite-dimensional parameter



vector. If § is a consistent estimator of 8 and if g is continuous in 8, then the nonparametric
estimator of § in the preceding results can be replaced by the parametric estimator, g(’,@).
Inspection of the proof of theorem 1 reveals that theorem 1 also holds when g is accordingly
estimated parametrically, assuming the true prior is in the family of parametric priors. In
principal this approach also extends to priors that admit dependence among {bi}, as long as this
dependence is characterized by an identified, finite dimensional parameter vector.

For some parameterizations of g, 6 can be estimated by method of moments based on the
marginal distribution of b,. The usual advantages and disadvantages of parametric vs.
nonparametric estimation apply in this case, and it ultimately is an empirical question whether
the parametric or nonparametric approach is preferred. Both are explored in the Monte Carlo
simulations in the next section. For additional discussions of parametric empirical Bayes

estimation see Lehmann and Casella (1998) and Maritz and Lwin (1989).

2.5 An interpretation in terms of a random coefficient model

The model has an alternative, frequentist interpretation in terms of a random coefficients
model. Suppose (1.1) holds with Gaussian errors and adopt the renormalization in section 2.1.
In the random coefficients interpretation, b; are i.i.d. g and the Bayes risk is the forecasting
risk (up to the additive constant ag), averaged over the random parameters. If g and ag
are known, the efficient estimator of b under quadratic loss is E(b| B, g,ag), and this estimator
minimizes the average forecasting risk. When g and ag are unknown, this conditional mean is
infeasible but the EB estimator provides a feasible counterpart. Under theorem 1, this feasible
estimator achieves the same average forecast risk under normal errors as the infeasible

conditional mean and moreover sufficient conditions are given for achieving this risk even if

the errors are nonnormal.
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3. Monte Carlo Results
3.1 Estimators

Parametric Gaussian EB estimator. The parametric Gaussian EB estimator posits that b, is
i.i.d. N(,u,,rz) and that the errors are N(O,ag). Method of moments estimators are obtained
from this parameterization of the posterior distribution, or more simply by manipulation of Bi
= b; + {j, where b; is i.i.d N(,u,,rz) and {; has mean zero and variance ag . Given p, 72 , and
0%, the Bayes estimator is given by the usual conjugate prior expressions. These expressions
are evaluated using the method of moments estimators ,fL =l Y li(= IBi and ?2 = (R2—
oIp(1-RA? - 22

72<0, 7% was replaced by abs(72).

, where R2 is the sample R2 from the OLS regression of y on X. When

Deconvolution EB estimator. The deconvolution estimator is computed using (2.8), where
the integrals are evaluated numerically. The kernel density estimator m was computed from
{Bi} using t-distribution kernel with five degrees of freedom, and a bandwidth ¢(T/100)"

2/ 7/ 5% where sf is the sample standard deviation of b and ¢ is a constant (referred to as the
t-kernel bandwidth parameter). This heavy tailed kernel was found to perform better than
truncated kernels because m appears in the denominator of the EB estimate of the posterior

mean. Although Diggle and Hall (1993) chose Xg in (2.8) to be zero, so that the deconvolution
estimate was shrunk towards a uniform distribution, empirical experimentation indicated that it
was better to shrink towards the parametric Gaussian prior, so this is the choice of g* used for

the results here. The weight function w(t) was chosen to be triangular so w(0)=1 and w(pmax) =0.

Simple EB estimator. We also consider the simple EB estimator (2.9). Following Hérdle et.
al. (1992), the score function is estimated using the bisquare kernel with bandwidth rate
proportional to (T/lOO)'z/ 7. Preliminary investigation found advantages to shrinking the

nonparametric score estimator towards the parametric Gaussian score estimator. Specifically,

the modified score estimator was,
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3.1 100 = M xDE®) + UM g([x])

A . . . . A . .
where [ is the bisquare kernel nonparametric score estimator, £ is the score of the marginal

g
distribution of Bi—bi, estimated assuming normal errors and an i.i.d. N(u,rz) prior, with the

estimates discussed above used for 0%, p and 72. The shrinkage weights are Ap( |x|) = exp(-
2

Lok x2), where X represents (Bi—b)/3 E. Results are presented for various shrinkage parameters
k; small values of « represent less shrinkage, and with k=0, t=1.

Both the deconvolution and simple EB nonparametric estimators occassionally produced
extremely large Bayes estimates, and some results were sensitive to these outliers. We therefore
implemented the upper trunctation |B]fB| < max;| Bi| on both the deconvolution and simple
nonparametric EB estimates.

Other benchmark estimators. Results are also reported for some estimators that serve as
benchmarks: the true Bayes estimator, the OLS estimator, and the BIC estimator. The true
Bayes estimator is the exact Bayes estimator based on the prior and ag , which while infeasible
in practice can be computed in this Monte Carlo setting. The BIC estimator is the estimator
that estimates b; either by Bi or by zero, depending on whether this regressor is included in
the regression according to the BIC criterion. Enumeration of all possible models and thus

exhaustive BIC selection is straightforward in this design because of the orthonormality of the

X’s.

3.2 Experimental Design
The data were generated according to (1.1), with & i.i.d. N(O,a%), where Xt are the k
principal components of the {Zt’ t=1,...,T}, where Z, are i.i.d. N(0,1); X, was rescaled so

that X'X/T = Ij.. The parameter a% was chosen to achieve a desired population RZ. The
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population R2 was fixed at 40% for all simulations reported here. The number of regressors
was set at k = pT.

Two sets of calculations were performed. The first examines the finite sample convergence
of the Bayes risk of the various estimators to the Gaussian Bayes risk of the true Bayes
estimator; that is, this calculation examines the relevance of Theorem 1 to the finite sample
behavior of these estimators. For these calculations, the parameters b, = Bi/\/ T were generated

from the mixture of normals prior

(3.2) b, i.i.d. N2,1) w.p. q, N(0,%) w.p. (1-).

Under this prior, a fraction q of the variables are important in the sense that they are likely to
have large coefficients, while 1-q of the coefficients are unimportant, having nonzero but
typically small coefficients. For these calculations, the free parameters of the design are T, q,

and p. For each estimator, the Bayes risk r_ was computed by Monte Carlo, with 1000 Monte

g
Carlo repetitions, where each repetition entailed redrawing (b, X, €). Two sets of results are
reported, for p = 0.4 and p = 0.7, for various values of q.

While the formal results pertain to the Bayes risk, the original motivation for this
investigation was to produce estimators with good frequentist properties. The second set of

calculations therefore evaluates the performance of the various estimators using frequentist risk

(1.4). For repitions b, was fixed according to,
(3.3) b, = 1,i=1,....,qk, and b; = 0, i=qk+1,....k

1

where q is a design parameter between 0 and 1. For these results, p was set at 0.4.
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3.3 Results and Discussion

The Bayes risk results are presented in tables 1 (0=0.4) and table 2 (0=0.7). First consider
the results in table 1 when q=1 (first panel). In this case the prior is a single normal and the
parametric Bayes estimator nests the true prior. For T =200, the Bayes risk of the parametric
EB estimator is quite close to the Bayes risk of the true Bayes estimator. In contrast, the Bayes
risk of OLS is quite large. It is noteworthy that, for these parameters, model selection using the
BIC has a higher Bayes risk than OLS, presumably because BIC is in part selecting variables for
which the classical estimation error makes the estimated coefficient inordinately large. When
q=1, one would expect the nonparametric EB estimators to do less well than the parametric EB
estimator, and this is the case, especially for small T. Still, the nonparametric EB estimators do
remarkably well for T=400 (for which k=160), with several of the nonparametric EB estimators
having Bayes risks within 15% of the risk of the true Bayes estimator.

A similar picture emerges for the second and third panels, for which q<1. Here the
parametric EB estimator uses an approximation that does not nest the true mixture of normals
prior, so the parametric EB estimator cannot achieve the Bayes risk of the true Bayes estimator.
Nonetheless, it comes within 10% of this risk, especially for large T. It is noteworthy that some
of the nonparametric EB estimators have lower Bayes risks than the parametric EB estimator
when q=.25; presumably these nonparametric EB estimators are picking up the deviations from
normality of the true mixture of normals prior.

The results in table 2, for which p=0.7, present a similar picture. The Bayes risks of the
OLS and BIC estimators is typically poor and is worse than the parametric or nonparametric EB
estimators. The parametric and nonparametric EB estimators have Bayes risk approaching that
of the true Bayes estimator.

The frequentist risk results are given in table 3. No prior is specified so the Bayes

estimator is not relevant here. The main conclusion from table 3 is that the EB estimators all
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have lower frequentist risk than OLS or BIC. The parametric EB estimator typically does as
well or better than the nonparametric EB estimator. This is surprising because the parametric
EB estimator models the distribution of b, as a single normal, when in fact it is highly
nonnormal, with point mass on either zero or one. In several cases, however, especially for q
small, the nonparametric EB estimator has lower frequentist risk than the parametric EB

estimator.

4. Empirical Results [Incomplete]

4.1 Data

Forecasts were computed for eight major monthly macroeconomic variables for the United
States. Four of these are the measures of aggregate real economic activity: total industrial
production (ip); real personal income less transfers (gmyxpq); real manufacturing and trade
sales (msmtq); and the number of employees on nonagricultural payrolls (Ipnag). The
remaining four series are aggregate price indexes: the consumer price index (punew); the
personal consumption expenditure implicit price deflator (gmdc); the CPI less food and energy
(puxx); and the producer price index for finished goods (pwfsa). The forecasts were
constructed using a set of 146 predictors that cover eight broad categories of available
macroeconomic and financial time series. The series are listed in appendix B. The complete

data set spans 1959:1-1998:12.

4.2 Construction of the Forecasts

Forecasts were constructed from regressions of the form

.1 Yi+h = B X T eqp

-15 -



where X, is composed of the first k principal of the standardized predictors. Forecasts are
constructed for horizons h = 1, 3, 6, and 12 months. The coefficient vector 8 was estimated by
OLS and by three parametric Empirical Bayes estimators. All are versions of the Gaussian
Empirical Bayes estimator described in Section 3.1. The first estimator is PGEB1 studied in the
monte carlo experiment. The other two estimators robustify the method of moments calculations
for deviations from the classical regression assumptions that underly PGEB1.

The second estimator, PGEB2, computes OLS estimators of 3 over the first and second half
of the sample and forms ;2 = k'1 ¥y (Bi,l';‘“)(ﬁi,fﬁ)’ where Bi, 1 and 61’2 denote the OLS
estimates of b; from the first and second half of the sample. The scale factor ag is then
estimated as 3% =l ¥ (B—ﬁ)z—;z. By using the covariation in the OLS estimates across
the two sample periods to estimate 72, this estimator is robust to the short-run dependence in
the €; | 1, in the multistep forecast errors.

The third estimator, PGEB3, estimates the Gaussian Empirical Bayes combining weights
directly by predictive least squares. That is, it constructs estimates of b as 6EB = )xﬁ-l-(l—)\)ﬁ
where \ is estimated by OLS regressions of y; , ;, onto the 3£Xt and Btl’Xt, where '@t is the
OLS estimate of 8 computed at date t, Bt=k'11’f5’t is the sample mean of the OLS coefficients
estimated at date t, and 1 denotes a k-vector of 1's..

As benchmarks, forecasts are also computed using the DIAR model from Stock and Waton
(1998). These forecasts are computed using a small and fixed number of principal components
(k=2, for the results shown below).

All forecasts are computed recursively, that is in simulated real time, beginning in 1970:1.
Thus, for example, to compute the forecasts for month T, principal components of the

predictors were computed using data from 1960:1 through month T. The first k = min(146,0T)

principal components were used as X,. To capture serial correlation in the variables being
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predicted, residuals from univariate autoregressions were used for y, , ;. Thus, letting z, denote
the variable to be forecast, then Yt+p Was formed as the residual from the regression Z; | 1, onto

1,z Zt—p) with data from t=1960:1 through T-h with the lag length p determined by

2 Zt-l sees
BIC. The regression coefficients in (4.1) were then estimated using the methods described
above with data through from t=1960:1-T-h. These estimated coefficients, together with the

coefficients from the autoregression were used to construct forecasts for zp , . This procedure

was carried out for T=1970:1 through 1998:12-h.

4.3 Results

Results are presented in Tables 4 and 5 for p=0.2 and p=0.4, respectively. The entries in
these tables are the mean square error of the simulated forecast errors relative to the mean
square error from the univariate autoregression. Results are shown for forecast horizons
h=1,3,6,12. Thus, for example, the first row of table 4 shows the results for the 1-month-
ahead predictions of industrial production. The value of 0.98 under the column heading "OLS"
implies that the mean square of the forecast constructed using the OLS estimates of 5 had a
mean square error that was 2% less than the forecasts that set 3=0 (the univariate autoregressive
forecast). Results are also shown for the three Empirical Bayes estimators described above and
for the DIAR estimator.

Several findings stand out in table 4. First, in all cases PGEB1 and PGEB2 improve upon
OLS. Second, PGEB3 performs marginally worse than PGEB1 and PGEB2 and in a few cases is
dominated by OLS. Third, in most cases the Empirical Bayes estimators improve upon the
univariate autoregression; the improvements are more pronounced for the real series than for
inflation. Finally, the best performing models for all series and all horizons are the DIAR
models. Apparently, it is better to forecast using only the first two principal components of the
predictors with no shrinkage, than to use many of the principal components and shrink them
toward a common value.
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Taken as a whole the table suggests that improvement of the Empirical Bayes estimators
relative to the univariate autoregression are modest. This is somewhat surprising given the
performance of the Empirical Bayes estimators in the Monte Carlo experiments reported in
section 3.3. The explanation seems to be that the predictive power of the regression (measured
by the regression R2) is not as great in as in the Monte Carlo design. In the Monte Carlo
experiment, the RZ was 0.40, and for the eight series considered here it is considerably less
than 0.40. For example, suppose for a moment that the DIAR results give a good estimate of
the forecastibility of y given all of the predictors. Thus, h=1 the RZ for the real variables is
approximately 10-15% and the R? for the price indexes is less than 5%. A calculation shows
that if the population RZ is 10% and p=0.2, then the asymptotic relative MSE for OLS is 1.08
and for EB it is 0.96. If the RZ is 5%, then the asymptotic mse for OLS is 1.14 and for EB it
is 0.99. These are roughly what is evident in the table.

Table 5 shows the results with p=0.4, so that more principal components are included. Not
surprisingly, OLS performs worse that when p=0.2. Indeed, each of the Empirical Bayes
forecasts also performs worse than the corresponding model with p=0.2. Again, this is what
would be expected if the DIAR results are reasonably accurate estimates of the potential
predictive power of the regressions, so that the additional factors added in table 5 make
negligible forecasting contributions.

The final question addressed in this section is whether the Empirical Bayes methods can be
used to improve upon the DIAR models. To answer this question the forecasting experiment
was repeated, but now using the DIAR model as baseline regression rather than the univariate
autoregression. Thus, residuals from the DIAR forecasts were used for y, , ; in the Empirical
Bayes regressions. The results for this experiment are shown in table 6 (0=0.2) and table 7
(0=0.4). There is some evidence that the EB estimators can yield modest improvements on the

DIAR model particularly for the real activity variables. For example, at the 6 month forecast
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horizon, PGEBI yields an average 4% improvement over DIAR for the real series. There is no

evidence of improvement for the price variables.
5. Discussion and Conclusion

These initial empirical results suggest that the EB estimators offer only slight improvements
upon estimators that use only the first two estimated factors for forecasting these eight major
macroeconomic time series. The fact that the Empirical Bayes estimator yield considerable
improvement in the Monte Carlo design, and indeed approached the efficiency of the true Bayes
estimator, but deliver only small improvements in the empirical application suggests that the
empirical finding is not the result of using an inefficient forecast, but rather that there simply
is little predictive content in these macroeconomic principal components beyond the first few.

If true, this has striking and, we believe, significant implications for empirical macroeconomics
and large-model forecasting. Additional work remains, however, before we can be confident of
this negative finding. This work includes implementation of the nonparametric EB estimators
and development and implementation of alternative parametric EB estimators.

Additional theoretical work and extensions are ongoing. Work is underway on relaxing
assumption 4. Also, we conjecture that BNB can be shown to be minimax with respect to the
Bayes risk across error distributions fy, in which case 6EB can be further interpreted as being
asymptotically equivalent to this minimax estimator in the sense that it achieves the minimax
Bayes risk for all error densities (subject to some regularity conditions); work along these lines

is ongoing as well.
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Appendix A: Proofs of Theorems

[In preparation. ]

Brief sketch of arguments for ES World Congress reviewers:

Proposition 1. By direct calculation using Chebyschev’s inequality.

Theorem 1.
(a) Show that, under assumption 4, f, /f L - 1 almost surely with respect to ¢g on R,
Kk

Argument proceeds using Billingsley (1968, Theorem 5.5) and the Arzela-Ascoli theorem.

(b) Decompose
rg PO 50 - rg NP0 = [, B5P.1) - 1, B°Pr 50
+ Irg®"B150) - 1, 672,31

68,3 - rg6"P.ap1.

+ [rg(
Refer to the terms in brackets as I, IT and III respectively. Term I converges to zero using the
result (a) (by calculation). Term II converges to zero from Proposition 1, the weak convergence
of f Jl‘ to ¢4, the continuous mapping theorem, and calculations. Term III converges to zero

by proposition 1, an extension of the proof in Diggle and Hall (1993), and tedious calculations.
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Appendix B: Data Description

This appendix lists the time series used to construct the forecasts discussed in section 4. The
format is: series number; series mnemonic; data span used; transformation code; and brief
series description. The transformation codes are: 1 = no transformation; 2 = first difference;
4 = logarithm; 5 = first difference of logarithms; 6 = second difference of logarithms. An
asterisk after the date denotes a series that was included in the unbalanced panel but not the
balanced panel, either because of missing data or because of gross outliers which were treated as
missing data. The series were either taken directly from the DRI-McGraw Hill Basic
Economics database, in which case the original mnemonics are used, or they were produced by
authors’ calculations based on data from that database, in which case the authors calculations
and original DRI/McGraw series mnemonics are summarized in the data description field. The
following abbreviations appear in the data definitions: SA = seasonally adjusted; NSA = not
seasonally adjusted; SAAR = seasonally adjusted at an annual rate; FRB = Federal Reserve

Board; AC = Authors calculations

Real output and income

(el B e Y N I

ip 1959:01-1998:12 5 industrial production: total index (1992=100,sa)

ipp 1959:01-1998:12 5 industrial production: products, total (1992=100,sa)

ipf 1959:01-1998:12 5 industrial production: final products (1992 =100,sa)

ipc 1959:01-1998:12 5 industrial production: consumer goods (1992 =100,sa)

iped 1959:01-1998:12 5 industrial production: durable consumer goods (1992 =100,sa)
ipcn 1959:01-1998:12 5 industrial production: nondurable condsumer goods (1992 =100,sa)
ipe 1959:01-1998:12 5 industrial production: business equipment (1992 =100,sa)

ipi 1959:01-1998:12 5 industrial production: intermediate products (1992 =100,sa)

ipm 1959:01-1998:12 5 industrial production: materials (1992 =100,sa)

ipmnd 1959:01-1998:12 5 industrial production: nondurable goods materials (1992 =100,sa)
ipmfg 1959:01-1998:12 5 industrial production: manufacturing (1992 =100,sa)

ipd 1959:01-1998:12 5 industrial production: durable manufacturing (1992 =100,sa)

ipn 1959:01-1998:12 5 industrial production: nondurable manufacturing (1992 =100,sa)
ipmin 1959:01-1998:12 5 industrial production: mining (1992 =100,sa)

iput 1959:01-1998:12 5 industrial production: utilities (1992-=100,sa)

ipxmca 1959:01-1998:12 1 capacity util rate: manufacturing,total(% of capacity,sa)(frb)

pmi 1959:01-1998:12 1 purchasing managers’ index (sa)

pmp 1959:01-1998:12 1 NAPM production index (percent)

gmyxpq 1959:01-1998:12 5 personal income less transfer payments (chained) (#51) (bil 92$,saar)

Employment and hours
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20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,

Real retail, manufacturing and trade sales

lhel
lhelx
lhem
lhnag
lhur
1hu680
1hus
lhul4
lhuls
1hu26
Ipnag
Ip
Ipgd
Ipce
Ipem
Iped
Ipen
Ipsp
Ipt

Ipfr
Ips
Ipgov
Iphrm
Ipmosa
pmemp

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

45.
46.
47.
48.
49,
50.
51.
52.
53.

msmtq
msmgq
msdq
msng
wiq
wtdq
wing
riq
rtnq

Consumption

54.
55.
56.
57.
58.

gmceq
gmedq
gmeng
gmcesq
gmeang

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Housing starts and sales

59.
60.
61.
62.
63.
64.
65.

Real inventories and inventory-sales ratios

hsfr
hsne
hsmw
hssou
hswst
hsbr
hmob

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

66.
67.
68.
69.
70.

ivmtq
ivmfgq
ivimfdq
ivmfng
ivwrq

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Y Y Y B R Y IV A VSRV IR NV SRy AV I N )

B L N N S N [V T IRV IRV IRV N W h A

[TV IRV AT

index of help-wanted advertising in newspapers (1967 =100;sa)
employment: ratio; help-wanted ads:no. unemployed clf

civilian labor force: employed, total (thous.,sa)

civilian labor force: employed, nonagric.industries (thous.,sa)
unemployment rate: all workers, 16 years & over (%,sa)
unemploy.by duration: average(mean)duration in weeks (sa)
unemploy.by duration: persons unempl.less than 5 wks (thous.,sa)
unemploy.by duration: persons unempl.5 to 14 wks (thous.,sa)
unemploy.by duration: persons unempl.15 wks + (thous.,sa)
unemploy.by duration: persons unempl.15 to 26 wks (thous.,sa)
employees on nonag. payrolls: total (thous.,sa)

employees on nonag payrolls: total, private (thous,sa)

employees on nonag. payrolls: goods-producing (thous.,sa)
employees on nonag. payrolls: contract construction (thous.,sa)
employees on nonag. payrolls: manufacturing (thous.,sa)
employees on nonag. payrolls: durable goods (thous.,sa)
employees on nonag. payrolls: nondurable goods (thous.,sa)
employees on nonag. payrolls: service-producing (thous.,sa)
employees on nonag. payrolls: wholesale & retail trade (thous.,sa)
employees on nonag. payrolls: finance,insur.&real estate (thous.,sa
employees on nonag. payrolls: services (thous.,sa)

employees on nonag. payrolls: government (thous.,sa)

avg. weekly hrs. of production wkrs.: manufacturing (sa)

avg. weekly hrs. of prod. wkrs.: mfg.,overtime hrs. (sa)

NAPM employment index (percent)

manufacturing & trade: total (mil of chained 1992 dollars)(sa)
manufacturing & trade:manufacturing;total(mil of chained 1992 dollars)(sa)
manufacturing & trade:mfg; durable goods (mil of chained 1992 dollars)(sa)
manufact. & trade:mfg;nondurable goods (mil of chained 1992 dollars)(sa)
merchant wholesalers: total (mil of chained 1992 dollars)(sa)

merchant wholesalers:durable goods total (mil of chained 1992 dollars)(sa)
merchant wholesalers:nondurable goods (mil of chained 1992 dollars)(sa)
retail trade: total (mil of chained 1992 dollars)(sa)

retail trade:nondurable goods (mil of 1992 dollars)(sa)

personal consumption expend (chained)-total (bil 92$,saar)
personal consumption expend (chained)-total durables (bil 92%,saar)
personal consumption expend (chained)-nondurables (bil 92$,saar)
personal consumption expend (chained)-services (bil 92$,saar)
personal cons expend (chained)-new cars (bil 92$,saar)

housing starts:nonfarm(1947-58);total farm&nonfarm(1959-)(thous.,sa
housing starts:northeast (thous.u.)s.a.

housing starts:midwest(thous.u.)s.a.

housing starts:south (thous.u.)s.a.

housing starts:west (thous.u.)s.a.

housing authorized: total new priv housing units (thous.,saar)

mobile homes: manufacturers’ shipments (thous.of units,saar)

manufacturing & trade inventories:total (mil of chained 1992)(sa)

inventories, business, mfg (mil of chained 1992 dollars, sa)

inventories, business durables (mil of chained 1992 dollars, sa)

inventories, business, nondurables (mil of chained 1992 dollars, sa)
manufacturing & trade inv:merchant wholesalers (mil of chained 1992 dollars)(s
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71. ivrrq

72. ivsrq
73. ivsrmq
74. ivsrwq
75. ivsrrq
76. pmnv

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Orders and unfilled orders

717. pmno
78. pmdel
79. mocmq
80. mdoq
81. msondq
82. mo

83. mowu
84. mdo

85. mduwu
86. mno

87. mnou
88. mu

89. mdu

90. mnu

91. mpcon
92. mpcong

Stock prices

93. fsncom
94, fspcom
95. fspin
96. fspcap
97. fsput
98. fsdxp
99. fspxe

Exchange rates
100.  exrus

101.  exrger
102,  exrsw

103.  extjan
104,  exrcan

Interest rates

105. fygtS
106.  fygtl0
107. fyaaac
108. fybaac
109. fytha
110.  sfycp
111, sfygm3
112, sfygmé6
113.  sfygtl
114,  sfygts

115.  sfygtl0
116.  sfyaaac
117.  sfybaac
118.  sfyfha

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Money and credit quantity aggregates

119.  fml

1959:01-1998:12

[ R R R I IRV IR I R SRV SV SRV I SV = NN NN

—_ = N

(LT V R

JEFG S U N O ST S

manufacturing & trade inv:retail trade (mil of chained 1992 dollars)(sa)
ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa)

ratio for mfg & trade:mfg;inventory/sales (87$)(s.a.)

ratio for mfg & trade:wholesaler;inventory/sales(87$)(s.a.)

ratio for mfg & trade:retail trade;inventory/sales(87$)(s.a.)

napm inventories index (percent)

napm new orders index (percent)

napm vendor deliveries index (percent)

new orders (net)-consumer goods & materials, 1992 dollars (bci)
new orders, durable goods industries, 1992 dollars (bci)

new orders, nondefense capital goods, in 1992 dollars (bci)

mfg new orders: all manufacturing industries, total (mil$,sa)

mfg new orders: mfg industries with unfilled orders(mil$,sa)

mfg new orders: durable goods industries, total (mil$,sa)

mfg new orders:durable goods indust with unfilled orders(mil$,sa)
mfg new orders: nondurable goods industries, total (mil$,sa)

mfg new orders: nondurable gds ind.with unfilled orders(mil$,sa)
mfg unfilled orders: all manufacturing industries, total (mil$,sa)
mfg unfilled orders: durable goods industries, total (mil$,sa)

mfg unfilled orders: nondurable goods industries, total (mil$,sa)
contracts & orders for plant & equipment (bil$,sa)

contracts & orders for plant & equipment in 1992 dollars (bci)

NYSE common stock price index: composite (12/31/65=50)
S&P’s common stock price index: composite (1941-43=10)
S&P’s common stock price index: industrials (1941-43=10)
S&P’s common stock price index: capital goods (1941-43=10)
S&P’s common stock price index: utilities (1941-43=10)
S&P’s composite common stock: dividend yield (% per annum)
S&P’s composite common stock: price-earnings ratio (% ,nsa)

United States effective exchange rate (merm)(index no.)
foreign exchange rate: Germany (deutsche mark per U.S.$)
foreign exchange rate: Switzerland (swiss franc per U.S.$)
foreign exchange rate: Japan (yen per U.S.$)

foreign exchange rate: Canada (canadian $ per U.S.$)

interest rate: U.S.treasury const maturities,5-yr.(% per ann,nsa)
interest rate: U.S.treasury const maturities, 10-yr.(% per ann,nsa)
bond yield: moody’s aaa corporate (% per annum)

bond yield: moody’s baa corporate (% per annum)

secondary market yields on fha mortgages (% per annum)
spread fycp - fyff

spread fygm3 - fyff

spread fygmé - fyff

spread fygtl - fyff

spread fygt5 - fyff

spread fygtl0O - fyff

spread fyaaac - fyff

spread fybaac - fyff

spread fyfha - fyff

money stock: m1(curr,trav.cks,dem dep,other ck’able dep)(bil$,sa)

-23-



120.
121.
122.
123.
124.
125.

fm2
fm3
fm2dq
fmfba
fmrra
fmrnbe

Price indexes

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.

pmep
pwisa
pwfcsa
psm99q
punew
pu83
pus4
pu8s
puc
pucd
pus
puxf
puxhs
puxm
gmdc
gmded
gmden
gmdcs

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12
1959:01-1998:12

Average hourly earnings

144. lehcc
145.  lehm
Miscellaneous
146.  hhsntn

1959:01-1998:12
1959:01-1998:12

1959:01-1998:12

[N N e NV e N

[ 3= N+ N W= NN« We e N« N M Sc N« We N« N N

[=,}

money stock:m2(m1+o'nite rps,euro$,g/p&b/d mmmfs&sav&sm time dep(bil$,
money stock: m3(m2+1g time dep,term rp’s&inst only mmmfs)(bil$,sa)

money supply-m2 in 1992 dollars (bci)

monetary base, adj for reserve requirement changes(mil$,sa)

depository inst reserves:total,adj for reserve req chgs(mil$,sa)

depository inst reserves:nonborrow +ext cr,adj res req cgs(mil$,sa)

napm commodity prices index (percent)

producer price index: finished goods (82=100,sa)
producer price index:finished consumer goods (82=100,sa)
index of sensitive materials prices (1990=100)(bci-99a)
cpi-u: all items (82-84 =100,sa)

cpi-u: apparel & upkeep (82-84=100,sa)

cpi-u: transportation (82-84 =100,sa)

cpi-u: medical care (82-84=100,sa)

cpi-u: commodities (82-84 =100,sa)

cpi-u: durables (82-84 =100,sa)

cpi-u: services (82-84 =100,sa)

cpi-u: all items less food (82-84=100,sa)

cpi-u: all items less shelter (82-84=100,sa)

cpi-u: all items less midical care (82-84 =100,sa)
pece,impl pr defl:pce (1987 =100)

pece,impl pr defl:pce; durables (1987 =100)

pece,impl pr defl:pce; nondurables (1987 =100)
pece,impl pr defl:pce; services (1987 =100)

avg hr earnings of constr wkrs: construction ($,sa)
avg hr earnings of prod wkrs: manufacturing ($,sa)

1 u. of mich. index of consumer expectations(bcd-83)
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Table 4
Simulated Out-of-Sample Forecasting Results
Mean Square Errors Relative to Univariate Autogression

A. p=0.2

Forecast Method
Seriesg OLS PGEB1 PGEBR2 PGEBR3 DIAR

1 Month Ahead Forecasts

Industrial Production 0.98 0.92 0.93 0.93 0.89
Personal Income 1.03 0.97 0.98 0.98 0.91
Mfg & Trade Sales 1.00 0.94 0.94 0.95 0.88
Nonag. Employment 1.05 0.97 0.93 0.97 0.82
Consumer Price Index 1.08 1.00 0.98 1.00 0.97
Pers. Cons. Deflator 1.13 1.02 1.02 1.03 0.99
CPI exc. food&energy 1.10 1.00 1.01 1.00 0.97
Producer Price Index 1.17 1.02 1.02 1.02 1.00
3 Month Ahead Forecasts

Industrial Production 0.83 0.82 0.81 0.85 0.76
Personal Income 1.03 0.97 0.98 0.98 0.82
Mfg & Trade Sales 0.92 0.920 0.89 0.92 0.75
Nonag. Employment 0.86 0.86 0.82 0.92 0.78
Consumer Price Index 1.04 0.99 1.01 1.00 0.91
Pers. Cons. Deflator 1.09 1.01 1.01 1.02 0.96
CPI exc. food&energy 1.06 0.99 1.01 1.01 0.93
Producer Price Index 1.17 1.03 1.02 1.02 0.99
6 Month Ahead Forecasts

Industrial Production 0.75 0.75 0.72 0.86 0.67
Personal Income 0.94 0.92 0.98 0.97 0.81
Mfg & Trade Sales 0.85 0.84 0.84 0.96 0.68
Nonag. Employment 0.87 0.86 0.82 0.99 0.79
Consumer Price Index 0.94 0.92 0.97 0.98 0.81
Pers. Cons. Deflator 1.04 0.99 1.03 1.01 0.92
CPI exc. food&energy 0.97 0.95 1.00 0.97 0.88
Producer Price Index 1.11 1.03 1.04 1.03 0.93
12 Month Ahead Forecasts

Industrial Production 0.81 0.81 0.81 0.91 0.67
Personal Income 0.94 0.93 1.00 1.06 0.86
Mfg & Trade Sales 0.87 0.86 0.88 0.97 0.59
Nonag. Employment 0.93 0.92 0.89 0.99 0.77
Consumer Price Index 0.93 0.92 0.93 0.98 0.74
Pers. Cons. Deflator 1.00 0.97 0.97 0.99 0.86
CPI exc. food&energy 0.96 0.95 1.04 0.95 0.81
Producer Price Index 1.07 1.02 1.00 1.00 0.84

Note: The table entries show the simulated out-of-sample forecast mean square
error relative the mean square forecast error for a univariate
autoregression. All forecasts were computed using recursive methods
described in the text with a sample period beginning in 1960:1. The
gsimulated out-of-sample forecast period is 1970:1-1998:12.



Table 5
Simulated Out-of-Sample Forecasting Results
Mean Square Errors Relative to Univariate Autogression

B. p=0.4

Forecast Method
Seriesg OLS PGEB1 PGEBR2 PGEBR3 DIAR

1 Month Ahead Forecasts

Industrial Production 1.01 0.94 0.96 0.95 0.89
Personal Income 1.07 0.98 0.99 1.00 0.91
Mfg & Trade Sales 1.03 0.95 0.99 0.95 0.88
Nonag. Employment 1.04 0.96 0.98 0.96 0.82
Consumer Price Index 1.16 1.01 1.01 1.01 0.97
Pers. Cons. Deflator 1.18 1.01 1.01 1.02 0.99
CPI exc. food&energy 1.17 1.01 1.02 1.01 0.97
Producer Price Index 1.18 1.01 1.02 1.01 1.00
3 Month Ahead Forecasts

Industrial Production 0.94 0.92 0.95 0.93 0.76
Personal Income 1.10 1.01 1.02 0.99 0.82
Mfg & Trade Sales 1.04 0.98 0.98 0.98 0.75
Nonag. Employment 0.92 0.90 0.89 0.96 0.78
Consumer Price Index 1.14 1.03 1.05 1.02 0.91
Pers. Cons. Deflator 1.15 1.02 1.05 1.02 0.96
CPI exc. food&energy 1.16 1.04 1.03 1.03 0.93
Producer Price Index 1.21 1.04 1.11 1.01 0.99
6 Month Ahead Forecasts

Industrial Production 0.88 0.88 0.89 0.97 0.67
Personal Income 1.04 1.00 1.03 1.00 0.81
Mfg & Trade Sales 1.00 0.97 0.97 0.96 0.68
Nonag. Employment 0.97 0.95 0.90 0.97 0.79
Consumer Price Index 1.04 1.00 0.99 0.98 0.81
Pers. Cons. Deflator 1.05 1.00 1.03 1.00 0.92
CPI exc. food&energy 1.02 0.98 1.01 0.97 0.88
Producer Price Index 1.14 1.03 1.04 1.02 0.93
12 Month Ahead Forecasts

Industrial Production 0.94 0.93 0.92 0.97 0.67
Personal Income 1.03 1.01 1.07 1.01 0.86
Mfg & Trade Sales 0.99 0.97 0.97 0.98 0.59
Nonag. Employment 1.05 1.03 0.99 1.00 0.77
Consumer Price Index 1.06 1.02 1.00 1.02 0.74
Pers. Cons. Deflator 1.07 1.02 1.03 1.03 0.86
CPI exc. food&energy 1.01 0.99 1.05 0.99 0.81
Producer Price Index 1.14 1.06 1.05 1.01 0.84

Note: The table entries show the simulated out-of-sample forecast mean square
error relative the mean square forecast error for a univariate
autoregression. All forecasts were computed using recursive methods
described in the text with a sample period beginning in 1960:1. The
gsimulated out-of-sample forecast period is 1970:1-1998:12.



Table 6
Simulated Out-of-Sample Forecasting Results
Mean Square Errors Relative to DIAR Model

A. p=0.2

Forecast Method
Seriesg OLS PGEB1 PGEB2 PGEBR3

1 Month Ahead Forecasts

Industrial Production 1.05 0.96 0.96 0.97
Personal Income 1.10 1.00 1.02 1.01
Mfg & Trade Sales 1.05 0.97 0.97 0.97
Nonag. Employment 1.14 1.00 0.97 0.99
Consumer Price Index 1.11 1.01 1.02 1.02
Pers. Cons. Deflator 1.14 1.02 1.02 1.03
CPI exc. food&energy 1.15 1.02 1.02 1.01
Producer Price Index 1.17 1.02 1.01 1.02
3 Month Ahead Forecasts

Industrial Production 0.97 0.93 0.93 0.94
Personal Income 1.14 1.02 1.01 1.01
Mfg & Trade Sales 1.04 0.97 0.99 0.97
Nonag. Employment 1.01 0.96 0.94 0.97
Consumer Price Index 1.12 1.02 1.03 1.02
Pers. Cons. Deflator 1.13 1.02 1.02 1.02
CPI exc. food&energy 1.13 1.03 1.01 1.04
Producer Price Index 1.18 1.01 1.01 1.01
6 Month Ahead Forecasts

Industrial Production 0.91 0.88 0.90 0.89
Personal Income 1.07 1.00 1.00 0.99
Mfg & Trade Sales 1.00 0.95 0.95 0.93
Nonag. Employment 1.03 0.99 0.96 0.99
Consumer Price Index 1.07 1.00 1.03 1.01
Pers. Cons. Deflator 1.12 1.02 1.06 1.02
CPI exc. food&energy 1.08 1.01 1.01 1.01
Producer Price Index 1.16 1.01 1.02 1.01
12 Month Ahead Forecasts

Industrial Production 1.03 0.98 0.95 0.98
Personal Income 1.07 1.03 1.00 1.00
Mfg & Trade Sales 1.08 1.00 0.99 0.99
Nonag. Employment 1.11 1.05 0.98 1.04
Consumer Price Index 1.05 1.00 0.98 1.02
Pers. Cons. Deflator 1.06 1.00 1.00 1.01
CPI exc. food&energy 1.10 1.04 1.04 1.03
Producer Price Index 1.13 1.00 1.00 1.00

Note: The table entries show the simulated out-of-sample forecast mean square
error relative the mean square forecast error for the DIAR model with 2
factors. All forecasts were computed using recursive methods described in
the text with a sample period beginning in 1960:1. The simulated out-of-
sample forecast period is 1970:1-1998:12.



Table 7
Simulated Out-of-Sample Forecasting Results
Mean Square Errors Relative to DIAR Model

B. p=0.4

Forecast Method
Seriesg OLS PGEB1 PGEB2 PGEBR3

1 Month Ahead Forecasts

Industrial Production 1.04 0.95 0.97 0.96
Personal Income 1.11 0.99 1.01 1.00
Mfg & Trade Sales 1.03 0.96 0.97 0.96
Nonag. Employment 1.11 0.98 1.01 0.97
Consumer Price Index 1.19 1.01 1.01 1.01
Pers. Cons. Deflator 1.19 1.01 1.02 1.02
CPI exc. food&energy 1.22 1.02 1.04 1.02
Producer Price Index 1.18 1.01 1.01 1.02
3 Month Ahead Forecasts

Industrial Production 1.01 0.95 0.94 0.96
Personal Income 1.18 1.02 0.99 1.00
Mfg & Trade Sales 1.10 0.99 1.00 0.99
Nonag. Employment 0.98 0.94 0.97 0.96
Consumer Price Index 1.20 1.03 1.05 1.01
Pers. Cons. Deflator 1.19 1.02 1.03 1.01
CPI exc. food&energy 1.22 1.05 1.06 1.01
Producer Price Index 1.23 1.03 1.09 1.01
6 Month Ahead Forecasts

Industrial Production 0.94 0.92 0.95 0.94
Personal Income 1.13 1.03 1.00 1.00
Mfg & Trade Sales 1.09 1.00 0.98 0.97
Nonag. Employment 1.04 0.99 0.98 0.98
Consumer Price Index 1.13 1.02 1.02 1.02
Pers. Cons. Deflator 1.11 1.01 1.02 1.01
CPI exc. food&energy 1.09 1.01 1.03 1.00
Producer Price Index 1.18 1.02 1.05 1.01
12 Month Ahead Forecasts

Industrial Production 1.07 1.01 0.97 0.97
Personal Income 1.14 1.07 1.00 0.98
Mfg & Trade Sales 1.10 1.01 0.98 0.98
Nonag. Employment 1.14 1.08 0.98 0.99
Consumer Price Index 1.10 1.02 1.01 1.03
Pers. Cons. Deflator 1.07 1.01 1.01 1.01
CPI exc. food&energy 1.05 1.00 1.01 0.99
Producer Price Index 1.15 1.03 1.05 1.01

Note: The table entries show the simulated out-of-sample forecast mean square
error relative the mean square forecast error for the DIAR model with 2
factors. All forecasts were computed using recursive methods described in
the text with a sample period beginning in 1960:1. The simulated out-of-
sample forecast period is 1970:1-1998:12.



