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Abstract

We develop a Bayesian cointegration test statistic that can be used
under a Jeffreys’ prior. The test statistic is equal to the posterior ex-
pectation of the classical score statistic. Under the assumption of a full
rank value of the long run multiplier the test statistic is a random vari-
able with a chi-squared distribution. We evaluate whether the value of
the test statistic under the restriction of cointegration is a plausible re-
alization from its distribution under the encompassing, full rank model.
We provide the posterior simulator that is needed to compute the test
statistic. The simulator utilizes the invariance properties of the Jeffreys’
prior such that the parameter drawings from a suitably rescaled model can
be used. The test statistic can straightforwardly be extended to a more
general model setting. For example, we show that structural breaks in
the constant or trend and general mixtures of normal disturbances can be
modelled, because conditional on some latent parameters all derivations
still hold. We apply the Bayesian cointegration statistic to the Danish
dataset of Johansen and Juselius (1990) and to four artificial examples to
illustrate the use of the statistic as a diagnostic tool.

1 Introduction

In Bayesian statistics models are typically compared using the Bayes Factor
or Posterior Odds Ratios. They cannot however not routinely be applied in
models containing improper priors such as the commonly used Jeffreys’ prior.
We develop a Bayesian statistic that can be used to compare a cointegration
model to an encompassing full rank model using a Jeffreys’ prior.

We specify the full rank model in such a way that setting a particular,
uniquely defined parameter to zero corresponds to imposing the cointegra-
tion restriction of rank reduction on the long-run multiplier parameter matrix.
When we use a Jeffreys’ prior both on the parameters of the cointegration model
and the unrestricted error correction model, we show that the posterior of the
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cointegration model is equal to a conditional posterior of the parameters of the
unrestricted error correction model given that the parameter associated with
the cointegration restriction equals zero.

Hence, when we can construct the marginal posterior of this specific pa-
rameter from the unrestricted error correction model, it indicates whether the
cointegration restriction is a plausible parameter realization. The analytical ex-
pression of the marginal posterior of the parameter that reflects cointegration
is unknown. Instead of using the marginal posterior, we therefore construct a
statistic that is a random variable with a standardized distribution when we
use the posterior of the parameters of the unrestricted error correction model.
This statistic is equal to the posterior expectation, with respect to the parame-
ters that are present in the cointegration model, of the classical score statistic.
We can then construct the expression of this statistic using the posterior that
results under the nested model. We consider the resulting value as a realiza-
tion from the standardized distribution under the unrestricted error correction
model and we can determine whether it is a realization from the tail or the area
with the bulk of the probability mass. This then shows whether the cointegra-
tion assumption is a plausible restriction on the unrestricted error correction
model.

The paper is organized as follows. In section 2, we define the cointegration
model. We show that the Jeffreys’ prior on the parameters of the cointegration
model can also be considered to result as a conditional prior of a Jeffreys’ prior
on the parameters of the encompassing unrestricted error correction model.
This prior is conditional on a particular parameter being equal to zero. The
parameter results from a singular value decomposition and reflects rank reduc-
tion of the long run multiplier. We construct a posterior simulator for the
posterior parameters of the cointegration model using a Jeffreys’ prior. In sec-
tion 3, we construct the Bayesian score test statistic for cointegration. This
statistic also results from the singular value decomposition of the long run mul-
tiplier. We construct it in such a way that it has a χ2 distribution under the
unrestricted model.

Furthermore, we apply the resulting Bayesian cointegration analysis to four
artificial examples. We find that the statistic accurately detects misspecification
of the cointegration restriction. We also apply the method to the Danish data-
set from Johansen and Juselius (1990). In section 4, we indicate some model
extensions that are allowed for by our Bayesian cointegration testing procedure.
The fifth section concludes.

2 Cointegration model with N(0, Σ) errors

2.1 Model and likelihood

The vector autoregressive model of order k (VAR(k)) reads

Yt = µ + τt +
k

∑

i=1

ΦiYt−i + εt, (2.1)
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where Yt, t = 1, 2, . . . , T , is a n-dimensional process and εt follows a n-dimensional
white noise process. In this section we consider the case of multivariate NID εt,
with mean 0 and covariance matrix Σ.

We refer to the error correction form of the VAR(k) model as the linear
error correction model (LEC),

∆Yt = µ + τt + Π′Yt−1 +
k−1
∑

i=1

Γi∆Yt−i + εt, (2.2)

where Π′ =
∑k

i=1 Φi − In and Γi = −
∑k

j=i+1 Φj .
The likelihood function of the LEC model is

Llec(Y |Π,Σ) ∝
T

∏

t=2

|Σ|−
1
2 exp

[

−1
2
ε′tΣ

−1εt

]

= |Σ|−
1
2 (T−1) exp

[

−1
2

tr
(

Σ−1ε′ε
)

]

= |Σ|−
1
2 (T−1) exp

[

−1
2

tr
(

Σ−1(∆Y − Y−1Π)′(∆Y − Y−1Π)
)

]

.

(2.3)

If Π has reduced rank r, then it can be specified as the product of two (full
rank) n× r matrices α′ and β:

Π = βα. (2.4)

A straightforward way of identifying the elements of α and β is by normalizing
β as

β =
(

Ir
−β2

)

. (2.5)

We shall refer to the resulting model as the error correction cointegration
(ECC) model. In matrix notation the ECC model can be specified as

∆Y = Y−1βα + XΦ + ε, (2.6)

where ∆Y = (∆Yk+1 . . .∆YT )′, Y−1 = (Yk . . . YT−1)′, ε = (εk+1 . . . εT )′, X =
(X ′

k+1 . . . X ′
T )′, Xt = (∆Y ′

t−1 . . .∆Y ′
t−k 1 t) and Φ = (Γ1 . . . Γk−1 µ τ)′.

In the following sections we confine our attention to the case of an ECC model
of order 1 without deterministic components, i.e

∆Y = Y−1βα + ε (2.7)

whose likelihood function is

Lecc(Y |α, β2, Σ) ∝ |Σ|−
1
2 (T−1) exp

[

−1
2

tr
(

Σ−1(∆Y − Y−1βα)′(∆Y − Y−1βα)
)

]

=Llec(Y |Π, Σ)|Π=βα.
(2.8)
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2.2 Jeffreys’ prior and posterior

Jeffreys’ prior on α and β

We assume a Jeffreys’ prior on the parameters of the ECC model. The Jeffreys’
prior is proportional to the square root of the determinant of the information
matrix of and it can be specified as:

pecc(Σ) ∝ |Σ|−(n+1)/2 (2.9)

and

pecc(α, β2|Σ) ∝|I(α, β2|Σ)|
1
2

=
∣

∣

∣

∣

(

∂ vec(Π)
∂(vec(α)′ vec(β2)′)

)′
I(Π|Σ)

(

∂ vec(Π)
∂(vec(α)′ vec(β2)′)

)∣

∣

∣

∣

1
2

=

∣

∣

∣

∣

∣

(

In ⊗ β α′ ⊗
(

0
−In−r

))′
(Σ−1 ⊗ Y ′

−1Y−1)

(

In ⊗ β α′ ⊗
(

0
−In−r

))∣

∣

∣

∣

1
2

,

(2.10)

where I(α, β2|Σ) and I(Π|Σ) denote the conditional information matrices.

Jeffreys’ prior invariant under transformations

The Jeffreys’ prior is invariant under data and parameter transformations, see
e.g Box and Tiao (1973). Therefore, a large part of the analysis of the cointe-
gration model can also be done in a suitably transformed model provided that
also on its parameters a Jeffreys’ prior is specified.

Jeffreys’ prior on α∗ and β∗2 in a rescaled model

The LEC model of order 1 without deterministic components is rescaled by
postmultiplying both sides of the equation by the inverse of the matrix square
root 1 of Σ such that the covariance matrix of the resultant disturbances εtΣ−

1
2

becomes the identity matrix. Note that implicitly we have conditioned on Σ.
Moreover, the parameter matrix Π is premultiplied by the matrix square root
of Y ′

−1Y−1 and the data matrix Y−1 is postmultiplied by the inverse of this
expression, such that

∆Y Σ−
1
2 = Y−1(Y ′

−1Y−1)−
1
2 Π∗ + η, (2.11)

1A matrix square root of a matrix A is any matrix A
1
2 that satisfies A = A

1
2 A

1
2 . For a

positive semidefinite matrix A the matrix square root is calculated as C′Λ
1
2 C, where Λ

1
2 is a

diagonal matrix with the square roots of the eigenvalues of A on its diagonal and C contains
the corresponding orthonormal eigenvectors of A in its columns.
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with η ∼ N(0, In ⊗ IT ) and Π∗ = (Y ′
−1Y−1)

1
2 ΠΣ−

1
2 . Rank reduction of the

parameter matrix Π∗ implies that similar to (2.4) it can be specified as the
product of two matrices α∗ and β∗ of lower dimension such that

Π∗ = β∗α∗ = (Y ′
−1Y−1)

1
2 βαΣ−

1
2 (2.12)

We normalize β∗ similarly to β as

β∗ =
(

Ir
−β∗2

)

. (2.13)

The Jeffreys’ prior on the parameters α∗ and β∗2 has the same structure
as the Jeffreys’ prior on α and β in the unscaled model but as a result of the
scaling the expression corresponding to Σ−1 ⊗ Y ′

−1Y−1 in the prior (2.9) of the
unscaled model now simplifies to In ⊗ In such that

pecc(α∗, β∗2 |Σ) ∝

∣

∣

∣

∣

∣

(

In ⊗ β∗ α∗′ ⊗
(

0
−In−r

))′(

In ⊗ β∗ α∗′ ⊗
(

0
−In−r

))

∣

∣

∣

∣

∣

1
2

=
∣

∣

∣

∣

In ⊗ β∗′β∗ α∗′ ⊗ β∗2
′

α∗ ⊗ β∗2 α∗α∗′ ⊗ In−r

∣

∣

∣

∣

1
2

(2.14)

The Jeffreys’ prior on α and β2 (or α∗ and β∗2) can also be obtained using
another way of reasoning. Kleibergen and Paap (1998) provide a framework
to construct priors on α and β that are consistent with a natural conjugate or
diffuse prior on the unrestricted matrix Π, conditional on the rank restriction.
This nesting principle is then used to derive the posterior for the parameters and
an algorithm to simulate from it is described. We also show that the Jeffreys’
prior on α and β is equivalent to a diffuse prior on the parameter matrix of
some rescaled unrestricted VAR model conditional on the restriction of rank
reduction.

Specification of the rank reduction restriction using the singular value
decomposition

The rank restriction on Π and hence on Π∗ can be expressed explicitly using
the following decomposition that is based on the singular value decomposition
(see Kleibergen and Paap (1998))

Π∗ = β∗α∗ + β∗⊥λα∗⊥, (2.15)

where β∗ =
(

Ir −β∗2
′)′ in which β∗2 is a (n− r)× r matrix; β∗⊥ is a n× (n− r)

matrix such that β′β∗⊥ = 0 and β∗⊥
′β∗⊥ = In−r; α∗⊥ is a (n− r)× n matrix such

that α∗⊥α∗′ = 0 and α∗⊥α∗⊥
′ = In−r; λ is a (n − r) × (n − r) matrix. Rank

reduction occurs when λ = 0 because (2.15) then reduces to Π∗ = β∗α∗.
Explicit expressions for α∗⊥ and β∗⊥ that obey these requirements can be

constructed. We will use α∗⊥ = (In−r + α∗2
′α∗1

−1′α∗1
−1α∗2)

− 1
2
(

−α∗2
′α∗1

−1′ In−r
)

and β∗⊥ =
(

β∗2 In−r
)′ (In−r + β∗2β∗2

′)−
1
2 .
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All matrices involved in this decomposition can readily be computed from
Π∗ using the singular value decomposition

Π∗ = USV ′, (2.16)

with U and V orthogonal n × n matrices such that U ′U = In and V ′V = In,
and S a n× n diagonal matrix having the singular values of Π∗ on its diagonal
in decreasing order. The singular values of a matrix Π∗ are the eigenvalues
of the square symmetric matrix Π∗′Π∗ and are therefore always real and non-
negative. As the rank of a matrix equals the number of non-zero singular
values, the singular value decomposition seems a natural way of dealing with
the restriction of rank reduction.

The matrices U , S and V are partitioned,

U =
(

U11 U12
U21 U22

)

, S =
(

S1 0
0 S2

)

, and V =
(

V11 V12
V21 V22

)′
, (2.17)

with U11, S1, and V11 r×r matrices, U22, S2, and V22 (n−r)× (n−r) matrices,
U21 and V21 (n− r)× r matrices, and U12 and V12 r × (n− r) matrices.

The matrices in decomposition (2.15) can all be written in terms of the
blocks of U , S and V .

α∗ = U11S1
(

V ′
11 V ′

21
)

, (2.18)

β∗2 = −U21U−1
11 , (2.19)

λ = (U22U ′
22)

− 1
2 U22S2V ′

22(V22V ′
22)

− 1
2 , (2.20)

α∗⊥ = (V22V ′
22)

1
2 V −1

22
′ (V ′

12 V ′
22

)

, (2.21)

β∗⊥ =
(

U12
U22

)

U−1
22 (U22U ′

22)
1
2 . (2.22)

Jeffreys’ prior is implied by diffuse prior on Π∗

We specify a diffuse prior on Π∗, that is plec(Π∗|Σ) ∝ 1. The prior of α∗, β∗2 , λ|Σ
results from Π∗|Σ by the transformation of random variables defined by (2.15)
such that

puec(α∗, β∗2 , λ|Σ) =plec(Π∗|Σ)|Π∗=β∗α∗+β∗⊥λα∗⊥ |J(Π∗, (α∗, β∗2 , λ))|
∝|J(Π∗, (α∗, β∗2 , λ))|,

(2.23)

where J(Π∗, (α∗, β∗2 , λ)) denotes the Jacobian of the transformation from Π∗ to
(α∗, β∗2 , λ). The conditional prior puec(α∗, β∗2 |λ, Σ) is fully determined by the
joint prior puec(α∗, β∗2 , λ|Σ). We evaluate the conditional prior puec(α∗, β∗2 |λ, Σ)
in λ = 0 to obtain a prior pecc(α∗, β∗2 |Σ) for the ECC model. Constructing the
prior for the ECC model in this way ensures that it is consistent with the prior
knowledge from the encompassing LEC model, i.e plec(Π∗|Σ) ∝ 1. The extra
information in the ECC model, namely the restriction λ = 0 which represents
the imposition of rank reduction, is taken into account by conditioning on it.
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We now have,

pecc(α∗, β∗2 |Σ) =puec(α∗, β∗2 |λ = 0,Σ)

=
puec(α∗, β∗2 , λ|Σ)|λ=0

puec(λ|Σ)|λ=0

∝|J(Π∗, (α∗, β∗2 , λ))||λ=0.

(2.24)

To calculate the Jacobian we first note that the total differential of (2.15)
evaluated in λ = 0 reads,

dΠ∗ = d(β∗α∗) + d(β∗⊥λα∗⊥)

= β∗(dα∗) + (dβ∗)α∗ + β∗⊥λ(dα∗⊥) + β∗⊥(dλ)α∗⊥ + (dβ∗⊥)λα∗⊥
λ=0= β∗(dα∗) + (dβ∗)α∗ + β∗⊥(dλ)α∗⊥

= β∗(dα∗) +
(

0
−In−r

)

(dβ∗2)α∗ + β∗⊥(dλ)α∗⊥,

(2.25)

such that for the partial derivatives it holds that

∂ vec(Π∗)
∂ vec(α∗)′

∣

∣

∣

∣

λ=0
= In ⊗ β∗, (2.26)

∂ vec(Π∗)
∂ vec(β∗2)′

∣

∣

∣

∣

λ=0
= α∗′ ⊗

(

0
−In−r

)

, (2.27)

and
∂ vec(Π∗)
∂ vec(λ)′

= α∗⊥
′ ⊗ β∗⊥, (2.28)

see e.g. Magnus and Neudecker (1999).
Therefore, the determinant of the Jacobian reads,

|J(Π∗, (α∗, β∗2 , λ))||λ=0 =
∣

∣

∣

∂ vec(Π∗)
∂ vec(α∗)′

∣

∣

∣

λ=0

∂ vec(Π∗)
∂ vec(β∗2 )′

∣

∣

∣

λ=0

∂ vec(Π∗)
∂ vec(λ)′

∣

∣

∣

λ=0

∣

∣

∣

=
∣

∣

∣

∣

In ⊗ β∗ α∗′ ⊗
(

0
−In−r

)

α∗⊥
′ ⊗ β∗⊥

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

In ⊗ β∗ α∗′ ⊗
(

0
−In−r

)

α∗⊥
′ ⊗ β∗⊥

)′

(

In ⊗ β∗ α∗′ ⊗
(

0
−In−r

)

α∗⊥
′ ⊗ β∗⊥

)∣

∣

∣

∣

1
2

=

∣

∣

∣

∣

∣

∣

In ⊗ β∗′β∗ α∗′ ⊗ β′2 0
α∗ ⊗ β∗2 α∗α∗′ ⊗ In−r 0

0 0 In−r ⊗ In−r

∣

∣

∣

∣

∣

∣

1
2

=
∣

∣

∣

∣

In ⊗ β∗′β∗ α∗′ ⊗ β∗2
′

α∗ ⊗ β∗2 α∗α∗′ ⊗ In−r

∣

∣

∣

∣

1
2

,

(2.29)

where we have used the orthogonality properties of β∗⊥ and α∗⊥.
The last expression from (2.29) equals the Jeffreys’ prior from (2.14). We

have thus shown that in the rescaled model both Jeffreys’ rule and the condi-
tional densities approach yield the same prior.
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Posterior under a diffuse prior on Π∗

Specifying a diffuse prior on Π∗, that is plec(Π∗|Σ) ∝ 1 the posterior conditional
on Σ becomes

Π∗|Σ, Y ∼ N(Π̂∗, In ⊗ In), (2.30)

where Π̂∗ = (Y ′
−1Y−1)−

1
2 Y ′
−1∆Y Σ−

1
2 = (Y ′

−1Y−1)
1
2 Π̂Σ−

1
2 when we define Π̂ =

(Y ′
−1Y−1)−1Y ′

−1∆Y . The marginal posterior of Σ in the unscaled model is

p(Σ|Y ) ∝ |∆Y ′∆Y − Π̂′Y ′
−1Y−1Π̂|(T−n)/2|Σ|T/2

exp(−1
2

tr(Σ−1∆Y ′∆Y − Π̂′Y ′
−1Y−1Π̂)), (2.31)

which is an inverted Wishart distribution with T − 1 degrees of freedom and
scale parameter matrix ∆Y ′∆Y − Π̂′Y ′

−1Y−1Π̂.
Not only the prior but also the posterior of α∗, β∗2 , λ|Σ, Y in the UEC model

satisfies the transformation of random variables defined by (2.15) such that

puec(α∗, β∗2 , λ|Σ, Y ) = plec(Π∗|Σ, Y )|Π∗=β∗α∗+β∗⊥λα∗⊥ |J(Π∗, (α∗, β∗2 , λ))|. (2.32)

The conditional posterior α∗, β∗2 |λ,Σ, Y which is proportional to it can be
evaluated in λ = 0 to obtain the posterior of α∗, β∗2 |Σ, Y in the ECC model.

pecc(α∗, β∗2 |Σ, Y ) = puec(α∗, β∗2 |λ,Σ, Y )|λ=0

∝ puec(α∗, β∗2 , λ|Σ, Y )|λ=0

= plec(Π∗|Σ, Y )|Π∗=β∗α∗ |J(Π∗, (α∗, β∗2 , λ))||λ=0.

(2.33)

It is identical to the posterior that is obtained using a Jeffreys’ prior. Hence,
we can consider the ECC model as a parameter realization λ = 0 in the LEC.

2.3 Simulating from the posterior

We employ the equivalence of the Jeffreys’ prior and the prior based on the
idea of a rescaled encompassing model to simulate from the posterior of the
parameters of the cointegration model. First, parameter values are sampled
from the rescaled model and then these are transformed back to obtain a sample
from the posterior of the parameters of the (unscaled) ECC model under a
Jeffreys’ prior.

Sampling algorithm based on diffuse prior on Π∗ and nesting

Straightforwardly simulating α∗ and β∗2 using a Gibbs sampler is not possible
due to the difficult dependence structure of the full conditional posterior densi-
ties of α∗ and β∗2 , see Kleibergen en Van Dijk (1994). Π∗ from the LEC model
has a posteriori a normal distribution. The decomposition in (2.15) allows us
to obtain a drawing of α∗ and β∗2 (and λ) for the UEC model from a drawing
of Π∗. The dependency of α∗ and β∗2 is now avoided by determining α∗ and β∗2
simultaneously.
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This poses the problem that our posterior of interest, pecc(α∗, β∗2 |Σ, Y ), does
not involve λ while it is sampled. Chen (1994) suggests the following approach.
For simulating from the posterior pecc(α∗, β∗2 |Σ, Y ) it is first extended with an
artificial extra parameter λ with density g(λ|α∗, β∗2 , Σ, Y ). We use a Metropolis-
Hastings (M-H) sampling algorithm, see e.g. Chib and Greenberg (1994), for
simulating from the joint density

pg(α∗, β∗2 , λ, Σ|Y ) = g(λ|α∗, β∗2 , Σ, Y )pecc(α∗, β∗2 ,Σ|Y ). (2.34)

. The posterior puec(α∗, β∗2 , λ|Σ, Y ) from (2.32) is used as the candidate gen-
erating density. When pg(α∗, β∗2 , λ, Σ, Y ) is marginalized with respect to λ
in order to remove the artificial parameter λ, the resultant distribution is
pecc(α∗, β∗2 , Σ|Y ). The simulated values of α∗, β∗2 , Σ (discarding λ) therefore
are a sample from pecc(α∗, β∗2 , Σ|Y ).

The choice of g(λ|α∗, β∗2 , Σ, Y ) leads to the weight function w(α∗, β∗2 , λ, Σ)
for use in the M-H algorithm. The acceptance probability in the M-H depends
on a weight function which is the ratio of the target density (2.34) and the
candidate generating density (2.32),

w(α∗, β∗2 , λ, Σ) =
pg(α∗, β∗2 , λ, Σ|Y )

puec(α∗, β∗2 , λ,Σ|Y )

=
g(λ|α∗, β∗2 ,Σ, Y )pecc(α∗, β∗2 |Σ, Y )

puec(α∗, β∗2 , λ, Σ|Y )

=
g(λ|α∗, β∗2 , Σ, Y ) exp(−1

2(tr(β∗α∗ − Π̂∗)′(β∗α∗ − Π̂∗))

exp(−1
2(tr(β∗α∗ + β∗⊥λα∗⊥ − Π̂∗)′(β∗α∗ + β∗⊥λα∗⊥ − Π̂∗))

|J ||λ=0

|J |
.

(2.35)

The exponentiated trace expressions in numerator and denominator are re-
lated to each other by

tr((β∗α∗ + β∗⊥λα∗⊥ − Π̂∗)′(β∗α∗ + β∗⊥λα∗⊥ − Π̂∗))

= tr((β∗α∗ − Π̂∗)′(β∗α∗ − Π̂∗)) + tr((λ− β∗⊥
′Π̂∗α∗⊥

′)′(λ− β∗⊥
′Π̂∗α∗⊥

′))

+ tr((β∗⊥
′Π̂∗α∗⊥

′)′β∗⊥
′Π̂∗α∗⊥

′)

= tr((β∗α∗ − Π̂∗)′(β∗α∗ − Π̂∗)) + tr((λ− λ̃)′(λ− λ̃)) + tr(λ̃′λ̃)

(2.36)

where λ̃ = β∗⊥
′Π̂∗α∗⊥

′. A sensible choice for the density function g(λ|α∗, β∗2 , Σ, Y )
thus turns out to be

g(λ|α∗, β∗2 ,Σ, Y ) ∝ exp(−1
2

tr((λ− λ̃)′(λ− λ̃))). (2.37)

Using this choice of g(λ|α∗, β∗2 ,Σ, Y ) the weight function reduces to

w(α∗, β∗2 , λ, Σ) = (2π)−
1
2 (n−r)2 exp(−1

2
tr(λ̃′λ̃))

|J(Π∗, (α∗, β∗2 , λ))||λ=0

|J(Π∗, (α∗, β∗2 , λ))|
. (2.38)

The steps required in the sampling algorithm are,

1. Draw Σi+1 from pecc(Σ|Y )
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2. Draw Π∗i+1 from (2.30)

3. Compute α∗i+1, β∗i+1
2 , λi+1 from Π∗i+1 using the singular value decompo-

sition

4. Accept Σi+1, α∗i+1 and β∗i+1 with probability min
(

w(α∗i+1,β∗i+1
2 ,λi+1,Σi+1)

w(α∗i,β∗i
2 ,λi,Σi) , 1

)

Sampling algorithm can also be used for unscaled model

The idea behind simulation from the posterior of α, β2|Σ is that α∗ and β∗2 from
the transformed model are sampled using the procedure from Kleibergen and
Paap (1998). Subsequently, these values are transformed back to the original
model. This is possible because both in the scaled and in the unscaled model
the Jeffreys’ prior is used. The invariance to scaling of the Jeffreys’ prior ensures
that the prior information is consistent among both models and that a posterior
sampler in either model can be used. Obviously the posterior sampler of the
well-behaved scaled model is preferred. The procedure can thus be extended
with one extra step to obtain a drawing from the posterior of the unscaled
model:

5 Compute (βα)i+1 = (Y ′
−1Y−1)−

1
2 β∗i+1α∗i+1Σ

1
2 and solve for αi+1 and

βi+1
2 using the singular value decomposition.

3 Bayesian test for cointegration

We showed that the posterior of the parameters of the cointegration model
using a Jeffreys’ prior is equal to a conditional posterior of the parameters of
the unrestricted error correction model, given that the parameter λ associated
with the cointegration restriction is equal to zero. Hence, we can consider the
cointegration model as a realization from the posterior of the parameters of the
unrestricted error correction model. If we can determine whether this realiza-
tion is from the tail or the area with the bulk of the probability mass, then we
can use this information as a diagnostic device, because it reflects the plausi-
bility of the cointegration restriction. It enables us to detect misspecification
of the cointegration rank. An analytical expression of the marginal posterior
of the parameter on which we need to condition is, however, unknown. We
can then not use the marginal posterior to determine whether the realization
resulted from the tail.

We therefore construct a statistic that is equal to the expectation of a func-
tion of λ and the remaining model parameters, such that it has a standardized
distribution. The expectation is taken with respect to the posterior distribution
from the unrestricted error correction model of the remaining parameters. We
show that the function that we take the expectation of can be interpreted as the
classical score statistic. A Bayesian test of the cointegration restrictions now
consists of comparing the value of this statistic under the cointegration model
to a χ2 distribution.
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3.1 Derivation

Distribution of λ

In (2.32) we showed how the joint posterior α∗, β∗2 , λ|Σ, Y is derived from
Π∗|Σ, Y , which has a normal distribution, using the decomposition Π∗ = β∗α∗+
β∗⊥λα∗⊥. Conversely, it holds that β∗α∗+β∗⊥λα∗⊥, which is a function of α∗, β∗2 , λ,
also has a normal distribution

β∗α∗ + β∗⊥λα∗⊥|Σ, Y ∼ N(Π̂∗, In ⊗ In). (3.1)

Premultiplying this expression by β∗⊥
′, postmultiplying it by α∗⊥

′ the left
hand side reduces to λ because of the orthogonality properties of α∗⊥ and β∗⊥.
Conditioning on α∗ and β∗2 and using properties of the matrix normal distribu-
tion we obtain that λ is matrix normal with mean β∗⊥

′Π̂∗α∗⊥
′ = λ̃ and covariance

matrix α⊥α′⊥ ⊗ β′⊥β⊥ = In−r ⊗ In−r, such that

λ|α∗, β∗2 , Σ, Y ∼ N(λ̃, In−r ⊗ In−r). (3.2)

Subtracting its conditional mean from λ it follows that λ − λ̃|α∗, β∗2 , Σ, Y
has a matrix standard normal distribution. Note that λ−λ̃ depends on the con-
ditioning parameters α∗ and β∗2 but that its conditional distribution is matrix
standard normal and consequently independent of the conditioning parameters.

The trace of the inner product of a matrix normal random variable has a
χ2 distribution and in this case

tr((λ− λ̃)′(λ− λ̃))|α∗, β∗2 , Σ, Y ∼ χ2
(n−r)2 . (3.3)

The left hand side of this equation, however still depends on α∗, β∗2 and
Σ. In order to remove the dependence we take the expectation of (3.3) with
respect to α∗, β∗2 and Σ. Since the distribution of tr((λ− λ̃)′(λ− λ̃)) does not
depend on α∗, β∗2 or Σ the expectation remains χ2 distributed,

Eα∗,β∗2 ,Σ[tr((λ− λ̃)′(λ− λ̃))|α∗, β∗, Σ, Y ] ∼ χ2
(n−r)2 . (3.4)

So far, we have constructed a random quantity (3.4) that is a function of the
parameters α∗, β∗2 , λ and Σ. The posterior distribution of the parameters de-
termine the posterior distribution of the random quantity. We have constructed
the quantity (3.4) such that it has a known distribution, namely the familiar
χ2 distribution.

Hypothesis of rank reduction: λ = 0

In the context of the cointegration model we are interested in testing the hy-
pothesis of rank reduction of the long run multiplier parameter matrix Π∗. We
have established in the previous section that the hypothesis can be represented
by the restriction H0 : λ = 0 when the decomposition of Π∗ into α∗, β∗2 and λ
is used. The random quantity (3.4) is derived under the UEC model or, stated
differently, under the alternative hypothesis H1 : λ 6= 0.
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In Bayesian econometrics the plausibility of H0 : λ = 0 can be assessed by
calculating the posterior probability that the value of (3.4) evaluated under H0
lies in the bulk of the probability mass of a χ2

(n−r)2 distribution which it follows
in the unrestricted case.

We substitute λ = 0 in (3.4) to calculate its value under H0. Moreover,
instead of taking the expectation with respect to the posterior of α∗ and β∗ from
the UEC model we use the posterior of α∗ and β∗ under the null hypothesis,
that is from the ECC model. Note that the posterior density pecc(α∗, β∗|Σ, Y )
from the restricted model equals puec(α∗, β∗|λ, Σ, Y )|λ=0 from the unrestricted
model,

Eα∗,β∗2 ,Σ[tr((λ− λ̃)′(λ− λ̃))]
∣

∣

∣

H0
= EΣEα∗,β∗2 |λ=0,Σ[tr(λ̃′λ̃)]. (3.5)

Remember that the parameters and data of the scaled model and the orig-
inal, unscaled model are related by

β∗α∗ = (Y ′
−1Y−1)

1
2 βαΣ−

1
2 . (3.6)

such that β∗⊥ = (Y ′
−1Y−1)−

1
2 β⊥ and α∗⊥ = α⊥Σ

1
2 . The trace expression tr(λ̃′λ̃)

can thus be rewritten in terms of data and parameters of the unscaled model
as

tr((β∗⊥
′Π̂∗α∗⊥

′)′(β∗⊥
′Π̂∗α∗⊥

′))

= tr(α∗⊥
′α∗⊥Π̂∗′β∗⊥β∗⊥

′Π̂∗)

= tr(α′⊥α⊥∆Y ′Y−1(Y ′
−1Y−1)−1β⊥β′⊥(Y ′

−1Y−1)−1Y ′
−1∆Y )

= tr(Σ−
1
2 M

Σ−
1
2 α′

Σ−
1
2 ∆Y ′(MY−1β −MY−1)∆Y ),

(3.7)

where MX = I−X(X ′X)−1X ′ and we have used that α′⊥α⊥ = α′⊥(α⊥Σα′⊥)−1α⊥
because α⊥Σα′⊥ = α∗⊥α∗⊥

′ = In−r by definition. We also use that

α′⊥(α⊥Σα′⊥)−1α⊥ = Σ−1 − Σ−1α′(αΣ−1α′)−1αΣ−1 = Σ−
1
2 M

Σ−
1
2 α′

Σ−
1
2 , (3.8)

which is a well known result in cointegration analysis, see e.g. Johansen (1995).
Similarly it holds that β⊥β′⊥ = β⊥(β′⊥(Y ′

−1Y−1)−1β⊥)−1β′⊥ since by definition
β′⊥(Y ′

−1Y−1)−1β⊥ = β∗⊥
′β∗⊥ = In−r and that

β⊥(β′⊥(Y ′
−1Y−1)−1β⊥)−1β′⊥ = Y ′

−1Y−1 − Y ′
−1Y−1β(β′Y ′

−1Y−1β)−1β′Y ′
−1Y−1.

(3.9)

The quadratic form in the score of λ, ∂ log L
∂ vec(λ)′ , evaluated in λ = 0 also equals

tr(λ̃′λ̃). Hence, the test statistic can be interpreted as the posterior expectation
of the classical score statistic. In our Bayesian procedure all calculations are
conditional on the data, i.e. we treat the data as given. This is contrary to
classical econometrics, where the data is considered random. In that case the
nonstationary behaviour of the data in cointegration analysis influences the
properties of the test statistics and more complicated distributions involving
Brownian motions do occur.
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3.2 Computation

The test statistic can be computed straightforwardly using the sampling scheme
from the previous section. Let {α(s), β(s)

2 , Σ(s)
2 }S

s=1 be a sample of size S from
the posterior of the ECC model. Then, for each drawing (α(s), β(s)

2 , Σ(s)
2 ) the

corresponding value of λ̃ can be calculated, such that {λ̃(s)}S
s=1 is a sample of

λ̃ from the ECC model.
The sample equivalent of the statistic under the null hypothesis can now be

written as

Eecc
Σ Eecc

α∗,β∗2 |Σ
[tr(λ̃′λ̃)] ≈ 1

S

S
∑

s=1

tr(λ̃(s)′λ̃(s)). (3.10)

3.3 Simulation results

In this section we discuss the results of a Monte Carlo study which is carried out
to illustrate the performance of the sampling algorithm and the test statistic.
We generate data using a 3-dimensional VAR(1) model in which the number of
cointegration relations is varied from 0 to 3. It has an identity covariance matrix
for the disturbances and the number of observations is T = 250. Throughout, a
constant µ = (0.1 0.1 0.1)′ is used. The long run multiplier parameter matrices
of the processes read

I. Π = βα = Ir





−0.2 0.2 0.2
−0.2 −0.2 0.2
0.2 −0.2 −0.6



,

II. Π = βα =





1 0
0 1
1 1





(

−0.2 0.2 0.2
0.2 −0.2 0.2

)

=





−0.2 0.2 0.2
0.2 −0.2 0.2
0 0 −0.4



,

III. Π = βα =





1
1
0





(

−0.2 0.2 0.2
)

=





−0.2 0.2 0.2
0.2 −0.2 −0.2
0 0 0



,

IV. and Π = 03×3.

DGP I is a process with roots 0.8, 0.6 and 0.6, DGP II contains a unit root
and two roots of 0.6, DGP III has two unit roots and a root 0.6 and DGP IV
has three unit roots.

We use a VAR(1) model with a constant term to analyse the data and the
analysis is carried out for 0 to 3 cointegration relations for each data set. We
expect the statistic to detect too restricted specifications, because the parame-
ter λ reflecting the rank reduction of the long-run multiplier parameter matrix
then is forced to be zero, whereas it is not zero in the data generating pro-
cess. In that case the statistic should have a relatively low value. In the ’true’
model the statistic should obviously not indicate misspecification. In models
which are less restricted than the DGP the statistic is not likely to detect this
as the less restricted model is nested in the DGP. This phenomenon of nested
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Table 1: Values of the Bayesian test statistics and p-values for the four DGP’s
Bayesian classical

r statistic df tail prob. LR 95%

DGP I (rank(Π)=3)

0 33.45 9 0.000 204.67 29.38
1 50.94 4 0.000 77.68 15.34
2 18.77 1 0.000 19.55 3.84

DGP II (rank(Π)=2)

0 32.05 9 0.000 151.78 29.38
1 19.01 4 0.001 66.33 15.34
2 1.01 1 0.315 1.01 3.84

DGP III (rank(Π)=1)

0 20.15 9 0.017 106.18 29.38
1 3.49 4 0.480 10.55 15.34
2 1.94 1 0.933 1.91 3.84

DGP IV (rank(Π)=0)

0 1.94 9 0.992 16.78 29.38
1 3.89 4 0.421 8.05 15.34
2 1.35 1 0.245 1.23 3.84

Note: the column marked 95% contains the 95% quantile of the likelihood ratio test.

hypotheses also occurs in the classical trace test for cointegration. The results
of the Bayesian cointegration test statistics are summarized in Table 1. We
also report a tail probability which is the probability that a χ2

(n−r)2 distributed
random variable is larger than the computed statistic. It can be given the inter-
pretation of the Bayesian equivalent of the classical p-value. Evidently, the test
statistic cannot be computed for DGP I, which involves a full rank matrix Π,
and therefore no parameter λ associated with rank reduction is present there.
For the other three DGP’s there is indeed little indication of a misspecified
cointegration rank for the ’true’ model. The reported statistics are all within
the (100-31.5)% quantile of its associated χ2 distribution. In classical econo-
metrics this would be interpreted as a p-value of 31.5%, which exceeds the usual
significance levels. For all DGP’s, the models that are more restricted than the
DGP have Bayesian cointegration statistics that are far away from zero. This
results in tail probabilities of 0.001 or less for DGP’s I (at r = 0, 1 and 2) and
II (at r = 0 and 1). Under DGP III the zero rank alternative (r = 0) has a tail
probability of 1.7%, also giving strong evidence of a misspecified cointegration
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model.

3.4 Application

In this subsection we apply the Bayesian cointegration statistic to the Danish
dataset of Johansen and Juselius (1990). They analyse the demand for money
in Denmark using quarterly time series of real money M2 (denoted by mt), real
income yt, and the opportunity cost of holding money, which is approximated
by the difference between the long term interest rate ibt (bond rate) and the
short term interest rate idt (deposit rate). The sample period is 1974.1-1987.3
and all variables are in logs.

Table 2: Values of the Bayesian test statistics and p-values for the Danish data from
Johansen and Juselius (1990).

Bayesian classical
r statistic df tail prob. LR p-value
0 10.47 16 0.841 45.67 0.08
1 6.46 9 0.693 17.07 0.63
2 1.42 4 0.840 6.71 0.61
3 0.76 1 0.384 0.38 0.54

Note: The values of the classical trace test and the corresponding p-value are taken
from Johansen and Juselius (1990).

They use a VAR(2) model with a constant µ and with (centered) seasonal
dummies. They also propose to restrict the constant by α′⊥µ = 0. In our
analysis we leave the constant µ unrestricted in order to allow at least real
income to have a linear trend. We present the posterior results of our method
for r = 1 which is the number of cointegrating relations that Johansen and
Juselius (1990) found to be appropriate using the cointegration trace test. The
test statistics for this data set are summarized in Table 2. The statistic does
not indicate a misspecified rank for r = 1 or larger. Unexpectedly, also no
misspecification at r = 0 was detected. The small number of observations
(T = 54) is probably responsible for this effect.

The posterior means of the components of α and β2 are

α′ =
mt yt ibt idt

( −0.187 0.154 0.025 0.045 )
(0.084) (0.074) (0.024) (0.02)

, (3.11)

and

β =
mt yt ibt idt

( 1 −1.07 5.14 −4.47 )
(−) (0.33) (1.45) (2.74)

, (3.12)

and the values in parentheses are the posterior sample standard errors. These
values correspond reasonably well to the maximum likelihood estimates of Jo-
hansen and Juselius (1990). The posterior sample mean and the sampling stan-
dard errors of β2 should however be interpreted with caution. The marginal
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Figure 1: Marginal posteriors of the elements of α for the Danish data set using 1
cointegration relation.

posterior of β2 has actually Cauchy type tails, see Kleibergen and Van Dijk
(1998), such that the first moment does not exist. Therefore one might look at
the sample median of β2, but it is not reported here as it differs hardly from
the sample mean.

The marginal posterior densities of α and β2 are shown in Figures 1 and 2.
The tails of β2 are not shown because that would obscure the behaviour of the
density near the center of the distribution. From Figure 2 it can be seen that
the second and third component of β2 are evidently skewed towards zero.
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Figure 2: Marginal posteriors of the elements of β2 for the Danish data set using 1
cointegration relation.

We asserted in the previous section that in the unrestricted model λ − λ̃
follows a matrix standard normal distribution. As a by-product of the sampling
scheme, values of λ from the UEC model are sampled, because the posterior
of the unrestricted model is used as the candidate generating density. The
posterior density plots of the elements of λ− λ̃ in Figure 3 are all very similar
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to a standard normal density function. Also a more formal test like the Jarque-
Bera normality test applied to each of the elements of λ−λ̃ confirms this finding.
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Figure 3: Marginal posteriors of the elements of λ − λ̃ for the Danish data set using
1 cointegration relation.

4 Model extensions

The Bayesian cointegration testing procedure that was developed in the pre-
vious sections uses a Jeffreys’ prior. This Jeffreys’ prior is conditional on the
covariance matrix and the data. Hence, we can allow the covariance matrix or
the matrices ∆Y or Y−1 to be dependent on additional parameters,

∆Y (θ) = Y (θ)−1βα + ε (4.1)

with εt ∼ N(0, Σt(θ)). After conditioning on the parameter vector θ the test-
ing procedure and all other results from the previous sections can be applied.
Obviously, we then need to specify priors on these additional parameters that
are independent from the cointegration parameters. The resulting expression
of the parameters in the singular value decomposition remains unchanged but
the expression for Π∗ changes however.

This extension enables us to conduct the cointegration testing procedure
for models with mixtures of normal disturbances, such that time-varying het-
eroscedasticity can be included or Student-t distributed disturbances can be
allowed for, the latter enrichment being a multivariate extension of e.g. Geweke
(1993). In that case we let Σt(θ) be a random matrix from an inverted Wishart
distribution with some degrees of freedom parameter and scale parameters,
which are all contained in the parameter vector θ. Similarly, the matrices ∆Y
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or Y−1 can be a function of latent variables θ such that data with measurement
errors or with structural breaks in the constant or trend can be modelled. Both
topics are issues for further research.

5 Conclusions

In this paper we develop a Bayesian cointegration test statistic that can be
used under a Jeffreys’ prior. In order to do so, we start with constructing a
posterior simulator to generate posterior drawings from the cointegration model.
The simulator is based on the invariance properties of the Jeffreys’ prior. We
show that it is allowed to use the parameter drawings from a suitably rescaled
model. For this rescaled model we use the posterior simulator from Kleibergen
and Paap (1998). It is based on a transformation of the long-run multiplier
matrix. The decomposition is related to the singular value decomposition and
it specifies the full rank model in such a way that setting a particular, uniquely
defined parameter to zero corresponds to imposing the cointegration restriction
on the long-run multiplier. The final step in the posterior simulator consists of
transforming back the drawings from the scaled model to the original, unscaled
model.

The decomposition forms the basis of the derivation of the test statistic. We
construct a function of the parameter that is associated with the cointegration
restriction and the other model parameters, such that its posterior expectation
has a χ2 distribution under the assumption of a full rank value of the long run
multiplier. The test statistic is equal to the posterior expectation of the classical
score statistic and as both the Jeffreys’ prior and the classical score statistic
are invariant, the resulting test statistic is also invariant. We then evaluate
whether the value of the test statistic under the restriction of cointegration is
a plausible realization from its distribution under the encompassing, full rank
model. The Bayesian cointegration statistic is a convenient diagnostic as it is
evaluated under the cointegration model only. This then shows whether the
cointegration assumption is a plausible restriction on the parameters of the
unrestricted error correction model.

We apply the Bayesian cointegration statistic to four artificial examples to
illustrate the use of the statistic as a diagnostic tool. According to the results
of this Monte Carlo experiment, the test statistic is able to detect misspecified
cointegration ranks when the rank reduction is too restrictive. The test is
also applied to the Danish dataset of Johansen and Juselius (1990). Finally, we
show that the test statistic can straightforwardly be extended to a more general
model setting. For example, we show that structural breaks in the constant or
trend and a general kind of disturbance distribution can be modelled, because
conditional on some latent parameters all derivations still hold.
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