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Abstract

This paper proposes a discrete-state stochastic volatility model

with duration-dependent mixing. The latter is directed by a high-

order Markov chain with a sparse transition matrix. As in the stan-

dard �rst-order Markov switching model, this structure can capture

turning points and shifts in volatility due, for example, to policy

changes or news events. However, the duration-dependent Markov

switching model can also exploit the persistence associated with volatil-

ity clustering. To evaluate the contribution of duration dependence,

we compare with a benchmark Markov switching ARCH model. The

empirical distribution generated by our proposed structure is assessed

using interval forecasts and density forecasts. Implications for areas

of the distribution relevant for risk management are also assessed.
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1 Introduction

To manage risk associated with uncertain outcomes, one relies on forecasts of
the distribution of k-period-ahead returns. The popular value-at-risk (VaR)
calculation of the loss that could occur with a speci�ed con�dence level over a
given holding period, focuses on a single quantile of that forecasted distribu-
tion. There are several potential questions that would interest risk managers.
Firstly, are the VaR numbers correct on average, or more generally, is the
maintained unconditional distribution adequate? Secondly, given available
information does one obtain accurate VaR numbers at each point of time,
In other words is the maintained conditional distribution adequate? Finally,
if the answer to either of these questions is no, how might the risk man-
ager's model be improved? Implicit in these questions are diÆcult issues
related to evaluation of the adequacy of alternative models, and the correct
speci�cation of the conditional and unconditional distribution of returns.

A �rst step to forecasting the distribution (or some region thereof) of
future returns, is to investigate stylized facts concerning the statistical prop-
erties of returns for the asset or portfolio in question. Short-run price dynam-
ics in �nancial markets generally exhibit heteroskedasticity and leptokurtosis.
For the case of log price changes in foreign exchange markets, which is the
application in this paper, there is also some evidence of convergence to a
Gaussian distribution under time aggregation.1

The next step might be to postulate a probability model which can repli-
cate such stylized facts. Since short-run returns are not IID, attention to
the conditional density is warranted. One needs to postulate and estimate a
probability model for the law of motion of returns over time. For currencies
at weekly frequencies, strong volatility dependence combined with largely
serially uncorrelated returns suggests that, for modeling purposes, the main
focus should be on the conditional volatility dynamics. Volatility cluster-
ing implies predictability in the conditional variances and covariances. This
empirical fact should contribute to risk management strategies.

In this paper we concentrate on the choice of conditional volatility dy-
namics and ask what features a particular speci�cation can deliver in terms
of the conditional and unconditional distributions. We propose a model that
emphasizes discrete changes in the level of volatility and introduces duration
dependence to accommodate volatility clustering. The features of this model
are compared with two benchmark models that do not include the duration
structure. Of interest is whether a particular speci�cation can simultane-
ously capture important properties in the conditional and the unconditional
distributions.

Alternative models have been proposed to capture and forecast time-
varying volatility for �nancial returns. For example, the generalized ARCH

1There are many papers which report stylized facts for exchange rates, including Boothe
and Glassman (1987), Diebold (1988), Engle and Hamilton (1990), Hsieh (1989), Kaehler
and Marnet (1993).
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class (Engle (1982), Bollerslev (1986)) is based on an ARMA function of
past innovations. These models have become the workhorse for parameter-
izing intertemporal dependence in the conditional variance of speculative re-
turns.2 Markov switching models for mixture distributions in which draws for
component distributions follow a �rst-order Markov chain (Lindgren (1978),
Hamilton (1988)) have also been applied to volatility dynamics.3 Although
such discrete-mixtures models can generate most of the stylized facts of daily
returns series (Ryd�en, Ter�asvirta, and �Asbrink (1998)), there is some evi-
dence (for example, Hamilton (1988), Pagan and Schwert (1990)) that the
�rst-order Markov model with constant transition probabilities is inadequate
with respect to capturing all of the volatility dependence.

This paper provides an alternative to the switching ARCH model in-
troduced by Cai (1994) and Hamilton and Susmel (1994). Our alternative
approach is a discrete-state stochastic volatility model which corporates a
parsimonious high-order Markov chain to allow for duration dependence. As
in the standard �rst-order Markov switching (MS) model, this structure is
useful for capturing shifts and turning points in volatility that are diÆcult to
accommodate with the ARMA structure implicit in GARCH. However, un-
like the standard model, a duration-dependent Markov switching (DDMS)
model (Durland and McCurdy (1994), Maheu and McCurdy (2000), Lam
(1997)) is particularly suited to exploiting the persistence associated with
volatility clustering. This is achieved by several important features of our
speci�cation. Firstly, the duration variable provides a parsimonious parame-
terization of potential high-order dependence. Secondly, unlike the GARCH
case, persistence is permitted to be time varying by allowing the duration
of a state to a�ect the transition probabilities. Thirdly, including duration
as a conditioning variable in the conditional variance speci�cation allows the
model to capture a broad range of volatility levels.

Markov switching (MS) models generate mixtures of distributions. These
models can be motivated from information ows into the market. The appli-
cation in this paper is to log-di�erences in foreign exchange rates. Exchange
rates are good candidates for mixtures models because an exchange rate is a
relative price which will be inuenced by policy changes and news arrivals.
News theories of price changes attribute an important role to the current

innovation. In this case, a stochastic volatility component may be an impor-
tant addition to time-varying but deterministic representations of volatility
as in GARCH. The DDMS model is a discrete-time, discrete-state, stochastic
volatility model. Therefore, our approach provides a straightforward method
of obtaining maximum likelihood estimates for stochastic volatility with the
added features discussed above.

Like standard �rst-order MS models, and other time dependent discrete-

2See, for example, a recent survey by Palm (1996) and references therein.
3For example, see Pagan and Schwert (1990), Kaehler and Marnet (1993), Klaassen

(1998),Kim, Nelson, and Startz (1998), Taylor (1999), and Timmermann (2000).
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mixtures models, we model the stochastic process governing a switch from
one volatility state to another. Incorporating the possibility of a discrete
change in the level of volatility can have a substantial e�ect on the implied
conditional and unconditional distributions. This may contribute to an im-
proved �t, particularly with respect to the tails of the distribution. Further,
unlike standard MS models, allowing the transition probabilities to be du-
ration dependent may improve the model's ability to capture intertemporal
dependence. In addition, our approach models the evolution of volatility
within each state. The DDMS model considered in this study is only a two-
state model, however it acts like a large N state model in that it can capture
a broad range of volatility levels through conditioning on duration in the
conditional variance.

In section 2, we discuss the data and associated descriptive statistics.
Section 3 summarizes the candidate models for volatility dynamics compared
in this paper. Particular emphasis is applied to comparing the stochastic
properties inherent in the forecasts implied by each. This is followed by
model estimates in Section 4. Adequacy of the conditional distributions
implied by those estimates is reported in Section 5. For these assessments,
we apply both interval forecasts (Christo�ersen (1998)) and density forecasts
(Diebold, Gunther, and Tay (1998), Berkowitz (1999)). In section 6 we
use simulation methods to to investigate the properties of the unconditional
distributions implied by the estimates of the alternative volatility models.
Finally, section 7 provides a brief summary of the features of the data that
are matched by our alternative parameterizations.

2 Data and Descriptive Statistics

Let et denote the spot price in units of foreign currency for 1 US dollar.
In this paper, we report results for the Deutsche mark (DEM-USD), and
British pound (GBP-USD). De�ne yt as the scaled log-di�erence of et, or the
continuously compounded percentage return from holding a $1-equivalent of
foreign currency for a week,

yt = 100 log
et
et�1

(2.1)

Information available to the econometrician at time t is 
t = fyt; yt�1; : : : g.
Sample size is T = 1304 covering the time period from 1974/01/02 to
1998/12/23.

Table 1 reports descriptive statistics for yt associated with each of the cur-
rencies. Unconditional mean returns are insigni�cantly di�erent from zero,
there is no signi�cant skewness, and excess kurtosis is signi�cant for both
currencies but larger for the GBP-USD case. Using a modi�ed Ljung-Box
portmanteau statistic, there is no signi�cant serial correlation in returns but
very signi�cant serial dependence associated with squared returns. Figure 1
plots the levels et and log price changes yt for the two currencies.
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3 Alternative Parameterizations of Volatility

In this section, alternative parameterizations of conditional volatility are dis-
cussed. As a reference point, we begin by briey summarizing the popular
ARCH and a Markov switching ARCH model (MS-ARCH). Then duration
dependence is introduced in a discrete-state parameterization of volatility
(the DDMS model) by allowing the conditional transition probabilities, and
also the state-speci�c levels of volatility, to be functions of duration. The
�nal subsection discusses some salient di�erences between the alternative
parameterizations. In particular we emphasize the potential impact of the
duration-dependent components on volatility dynamics and forecasts.

3.1 GARCH

To introduce our discussion of alternative parameterizations of volatility,
consider the popular generalized ARCH model, referred to as GARCH(1,1),
which is de�ned as4

�2t = !t + ��2t�1 + ��2t�1 (3.1)

�t = �tzt; zt � N(0; 1) (3.2)

where �t is the innovation to the process yt parameterized as,

yt = �+ �yt�1 + �t: (3.3)

For the purpose of residual-based diagnostic tests, the standardized residuals
are formed using estimates of �t=�t.

Note that except for the non-negativity constraint on �2t , volatility is
a continuous variable. Also, in this formulation, conditional volatility �2t
is time-varying but deterministic given the information set 
t�1. As the
acronym ARCH implies, this model parameterizes volatility as autoregressive
conditional heteroskedasticity. In other words, it allows volatility clustering.

A re-arrangement of (3.1) implies squared innovations follow an ARMA
model, as in,

(1� �L� �L)�2t = ! + (1� �L)(�2t � �2t )

where L is the lag operator. Therefore, many of the properties of the sta-
tionary ARMA model, such as exponential decay rates, are imposed by this
GARCH model on the squared innovations for returns. Furthermore, ARMA
models are not well suited to capturing discrete jumps (up or down) in volatil-
ity. This potential shortcoming of the plain vanilla GARCH parameterization
in (3.1) is one of the motivations for exploring alternative models that can
capture discrete regime changes in volatility.

4Asymmetries and seasonal e�ects are not expected to be important components of
foreign exchange returns at weekly frequencies.
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3.2 Markov switching ARCH model (MS-ARCH)

One possibility is to combine an ARCH speci�cation with a discrete-state
MS model in which the directing process is a �rst-order Markov chain. Such
models were introduced by Cai (1994) and Hamilton and Susmel (1994).5

Volatility in a MS model is assumed to be stochastic and driven by an un-
observed or hidden variable. Unlike the conventional stochastic volatility
model, the assumption that the unobserved state variable is governed by a
�nite-state Markov chain makes estimation straightforward using maximum
likelihood methods.6

As in Hamilton (1988), Markov switching models assume the existence of
an unobserved discrete-valued variable St that determines the dynamics of
yt. Usually St is directed by a �rst-order Markov chain. Formally, assume
the existence of a discrete-valued variable St that indexes the unobserved
states. Our parameterization of an AR(1), MS-ARCH(p) model follows. In
this case, log-di�erences of exchange rates are assumed to follow

yt = �+ �yt�1 + �t (3.4)

�t = �(St)zt; zt � N(0; 1); St = 1; 2 (3.5)

�2t (St) = !(St) +

pX
i=1

�i�
2

t�i (3.6)

P (St = 1jSt�1 = 1) =
exp(1(1))

1 + exp(1(1))
; (3.7)

P (St = 2jSt�1 = 2) =
exp(1(2))

1 + exp(1(2))
: (3.8)

Note that regime switches are assumed to a�ect the intercept of the condi-
tional variance, that we have postulated two alternative states for the regime-
switching component of volatility, and that the transition probabilities are
parameterized using the logistic function. This hybrid of an ARCH and a
MS component is intended to capture volatility clustering as well as occa-
sional discrete shifts in volatility. The addition of an ARCH structure in this
model presents no signi�cant changes to the basic MS model, and therefore
construction of the likelihood and �lter follow the usual methods as detailed
in Hamilton (1994). In this application the unconditional probabilities were
used to startup the �lter.

5Estimation of a switching GARCH model is intractable since the entire history of state
variables enters the likelihood. Gray (1996) proposes a feasible switching GARCH model
that avoids this problem. Due to the complexity of our extensions discussed below, we use
an MS-ARCH structure in this paper.

6In general the stochastic volatility model requires simulation methods to evaluate the
likelihood. A recent survey is Ghysels, Harvey, and Renault (1996).
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3.3 Regime Switching with Duration Dependence

A �rst-order Markov chain combined with an ARCH structure should be
adequate to capture volatility clustering.7 However, there may be bene�ts
to exploring high-order Markov chains. In the duration-dependent Markov
switching (DDMS) model (Durland and McCurdy (1994), Maheu and Mc-
Curdy (2000), Lam (1997)) the probability of a regime change is a function
of the previous state St�1 as well as the duration of the previous state St�1.

8

Besides the discrete-valued variable St, de�ne duration as a discrete-
valued variable Dt which measures the length of a run of realizations of a
particular state. To make estimation tractable we set the memory of duration
to � .9 This implies that the duration of St is

Dt = min(Dt�1I(St; St�1) + 1; �) (3.9)

where the indicator function I(St; St�1) is 1 for St = St�1 and 0 otherwise.
That is, Dt is unobserved but is determined from the history of St. Therefore,
both will be inferred by the �lter which is summarized below. Realizations
of the random variables St and Dt are referred to as st and dt respectively.

This model allows both state variables, St and Dt, to a�ect the transition
probabilities between volatility states. The probabilities are,

P11(Dt�1) � P (St = 1jSt�1 = 1; Dt�1 = dt�1)

=
exp(1(1) + 2(1)dt�1)

1 + exp(1(1) + 2(1)dt�1)
(3.10)

as the conditional probability of staying in state 1 given that we have been
in state 1 for dt�1 periods; and

P22(Dt�1) � P (St = 2jSt�1 = 2; Dt�1 = dt�1)

=
exp(1(2) + 2(2)dt�1)

1 + exp(1(2) + 2(2)dt�1)
(3.11)

as the conditional probability of staying in state 2 given that we have been
in state 2 for dt�1 periods. Note that (1(1),2(1)) and (1(2),2(2)) are
parameters associated with states 1 and 2 respectively.

The conditional probability of a state change, given the state has achieved
a duration d, is the hazard function. Since there are two states in this

7Hamilton (1988), Pagan and Schwert (1990), and Timmermann (2000) (footnote 11),
suggest that a �rst-order MS model without the ARCH structure may not be adequate to
capture serial dependence in the conditional variance.

8Kim and Nelson (1998) allow for duration dependence in a state space model. Filardo
(1994) and Perez-Quiros and Timmermann (1999) allow transition probabilities to be a
function of exogenous processes.

9While it is possible to estimate � , for example using a grid search, in this paper we
set � = 25, a number large enough to ensure that all the duration e�ects on transition
probabilities have been captured.
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application, this conditional probability of switching from state i to state j;
given that we have been in state i for dt�1 periods, can be written

Pij(Dt�1) � P (St = jjSt�1 = i; Dt�1 = dt�1) = 1� Pii(Dt�1)

=
1

1 + exp(1(i) + 2(i)dt�1)
; i; j = 1; 2; i 6= j: (3.12)

A decreasing hazard function is referred to as negative duration dependence
while an increasing hazard function is positive duration dependence. The
e�ect of duration on the hazard function is uniquely summarized by the
parameters 2(i) i = 1; 2. In particular, for state i, 2(i) < 0 implies
positive duration dependence, 2(i) = 0 implies no duration e�ect and 2(i) >
0 implies negative duration dependence. For example, if state 2 displays
negative duration dependence and the market persists in state 2, then the
probability of staying in state 2 increases over time.

Given the state dynamics in Equations 3.9, 3.10, 3.11 and 3.12, for this
discrete-state parameterization of volatility, log-di�erences of exchange rates
are assumed to follow

yt = �+ �yt�1 + �t (3.13)

�t = �t(St; Dt)zt; zt � N(0; 1); St = 1; 2 (3.14)

�t(St; Dt) = (!(St) + �(St)Dt)
2 (3.15)

With this parameterization, the latent state a�ects the level of volatility di-
rectly, as indicated by !(St), while the duration of the state is also allowed
to a�ect the dynamics of volatility within each state through the function
�(St)Dt. For example, if �(1) is positive and we persist in state one, then
conditional volatility is increasing since Dt is increasing. Squaring the term
in brackets in (3.15) serves two purposes: �rst the standard deviation is re-
stricted to be non-negative, and second it allows duration to have a nonlinear
a�ect in the second moment.

3.4 The Filter

Volatility in this model is unobservable with respect to the information set.
As shown in Hamilton (1994), inference regarding the latent variable St can
be constructed recursively. In a similar fashion, inference regarding both St

and Dt can be computed. De�ne, f(�j�) as the conditional density of the
normal distribution. The �lter provides optimal inference for the unobserved
variables given time t information. For St = 1; 2 and 1 � Dt � � we have

P (St = st; Dt = dtj
t) =
f(ytjSt = st; Dt = dt;
t�1)P (St = st; Dt = dtj
t�1)

P (ytj
t�1)

where

P (St = st; Dt = dtj
t�1) =
X

st�1;dt�1

P (St = st; Dt = dtjSt�1 = st�1; Dt�1 = dt�1)

� P (St�1 = st�1; Dt�1 = dt�1j
t�1)
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and,

P (ytj
t�1) =
X

st;st�1;dt�1

f(ytjSt = st; Dt = dt;
t�1) (3.16)

� P (St = st; Dt = dtjSt�1 = st�1; Dt�1 = dt�1)

� P (St�1 = st�1; Dt�1 = dt�1j
t�2)

In constructing the likelihood function the unconditional probabilities asso-
ciated with S = 1; 2; 1 � D � � were used to startup the �lter. For more
details see the appendix in Maheu and McCurdy (2000).

The �lter plays an important role in forecasts of current as well as fu-
ture levels of volatility. The signi�cance of the �lter and a comparison to
alternative models is presented in the next section.

3.5 Features of the DDMS

Many popular volatility parameterizations, such as GARCH or stochastic
volatility (SV), are continuous-state models. The DDMS has discrete states.
However, conditioning on duration Dt in the conditional variance of the
DDMS parameterization permits a smoother change between volatility levels
than that allowed for by a simple two-state MS model.

In contrast to standard GARCH, SV, or MS models, persistence in volatil-
ity levels is time-varying in the DDMS model.10 For a simple MS model, the
latent state, and therefore the volatility level, follows a linear autoregressive
process with an innovation that is heteroskedastic.11

To illustrate the nonlinear autoregressive process for the DDMS model,
�rst note that knowledge of the state St, and its duration Dt, implies knowl-
edge of the volatility level, and therefore it is suÆcient to consider the AR
process governing St. That is,

St = 3� 2P11(Dt�1)� P22(Dt�1)

+ (P11(Dt�1) + P22(Dt�1)� 1)St�1 + �t (3.17)

Dt = min(Dt�1I(St; St�1) + 1; �) (3.18)

St = 1; 2 1 � Dt � � (3.19)

Both the level and the persistence of volatility are time-varying, unlike the
standard MS model. Equation (3.17) also shows that the DDMS structure
is a discrete-time, discrete-state SV model.

To complete the description of the dynamics of conditional volatility,
consider the properties of the innovations associated with (3.17). Since the

10Note that the GARCH volatility function (3.1) can be re-arranged as �2t = ! + (� +
�)�2

t�1
+ �(�2

t�1
� �2

t�1
) so that � measures the extent to which the period t � 1 shock

a�ects period t volatility while �+ � measures the rate at which this e�ect dies out over
time.

11See Hamilton (1989) and Pagan (1996).
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state variables are discrete, so are the innovations �t which are a martingale
di�erence sequence. That is, conditional on St�1 = 1,

�t =

�
P11(Dt�1)� 1 with probability P11(Dt�1)
P11(Dt�1) with probability 1� P11(Dt�1)

(3.20)

and conditional on St�1 = 2,

�t =

�
�P22(Dt�1) with probability 1� P22(Dt�1)
1� P22(Dt�1) with probability P22(Dt�1):

(3.21)

As in the standard MS model, these innovations are heteroskedastic.
Forecasts of future volatility make use of the �lter and the time-varying

transition probabilities. For example,

Vart(�t+i) =
X

st+i;dt+i

�2t+i(St+i = st+i; Dt+i = dt+i)P (St+i = st+i; Dt+i = dt+ij
t)

(3.22)

where �(St+i; Dt+i) is from Equation (3.15) and P (St+i; Dt+ij
t) is the �lter
based on time t information. If volatility is high (low) today, the forecast of
future volatility will decrease (increase) towards the unconditional volatility
level. However, the dynamics of the forecast will depend critically on the
�lter. To see this note that,

P (St+i = st+i; Dt+i = dt+ij
t) =X
st;:::;st+i�1;dt

P (St+i = st+i; Dt+i = dt+ijSt+i�1 = st+i�1; Dt+i�1 = dt+i�1)

� � � � � P (St+1 = st+1; Dt+1 = dt+1jSt = st; Dt = dt)P (St = st; Dt = dtj
t)

Since � is �nite, and therefore the Markov chain is ergodic, the product term
on the right hand side of this equation, except for the �lter, will converge to
the unconditional probability of St+i and Dt+i, as i!1.

Similarly, the conditional future volatility of yt+i is

Vart(yt+i) =
iX

k=1

�i�kEt�
2

t+k(St+k; Dt+k) (3.23)

In contrast to the standard GARCH and SV models, a unit change in z2t has
an e�ect on volatility forecasts (Equation 3.22) which is a highly nonlinear
function involving the �lter and the conditional density assumption. The
e�ect is,X

st;:::;st+i;dt

�2t+i(St+i = st+i; Dt+i = dt+i)

�P (St+i = st+i; Dt+i = dt+ijSt = st; Dt = dt)
@P (St = st; Dt = dtj
t)

@z2t
:

9



Finally, it is useful to note that the uncertainty inherent in �t in our regime
switching model comes from two sources, zt and �(St; Dt). As a result, the
DDMS decomposes uncertainty in volatility into an unpredictable component
zt, and a predictable, albeit stochastic, component �(St; Dt). The latter
permits within-regime dynamics and will cause regime uncertainty since the
state is unobserved.

Regime uncertainty means investors' future forecasts of volatility can dis-
play the peso problem e�ect. For example, forward-looking investors who
believe that the market is in the low volatility state today will nevertheless
attach a positive probability to the possibility of the higher volatility state
occurring in the future. If a high volatility regime is not realized within the
time-frame of the forecast, ex-post this forward-looking behavior can mean
agents' forecasts will appear to systematically under/over estimate the true
volatility.12 Nevertheless, MS econometric models allow for the extraction of
the true regime-dependent volatility levels implied in agents' forecasts.

4 Model Estimates

Full-sample estimates for our three parameterizations of volatility and each
exchange rate are reported in Table 2. Standard error estimates are in paren-
thesis.

Overall, these results imply that duration-dependent mixing adds signif-
icantly to the in-sample �t of the volatility functions for both currencies.
Although the ARCH switching model and the DDMS are not nested, the
di�erence in the log-likelihood values suggests that the duration-dependent
Markov switching model (DDMS) dominates the �rst-order MS-ARCHmodel.13

This inference is also supported by parameter estimates (2(i); i = 1; 2), as-
sociated with duration dependence of the transition probabilities, which are
statistically di�erent from zero in both states for the GBP case and in one
state for the DEM case. Furthermore, duration e�ects in the state-speci�c
conditional variances are highly signi�cant for both currencies (see estimates
of parameters �(i); i = 1; 2).

The motivation for the duration-dependent speci�cation was to investi-
gate whether or not a discrete-state parameterization of volatility with du-
ration as a conditioning variable in the conditional variance function could
capture volatility clustering without resorting to a time-series ARCH struc-
ture to account for remaining conditional heteroskedasticity. Consider the
parameter estimates for DEM-USD. They imply that when the market is in

12This type of expectation mechanism is well known to play an important role in ex-
plaining asset pricing dynamics. See Evans (1996) for a recent review.

13We also estimated a MS-ARCH model with duration-dependent transition probabil-
ities which nests the �rst-order MS-ARCH model reported in Table 2. Likelihood-ratio
(LR) tests strongly reject the �rst-order MS-ARCH structure; p-values are :984e� 4 and
:463e�7 for the DEM and GBP cases respectively. Results are available from the authors
on request.
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state 1, this state becomes more persistent over time (i.e. 2(1) > 0) and
the conditional volatility decreases as we persist in this state (�(1) < 0).
On the other hand, in state 2 conditional volatility increases with duration
in that state (�(2) > 0). Figures 2 and 3 plot the hazard function and the
state-speci�c volatility levels for the DEM-USD. Similar duration e�ects are
revealed for the GBP-USD case, except that conditional volatility decreases
with duration in both states. However, the initial volatility level is higher
for state 1 and the persistence associated with that state is stronger.

Unconditional probabilities for St from the DDMS model can be com-
puted as P (S) =

P
d P (S;D = d), where P (S;D), S = 1; 2; 1 � D � � are

the joint unconditional probabilities associated with St and Dt. P (S) for the
DEM-USD are .39 (St = 1) and .61 (St = 2), and those for for the GBP-USD
are .80 (St = 1) and .20 (St = 2).

Ljung-Box test statistics for autocorrelation (10 and 20 lags) in the squared
standardized residuals appear at the bottom of the table. According to
this diagnostic, all of the models appear to capture serial correlation in the
squared standardized residuals. This suggests that using duration as an in-
strument in the conditional variance and transition matrix is a substitute for
ARCH.

Figure 4 plots the estimates of volatility for the DDMS speci�cation. To
calculate the conditional standard deviations implied by the DDMS model,
we use Equation (3.22) along with the parameter estimates reported in Ta-
ble 2. Note that the DDMS model is able to capture abrupt discrete changes
in volatility.

5 Adequacy of the conditional distributions

To properly manage short-term risk, the conditional distribution of returns
must be correctly speci�ed. The maintained statistical model will inuence a
risk assessment, such as VaR, primarily through the time-varying dynamics
of conditional volatility.14 As discussed in Section 1, a risk manager will
not only be concerned with whether or not VaR assessments are correct on
average, but also with the adequacy of such predictions at each point in time.

This section evaluates the models' conditional distributions. We begin by
assessing out-of-sample interval forecasts associated with a particular cover-
age level. We then use a density forecast test which has more statistical
power for tail areas of the distribution since the test exploits the level of the
realization as well as the indicator of whether or not it falls in the desired
interval. This increased statistical power is particularly useful for relatively
short data samples for which realizations in the tail may be few in number.
Finally we report results for the density test using the entire distribution and
the full sample of available data.

14Other conditional moments such as skewness and kurtosis may also be important for
measuring risk.
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5.1 Interval Forecasts

Traditionally, the most common approach to assessing a time-series volatility
model has been to compare the out-of-sample forecast to some proxy of latent
volatility. Volatility is sometimes measured by squared forecast errors or
squared returns. For a correctly speci�ed model this measure of volatility is
consistent but noisy. The result is that conventional tests have low power to
reject constant volatility models in favour of time-varying ones. As Andersen
and Bollerslev (1998) show, the noise associated with using squared returns
to measure latent volatility can be substantial.

An alternative approach is to consider out-of-sample interval forecasts.
This is attractive because no latent measure of volatility is needed. In addi-
tion, interval forecasts depend not only on the volatility dynamics but also on
the conditional mean speci�cation and the conditional density. Thus, anal-
yses of a model's interval forecasts provide information about the suitability
of the maintained conditional distribution of returns.

We follow the testing methodology of Christo�ersen (1998) and test for
correct conditional coverage associated with out-of-sample interval forecasts.
Tests associated with conditional coverage involve a joint test of coverage
plus independence. That is, correct unconditional coverage only assesses the
total number of realizations in the desired interval. It does not preclude
the possibility of temporal dependence in the realization of hits in or out
of the desired interval. Clustering of a particular realization would indicate
neglected dependence in the conditional volatility model, or more generally,
in the maintained conditional distribution. The joint test is derived in a
maximum likelihood framework using the appropriate Likelihood Ratio (LR)
as a test statistic.

First, de�ne

(Ltjt�1(p); Utjt�1(p)) (5.1)

as the 1-step-ahead interval with desired coverage probability p. This 1-step-
ahead interval forecast, for a particular model and information set 
t�1, is
computed as

Ltjt�1(p) = Et�1yt � ��1(
1� p

2
)
p
Vart�1(yt) (5.2)

Utjt�1(p) = Et�1yt + ��1(
1� p

2
)
p
Vart�1(yt) (5.3)

where ��1(1�p
2
) is the inverse cumulative distribution function of the nor-

mal distribution evaluated at 1�p
2
. That is, we focus on symmetric interval

forecasts.15

15Using the normal distribution for critical values would be consistent with the model-
ing assumption for a GARCH model but should be considered an approximation for the
forecasted density associated with a MS model. More computationally oriented interval
forecast methods, including the bootstrap, are detailed in Chat�eld (1993).
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Amodel with correct coverage, given information at t�1, has the property
that the realized yt falls in the desired interval with probability p. That is,

P (Ltjt�1(p) < yt < Utjt�1(p)j
t�1) = p: (5.4)

The parameters of the models discussed in Section 3 are estimated with
the information set 
N�1, N � 1 < T , and thereafter assumed �xed, while
the data from N to T is used to evaluate the out-of-sample forecasts. We set
N � 1 = 1000 leaving 304 observations for out-of-sample interval tests.16

Given a sample path fytg
T
t=N of the time series of returns yt, and a corre-

sponding sequence of 1-step ahead interval forecasts, (Ltjt�1(p); Utjt�1(p))
T

t=N
,

compute the binary indicator variable,

It =

�
1 if yt 2 (Ltjt�1(p); Utjt�1(p))
0 otherwise

(5.5)

for t = N; : : : ; T . This indicator variable records, for each t, whether or not
the forecast interval (5.1) contained the realized value yt.

Now consider a test for correct conditional coverage, which is de�ned as,

E [ItjIt�1; It�2; :::] = p (5.6)

for all t. Christo�ersen (1998) shows that correct conditional coverage im-
plies that fItg � IID Bernoulli(p) under the null hypothesis. This test can
be decomposed into two individual tests. The �rst is a test for correct un-
conditional coverage E[It] = p, versus the alternative E[It] 6= p, while the
second test is for independence of the binary sequence fIN ; : : : ; ITg.

The likelihood under the null hypothesis of correct conditional coverage
is

L(p; IN ; : : : ; IT ) = (1� p)n0pn1 (5.7)

in which n0 and n1 are the number of zeros and ones respectively, from the
data fIN ; : : : ; ITg. Following Christo�ersen (1998), we consider a �rst-order
Markov chain alternative for which the likelihood is

L(�; IN ; : : : ; IT ) = �n00
00 (1� �00)

n01�n11
11 (1� �11)

n10 ; (5.8)

where nij denotes the number of observations where the value i is followed
by j from the data fIN ; : : : ; ITg, and the �ij are the Markov transition prob-
abilities associated with the transition matrix �.

The joint test (coverage and independence) can be assessed using the LR
statistic,

LRcc = �2log
h
L(p; IN ; : : : ; IT )=L(�̂; IN ; : : : ; IT )

i
(5.9)

16The out-of-sample tests reported in this section were computed prior to the full-sample
estimation results in Table 2.
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which will be distributed �2(2) under the null hypothesis. Note that the
restrictions implied by that null hypothesis of correct conditional coverage
are �11 = p and �00 = (1� p).

Table 3 reports, for each model and currency, p-values associated with
the joint test for correct conditional coverage (labelled IF) for a desired sym-
metric coverage level of 0.8. That is, we are evaluating an interval forecast
which covers the middle 80% of the distribution. Recall that this test associ-
ated with conditional coverage is a joint test of correct unconditional coverage
and independence. Although this test rejects a linear AR(1) model with con-
stant variance (p-values are :02 and :00 for the DEM-USD and GBP-USD,
respectively), it is unable to reject either of the time-varying volatility param-
eterizations for the DEM case. On the other hand, all models are rejected for
the GBP-USD application. Our results indicate that the rejection of correct
conditional coverage for this currency is due to failure to capture average
(unconditional) coverage rather than due to violation of independence.

For a well-speci�ed model we would expect the interval forecast tests to
pass for a wide range of desired coverage levels. In other words, we want
forecasts of the model to be accurate for di�erent regions of the distribu-
tion. Although conceptually we could compute the p-values associated with
a wide range of desired coverage levels, statistical power will depend on how
many realizations fall outside and inside the chosen interval. As the interval
approaches the whole distribution, the outside region will disappear so that
the test cannot be implemented. On the other hand, choosing a desired cov-
erage corresponding to, for example, the lower tail of the distribution, may
result in a relatively small number of realizations inside the interval. In ei-
ther case, the test will lack statistical power to discriminate between the null
and the alternative and consequently between the models. For these cases,
an alternative strategy to evaluating the conditional density is required.

5.2 Density Forecasts

A closely related family of tests on a model's distributional assumptions is
detailed in Diebold, Gunther, and Tay (1998) and Berkowitz (1999). The
tests are based on the integral transformation of Rosenblatt (1952). Suppose
that f(ytj
t�1) is the conditional distribution of yt based on the information
set 
t�1. Then Rosenblatt (1952) shows that

ut =

Z yt

�1

f(vj
t�1)dv; t = N; : : : ; T; (5.10)

is iid and uniformly distributed on (0; 1). Therefore, a researcher can con-
struct feutgTt=N based on a candidate model ~f(�), and perform tests to see
whether or not eut � UID(0; 1).

Diebold, Gunther, and Tay (1998) suggest graphical methods in order
to assess how ~f(�) fails in approximating the true unknown density, while
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Berkowitz (1999) suggests applying the inverse normal transformation to
feutgTt=N in order to test whether or not the transformed series fztg

T
t=N is

independent standard normal. An attractive feature of the latter approach
is that we can use any of the exact tests based on normality. In particu-
lar, following Berkowitz (1999), we consider likelihood ratio tests for several
applications. By construction, these tests involve a continuous variable and
not a discrete indicator variable as in the interval forecast tests (Section 5.1).
For this reason, and also due to the use of exact Likelihood Ratio statistics,
we expect these tests to have good power properties in �nite samples.17

First, de�ne zt = ��1(eut), where ��1(�) is the inverse of the standard
normal distribution function. Then under the null hypothesis of the cor-
rect density, zt � NID(0; 1). The �rst LR test is based on the following
regression,

zt = �+ �(zt�1 � �) + wt (5.11)

The null hypothesis is � = � = 0; V ar(wt) = 1 whereas the alternative
is � 6= 0; � 6= 0; V ar(wt) 6= 1.18 This test may identify problems in the
unconditional distribution and also time dependences not captured by the
conditional dynamics.

The �rst panel of Table 3 reports p-values for this LR test (labelled DT-
full) associated with density forecasts using the same out-of-sample period
t = N; : : : ; T used for the interval forecasts reported in Section 5.1. The
relevant integrals were computed numerically utilizing quadrature. Broadly
speaking, this test produces conclusions similar to the interval forecast tests
with respect to the alternative currencies. However, the p-values are lower
so that there are marginal rejections for the DEM-USD as well. The DDMS
model is not as strongly rejected as the MS-ARCH, however both models
appear to be missing important features in the data. Note however that we
did not update parameter estimates after each one-step ahead forecast. Doing
so might result in a more favourable result for the postulated distributions.

Finally, we also compute a LR test that focuses on lower-tail behaviour (as
in VaR) which can be constructed based on a truncated normal distribution.
The loglikelihood for the truncated normal zt < � is

l =
X
zt<�

[�:5 log(2��2)� :5
(zt � �� �(zt�1 � �))2

�2
� �(

�� �� �(zt�1 � �)

�
)]:

Again the null hypothesis is � = � = 0; V ar(wt) = 1 and the alternative is
� 6= 0; � 6= 0; V ar(wt) 6= 1.

17Traditional tests on feutg
T

t=N
for IID behaviour generally will not have good power.

However, Berkowitz (1999) shows that applying the inverse normal transformation to eut
and using classical tests results in good power properties in �nite samples.

18It should be noted that these tests do not take into account sampling variability in
estimating the parameters of ~f(�).
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Since the number of realizations in the tail will be small, we computed
this density test using the entire sample (t = 1; : : : ; T ).19 The in-sample
results for the lower tail, (� = �1:645), are reported in Table 3 in row DT-
tail. Again, these results favour the DDMS parameterization. As a further
comparison the AR(1)-GARCH(1,1) model had a p-value of .006 (DEM-
USD) and .004 (GBP-USD) for the DT-tail test. These results for the left
tail of the distribution concord well with our measures of the unconditional
distribution discussed in the next section which show that the duration-
dependent parameterization captures excess kurtosis more adequately.

Our results suggest that volatility is forecastable at a weekly frequency
and that a constant volatility model for exchange rates can be a poor choice.
Moreover, unlike the tests conducted in West and Cho (1995), these inter-
val and density forecast tests show the value of richer models in tracking
conditional volatility. We have found that the DDMS parameterization out-
performs the GARCH and MS-ARCH model, but is still strongly rejected by
the UK weekly data.

6 Features of the Unconditional Distributions

Earlier sections showed that the addition of high-order dependence through
duration dependence in the DDMS model allows for rich conditional den-
sity dynamics for foreign currency rates. This section shows that the DDMS
parameterization also provides a more exible structure when matching un-
conditional moments.

Monte Carlo methods are used to compute some summary measures of
the unconditional distributions implied by the alternative volatility param-
eterizations. To estimate the simulated moments, we draw a sample of size
1000000 from the conditional distribution implied by the maintained model,
and calculate a battery of summary statistics.20 These simulated moments
can then be compared to the corresponding moments (and standard errors)
estimated from the actual data. Tables 4 and 5 report these numbers for the
DEM-USD and GBP-USD cases, respectively.

The simulated statistics for the MS models match those observed in the
data more closely than those from the plain vanilla GARCH model and, in
some cases, those for the DDMS model match better than the MS-ARCH
model. Consider, for example, the results for the DEM-USD case. The
standard deviation from the DDMS and MS-ARCH models is much closer
to that found in the data than is the GARCH estimate. In addition, the
GARCH model produces too much kurtosis21, the MS-ARCH produces too

19Although these distribution tests were motivated as out-of-sample tests there is no
reason they cannot be used as an in-sample diagnostic test.

20The �rst 20000 draws were dropped to eliminate dependence on startup conditions.
21Note that for this case the GARCH parameter estimates are close to the boundary for

the existence of the fourth moment. Further simulations show that, in this case, there is
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little kurtosis, while the estimate for the DDMS parameterization is within
one standard error of that for the data. For the GBP-USD case, the stan-
dard deviation of yt is matched by all models but, in this case, both the
GARCH and MS-ARCH models produce too little kurtosis while the DDMS
parameterization is within two standard errors of the kurtosis estimate for
the data.

The DDMS model also �ts better than a simple �rst-order MS model.
For example, the unconditional standard deviation and kurtosis measures22

associated with a �rst-order MS model are 1.46 and 3.54 for the DEM-USD.
As shown in Table 4, the kurtosis associated with the data is 4.822 (standard
error .639) and that implied by the DDMS model is 4.340. In the GBP-USD
case, the �rst-order MS model yields an unconditional kurtosis measure of
4.43 while the data has 6.579 (standard error .843) and DDMS has 5.163.
These results, as well as other simulation results for the simpler MS models,
point to the duration dependence structure in the DDMS model providing a
closer �t to the unconditional distribution of the weekly changes in foreign
exchange rates.

Many of the summary measures for jytj and log jytj, which we can interpret
as alternative proxies for volatility, are also captured better by the DDMS
parameterization. For example, for the DDMS parameterization applied to
the DEM-USD, all of the �rst four moments of volatility as measured by jytj
are within one standard error of the data estimate whereas none of them are
for either the MS-ARCH or GARCH models. For volatility clustering (mea-
sured by the autocorrelation in jytj), there is not much to choose between the
alternative parameterizations. However, the MS-ARCH model does slightly
better for the DEM-USD case whereas DDMS and GARCH are marginally
better for the GBP-USD currency.

To complement the results reported in Tables 4 and 5, Figures 5 and 6
present kernel density plots of the data and of the simulated unconditional
distributions for yt and log jytj implied by the DDMS and GARCH models.
1000000 draws were taken from the respective models. These data were used
to estimate the density assuming a Gaussian kernel and a constant bandwidth
that is optimal for the normal distribution with the variance calculated from
the data. The plots were robust to a wide range of bandwidth parameters.

The �gures support the conclusion that the DDMS parameterization pro-
vides a good description of the unconditional distributions. For instance, Fig-
ure 5 shows that DDMS captures the density of y for the DEM-USD quite
well around the origin, while GARCH does not. This is consistent with the
GARCH model putting too much mass in the tail and resulting in a higher
kurtosis than in the data (Table 4). Similarly, for the GBP-USD (Figure 6),
the distribution of log jytj is closer to the data for the DDMS parameteriza-

an upward bias on the kurtosis estimate even for large sample sizes.
22These were computed using parameter estimates (available on request) for a �rst-order

MS model and formulae in Timmermann (2000).
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tion, although neither model captures this log absolute value transformation
very well. This evidence is consistent with that presented in earlier sections
of the paper, that is, although the DDMS model is preferred, none of the
parameterizations fully capture the structure in the GBP-USD case.

7 Concluding Comments

The last section showed that the DDMS can account for many of the prop-
erties of the unconditional distribution of yt and functions of yt usually as-
sociated with measures of volatility. Unlike GARCH parameterizations, the
DDMS structure allows time-varying persistence, includes a stochastic com-
ponent for volatility, and incorporates anticipated discrete changes in the
level of volatility. The duration-dependent Markov switching (DDMS) model
is an example of a mixture of distributions model. As reviewed in Section 1,
MS models are well known to have the ability to produce various shaped dis-
tributions including skewness and leptokurtosis. Our plots of unconditional
distributions for DDMS con�rm those results.

According to our results, including the out-of-sample interval and density
forecast tests reported in Section 5, the DDMS parameterization is also a
good statistical characterization of the conditional distribution of foreign
exchange returns. This is in contrast to earlier studies (for example, Pagan
and Schwert (1990)) that have shown that simpler MS models cannot capture
all of the volatility dependence.

There are several important di�erences between the DDMS and those
simpler �rst-order MS models of heteroskedasticity. Firstly, incorporating
the discrete-valued random variable summarizing state-dependent duration
allows a parsimonious parameterization of potential high-order dependence.
We have shown that the duration-dependent MS model (DDMS) is better
suited to capturing volatility dependence as compared to the MS-ARCH
model which appends an ARCH structure to a �rst-order MS model. This
is evident from our in-sample and out-of-sample analyses. Also, DDMS may
be able to capture long memory. Secondly, although the DDMS is only a
two-state model, it can capture a broad range of volatility levels through
conditioning on duration in the conditional variance. Finally, by including
duration in the transition matrix, persistence in a volatility state is permit-
ted to be time varying. These features render the DDMS parameterization
particularly suitable for capturing stochastic volatility dependence.

The empirical distribution generated by our proposed structure is a supe-
rior match for the samples of data used in this paper. These enhancements
may be particularly relevant for forecasts necessary for risk management.
However, it is still diÆcult to fully capture the distributions of log-di�erences
of the GBP-USD exchange rate (see Gallant, Hsieh, and Tauchen (1991)).
More work remains to be done.
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Table 1: Summary Statistics for Weekly Exchange Rates
Germany U.K.

mean
-.036
(.040)

.024
(.039)

stdev
1.462
(.040)

1.423
(.046)

skewness
-.104
(.179)

.267
(.245)

excess kurtosis
1.822
(.639)

3.579
(.843)

modi�ed Q(1)
1.157
[.282]

1.472
[.225]

modi�ed Q(2)
4.378
[.112]

1.476
[.478]

modi�ed Q(10)
11.320
[.333]

11.565
[.315]

Q2(10)
83.349
[.000]

156.416
[.000]

The data are percentage returns from weekly exchange rates with the US dollar from
1974/01/02-1998/12/23. Standard errors robust to heteroskedasticity are in parenthe-
sis, p-values in square brackets. Q(j) is the Ljung-Box statistic for serial correlation
in the demeaned series and Q2(j) is the same in the squared series with j lags. The
modi�ed Q(j) allows for conditional heteroskedasticity and follows West and Cho
(1995).
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Model Summary

GARCH(1,1)

yt = �+ �yt�1 + �t; �2t = ! + ��2t�1 + ��2t�1; �t = �tzt; zt � N(0; 1):

MS-ARCH(p)

yt = �+ �yt�1 + �t

�t = �(St)zt; zt � N(0; 1); St = 1; 2:

�2t (St) = !(St) +

pX
i=1

�i�
2

t�i

P (St = 1jSt�1 = 1) =
exp(1(1))

1 + exp(1(1))
;

P (St = 2jSt�1 = 2) =
exp(1(2))

1 + exp(1(2))
:

DDMS

yt = �+ �yt�1 + �t;

�t = �(St)zt; zt � N(0; 1); St = 1; 2:

�(St) = (!(St) + �(St)Dt)
2

P (St = 1jSt�1 = 1; Dt�1 = dt�1) =
exp(1(1) + 2(1)dt�1)

1 + exp(1(1) + 2(1)dt�1)
;

P (St = 2jSt�1 = 2; Dt�1 = dt�1) =
exp(1(2) + 2(2)dt�1)

1 + exp(1(2) + 2(2)dt�1)
:
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Table 2: Model Estimates
Parameter Germany UK

MS-ARCH DDMS MS-ARCH DDMS

�
-.058
(.036)

-0.054
(.037)

-.004
(.012)

-.004
(.011)

�
.055
(.028)

.061
(.029)

.066
(.029)

.033
(.028)

!(1)
1.705
(.156)

1.133
(.116)

1.642
(.155)

1.573
(.043)

�(1)
-.012
(.004)

-.023
(.002)

!(2)
.367
(.069)

1.088
(.106)

.002
(.001)

1.114
(.067)

�(2)
.020
(.004)

-.036
(.003)

�1

.039
(.030)

.112
(.032)

�2

.096
(.038)

.101
(.038)

�3

.152
(.041)

.206
(.041)

1(1)
5.662
(.867)

.728
(.626)

1.598
(.609)

.958
(.470)

2(1)
.118
(.047)

.135
(.031)

1(2)
3.819
(.726)

2.181
(.945)

.036
(.319)

.430
(.395)

2(2)
-.004
(.046)

.107
(.046)

lgl -2267.598 -2262.845 -2191.407 -2148.736

Q2(10)
3.292
[.973]

16.363
[.090]

1.806
[.997]

.016
[.999]

Q2(20)
21.209
[.385]

27.886
[.112]

2.177
[.999]

.033
[.999]

Q2(10) and Q2(20) are Ljung-Box statistics on the squared standardized residuals.
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Table 3: Distribution Test Results
Out-of-Sample Forecasts

Test Germany UK
MS-ARCH DDMS MS-ARCH DDMS

IF .209 .137 .0005 .0011
DT-full .012 .030 .1e-5 .0065

In-Sample Forecasts
Test Germany UK

MS-ARCH DDMS MS-ARCH DDMS

DT-tail .075 .348 .011 .029
The IF (interval forecast) test is a joint LR test for correct coverage and independence based
on Christo�ersen (1998) with a desired coverage level of .8. The DT (density tests) are LR tests
(Berkowitz (1999)) for the adequacy of the maintained model's distribution { DT-full for the entire
density and DT-tail for the lower 5% tail of the distribution. p-values are reported for the null
hypotheses: for IF that the time-series of interval forecasts for the middle 80% of the distribution
have correct conditional coverage; and for DT that the maintained forecast density is the true
density.
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Table 4: Selected Statistics for Models and Data, Germany
Statistic DATA MS-ARCH DDMS GARCH(1,1)

Stdev yt
1.462
(.040)

1.465 1.469 1.619

Skewness yt
-.104
(.179)

.200e-2 .179e-2 .978e-2

Kurtosis yt
4.822
(.639)

3.546 4.340 6.091

corr(jytj; jyt�1j)
.107
(.027)

.108 .140 .223

corr(jytj; jyt�2j)
.132
(.036)

.142 .129 .222

corr(jytj; jyt�3j)
.168
(.030)

.182 .121 .221

Mean jytj
1.103
(.027)

1.139 1.116 1.220

Stdev jytj
.961
(.036)

.924 .958 1.065

Skewness jytj
1.722
(.233)

1.249 1.584 2.106

Kurtosis jytj
8.401
(1.756)

4.904 6.715 13.297

Mean log jytj
-.379
(.033)

-.314 -.353 -.256

Stdev log jytj
1.174
(.031)

1.144 1.157 1.147

Skewness log jytj
-1.157
(.089)

-1.414 -1.346 -1.363

Kurtosis log jytj
4.738
(.382)

6.510 6.308 6.369

DATA is 100 times the log �rst-di�erence in the exchange rate. For each model
one draw of sample size 1000000 was used to calculate the sample statistic.
Standard errors robust to heteroskedasticity appear in parenthesis. The pa-
rameter values in Table 2 are assumed to be the true model parameters.
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Table 5: Selected Statistics for Models and Data, UK
Statistic DATA MS-ARCH DDMS GARCH(1,1)

Stdev yt
1.423
(.046)

1.458 1.432 1.411

Skewness yt
.267
(.245)

.572e-2 .012 .011

Kurtosis yt
6.579
(.843)

4.244 5.163 3.691

corr(jytj; jyt�1j)
.156
(.045)

.188 .159 .131

corr(jytj; jyt�2j)
.117
(.037)

.165 .132 .127

corr(jytj; jyt�3j)
.168
(.036)

.225 .121 .124

Mean jytj
1.024
(.027)

1.094 1.049 1.102

Stdev jytj
.989
(.044)

.964 .975 .882

Skewness jytj
2.258
(.234)

1.463 1.844 1.339

Kurtosis jytj
11.376
(1.940)

6.189 7.815 5.736

Mean log jytj
-.500
(.034)

-.427 -.476 -.330

Stdev log jytj
1.216
(.034)

1.241 1.245 1.124

Skewness log jytj
-1.131
(.103)

-1.294 -1.347 -1.453

Kurtosis log jytj
5.009
(.454)

5.749 6.158 6.709

See notes to Table 4
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Figure 1: Time Series of Exchange Rates
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Figure 2: Hazard Function, DDMS, DEM-USD
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Figure 3: Variance Function, DDMS, DEM-USD
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Figure 4: Estimated Volatility from the DDMS Model
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Figure 5: yt, Models versus Data, Germany
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Figure 6: log jytj, Models versus Data, UK
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