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Abstract

Price variations observed at speculative markets exhibit positive autocorrelation and

cross correlation among a set of assets, stock market indices, exchange rates etc. A

particular problem in investigating multivariate volatility processes arises from the high

dimensionality implied by a simultaneous analysis of variances and covariances. Para-

metric volatility models as e.g. the multivariate version of the prominent GARCH model

become easily intractable for empirical work. We propose an adaptive procedure that

aims to identify periods of second order homogeneity for each moment in time. Similar

to principal component analysis the dimensionality problem is solved by transforming a

multivariate series into a set of univariate processes. We discuss thoroughly implemen-

tation issues which naturally arise in the framework of adaptive modelling. Theoretical

and Monte Carlo results are given. The empirical performance of the new method is

illustrated by an application to a bivariate exchange rate series. Empirical results are

compared to a parametric approach, namely the multivariate GARCH model.
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1. Introduction

Price variations observed at speculative markets exhibit positive autocorrelation which

is typically found in the empirical autocorrelation function of squared returns. Periods

of higher and lower volatility alternate. This phenomenon is well known and generated a

vast body of econometric literature following the introduction of the class of (generalized)

autoregressive conditionally heteroskedastic processes ((G)ARCH) by Engle (1982) and

Bollerslev (1986).

Apart from serial correlation patterns cross correlation over a set of �nancial assets is

often observed. Cross section relationships may be directly implied by economic theory.

Interest rate parities for instance provide a close relation between domestic and foreign

bond rates. In addition, news a�ecting a particular market are often relevant for more

than one asset. Many problems in �nancial practice like portfolio optimization, hedging

strategies or Value-at-Risk evaluation rely on multivariate volatility measures. The sensi-

tivity of single asset betas to general news has been investigated by Hafner and Herwartz

(1998) for the German stock market. Analyzing global volatility transmission Engle,

Ito and Lin (1990) found evidence in favor of volatility spillovers between the worlds

major trading areas occurring in the sequel of oor trading hours. For these reasons

volatility clustering observed for �nancial time series may be better understood within a

multivariate context.

A multivariate model provides therefore a suitable framework for a joint analysis of

time varying variances and covariances. The heteroskedasticity patterns are often mod-

elled by a volatility matrix which has to be estimated from the history of a vector return

process. Within a parametric framework, like a multivariate version of the GARCH

model, however, joint dynamics of second order moments become easily intractable for

practical purposes since the parameter space is typically quite large. In addition, struc-

tural invariance of the parametric model has to be assumed a priori. Finally, specifying a

multivariate volatility model the existence of underlying independent innovations is often

assumed. Thus (higher order) moments of estimated innovations may be used as a diag-

nostic tool to test a particular volatility model. In practice, however, it turns out that

estimated standardized innovations implied by a parametric model are not independently

distributed.

This motivates a di�erent kind of approach to volatility estimation that focuses simul-

taneously on dimension reduction on adaption to local homogeneity of volatility cluster-

ing. local homogeneity means that for every time moment there exists a past stretch of

the process where the volatility structure is nearly identical. This local homogeneity may

change from time to time and thus within such a modelling framework, the main task is

both to describe the interval of homogeneity and to estimate the corresponding volatility

structure. Issues arising from the high dimensionality of the multivariate volatility model
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are handled via projection along the dominant eigenvectors. Modelling local homogene-

ity requires the choice of a tuning parameters. We illustrate the dependence of empirical

results on the choice of these parameters and provide guidelines for practical applications.

The adaptive techniques we employ go back to previous work by Lepski (1990), Lepski

and Spokoiny (1997) and Spokoiny (1998).

The remainder of the paper is organized as follows. The next section introduces the

adaptive modelling procedure and addresses the issue of choosing global parameters nec-

essary to implement the method. A few theoretical properties of the approach are also

given. The so{called change point model is used in Section 3 to further motivate the

choice of smoothing parameters. In addition, this section provides Monte Carlo experi-

ments illustrating the empirical properties of the new method. Section 4 discusses briey

the multivariate GARCH model which is used as a benchmark speci�cation to evaluate

the empirical performance of the adaptive method. In Section 5 we employ the adaptive

model to investigate a bivariate exchange rate series. The performance of our model is

compared with the multivariate GARCH model. Section 6 summarizes the results and

concludes. Mathematical proofs are given in the Appendix.

2. Adaptive modelling

2.1. Model and Estimation Problem

Let Rt be an observed process of vector asset returns, Rt 2 R
d . We model this process

via a conditional heteroskedasticity structure

Rt = �
1=2
t "t (2.1)

where "t , t � 1 , is a sequence of independent standard Gaussian random vectors in

R
d and �t is the volatility d�d symmetric matrix which is in general a predictable

random process, that is, �t � Ft�1 with Ft�1 = �(R1; : : : ; Rt�1) denoting the � -�eld

generated by the �rst t � 1 observations. Note that estimation of �t conditional on

Ft�1 allows the natural interpretation of being a one-step ahead forecasting problem.

Time-homogeneity in totalis means that �t � � , t � T , i.e. the matrix �t is

constant. In this case

ERtR
>
t = E�1=2"t"

>
t �

1=2 = �1=2E"t"
>
t �

1=2 = �

which leads to the obvious estimate

e� =
1

T

TX
t=1

RtR
>
t : (2.2)
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If the time homogeneity assumption is ful�lled only in partialis in some time interval

I = [� �m; � [ , then a reasonable estimate is

e�� =
1

jIj
X
t2I

RtR
>
t

where jIj denotes the number of time points in I . The method we discuss below is based

on a data-driven choice of an interval I where the assumption of local homogeneity allows

to �t reasonably the observed data. As a �rst step of the procedure the dimension of the

multivariate process is reduced to conveniently transformed univariate processes. For

these random sequences we identify periods of homogeneity by means of a weighting

scheme relating total variation in I and variation measures obtained for subperiods of I.

This weighting scheme itself is implemented using global smoothing parameters which

have to be �xed a priori.

2.2. Dimension reduction and power transformation

Suppose now that we are given a �nite family W of unit vectors w1; : : : ; wr in R
d with

r � d . The dimension reduction step consists in replacing the original d -dimensional

data Rt by the r -dimensional vector (w>Rt)w2W . Such a dimension reduction usually

assumes that r is much smaller than d and that the vectors w 2 W are selected in a

special way to avoid an essential loss of information.

Let w be a nonzero vector from R
d . Then the scalar product w>Rt is (conditionally

w.r.t. Ft�1 ) Gaussian and it holds

E

�
jw>Rtj2

��Ft�1
�

= E

�
w>RtR

>
t w
��Ft�1

�
= w>E

�
�
1=2
t "t"

>
t �

1=2
t

��Ft�1
�
w

= w>�tw:

De�ne �2t;w = w>�tw . Then, for every t , the variable w>Rt is conditionally on Ft�1
normal with parameters (0; �2t;w) and the variable w>Rt=�t;w has (conditionally on

Ft�1 ) a standard normal distribution. This particularly implies that for every  > 0 ,

E

���w>Rt

�� ��Ft�1
�
= �t;wE

�j�j ��Ft�1
�
= C�


t;w;

E

���w>Rt

�� � C�

t;w

��Ft�1
�2

= �2t;wE (j�j � C)
2 = �2t;wD

2


where � denotes a standard Gaussian random variable, C = Ej�j and D2
 = Var j�j .

Therefore, the process jw>Rtj allows for the representation

jw>Rtj = C�

t;w +D�


t;w�t;w (2.3)

where �t;w has conditionally on Ft�1 the distribution (j�j � C) =D . De�ne now

Yt;w = jw>Rtj ; �t;w = C jw>�twj=2:
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The decomposition (2.3) can then be written as a linear model

Yt;w = �t;w + s�t;w�t;w (2.4)

with s = D=C .

The mapping Rt 7! fYt;w ; w 2 Wg can be treated as a combination of dimension

reduction and power transformation. Both steps are frequently applied in data analysis.

The power transformation is usually applied to reduce the skewness of the observed data,

see Carroll and Ruppert (1988). Mercurio and Spokoiny (2000) argue that  = 0:5 is

a suitable choice for the univariate conditional heteroskedastic model (2.1) providing a

nearly Gaussian distribution for the `noise' variables �t;w .

2.3. Approach based on local homogeneity assumption

Local time homogeneity means that the matrix �t is nearly constant within an interval

I = [� �m; � [ , i.e. �t is roughly equal to a matrix �I for all t 2 I. As a consequence the

process Yt;w = jw>Rtj is also homogeneous within I for all w. Therefore the constant

trend in (2.3) �t;w = �I;w = C jw>�Iwj=2 can be estimated:

e�I;w =
1

jIj
X
t2I

jwTRtj = 1

jIj
X
t2I

Yt;w : (2.5)

By (2.4) this estimate has the properties

e�I;w =
1

jIj
X
t2I

�t;w +
s
jIj
X
t2I

�t;w�t;w (2.6)

so that

Ee�I;w = E
1

jIj
X
t2I

�t;w ; (2.7)

Var e�I;w =
s2
jIj2E

 X
t2I

�t;w�t;w

!2

=
s2
jIj2E

X
t2I

�2t;w: (2.8)

In view of the last equation, the value v2I;w with

v2I;w =
s2
jIj2

X
t2I

�2t;w (2.9)

is called the conditional variance of e�I;w . Under local homogeneity it holds �t;w � �I;w =

C

�
w>�Iw

�=2
for t 2 I , and hence,

Ee�I;w = �I;w ;

Var e�I;w = v2I;w =
s2�

2
I;w

jIj :
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2.4. Some properties of the estimate e�I;w

The variability of the function �t;w within an interval I can be measured by the value

�I;w de�ned as follows:

�2
I;w = jIj�1

X
t2I

(�t;w � ��;w)
2 (2.10)

Local homogeneity within I would mean that �I;w is small for all w 2 W .

Theorem 2.1. Let the volatility matrix �t satisfy the condition

b � w>�tw � bB; 8t 2 I; (2.11)

with some positive constants b;B and unit vector w. Then it holds for a and every �0

P

�
je�I;w � ��;wj > �I;w + �vI;w

�
� 4

p
e�(1 + logB) exp

�
� �2

2a

�
:

Remark 2.1. For more details on a see Lemma 7.1 in the Appendix. The result given

above can be slightly re�ned for the special case when the matrix �t is a deterministic

function of time, see Section 3 for a speci�c example. Then, for every w 2 W , the

function �t;w and hence, the conditional variance v2I;w from (2.9) is also deterministic

and it holds

P

�
je�I;w � ��;wj > �I;w + �vI;w

�
� 2 exp

�
� �2

2a

�
:

The result of Theorem 2.1 bounds the loss of the estimate e�I;w via the value �I;w

and the conditional standard deviation vI;w . The latter term depends in its turn on

the unknown target function �t;w . Taking the result in (2.9) into account and assuming

�I;w to be small, however, one may replace the conditional standard deviation vI;w by

its estimate

evI;w = se�I;wjIj�1=2:
Theorem 2.2. Let R1; : : : ; R� obey (2.1) and let (2.11) hold true. Then it holds for

the estimate e�I;w of ��;w :

P

�
je�I;w � ��;wj > �I;w(1 + �s jIj�1=2) + �evI;w�
� 4

p
e�(1 + logB) exp

�
� �2

2a(1 + �s jIj�1=2)2
�
:

2.5. Adaptive choice of the interval of homogeneity

We start by reformulating the considered problem. Given observations R1; : : : ; R��1
following the time-inhomogeneous model (2.1), we aim to �nd in a data-driven way a

time interval I of the form [� �m; � [ where the time-homogeneity assumption is not
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signi�cantly violated and then apply this interval I for constructing the estimate of the

target volatility matrix �t .

The idea of the method can be explained as follows. Suppose I is an interval-

candidate, that is, we expect time-homogeneity in I and hence, in every subinterval

of I . This particularly implies that the values �I;w , and �J;w , J � I w 2 W are

negligible. Mean values of the �t;w 's over I or over J nearly coincide for all w 2 W .

Our adaptive procedure roughly means a family of tests to check whether e�I;w and e�J;w
di�er signi�cantly for any subinterval J of I . The latter is done on the base of Theo-

rem 2.2 which allows under homogeneity within I to bound je�I;w�e�J;wj by �evI;w+�evJ;w
provided that � is su�ciently large. If there exists an interval J � I such that the hy-

pothesis e�I;w = e�J;w cannot be accepted we reject the hypothesis of homogeneity for the

interval I . Finally, our adaptive estimate corresponds to the largest interval I such that

the hypothesis of homogeneity is not rejected for I itself and all smaller intervals.

Now we present a formal description. Suppose a family I of interval-candidates I is

�xed. Each of them is of the form I = [� �m; � [ , m 2 N , so that the set I is ordered

due to m . With every such interval and every w 2 W we associate the estimate e�I;w of

the parameter ��;w due to (2.5) and the corresponding estimate evI;w of the conditional

standard deviation vI;w .

Next, for every interval I from I , we suppose to be given a set J (I) of testing

subintervals J (one example of these sets I and J (I) is given in the next section). For

every J 2 J (I) , we construct the corresponding estimates e�J;w from the `observations'

Yt;w for t 2 J according to (2.5) and compute evJ;w , w 2 W .

Finally, with two constants � and � , de�ne the adaptive choice of the interval of

homogeneity by the following iterative procedure:

Initialization: Select the smallest interval in I ;
Iteration: Select the next interval I in I and calculate the corresponding estimatee�I;w and the estimated conditional standard deviation evI;w for all w 2 W ;

Testing homogeneity: Reject I , if there exists one J 2 J (I) and one w 2 W
such that ��e�I;w � e�J;w�� > � evJ;w + �evI;w: (2.12)

Loop: If I is not rejected, then continue with the iteration step by choosing a larger

interval. Otherwise, set bI = "the latest non rejected I ".

The adaptive estimate b�I of �I is de�ned by applying this selected interval bI :
b�I =

1��bI�� X
t2bI

RtR
>
t :
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It is supposed that the procedure is independently carried out at each time point � . A

possibility to reduce the computational e�ort of the selection rule is to make an adaptive

choice of the interval of homogeneity only for some speci�c time points tk and to keep

the left end-point of the latest selected interval for all � between two neighbor points tk

and tk+1 , see the next subsection for a proposal.

2.6. Choice of the family W

In some applications, one or more testing `directions' w can be given a priori, for instance,

it could be portfolio allocations. In general, a natural way for the choice of the set

W is based on the idea of principal component analysis. Namely, we de�ne w1 such

that the projection w>1 Rt contains as much information as possible among all vectors

w 2 R
d . Similarly, w2 is selected orthogonal to w1 and containing at most information

among all such vectors etc. Under such an approach, the vectors w 2 W can be viewed

as di�erent indices providing dimension reduction of the considered high dimensional

data. The formal de�nition is given via the diagonal decomposition of the matrix e�� =

��1
P�

t=1 �t : e�� = U>�U where U is an orthogonal matrix and � is a diagonal matrix

with non-increasing diagonal elements. Then w1 is de�ned as the �rst column of the

matrix U (or, equivalently, the �rst eigenvector of e�� ). Similarly w2 is the second

column of U etc.

Non-stationarity of the data would lead to a variable index structure. However, one

may expect much more stable behavior of the indices as compared to volatility changes

since indices mimic structural relationships between single components of vector processes

of �nancial market returns. In the empirical part of the paper we provide an illustrative

discussion of the issue.

2.7. Choice of the sets I , J (I)

The presented algorithm involves the sets I and J (I) of considered intervals and two

numeric parameters � and � . We now discuss how these parameters can be selected

starting from the set of intervals I . The simplest proposal is to introduce a regular grid

G = ftkg with tk = m0k , k 2 N , for some natural number m0 and to consider the

intervals Ik = [tk; � [ for all tk < � . It is also reasonable to carry over the adaptive

procedure only for points � from the same grid G . The value m0 can be selected

between 5 and 20, say.

If � = tk� for some k� � 1 , then clearly every interval I = [tk; � [ contains exactly

k� � k smaller intervals I 0 = [tk0 ; � [ for all k < k0 � k� . Next, for every such interval

I = [tk; � [ , we de�ne the set J (I) of testing intervals J by taking all smaller intervals

I 0 = [tk0 ; � [ with the right end-point � and similarly all smaller intervals [tk; tk0 [ with
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the left end-point tk , k < k0 � k� :

J (Ik) = fJ = [tk0 ; � [ or J = [tk; tk0 [: k < k0 < k�g:

Let NI denote the number of subintervals J in J (I) . Clearly, for I = [tk; tk�[ , the set

J (I) contains at most 2(k� � k) elements, that is, NI � 2(k� � k) .

2.8. Data-driven choice of parameters � and �

The behaviour of the procedure critically depends on the parameters � and � . The

simulation results from the next section indicate that there is no universal `optimal'

choice. Below we discuss two possibilities: one is based on a more detailed consideration

of a change-point model, see Section 3.3. Another one, based on minimization of one-step

ahead forecast error, is discussed right now.

The adaptive procedure proposed for selecting the interval of homogeneity is local in

the sense that it is performed at every point � independently. Such procedures are

also called pointwise or spatially adaptive, among them: kernel smoothers with plug-in

bandwidth selector (see Brockmann, Gasser and Herrmann (1993)) or pointwise adap-

tive bandwidth selector (see Lepski, Mammen and Spokoiny (1997)), nonlinear wavelet

procedure (see Donoho, Johnstone, Kerkyacharian and Picard (1994)). All these pro-

cedures have been shown to possess some spatial adaptive properties. However, every

such procedure contains some free parameter(s) which have strong inuence on their be-

haviour. The most well known example is given by the thresholding parameter for the

wavelet method. The values � and � of the above procedure have the same avor as the

threshold for wavelets. These parameters are global in the sense that there is no way to

select them optimally for one speci�c point but they determine the global performance of

the procedure on a large observation interval, and, therefore, they can be selected via the

following cross-validation rule. Namely, for every pair �; � we can build a corresponding

procedure (estimator) b�(�;�)t of �t;w = C jw>�twj=2 at every point t from the obser-

vations R1; : : : ; Rt�1 as described in Section 2.5. Due to the representation (2.4), �t;w

is the conditional mean of the `observation' Yt;w = jw>Rtj=2 given R1; : : : ; Rt�1 , so
that the estimate e�t;w can be used as a one-step forecast for Yt;w . This leads to the

following selection rule based on the minimization of the corresponding squared one-step

forecasting error:

(b�; b�) = inf
�;�

X
w2W

TX
t=t0

�
Yt;w � b�(�;�)t

�2
where in�mum is taken over all considered pairs �; � and t0 is taken to provide enough

data for the starting estimates e�t0;w . Similarly one can choose the grid step m0 .
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2.9. Accuracy of the adaptive estimate

The convenience of the proposed procedure can be characterized by the following two

features: stability under homogeneity and sensitivity to changes. The �rst one means

roughly a reasonable quality of estimation when the underlying model is really time

homogeneous. The second property describes the properties of the procedure in the

opposite situation when the underlying process spontaneously changes.

We characterize the variability of the underlying matrix-function �t within an interval

I by the values �I;w for w 2 W , see (2.10). In the light of Theorem 2.1, an interval

I is `good' if these values are not too large compared to the corresponding conditional

standard deviations vI;w . Our next result presents a bound for the probability to reject

such an interval.

Theorem 2.3. Let (2.11) hold true and let II be an interval such that

�J;w :=
�

1 + �s jJ j�1=2
� �J;w

vJ;w
> 0 8J 2 J (II); w 2 W:

Then it holds for the procedure from Section 2.5 with � � � :

P (II is rejected ) �
X
w2W

X
J2J (II)

4
p
e�J;w(1 + logB) exp

 
��2J;w
2a

!
:

Let bI be the interval selected by our adaptive procedure. Then, for every w 2 W ,

one may consider b�w with

b�w = e�
bI;w

as an estimate of ��;w = jw>R�wj=2 . The next question would be about the accuracy

of this estimate. A combination of the last result and that of Theorem 2.2 leads to

the following bound which we formulate under one additional technical assumption. By

de�nition evI;w = s jIj�1=2e�I;w so that evI;w typically decreases when jIj increases. We

shall suppose further that evI;w � evJ;w for J � I and all w 2 W .

Theorem 2.4. Let (2.11) and (2.13) hold true. Then it holds for the procedure described

in Section 2.5 with � � � :

P

�
jb�w � ��;wj > 2(�+ �)vII;w

�
�
X
w2W

X
J2J (II)

4
p
e�J;w(1 + logB) exp

 
��2J;w
2a

!
:(2.13)

Remark 2.2. We say that an interval II is `good' if the quantity

DII = max
w2W

�II;w

vII;w

is not too large which provides the balance between the error of approximating the

underlying functions �t;w by constant functions within this interval II and the stochastic

error of the estimates e�II;w , w 2 W . By Theorem 2.1, the application of this interval
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leads to the estimation error bounded by (� +DII)vII;w provided that � is su�ciently

large. In spite of the fact that we never know precisely whether an interval-candidate

I is `good' Theorem 2.4 claims that the losses of the adaptive estimates b�w are of the

same order vII;w as for any of `ideal' estimates e�II;w .
3. Change-point model

An important special case of the model (2.1) is the so-called change-point model corre-

sponding to the piecewise constant volatility matrix �t which yields piecewise constant

functions �t;w for all w 2 W . For this special case, the above procedure has a very

natural interpretation: when estimating at the point � we search for the largest interval

of the form [� �m; � [ not containing a change-point. This is done by means of a test

for a change-point within the interval-candidate I = [� � m; � [ . It is worth mention-

ing that the classical maximum-likelihood test for no change-point in the regression case

with Gaussian N (0; �2) -errors is also based on comparison of the mean values of obser-

vations Yt over the whole interval I = [� �m; � [ and every subinterval J = [� � j; � [

or J 0 = [� �m; � � j[ for di�erent j , so that the proposed procedure has strong appeal

in this situation. However, there is an essential di�erence between testing for a change-

point and testing homogeneity appearing as a building block of our adaptive procedure.

Usually a test for a change-point is constructed in a way to provide the prescribed type

I error (in the change-point framework such an error is called a \false alarm"). Our

adaptive procedure involves a lot of such tests for every candidate I , which leads to a

multiple testing problem. As a consequence, each particular test should be performed at

a very small level, i.e., it should be rather conservative providing a joint error probability

at a reasonable level.

3.1. Type I error

For the change-point model, the type I error would mean that the interval-candidate I

is rejected although the hypothesis of homogeneity is still ful�lled. In opposite, the type

II error means that interval I is not rejected in spite of a violation of homogeneity, so

that the type II error probability describes the sensitivity of the procedure to changes.

The arguments used in the proof of Theorem 2.3 lead to the following upper bound

for the type I error probability:

Theorem 3.1. Let bI be selected by the adaptive procedure with � � � . If I = [��m; � [

is an interval of homogeneity, that is �t = �� for all t 2 I , then

P (I is rejected) �
X

J2J (I)

X
w2W

2 exp

�
� �2

2a(1 + �s jJ j�1=2)2
�
:
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This result is a special case of Theorem 2.3 with �J;w � 0 taking Remark 2.1 into

account.

As a consequence of Theorem 3.1 one can immediately see that for every �xed value

M there exists a �xed � providing a prescribed upper bound � for the type one error

probability for a homogeneous interval I of length M . Namely, the choice

� � (1 + �)

r
2a log

2Mr

m0�
(3.1)

leads for a proper small positive constant � > 0 to the inequalityX
J2J (I)

X
w2W

2 exp

�
� �2

2a(1 + �s jJ j�1=2)2
�
� �:

Here 2M=m0 is approximately the number of intervals in J (I) and r is the number of

vectors in W . This bound is, however, very rough and it is only of theoretical importance

since we estimate the probability of the sum of dependent events by the sum of single

probabilities. The problem of �nding � providing a prescribed type I error probability

is discussed in Section 3.3.

3.2. Type II error

Next we consider the case of estimation immediately after a change-point. Let a change

occur at a moment Tcp . It is convenient to suppose that Tcp belongs to the grid G on

which we carry out the adaptive choice of the interval of homogeneity. This assumption

is not restrictive if the grid is `dense', that is, if the grid step m0 is not too large. In

the case with Tcp 2 G , the `ideal' choice II is clearly [Tcp; � [ . We consider the most

interesting case of estimation immediately after the change-point and we are interested

to evaluate the probability to accept an interval I which is essentially larger than II .

Such situation can be quali�ed as type II error.

Denote m0 = jIIj , that is, m0 = � �Tcp . Let also I = [Tcp�m; � [= [� �m0�m; � [ for

some m , so that jIj = m+m0 , and let � (resp. �0 ) denote the value of volatility matrix

�t before (resp. after) the change-point Tcp . This provides �t;w = �w = C jw>�wj=2
for t < Tcp and �0t;w = �0w = C jw>�0wj=2 for t � Tcp for every w 2 W . The

magnitude of the change-point in `direction' w is measured by the relative change bw =

2j�0w � �wj=�w .

The interval I will be certainly rejected if, for some w 2 W , either je�I;w � e�J;wj or
je�I;w � e�II;wj is su�ciently large compared to the corresponding critical value.

Theorem 3.2. Let �t = � before the change-point at Tcp and �t = �0 after it, and

let bw = j�0w� �wj=�w for w 2 W . Let also m0 = jIIj = � �Tcp and I = [� �m0�m; � [ .

Then

P (I is not rejected) � 4e
� �2

2a
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provided that � =
�sp

minfm;m0g ful�lls

1� � � �

�
p
2
�(1 + �) > 0 (3.2)

and there exists w 2 W such that

bw �
� + �(1 + �) + �

�
p
2
�(1 + �)

1� � � �

�
p
2
�(1 + �)

: (3.3)

The result of Theorem 3.2 delivers some additional information about the sensitivity

of the proposed procedure to change-points. One possible question is about the minimal

delay m0 between the change-point Tcp and the �rst moment � when the procedure

starts to indicate this change-point by selecting an interval of type II = [Tcp; � [ . Due to

Theorem 3.2, the change will be certainly `detected' if the value � = �s=
p
m0 ful�lls

(3.2) and (3.3) for some w 2 W . With the �xed bw > 0 's, � and � , condition (3.3)

leads to � � C0b; b = maxw2W bw where C0 depends on �=� only. The latter condition

can be rewritten in the form

m0 � b�2�2s2
C2
0

:

We see that the required delay m0 depends quadratically on the maximal change-point

magnitude bw and on the threshold � . In its turn, for the prescribed type I error �

of rejecting a homogeneous interval of length M , the threshold � can be bounded by

C
q
log 2Mr

m0�
, see (3.1). In particular, if we �x the length M and � , then m0 = O(b�2) .

If we keep �xed the values b and M but aim to provide a very small probability of a `false

alarm' by letting � go to zero, then m0 = O(log��1) . All these issues are completely

in agreement with the theory of change-point detection, see Cs�org}o and Horv�ath (1997).

3.3. Choice of parameters �; and � for the change-point model

It has been already mentioned that a reasonable approach for selecting �; and � is by

providing a prescribed level � for rejecting a homogeneous interval I of a given length

M . This would clearly imply at most the same level � for rejecting a homogeneous

interval of a smaller length. This choice can be made on the base of Theorem 3.1, see

(3.1). However, the resulting upper bound for the error probability of the type I is rather

conservative. More accurate choice of the parameters � and � can be made on the base

of Monte-Carlo simulation for the time homogeneous model. We examine the procedure

described in Section 2.5 with the sets of intervals I and J (I) on the regular grid with

the �xed step m0 . The time homogeneous model assumes that the volatility matrix �t

does not vary in time, i.e. �t � � with some non-degenerated matrix � . We apply one

important observation:
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Lemma 3.1. If the underlying model (2.1) is time homogeneous, that is, the matrix �t

is constant in time, then the performance of the adaptive procedure does not depend on

its particular value � .

One can therefore suppose that � = 1d i.e. � is the unit matrix, and the original

model (2.1) is transformed for every w 2 W into the regression model Yt;w = 1 +

s�t;w with the constant trend and homogeneous variance s . This model is completely

described and therefore, one can de�ne r1(�; �) as the probability for this model to reject

a homogeneous interval of length M if the parameters �; and � are applied.

This probability can be evaluated e.g. by generating n� (say 1000) independent sam-

ples of size M + 1 and by carrying out the procedure with the given parameters for the

very last time point. Within our simulations we varied 0:1 � � � 3:9 and 0 � � � 10

with step size equal to 0.1. The percentage of rejections of an interval of length M can

be used as an estimate of the value r1(�; �) .

De�ne now the set S of `admissible' pairs (�; �) providing the prescribed level �

for the probability to reject an interval I of length M under homogeneity. It follows

immediately from the de�nition of the procedure that larger values of � and � lead to

a smaller probability of rejecting the interval I . One therefore can describe this set by

�nding for every � the minimal value � = �(�) such that r1(�; �(�)) � � .

Remark 3.1. The result of Theorem 2.3 is stated under the assumption � � � . Note,

however, that if I is essentially larger than J , then evI;w is essentially smaller thanevJ;w and in such a situation the contribution of the term �evI;w in the critical value

� evJ;w+�evI;w can be compensated by a slight increase of � in the �rst term �evJ;w . We

therefore consider all nonnegative combinations (�; �) including � = 0 .

The functions �(�) with � = 0:05 , M = 40; 60; 80 , and m0 = 5; 10; 20 for 0 � � �
3:9 are plotted in Figure 1. Two alternative speci�cations of the set W were employed,

namely W1 = fw1g and W2 = fw1; w2g where w1 and w2 denote the eigenvector corre-

sponding to the largest and smallest eigenvalue of e� as de�ned in (2.2), respectively. It

is worth mentioning that � � 3 (W1) and � � 3:7 (W2) provide the prescribed error

probability of type I even with � = 0 in all cases. The estimated functions �(�) turn

out to be almost linear indicating that a decrease of � can be compensated by a propor-

tional increase of �. As mentioned the probability of rejecting a homogeneous interval of

length M decreases for given � with the smoothing parameter � and also with the grid

length m0. The latter relationship is easily seed in Figure 1. Obviously smaller choices

of m0 simultaneously require larger choices of the smoothing parameters to guarantee

the prespeci�ed type I error probability. In addition, the probability of rejecting homo-

geneity within a given interval increases with the magnitude of W. Thus the function

�(�) shifts to the left when comparing the results for W2 and W1 indicating that ceteris
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paribus larger parameter choices for �(�) are required for the multiple testing rule (W2)

to satisfy the overall type I error probability � = 0:05.

Since an increase of � or � reduces the sensitivity of the procedure, see Theorem 3.2,

we would recommend to select for practical applications any pair of the form (�; �(�)) .

This would lead to the prescribed type I error. A particular choice of � may result in a

smaller or larger type II error. The result of Theorem 3.2 is not su�ciently informative

for this selection. Hence, to analyze the inuence of the parameter � on the sensitivity

of the procedure we conducted a small simulation study for the simplest change-point

model with di�erent magnitudes of changes. Procedures with di�erent values of the

parameter � and � = �(�) are compared for three di�erent criteria: averaged quadratic

risk (MSE), average absolute deviation risk (MAE), averaged large deviation probability

(MLDP), and also for their empirical analogs based on the one step ahead forecast error:

mean squared forecast error (MSFE), mean absolute forecast error (MAFE) and mean

large deviation forecast error (MLDFE) de�ned as:

MSE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

(b�t;w � �t;w)
2;

MAE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

jb�t;w � �t;wj;

MLDE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

1(jb�t;w � �t;wj > �t;w=2);

MSFE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

(b�t;w � Yt;w)
2;

MAFE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

jb�t;w � Yt;wj;

MLDFE = E
� 1

T � t0 + 1

X
w2W

TX
t=t0

1(jb�t � Yt;wj > b�t;w=2):
Here T indicates the sample size and E� means the averaging over di�erent realizations

of the model. Note that the estimates b�t;w are conditioned on previous observations

Rt�1; Rt�2; : : : .

3.4. Some simulated data-sets

We examine 3 di�erent two-dimensional change-point models each with two changes only,

�t = 12 for t 2 [1; 3M [ and t 2 [5M; 7M ] and �0t = �0 , 2�0 and 3�0 for t 2 [3M; 5M [ ,

�0 =

 
2 0

0 :5

!
.

The parameters M , m0 and � have been set to M = 40; 60; 80 , m0 = 5; 10; 20 and

� = 0:05 . The sample size is taken equal to T = 7M with the changes at Tcp;1 = 3M

and Tcp;2 = 5M . For di�erent values of the parameter � and for � = �(�) , we carry over
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the estimation procedure for all � 2 [t0; T ] where t0 = M . Each model was generated

1000 times.

Table 1 displays MLDFE estimates obtained for alternative implementations of the

adaptive model employing W1. We concentrate on this measure since the probability of

a large forecast error is closely related to the type II error probability of identifying a het-

erogeneous time interval as being homogeneous. Corresponding results for the remaining

statistics or the modelling performance using W2 are available from the authors upon

request. The Monte Carlo results are very similar for the alternative data generating

models. First observe that the probability of large forecasting errors is negatively related

to the employed grid length m0. Overall minimum values of the MLDFE statistic are

uniquely obtained by selecting m0 = 5. In addition, given that m0 is not to large relative

to M we obtain that choosing larger values of �, � ge2:0 say, decreases the probability

to obtain one step ahead forecast errors which are large in absolute value. Small choices

of � outperform the remaining implementations only for m0 = 20 if the type I error

probability of � holds for intervals of length M = 40.

The sensitivity of the adaptive procedure to structural shifts is illustrated in Figure

2. Since the results from employing W1 and W2 are very similar we provide only results

for the latter model. For all estimated models the smoothing parameter � was chosen

to be equal to � = 1:5. We selected � according to the function �(�), i.e. a priori

we take the probability of rejecting a homogeneous interval of length M to be equal to

� = 0:05. Note that the function �(�) essentially depends on the parameters M and m0.

Selecting alternative values of � and varying the parameter � accordingly would obtain

almost identical results as those shown in Figure 2. In addition to estimated quantities

(median estimates and interquartile range of b�t;w1
) the graphs show also the pattern of

the underlying true quantities �t;w1
.

As one may imagine the sensitivity of the method depends on the magnitude of the

assumed structural shifts. Median estimates of b�t;w1
begin immediately to increase (de-

crease) after occurrence of the �rst (second) structural shift in time t = 3M (t = 5M).

The median estimates show di�erent slopes for the models generated with �0, 2�0 and
3�0 being the true covariance matrix during the period t = 3M + 1 : : : 5M . The largest

(smallest) slope of the median estimates is observed for the model speci�ed with 3�0 (
�0) as moment matrix during this period. The sensitivity of the method depends also on

the employed grid length m0. This result, however, mirrors directly the dependence of

the estimation results on the choice of the smoothing parameters � and �. Note that we

performed the Monte Carlo experiment for a prespeci�ed probability of falsely identifying

a homogeneous interval as being heterogeneous. Thus, using a small (large) grid length

implies for given � a relative high (small) smoothing parameter �. The sensitivity of the

procedure is, however, inversely related with the magnitude of the smoothing parame-

ters. Concerning the dependence of the adaptive procedure on the length parameter M
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a similar argument holds as for the dependence on m0. Given a particular value of �

and a type I error probability the smoothing parameter � is positively related with M .

Thus, guaranteeing a prespeci�ed type I error probability in only a small interval also

increases the sensitivity of the adaptive procedure to structural changes. To illustrate

the latter argument the bottom panels of Figure 2 show the estimation results obtained

from m0 = 10;M = 80;W =W2 which can be compared with the corresponding results

for M = 40. Obviously the slope of the median estimates for M = 80 is smaller than the

corresponding quantity for M = 40. For the latter model (m0 = 10;M = 80;W = W2)

we also obtain that the interquartile range of estimators b�t;w1
covers the true parameters

at the time points 3M and 5M for all simulated processes.

4. A parametric benchmark model

The generalization of the univariate GARCH-process towards a dynamic model describing

the conditional covariance matrix of a d�dimensional vector of asset returns (Rt) requires

to relate second order moments to an information set which is available in time t� 1, i.e.

RtjFt�1 � (0;�t):

In such a multivariate model, however, dependencies of second order moments in �t on

Ft�1 become easily intractable for practical purposes. This can be seen in a multivariate

GARCH model. Let vech(.) denote the half-vectorization operator. The multivariate

GARCH(q; p) is given as

vech(�t) = c+

qX
i=1

eAivech(Rt�iR>t�i) +
pX

i=1

eGivech(�t�i); (4.1)

where eAi and eGi are d
��d�, d� = 1

2d(d+1), parameter matrices and the vector c accounts

for deterministic variance components. Due to the large number of model parameters

the general model in (4.1) is almost inappropriate for applied work. Prominent proposals

reducing the dimensionality of (4.1) are the constant correlation model (Bollerslev (1990))

and the diagonal model (Bollerslev, Engle andWooldridge (1988)). In the latter approacheAi and eGi are assumed to be diagonal matrices.

A speci�c issue for the general model in (4.1) and its diagonal version is to specify

convenient restrictions on the parameter space to guarantee positive de�niteness of condi-

tional covariance matrices. Within the BEKK representation, named after Baba, Engle,

Kraft and Kroner (1990), the moment matrix �t is determined in quadratic terms and,

hence, yields positive de�nite covariances given convenient initial conditions. Engle and

Kroner (1995) discuss thoroughly the BEKK version of the GARCH(q; p) model which
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may be given as:

�t = C>
0 C0 +

KX
k=1

qX
i=1

A>kiRt�iR>t�iAki +

KX
k=1

pX
i=1

G>
ki�t�iGki: (4.2)

In (4.2) C0, Aki and Gki are d�d parameter matrices where C0 is upper triangular. Since

these matrices are not required to be diagonal the BEKK model is convenient to allow

cross dynamics of conditional covariances. The parameter K essentially governs to what

extent the general representation in (4.1) can be approximated by a BEKK-type model.

For the parametric benchmark model that we are going to provide we set K = q = p = 1.

In this case the model in (4.2) still contains for 11 parameters in case of a bivariate series.

As in the univariate case the parameters of a multivariate GARCH model are estimated

by quasi maximum likelihood (QML) optimizing numerically the Gaussian log-likelihood

function. Bollerslev and Wooldridge (1992) discuss the issue of obtaining consistent

t�ratios within the QML{framework. In contrast to the univariate framework the as-

ymptotic distribution of the parameter estimators in multivariate volatility models still

seems to be unknown.

Apart from speci�cation and estimation issues a particular feature of the parametric

GARCH model is that the dynamic structure is usually assumed to be time invariant.

Since empirical data sets typically cover a long sample period, however, it is a priori not

trivial to assume structural invariance of a volatility process. In the univariate framework

tests on invariance of a parametric model are available (see e.g. Chu (1995)). Empirically

it turns out that the hypothesis of GARCH-type homogeneity is often rejected. For a

particular application of GARCH processes exhibiting structural shifts see e.g. Herwartz

and Reimers (1999). Note that the adaptive procedure only states local homogeneity of

the volatility process. Thus estimation of �t within the latter framework only requires

knowledge of the near history of Rt whereas estimating �t in a GARCH framework is

also based on knowledge of future observations Rt+h; h > 0.

5. An empirical illustration

5.1. The Data

To illustrate our method and to compare it with the parametric model we analyze daily

quotes of two European currencies measured against the US dollar (USD), namely the

Deutsche Mark (DEM) and the British pound (GBP). Our sample period is December

31, 1979 to April 1, 1994, covering T = 3720 observations. Note that a subperiod of our

sample has already been investigated by Bollerslev and Engle (1993) discussing common

features between volatility processes. First di�erences of the respective log exchange



TIME INHOMOGENEOUS MULTIPLE VOLATILITY MODELLING 19

rates are shown in Figure 3. The empirical means of both processes are very close to zero

(-4.72E-06 and 1.10E-04, respectively).

5.2. Multivariate GARCH estimation

Estimating a BEKK speci�cation for the bivariate series of exchange rate returns we

obtain the following QML parameter estimates and t�ratios (in parentheses). Note that

the latter quantities have to be carefully interpreted within the framework of multivariate

volatility modeling.

C0 =

0BB@
1:15E-03
(9:41)

4:27E-04
(2:11)

0 7:13E-04
(4:78)

1CCA ; A1 =

0BB@
:289
(12:6)

�:049
(�1:82)

�:064
(�3:24)

:292
(9:40)

1CCA ; G1 =

0BB@
:938
(104:6)

:023
(1:73)

:025
(3:01)

:943
(66:8)

1CCA :

The maximum value obtained for the Gaussian log-likelihood is -28601.543. The param-

eter estimates given above suggest the presence of cross equation dynamics in the sense

that lagged price variations and volatility of one variable have some nonzero impact on

current volatility of the remaining variable. The parametrically estimated volatility paths

are displayed in Figure 4. For convenience all second order moments are multiplied by

105. Periods of higher and lower volatility are distinguished for both series of exchange

rate returns. The volatility process of the DEM/USD exchange rate returns appears to

be somewhat more erratic compared to the variance of DEM/GBP returns. The process

of the conditional covariance between the two return series takes on positive values al-

most during the entire sample period. A negative covariance is estimated at the end of

the �rst trading year of the sample period.

5.3. The adaptive procedure

Selection of w. We estimate the sequences of eigenvalues of recursive covariance esti-

mates, i.e.

b�T � =
1

T �

T �X
t=1

RtR
>
t

The sequence of elements of the eigenvector (w1) corresponding to the maximum eigen-

values of b�T � are shown in Figure 5. Both components stabilize quickly. Similar results

can be obtained for elements of the second eigenvector (w2) and are not shown here to

economize on space.

Determining the set W we used alternatively W1 = fw1g and W2 = fw1; w2g. Using
the entire sample period we obtain in particular the following results: w1 = (0:715; 0:699)0

and w2 = (0:699;�0:715)0 . The lower panel of Figure 5 shows the centered univariate

process Yt;w1
= jw>1 Rtj .
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Selection of � and �. Further parameters which have to be �xed are �; � and the

grid length m0. The latter parameter was chosen alternatively m0 = 5; 10; 20. We select

� = �(�) as described in Section 3.3 such that the probability of rejecting the homogeneity

hypothesis within an interval of length M is equal to � = 0:05. As candidate lengths of

homogeneous time periods we choose alternatively M = 40; 60; 80 corresponding roughly

to trading periods of two, three, and four months, respectively. As motivated before we

use cross validation (CV) to evaluate the empirical performance of candidate parameter

selections. For both alternative selections of W the CV estimates are shown in Table 2.

Minimum values are indicated with an asterisk. The obtained values of the CV criterion

di�er gradually across alternative implementations of the adaptive procedure. This result

may be attributed to the dependence of the criterion on a few outlying forecasting errors

which are large in absolute value. In general the criterion function turns out to be

negatively related to the grid parameter m0. Minimum CV values are often obtained

for m0 = 20 which can be directly related to the choice of relatively small smoothing

parameters � and �(�) implied by this grid length. Choosing W = W1 (W = W2)

the overall minimum of the CV function is obtained for M = 80;m0 = 20; � = 0:1; and

�(�) = 3:8 (M = 60;m0 = 20; � = 0:5; �(�) = 2:8). Note however, that the CV minimum

values are very close for M = 80 and M = 60. In the following we concentrate on the

discussion of empirical results obtained from alternative parameter choices M = 40 and

M = 80.

Volatility Estimates. Analogously to the parametric estimates in Figure 4 Figure

6 and Figure 7 show the adaptively estimated second order moments for the bivariate

exchange rate series for two implementations, namely M = 40;m0 = 20; � = 1:5; �(�) =

0:4 and M = 80;m0 = 20; � = 0:5; �(�) = 3:4. For both speci�cations we used the

multiple testing procedure (W = W2). In addition, the smoothed versions of Yt;w1

and the estimated lengths of homogeneous time intervals obtained from these parameter

choices are shown in Figure 8.

The adaptive procedure yields estimated processes of second order moments which are

somewhat smoother compared to the parametric approach. This result mirrors directly

the dependence of �t on single lagged innovations parameterized by means of the GARCH

model. In spite of their relatively smooth pattern the time paths of second order generated

by adaptive estimation clearly identify periods or clusters of higher and lower risk.

With respect to the time dependent pattern of the estimated moments both approaches

yield similar results. The smoothness of the volatility processes turns out to be positively

related with the parameter M . Note that the probability of falsely identifying a homo-

geneous interval of length M is still �xed to be � = 0:05. The lengths of identi�ed

homogeneous time intervals shown in Figure 8 mirror the latter result. Periods of iden-

ti�ed homogeneity tend to increase with M .
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In a considerable number of cases the adaptive procedure switches from identi�ed

long periods of homogeneity to the smallest possible duration of homogeneity (m0 = 20),

indicating the sensitivity of the method at the actual boundary. Note that this sensitivity

is even more obvious for the speci�cation with M = 40 compared to its counterpart

employingM = 80. The method operates similarly sensitive at the left end of investigated

time intervals (� � m). This can be seen from various reductions of the duration of

homogeneous periods from high to medium levels.

Standardized innovations. From the de�nition of the multivariate volatility model it

is seen that the elements of the vector of innovations "t = �
�1=2
t Rt should be independent

and identically distributed with mean zero and unit variance, i.e.

"t � iid(0; Id): (5.1)

�
1=2
t may be conveniently de�ned as

�
1=2
t = U>�1=2U;

where the elements of � are the eigenvalues of �t and the columns of U are the corre-

sponding eigenvectors. For the convenience of notation we skipped the time index t in

the de�nition of �
1=2
t .

Complementary to the moment conditions summarized in (5.1) higher order expecta-

tions are immediately derived from independence of "jt and "it, i 6= j,

E["it"
2
jt] = 0; coskewness;

E["2it"
2
jt] = 1; i 6= j cokurtosis:

Assuming a symmetric unconditional distribution of "it it also follows that E["
3
it] = 0 for

all i = 1; : : : ; d. Under conditional normality one also has E["4it] = 3; i = 1; : : : ; d. To

evaluate the accuracy of a multivariate volatility model one may now investigate whether

the empirical moments of estimated innovations match their theoretical counterparts or

not.

Following these lines we collect empirical moments of standardized innovations for

alternative volatility models in Table 3. Estimation results obtained from the parametric

BEKK model and from four adaptive models are reported. Apart from empirical mean

estimates we also provide the corresponding standard error estimates in parentheses. The

following conclusions can be drawn:

� All volatility models succeed in providing standardized residuals with mean zero and

unit variance. The empirical moments obtained from the BEKK model appear to

be somewhat closer to the theoretical counterparts compared to the adaptively com-

puted estimates. Note, however, that the maximization of the Gaussian likelihood

function implicitly tries to match these moment conditions. Empirical innovations
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"1;t and "2;t are also seen to be uncorrelated, i.e. the empirical mean "1"2 is not

signi�cantly di�erent from zero.

� Whereas innovations computed for the DEM/USD process ("1;t) appear to be sym-

metrically distributed the DEM/GBP ("2;t) process is generated from innovations

which are signi�cantly skewed to the right. Again this result holds for all employed

volatility models. It turns out, however, that the adaptive procedure yields mean

estimates "32 varying between 0.32 and 0.46 which are smaller in comparison to the

BEKK estimate of 0.53.

� Both innovation sequences exhibit excess kurtosis indicating that the conditional

volatility model under normality does not fully account for leptokurtic exchange

rate returns.

� With respect to the empirical coskewness measures we obtain a similar result as

reported above for the third order moments. Both coskewness estimates obtained

from the BEKK model di�er from zero. Depending on the particular choice of the

smoothing parameters the corresponding moments obtained from the adaptive pro-

cedure cannot be distinguished from zero and are smaller than the BEKK estimate

in almost all cases.

� All models yield an empirical cokurtosis of standardized innovations which is sig-

ni�cantly di�erent from unity. E.g. using the parametric approach the estimate

"21"
2
2 is 2.56. The standard error of this empirical mean is 0.6. Selecting rather mild

smoothing parameters � = 0:1; � = 6:4;m0 = 5;M = 40 and W = W2 the empir-

ical cokurtosis is 1.63 having a standard error of 0.18. Using a stronger smoother

(� = 0:1; � = 9:4;m0 = 5;M = 80) we obtain "21"
2
2 = 1:99 with standard error 0.33.

Summarizing the properties of empirical moments of estimated innovations implied by

alternative volatility speci�cations we are led to conjecture that the selection of the

smoothing parameters is essential for the practical performance of the adaptive modeling

procedure. Selecting small smoothing coe�cients adaptive modeling outperforms the

accuracy of the time homogeneous parametric approach namely the BEKK speci�cation

that we use as a benchmark model.

6. Conclusions and Outlook

We introduce a new framework for modelling time varying volatility observed for a vector

of return processes. The covariance matrix of the multivariate series is regarded as being

locally homogeneous. The length of homogeneous periods, however, is allowed to be time

varying. The advocated adaptive model aims to identify periods of homogeneity for given

time moments. Once locally homogeneous periods are identi�ed second order moments

are easily estimated and can be used for forecasting future volatilities.
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The advocated method provides an appealing tool for the empirical analysis in compar-

ison to parametric modelling of multivariate volatility processes for at least two reasons:

Similar to principal component analysis the large dimensionality of the dynamic model

is reduced by concentrating on a set of univariate processes. Second, nontrivial a priori

assumptions typical for parametric modelling as e.g. structural invariance of the dynamic

model are not made. Implementing the new model a set of global parameters has to be

speci�ed which determine the estimation results. By means of a Monte Carlo investiga-

tion we provide some guidelines concerning a sensible choice of global parameters of the

method.

The convenience of the adaptive model for applied work is illustrated for a bivariate

series of exchange rate returns. For convenience we compare our model with a competing

parametric speci�cation, namely the BEKK representation of the multivariate GARCH

model. It turns out that the adaptive model provides accurate estimates of time varying

variances and covariances. Turning to diagnostic tests based on multivariate standardized

residuals convenient implementations of the adaptive model are shown to yield superior

diagnostic results compared to the parametric GARCH speci�cation.

As outlined the new model is implemented using the unconditional eigenvectors of the

volatility process to reduce dimensionality. This approach is appealing in the light of

principal component analysis. Often the particular purpose of the analysis may lead the

analyst to apply other weights. A further issue arises from the assumption of modelling

locally constant volatility patterns. Considering locally trending behaviour of volatility,

for instance in the sequel of large unexpected price variations, may improve volatility

forecasts in practice. We regard both optimization of the method with respect to the

employed weighting scheme and allowance of exible patterns of local homogeneity as

topics for future research.

7. Proofs

In this section we collect the proofs of the results stated above. We start with the

following technical statements showing that the distribution of the random variable � =

D�1
 (j�j � C) with a standard normal � .

Lemma 7.1. For every  � 1 there exists a constant a > 0 such that

logE expu� � au
2

2
: (7.1)

For  = 1=2 , condition (7.1) meets with a = 1:08 (see Mercurio and Spokoiny

(2000)).

The next result is a direct consequence of Lemma 7.1.
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Lemma 7.2. Let ct be a predictable process w.r.t. the �ltration F = (Ft) , i.e. every

ct is a function of previous observations R1; : : : ; Rt�1 : ct = ct(R1; : : : ; Rt�1) . Then

for every w 2 W the process

Et;w = exp

 
tX

s=1

cs�s;w � a
2

tX
s=1

c2s

!
with �s;w = D�1

 (j�sj � C) is a submartingale, that is,

E (Et;w j Ft�1) � Et�1: (7.2)

The next result has been stated in Liptser and Spokoiny (1999) for Gaussian martin-

gale, however, the proof is based only on the property (7.2) and allows for a straightfor-

ward extension to the sums of the form Mt =
Pt

s=1 cs�s;w .

Theorem 7.1. Let Mt =
Pt

s=1 cs�s with a predictable coe�cients cs . Let then T be

�xed or stopping time. For every b > 0 , B � 1 and � � 1

P

�
jMT j > �

p
hMiT ; b �

p
hMiT � bB

�
� 4

p
e� (1 + logB) e

� �2

2a

where hMiT =

TX
t=1

c2t .

Remark 7.1. If the coe�cients ct are deterministic then the quadratic characteristic

hMiT is also deterministic, and one derives directly from Lemma 7.1 using the Tschebysh-

e� inequality:

P

�
jMT j > �

p
hMiT ;

�
� 2e

� �2

2a :

7.1. Proof of Theorem 2.1

De�ne

�I;w =
1

jIj
X
t2I

�t;w:

Then Ee�I;w = �I;w and by the Cauchy-Schwarz inequality

j�I;w � ��;wj = jIj�1
�����X
t2I

(�t;w � ��;w)

����� �
(
jIj�1

X
t2I

(�t;w � ��;w)
2

)1=2

� �I;w (7.3)

and, since �I;w is the arithmetic mean of �t;w over, I ,X
t2I

(�t;w � �I;w)
2 �

X
t2I

(�t;w � ��;w)
2 � jIj�2

I;w:

This yieldsX
t2I

�2t;w = jIjj�I;wj2 +
X
t2I

(�t;w � �I;w)
2 � jIj �j�I;wj2 +�2

I;w

� � jIj ��I;w +�I;w

�2
: (7.4)
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Next, by (2.6)

e�I;w � ��;w = jIj�1
X
t2I

(�t;w � ��;w) + s jIj�1
X
t2I

�t;w�t

and the use of (7.3) yields

P

�
je�I;w � ��;wj > �I;w + �vI;w

�
� P

 ����X
t2I

�t;w�t;w

���� > �

�X
t2I

�2t;w

�1=2!
:

In addition, if the volatility coe�cient �t satis�es b � �2t � bB with some positive

constant b;B , then the conditional variance v2I;w = s2 jIj�2
P

t2I �
2
t;w ful�lls

b0jIj�1 � v2I;w � b0jIj�1B

with b0 = bs2 . Now the assertion follows from (2.11) and Theorem 7.1.

7.2. Proof of Theorem 2.2

Clearly

je�I;w � ��;wj � je�I;w � �I;wj+ j�I;w � ��;wj � �I;w + je�I;w � �I;wj

and hence,

P

�
je�I;w � ��;wj > �I;w + �s(e�I;w +�I;w)jIj�1=2

�
� P

�
je�I;w � �I;wj > �s(�I;w � je�I;w � �I;wj+�I;w)jIj�1=2

�
� P

�
je�I;w � �I;wj > �s

1 + �s jIj�1=2
(�I;w +�I;w)jIj�1=2

�
:

By (2.3)

e�I;w � ��;w = jIj�1
X
t2I

(jw>Rtj � �t;w) = jIj�1s
X
t2I

�t;w�t

and the use of (7.4) implies

P

�
je�I;w � �I;wj > �s

1 + �s jIj�1=2
(�I;w +�I;w)jIj�1=2

�

� P
 ����X

t2I
�t;w�t

���� > �

1 + �s jIj�1=2
�X

t2I
�2t;w

�1=2!
:

Now the desirable result follows directly from Theorem 7.1.
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7.3. Proof of Theorem 2.3

Let II be a \good" interval. We intend to show that

fII is rejected g �
[

J2J (II)

n
je�J;w � �J;wj > �J;wvJ;w

o

which would imply the assertion in view of Theorem 7.1, cf. the proof of Theorem 2.1.

This statement is equivalent to saying that the inequality fII is rejectedg is impossible if

je�J;w � �J;wj � �J;wvJ;w ; 8J 2 J (II): (7.5)

We utilize the following

Lemma 7.3. Let (7.5) hold true. Then, for every 8J 2 J (II) ,

evJ;w � vJ;w

1 + �s jJ j�1=2
;

evJ;w � vJ;w

�
2� 1

1 + �s jJ j�1=2
�

Proof. De�ne �0J;w =
�jJ j�1Pt2J �

2
t;w

�1=2
. Then vJ;w = s jJ j�1=2�0J;w and evJ;w =

s jJ j�1=2e�J;w . The de�nition of �I;w implies

j�0J;w � �J;wj =

 
�J;w

2
+

1

jJ j
X
t2J

(�t;w � �J;w)
2

!1=2

� �J;w

� �j�J;wj2 +�2
J;w

�1=2 � �J;w � �J;w :

Along with (7.5) this implies

evJ;w = s jJ j�1=2e�J;w
� s jJ j�1=2

�
�0J;w � je�J;w � �J;wj � j�0J;w � �J;wj

�
� vJ;w � s jJ j�1=2(�J;wvJ;w +�J;w)

= vJ;w

 
1� �s jJ j�1=2

1 + �s jJ j�1=2
!

and the �rst assertion of the lemma follows. The second one is proved similarly.

By de�nition

fII is rejectedg =
[

I2J (II)

[
J2J (I)

n
je�I;w � e�J;wj > �evI;w + �evJ;wo :
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Since j�J;w � e�II;wj � �J;w = �J;wvJ;w for all J 2 J (II) , condition (7.5) yields for every

pair J � I 2 J (II)

je�I;w � e�J;wj � je�I;w � �I;wj+ j�I;w � e�II;wj+ je�J;w � �J;wj+ j�J;w � e�II;wj
� (�I;w + �I;w)vI;w + (�J;w + �J;w)vJ;w

=
�vI;w

1 + �s jIj�1=2
+

�vJ;w

1 + �s jJ j�1=2
:

By Lemma 7.3

�evI;w + �evJ;w � �vI;w

1 + �s jIj�1=2
+

�vJ;w

1 + �s jJ j�1=2

so that the event fII is rejectedg is impossible under (7.5) in view of � � � .

7.4. Proof of Theorem 2.4

Let II be a \good" interval. As in the proof of Theorem 2.3 it su�ces to show that the

inequality jb�w � ��;wj > 2(�+ �)vII;w is impossible under (7.5). Obviouslyn
jb�w � ��;wj > 2(�+ �)vII;w

o
�
n
jb�w � ��;wj > 2(�+ �)vII;w ; II � bIo + fII is rejectedg :

Since the event fII is rejectedg is impossible under (7.5), see the proof of Theorem 2.3,

it remains to consider the situation with fII � bIg . In view of the de�nition of bI , using
also the condition evII;w � evbI;w for II � bI , we get

je�
bI;w � e�II;wj � �evII;w + �ev

bI;w � (�+ �)evII;w
and by Lemma 7.3

je�
bI;w � e�II;wj � (�+ �)vII;w

�
2� 1

1 + �s jIIj�1=2
�

Next, by (7.5)

je�II;w � ��;wj � je�II;w � �II j+ j�II � ��;wj � je�II;w � �II j+�II;w

� �II;wvII;w +�II;w =
�vII;w

1 + �s jIIj�1=2
:

Hence, fII � bIg implies

jb�w � ��;wj � je�
bI;w � e�II;wj+ je�II;w � ��;wj

� 2�vII;w + �vII;w

�
2� 1

1 + �s jIIj�1=2
�

� 2(�+ �)vII;w :

This along with (7.5) yields the assertion.
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7.5. Proof of Theorem 3.2

Let w 2 W be such that (3.3) meets. To simplify the exposition, we suppose that �w = 1 .

(This does not restrict generality since one can always normalize each `observation' Yt;w

by �w .) We also suppose that �0w > 1 and bw = 2(�0w � 1) . (The case when �0w < �w

can be considered similarly.) Finally we assume that m0 = m . (One can easily see that

this case is the most di�cult one.) Under the change-point model, the `observations'

Yt;w = jw>Rtj are independent for all t and identically distributed within each interval

of homogeneity. In particular, it holds for e�J;w with J = [Tcp �m;Tcp[ :

e�J;w =
1

m

X
t2J

Yt;w = 1 +
sp
m
�w ;

with �w = m�1=2P
t2J �t;w . Similarly, for I = [� � 2m; � [ ,

e�I;w =
1

2m

X
t2I

Yt;w =
1 + �0w

2
+

s
2m

X
t2J

�t;w +
s�

0
w

2m

X
t2II

�t;w

=
1 + �0w

2
+

s
2
p
m
�w +

s�
0
w

2
p
m
�0w

with �0w = m�1=2P
t2II �t;w , and hence,

e�I;w � e�J;w = bw � s
2
p
m
�w +

s�
0
w

2
p
m
�0w :

Since Ej�wj2 = Ej�0wj2 = 1 , by Lemma 7.1 (see also Remark 7.1)

P (j�wj > �) + P
�j�0wj > �

� � 4e
� �2

2a

and it su�ces to check that the inequalities j�wj � � , j�0wj � � and (3.3) imply

je�J;w � e�I;wj � �evJ;w + �evI;w :
Since 1+�0w = 2bw and since evJ;w = s jJ j�1=2e�J;w and similarly for evI;w , it holds under
the assumptions made:

je�J;w � e�I;wj � bw � �s
2
p
m
(1 + �0w) = bw(1� �) � �;

evJ;w =
sp
m

�
1 +

sp
m
�w

�
� ��1� (1 + �) ;

evI;w =
sp
2m

�
1 + �0w

2
+
s(�w + �0w�0w)

2
p
m

�
� sp

2m

1 + �0w
2

(1 + �)

=
(1 + bw)�(1 + �)

�
p
2

:
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Now, the use of (3.3) implies

je�J;w � e�I;wj � �evJ;w � �evI;w
� bw(1� �)� � � �(1 + �) � �

�
p
2
(1 + bw)�(1 + �)

= bw

�
1� � � �

�
p
2
�(1 + �)

�
� � � �(1 + �)� �

�
p
2
�(1 + �) > 0

and the assertion follows.
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M = 40 M = 60 M = 80
m0 5 10 20 5 10 20 5 10 20
� �0

0.1 .2745 .2733 .2731� .2731 .2720 .2715 .2723 .2720 .2713
0.5 .2724 .2727 .2732 .2710 .2711 .2713 .2703 .2710 .2709
1.0 .2705 .2716 .2732 .2685 .2699 .2710 .2679 .2695 .2706
1.5 .2694� .2713� .2734 .2670 .2691 .2706 .2659 .2683 .2700
2.0 .2694 .2716 .0000 .2667� .2686� .2704� .2652� .2675 .2698�
2.5 .2703 .2722 .0000 .2673 .2688 .0000 .2653 .2675� .0000
3.0 .2713 .0000 .0000 .2680 .0000 .0000 .2663 .0000 .0000
� 2�0

0.1 .2849 .2827 .2841� .2822 .2807 .2807 .2806 .2791 .2784
0.5 .2827 .2822 .2842 .2803 .2799 .2804 .2787 .2778 .2780
1.0 .2803 .2821 .2845 .2777 .2782 .2801 .2756 .2760 .2776
1.5 .2792 .2816 .2848 .2760 .2767 .2799 .2731 .2747 .2771
2.0 .2784� .2807 .0000 .2744 .2757 .2795� .2710 .2731 .2769�
2.5 .2788 .2805� .0000 .2738 .2748� .0000 .2697 .2716� .0000
3.0 .2787 .0000 .0000 .2731� .0000 .0000 .2694� .0000 .0000
� 3�0

0.1 .2896 .2878 .2919� .2861 .2847 .2865 .2843 .2829 .2834
0.5 .2874 .2874 .2922 .2842 .2839 .2863 .2824 .2815 .2829
1.0 .2856 .2871 .2928 .2817 .2821 .2861 .2791 .2798 .2823
1.5 .2840 .2864 .2930 .2798 .2809 .2861 .2765 .2781 .2818�
2.0 .2831 .2854 .0000 .2779 .2794 .2858� .2739 .2763 .2819
2.5 .2833 .2849� .0000 .2768 .2782� .0000 .2719 .2746� .0000
3.0 .2823� .0000 .0000 .2757� .0000 .0000 .2711� .0000 .0000

Table 1: MLDFE estimates for alternative adaptive model implementations and 3
di�erent data generating processes (W =W1).



32 H�ARDLE, W., HERWARTZ, H., AND SPOKOINY, V.G.

M = 40 M = 60 M = 80
m0 5 10 20 5 10 20 5 10 20
� W =W1

0.1 1.441 1.441 1.425 1.435� 1.437� 1.421 1.440 1.433� 1.420�
0.5 1.437� 1.443 1.424� 1.436 1.441 1.421� 1.439� 1.439 1.425
1.0 1.453 1.441� 1.427 1.445 1.447 1.423 1.443 1.444 1.422
1.5 1.465 1.446 1.425 1.453 1.447 1.424 1.446 1.448 1.423
2.0 1.479 1.446 - 1.471 1.447 1.426 1.478 1.446 1.426
2.5 1.481 1.449 - 1.477 1.444 - 1.481 1.447 -
3.0 1.486 - - 1.480 - - 1.494 - -

W =W2

0.1 3.209� 3.185 3.147 3.177� 3.159� 3.137 3.156� 3.163� 3.142
0.5 3.231 3.177� 3.147 3.182 3.172 3.132� 3.170 3.168 3.140�
1.0 3.239 3.182 3.147 3.186 3.184 3.137 3.177 3.175 3.143
1.5 3.230 3.188 3.145� 3.212 3.182 3.142 3.198 3.170 3.142
2.0 3.244 3.198 - 3.229 3.178 3.144 3.220 3.177 3.141
2.5 3.257 3.196 - 3.247 3.181 - 3.241 3.181 3.143
3.0 3.274 3.203 - 3.248 3.198 - 3.248 3.198 -
3.5 3.274 - - 3.261 - - 3.250 - -

Table 2: Cross validation estimates for the adaptive model applied to a bivariate
exchange rate series.
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M = 40 M = 80 BEKK
m0 = 5 m0 = 20 m0 = 5 m0 = 20

� 0.1 1.5 0.1 0.5
�(�) 6.4 0.4 9.4 3.4b"1t �0:00

(:017)
�0:01
(:017)

0:00
(:017)

�0:01
(:017)

�0:01
(:016)b"2t 0:03

(:016)
0:03
(:017)

0:03
(:016)

0:03
(:016)

0:03
(:017)b"21t 1:04

(:032)
1:08
(:035)

1:04
(:034)

1:05
(:034)

0:99
(:036)b"22t 0:99

(:030)
1:05
(:035)

0:97
(:033)

1:01
(:037)

1:02
(:040)b"31t �0:13

(:117)
�0:24
(:142)

�0:19
(:131)

�0:28
(:170)

�0:29
(:170)b"32t 0:32

(:106)
0:43
(:141)

0:33
(:129)

0:46
(:178)

0:53
(:209)b"41t 4:94

(:458)
5:73
(0:65)

5:33
(:570)

6:06
(0:994)

5:72
(:993)b"42t 4:40

(:407)
5:51
(0:68)

4:95
(:566)

6:03
(1:058)

7:00
(1:34)b"1tb"2t 0:02

(:021)
�0:00
(:024)

0:02
(:023)

0:00
(:027)

�0:01
(:026)b"11tb"22t �0:08

(:054)
�0:16
(:085)

�0:113
(:078)

�0:20
(:130)

�0:21
(:107)b"21tb"12t 0:13

(:057)
0:19
(:087)

0:16
(:077)

0:24
(:130)

0:24
(:113)b"21tb"22t 1:63

(:18)
2:17
(:40)

1:99
(:329)

2:73
(:839)

2:56
(:600)

Table 3: Empirical moments of estimated innovation vectors obtained from alterna-
tive volatility models. Standard errors in parentheses. For the adaptive model the
multiple testing rule (W =W2) is applied.
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Figure 1: Estimated functions �(�) providing type I error probability of falsely identifying a homo-
geneous interval of length M as being heterogeneous. Alternative parameters m0 and two sets W,
namely W1 (upper panels) and namely W2 (lower panels) are distinguished.
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�0 2�0 3�0

m0 = 5 m0 = 5 m0 = 5

m0 = 10 m0 = 10 m0 = 10

m0 = 20 m0 = 20 m0 = 20

m0 = 10 m0 = 10 m0 = 10

Figure 2: Median estimates and interquartile ranges for b�t;w1
obtained for the adaptive modelling

procedure. The sample size of the generated processes was T = 7M . Results are shown for M = 40
(three upper panels) and M = 80 (bottom panel). The adaptive models are implemented using
W =W2. Solid curves show the underlying true quantities.



36 H�ARDLE, W., HERWARTZ, H., AND SPOKOINY, V.G.

DEM/USD

GBP/USD

Figure 3: First di�erences of log exchange rates
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�12
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Figure 4: Typical elements of �t �105 obtained from the estimated BEKK volatility model
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Figure 5: Elements of eigenvectors corresponding to recursive eigenvalues shown in Figure
1. Lower panel: Centered process Yt;w1

.
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Figure 6: Typical elements of �t � 105 obtained from the adaptive modelling procedure
with M = 40, W =W2
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Figure 7: Typical elements of �t � 105 obtained from the adaptive modelling procedure
with M = 80, W =W2
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M = 40

M = 40

M = 80

M = 80

m0 = 20

m0 = 20

m0 = 20
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Figure 8: Smoothed estimates for Yt;w1
and estimated lengths of homogeous time intervals.

M = 40 (upper two panels) and M = 80 (lower two panels), W =W2.


