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1. Introduction

In this paper, we consider a model of an exchange economy under uncertainty with two
consumption periods and one physical good, where consumption smoothing over time and
uncertainty is done by asset transactions in financial markets. The preferences of each agent
is represented by a time-independent, additively separable utility function and the discount
factor is common across them. We are interested in how the risk-free interest rate depends
on the primitives of the economy, in particular, the discount factor and the incompleteness of
markets. This has been a focus of extensive research under the name, given by Weil (1992),
of the risk-free rate puzzle. Kocherlakota (1996) provides an excellent survey on this topic.

The contribution of this paper is two fold. First, we show that the equilibrium price
of the risk-free bond is no higher than the discount factor, provided the derivative of every
agent’s utility function is a convex function and the expected aggregate endowment in the
second period is no larger than the first-period aggregate endowment. Note that there is
no condition imposed on the utility functions other than the convexity of derivatives, and
there is no assumption on the incompleteness of market; that is, we do not assume anything
as to what kind of risky assets are available for trade. So just as Weil’s (1992) original
contribution, this result can be seen as a benchmark for the question of to what extent
the market incompleteness can possibly explain the lower risk-free interest rate in general
equilibrium models with heterogeneous agents.

Our second contribution is that if every agent’s utility function exhibits constant absolute
risk aversion (CARA for short) and the expected aggregate endowment in the second period
is no smaller than the first-period aggregate endowment, then there is an upper bound for the
bond price which only depends on the primitives of the economy. The bounds are succinctly

related to the degree of risk aversion and the risk properties of initial endowments. This



result complements the first one; no existing contribution has clarified a theoretical upper
bound on the bond price (or lower bound on the interest rate) with incomplete markets.
We emphasize that this result also assumes no condition on the incompleteness of markets.
It therefore shows the range of the equilibrium risk-free interest rates explainable by the
incompleteness of markets in the models with heterogeneous CARA agents. As a corollary
to this result, we also show that the risk-free bond price can be made arbitrarily large with
incomplete markets without changing the bond price with complete markets.

The reported bounds can be computed very simply. So this result also serves as a valuable
tool for finding a rough estimate of equilibrium interest rates, since calculating an equilibrium
price system can be a tedious exercise when markets are incomplete.

Levine and Zame (1998, 1999) considered an infinite-horizon economy under uncertainty
with heterogeneous agents to investigate how the possibility of intertemporal income transfers
weakens equilibrium implications of incomplete markets. A key step of their analysis is to
find an upper bound on the interest rate. Our technique is inspired by theirs, though we do
not need to make any a priori distinction between the cases with and without the aggregate
risk as they did. The lower bound with CARA utility functions is obtained, on the other
hand, as a corollary to the result of Hara (1998), which generalizes an earlier result shown in
Elul (1997) on the risk-free rate puzzle.

The next section presents the general model of this paper. In Section 3 deals with general
utility functions and shows that the risk-free bond price cannot be lower than the common
discount factor. It also discuss a general method of finding bounds on the bond price. Section
4 takes up the case of CARA utility functions and find an upper bound for the bond price.

Section 5 concludes and suggests a couple of directions of future research.



2. The Model

There are two trading periods, and there is a single perishable good in each period. There is
no uncertainty in the first period, when consumption good and assets are exchanged. At the
beginning of the second period, the assets pay off, and then consumption takes place. The
uncertainty in the second period is described by a probability measure space (2, B, it). Denote
by 1 (the p-equivalent class of) the function from €2 to R that takes constant value one. The
function 1 will be interpreted as the risk-free discount bond. Let X be a linear subspace in
the set of all measurable functions from €2 to R such that 1 €X. We take the commodity
space to be R x X and denote by E the expectation with respect to p. A generic element of
R x X will be denoted by (xg,x), where xy corresponds to consumption in the first period,
and x is a random variable that corresponds to consumption in the second period. We shall
later assume some minimal regularity condition on X, but our results cover interesting and
commonly studied cases such as €} is a finite set and B is the power set of X, or X is the
linear subspace spanned by finitely many jointly normally distributed random variables.
There are H agents in the economy. Each agent, indexed h € {1,---, H}, is characterized

by:

e Time invariant von Neumann Morgenstern utility function »”. It is strictly concave and

continuously differentiable. Its derivative Du” is assumed to be a convex function.

e Initial endowment vector (ef,e?) € R x X.

We assume that the agents have a common discount factor 6 > 0. Thus the preference
relation of agent h is represented by the expected utility function U" : R x X — R defined

by



Ut (af,x") = u” (;US) + 6‘/(.2 ul (Xh (w)) p (dw) = u” (w8> +0E (uh (xh>> .

The regularity assumption assumed throughout this paper is that this function is continuously
differentiable and the first order necessary condition for utility maximization is well defined.
This assumption is very mild and can be justified in various ways; for instance, a set of
sufficient condition in terms of utility function and the underlying probability space can be
found in Nielsen (1993, Proposition 1 and 5).

Although trade takes place sequentially, we define an agent’s utility maximization problem
and an equilibrium of the economy directly in terms of market spans and state price functions.
This facilitates a simpler exposition, and it can be readily shown that it is equivalent to a
model where asset trade is explicitly modelled. Namely, when the traded assets span a linear
subspace M, called the market span, of the commodity space X, and their arbitrage-free
prices coincides with a linear function p : M — R, called the state price function, agent h’s

utility maximization problem is

Max
Ut (g, %)
(af,x") e Rx X
subject to: x" —eh e M,

(zh —eP) + p(x" — e?) <0.

h h

The first constraint implies that the net trade vector x" — e” can be achieved through asset
trades, and the second constraint is the budget constraint. Note that the linearity of M and

p means that there are no transaction costs; in particular there is no short sales constraint.



Note also that the first-period consumption is the numéraire, whose price equals one. The
case of complete markets corresponds to the case where the market span M coincides with
the commodity space X.

We say that a state price function p and a consumption allocation ((yg,yh))he{l,mﬂ}
constitute an equilibrium for the market span M if, for every h, (yg, y") is a solution to the
above maximization problem and Y77 (yf,y") = S2IL (ek, e?). Tt can then be shown that
the asset markets clear automatically. So the equilibrium price of the risk-free discount bond
is p(1) and the equilibrium risk-free interest rate is p(1)~! — 1. Hence a lower interest rate

means an higher bond price, and vice versa.

3. Bounds for the Risk-Free Interest Rate with General Utility Functions

In the first subsection, we provide an upper bound for the equilibrium risk-free interest rate
or, equivalently, a lower bound for the risk-free bond prices. This is done for general utility
functions, under the assumption that the expected aggregate endowment is non-increasing
over time. In the second subsection, we discuss a general method of finding upper and lower

bounds for the interest rate, which also serves as an introduction to the next section.

3.1. An Upper Bound for the Risk-Free Interest Rate

Under the regularity assumption, for every agent h, the following first order condition is met

at a solution (wg,xh) of his utility maximization problem:

p(1)Dul(zh) = 6E (Duh(xh)> .



This can be rewritten as

E (Duh(xh)) B 6Duh(5h) E <Duh(xh)>

(1) = Dul(zP) —  Dul(xl) Duh(@") (3:1)

where z" = E (x"). We write " = E(e"), € = >, e", and eg = ), eff. So €" is agent
h’s expected endowment in the second period, € is the expected aggregate endowment in the

second period, and ey the aggregate endowment in the first period.

Proposition 1. Assume that eg > €. Let M be a market span such that 1 M. Also let a

state price function p : M — R and a consumption allocation ((;Ug,xh))he{l o H} constitute

an equilibrium for M. Then p(1) > 6.

It is easy to show that if , el = egl, so that there is stationarity but no aggregate
uncertainty, and the markets are complete, then p(1) = §. This proposition thus implies that
if the aggregate endowment is stationary, then the risk-free interest rate is equal or lower with

incomplete markets than with complete markets.

Proof of Proposition 1. Since Du” is convex for every h, we have
E (Duh(xh)> > Dul (@h> . (3.2)

Since ng =e>€=), Z" by the assumption and the equilibrium condition, there is at

least one h = h such that :Ug > ;EB, and thus
Dyl (a_cﬁ) > Dul (xg) . (3.3)

Plugging (3.2) and (3.3) into (3.1), we obtain p(1) > 6. B



Notice that the equality (3.1) shows that if eg < & and the Du” are concave in the
relevant interval of wealth levels, then p(1) < é would follow. The more interesting case,
however, is where the Du” are conver as assumed earlier, because most frequently applied
utility functions, such as those exhibiting constant absolute or relative risk aversions, have

this property.

3.2. A General Approach to Finding Bounds

A bound in Proposition 1 is obtained under a very general assumption on utility functions,
with no reference to the structure of market incompleteness. But it does not tie down sharply
the relation between the agents’ attitude toward risks and the equilibrium rate. In this
subsection, we shall discuss how these can be more tightly related in general. The discussion
will also clarify the intuition behind the result reported in the next section.

As can be seen from equality (3.1), the task of finding bounds for the risk-free interest rate,
or, equivalently, for the risk-free bond price is one of finding bounds for E (Du(x")) /Du"(zf})
for some h. The right-hand side of (3.1) shows that it is the product of two factors. The first
factor Du(Z")/Du”(x}) is the intertemporal marginal rate of substitution. We have seen
that if eg > €, then this factor is no smaller than 1 for some h. Similarly, if ey <€, then this
factor is no larger than 1 for some h. By closely examining the risk attitude of this agent, we
can find a better bound than 1.

Note first that if a von Neumann Morgenstern utility function « is more risk averse than
another v, then, for every wg and wy with wg > wy, we have

Du(w)
Du(wy)

Du(w)
Du(wg)’

>

Let eg > €, then the agents must consume more in the first period in equilibrium, and



so there is an agent who does so more than the average; that is, there is an A such that

ZUg —z > g1 (ep —€) > 0. If agent h is more risk averse than an agent with constant
absolute risk aversion with coefficient o on the interval [Tﬁ,mg] then using the inequality
above for v (w) = — exp [—aw], we have

Dul (T_) exp {—Oéfﬁ}

> exp (()ch1 (o —€)) > 1.
Duh(.%'g) exp {—afgb}

|
v

So the general recipe for finding a tighter lower bound for the term Dul(Z")/ Duﬁ(mg) when
ep > € is to identify agent h who consumes more in the first period relative to the other agents
and measure the minimum degree « of risk aversion on the interval [Tﬁ,wg}. Then the lower
bound for the bond price is improved form one to exp (aH ~L(eg — E)).

For some utility functions, the coefficients of relative risk aversion vary in a much narrower
range over relevant wealth levels than the coefficients of absolute risk aversions. We can then
improve the above bound by using the intertemporal ratio eg/€ of aggregate endowments.
Indeed, if the (generally non-constant) coeflicients of relative risk aversions of ul are larger

than «, then we have

Dul(z") eo\
DU ()7
Duh(z) e

Symmetric bounds can be obtained for the case of eg < €.

The second factor E (Du”(x")) /Du(Z") shows how much, in ratio, the marginal utility
from the bond is increased by the risk present in the second-period consumption. By Jensen’s
Inequality, this is no smaller than 1. It measures the degree of prudence of Kimball (1990).

Indeed, if a von Neumann Morgenstern utility function w is more risk averse and more prudent



than another v, then, for every x € X with E(x) =7, it can be shown that

Once, for example, we know that the (generally non-constant) coefficients absolute risk aver-

sions of every u” lie in the interval [, ], we can conclude that

E (exp(—axh)) < E (Duh(Xh)) < E (exp(—ﬁxh))
exp(—aT") T Duh(@") T  exp(—pT")

for every h, which provides both the upper and lower bounds of E (Du”(x")) /Du"(z").
We have thus obtained bounds for the second factor E (Du”(x")) /Dul(z") for every
h and bounds for the first factor Du*(z")/Du”(zf) for some h. By multiplication, we can
obtain bounds for the bond price p(1).
The difficulty in this approach to find the bounds for the bond price is that we need to
1

identify the second-period equilibrium allocation <X NS < > . It can however be circum-

vented if all u exhibits constant absolute risk aversion.

4. A Lower Bound with CARA Utility Functions

From now on, we assume that utility function v has a constant coefficient o> > 0 of absolute

risk aversion, so that u” (w) = —a®exp (—ahw) for every h. Thus the utility function can

now be written as

UM (xh, x") = — exp(—a™z}) — SE(exp(—a/x")).

10



Notice that Du” is a convex function, and so the results of the previous section are applicable.
For the rest of this section, we are concerned with the upper bound for the equilibrium price
of the discount bond.

The following theorem was proved in Hara (1998), which generalized some of the results

in Elul (1997) on the risk-free rate puzzle.

Proposition 2. Let M and N be two market spans such that 1 €M C N. Let p: M — R
be an equilibrium state price function for M and let a state price function ¢ : N — R and

a consumption allocation ((zg,zh))he{l,“,ﬂ} constitute an equilibrium for N. Suppose that

z" — e ¢ M for some h. Then p(1) > q(1).

This theorem implies that the less complete the markets M are, the lower the risk-free
interest rate is. In particular, the equilibrium risk-free interest rate is lowest when M coincides
with the line spanned by 1.

For each h, define

o Blewp(~ateh)
exp (—ale")

This measures agent h’s prudence evaluated at his initial endowment. It thus depends only
on the primitives of the economy.

Another way to look at this number is to apply the second-order Taylor approximation
exp(w) ~ 1 +w + 27 1w? Then ¢ ~ 1+ 27! (ah)QVar(eh), or a"S(ey) ~ (2(" — 1))1/2,
where S denotes the standard deviation. The numbers ¢ thus measure the variability of
his second-period initial endowments weighted by the constant coefficients of absolute risk
aversion. As shown by Duffie and Jackson (1990), Demange and Laroque (1995), Ohashi

(1995), Rahi (1995), and others, they help provide a necessary and sufficient condition for

11



the optimal asset structure when only a limited number of assets can be traded in markets.

We also define a = max{al,---,a’} and

b=exp (—()cH*1 (e—eo)),

which is no greater than one if e? <.

Proposition 3. Assume that e’ < e. Let M be a market span such that 1 €M andp: M —
R be an equilibrium state price function for M. Then:

1. p(1) < $bmax{ct,---, e},

2. If, furthermore, M coincides with the line spanned by 1, e =%, and ¢! = --- = ¢

then p(1) = éc” for every h.

The second part of this proposition states that the upper bound of the bond price in
the first part is indeed attained if the markets are least complete, the expected aggregate
endowment is constant over time, and all agents have the same ¢”. An important implication
of this is that the equilibrium bond price in incomplete markets can be arbitrarily large
while the bond price in the complete markets stays at the discount factor . To see this, first
fix the initial endowments (ef,e) and the coefficients o/ of absolute risk aversion so that
> et =epl, o' =--- = o'’ and the e* have the same distribution with positive variance.
This implies that ¢! = -+ = ¢!/ > 1. For each s > 0, define e"(s) = " + s (e” —2"1) and
"(s) = E (exp (—ae"(s))) / exp (—a@") . Tt can be shown that the equilibrium bond price
in the complete markets is equal to ¢ regardless of the values of s, but the bond price in the

least complete markets, 6c*(s), becomes unboundedly large as s — oo.

Proof of Proposition 3. 1. By Proposition 2, we can assume that M is equal to the

12



line spanned by 1. By equality (3.1), it suffices to show that

for some h = h; and

uh Xh
E(Dlzth—(éh))) = Cp, (4.2)
h h >

for every h. The first inequality (4.1) follows since there exists an h such that % — aj

H! (E — 60) .
Since M is spanned by 1, we have x” = e® + y"1 for some y"* € R. Thus 2" = e* + ",

and so we have x" — "1 = e — "1. Hence

E (exp(—ah(xh —Thl))) =E (exp(—ah(eh - Ehl))> =ch

every h.

2. The symmetric argument is applicable. Since e’ =€, we have b = 1 and

for some h = h. By equality (4.2), p(1) > §cP. Thus
p(1) > émin{ci, -, cy}.

Since min{c!,---, ¢’} = max{c!,---,c}, this and the first part establish the second part.

13



5. Conclusion

In this paper, we have found the upper and lower bounds on the risk-free interest rates in
a two-period model with incomplete asset markets. The upper bound was given for general
utility functions, while the lower bound was only for CARA utility functions. We also dis-
cussed a general method of finding upper and lower bounds. These results will be useful in
illustrating the risk-free rate puzzle in tractable general equilibrium models with incomplete
asset markets.

As mentioned at the end of Section 3.2, an obstacle to obtaining a lower bound on the
risk-free interest rate with general utility functions was that we cannot find bounds for the
prudence E (Du”(x")) /Du(Z") at the second-period equilibrium consumption bundle x".
Finding these bounds is a good future research topic.

The crucial expression for the bond price was equality (3.1). It was useful because it iden-
tified the two determinants of the bond price, the intertemporal marginal rate of substitution
and the prudence. This suggests the following extensions of our approach. The first step is to
the case of time-separable, but time-dependent von Neumann Morgenstern utility functions.

The next step is to the case of recursive utility functions.
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