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Abstract

This paper studies repeated partnership games with only two pub-
lic signals. It is well known that the public perfect equilibrium payo¤
set is bounded away from the e¢cient frontier of the stage game in
this class of game. In this paper, I construct a strongly symmetric
sequential equilibrium whose equilibrium payo¤ dominates the best
symmetric payo¤ by PPE. The strategy used to construct the equilib-
rium depends not only on the public signal but also on the realization
of one’s own past action. I call this class of strategy private strat-
egy. I also provide an example where this private strategy sequential
equilibrium approximates the e¢cient outcome, but the PPE payo¤
set is contained in an arbitrary small neighborhood of the stage game
Nash equilibrium payo¤. This example suggests that the di¤erence
between a PPE payo¤ set and a sequential equilibriujm payo¤ set can
be potentially signi…cant.
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1 Introduction

Since many economic problems are naturally described in the framework of
repeated games with imperfect monitoring, and since partnership game is
surely one of them, the example in Radner, Myerson and Maskin[11] had a
big impact on the research of repeated games. Their example shows that
the folk theorem can fail for repeated games with discounting and imperfect
monitoring. In precise, they show that the payo¤ set of public perfect equi-
libria is bounded away from the e¢cient frontier independent of the discount
factor less than 1. This example is important for two reason. First, it is well
known that the e¢cient outcome can be sustained in repeated partnership
game without discounting (Radner [10]). So, this example illustrates whether
to discount or not to discount really make a di¤erence for the outcome of
repeated games with imperfect monitoring. Secondly, this example shows
that there exists an e¢ciency loss which is purely associated with the mon-
itoring structure. This anti-folk theorem example motivated researches on
the condition under which e¢ciency or folk theorem can be recovered when
players are impatient. These researches lead to papers such as Abreu, Pearce,
and Stachetti[2] and Fudenberg, Levin, and Maskin [5]. Abreu, Pearce, and
Stachetti[2] invents the way to characterize PPE payo¤ set for repeated games
with discounting. Fudenberg, Levin, and Maskin[5] shows that a folk theo-
rem still obtains in this class of repeated games generically if the space of
public signal is rich enough such that each player’s deviation can be statis-
tically detected separately. Needless to say, this is a weaker condition than
perfect information.

So far most of the research has focused on public strategy, strategy which
only depends on the history of public signals. This is mainly because one can
exploit a nice recursive structure introduced by this restriction on strategy.
The original game and the continuation game become isomorphic with public
strategies. However, there are not convincing arguments to justify such a
restriction on strategy. Such a restriction may not be a problem in the
environment where the folk theorem obtains, that is, the environment with a
rich public signal space and very patient players because almost everything
can be achieved only with public strategies. Otherwise, it is not reasonable
to impose such a restriction.

So, an obviously interesting question is the following: what a general
strategy can do for repeated games with discounting and imperfect moni-
toring? This paper attempts to address this question. The purpose of this
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paper is to show that this restriction to public strategy is sometimes really
restrictive in terms of e¢ciency. This paper sticks to the original formulation
by Radner, Myerson, and Maskin in the sense that there are only two public
signals, which is a ideal situation to address this question because we already
know that the PPE payo¤ is strictly smaller than the individually rational
payo¤ set and, moreover, the bound of PPE can be characterized to some
extent. This paper explicitly consider strategies which depend on a player’s
own past action rather than restricting attentions to public strategies. For
some parameter values, a strongly symmetric sequential equilibrium is ex-
plicitly constructed whose equilibrium payo¤ locates outside of the bound of
PPE payo¤ set.1

In order to show how non-public strategy can be used to improve ef-
…ciency, I explain brie‡y the cause of ine¢ciency in repeated partnership
games and suggest a way to circumvent that ine¢ciency. What causes inef-
…ciency in partnership games with two public signal is following: since there
are only two public signals available, the only way to deter deviation is to
“punish” both players at the same time when a “bad” signal is observed.
Since this punishment happens with positive and nonnegligible probability
every period on the equilibrium path, ine¢ciency arises independent of the
level of the discount factor.

The following public strategy achieves the upper bound of the strongly
symmetric PPE payo¤ and often the upper bound of the symmetric PPE
payo¤:

(#)

8
>><
>>:

(1): Play the cooperative pro…le in the stage game.
(2): If the signal is “good”,go back to (1)

If the signal is “bad”, rangomize between going back to (1) and
playing the Nash equilibrium forever using some randomization device.

The equilibrium payo¤ is given by the following formula, which is …rst
derived in [1]:

cooperative payo¤ ¡ deviation gain
likelihood ratio ¡ 1

1In the following, strongly symmetric sequential equilibrium means a sequential equi-
librium supported by strongly symmetric strategies. Strategies are strongly symmetric if
players’ behavior strategies is equivalent.

Symmetric squential equilibirum is a sequential equilibrum with the equilibirum payo¤
on the 45± degree line, but the strategy which generates that payo¤ can be asymmetric.
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Likelihood ratio here is about a “bad” signal with respect to the devi-
ation from the cooperative action pro…le. The second term measures the
ine¢ciency in repeated partnership games with two public signals. This im-
plies that the upper bound of (strongly) symmetric PPE payo¤ is larger if
the deviation gain is smaller or the likelihood ratio is higher.

Now suppose that the likelihood ratio when one player does not coop-
erate is much higher than when both players cooperate. In other words, it
is much easier to detect the other player’s non-cooperative behavior when
one plays non-cooperative action. Although it might be the case that some
asymmetric strategy can generate the best symmetric payo¤, just focus on
strongly symmetric strategies such as described above for now. Players face
a serious dilemma in terms of e¢ciency with PPE. To get closer to the coop-
erative outcome, players have to use the cooperative action pro…le frequently,
but then they cannot use the pro…le with high likelihood ratio to detect the
other player’s deviation. If they try to use this action pro…le with the high
likelihood ratio, then the strategies are likely to be asymmetric. It might
be a strategy such as alternating between asymmetric pro…les, which may
give players the payo¤ far below the e¢cient level. As is shown in section 3,
mixing helps to increase the likelihood ratio even within the class of strongly
symmetric strategy, but with the cost of reducing the stage game payo¤.

There is a way to resolve this con‡ict. Consider the following strategy:
Mix between the cooperative action and the noncooperative action, but put
most of the probability on the cooperative one, and punish the other player
in some way only if you play the noncooperative action and observe a bad
signal. Then, the stage game payo¤ is close to the cooperative one and only
the action pro…le with the high likelihood ratio is used for punishment by
this strategy pair.

Note that this strategy is not a public strategy, but a private strategy
because player’s continuation strategy does depend on one’s own past action
in addition to the public signal. Moreover, players’ continuation strategy
pair is not common knowledge after one period and a recursive structure
is lost because players cannot observe the realization of behavior strategy
by the other players. This actually explains why this kind of strategy has
been very di¢cult to analyze within the current theoretical framework. The
main contribution of this paper is to succeed in constructing equilibria using
private strategy such as one described above and to show that private strategy
sometimes works signi…cantly better than any public strategy by using a
signal structure in a more e¢cient way.
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Section 2 describes the details of the model. In section 3, the upper bound
of all PPE payo¤, including mixed strategy PPE, is derived. In the section
4, a strongly symmetric sequential equilibrium is constructed with a private
strategy, which I call private sequential equilibrium, and one su¢cient condi-
tion is given where the private sequential equilibrium (PSE) payo¤ dominates
the best symmetric payo¤ by PPE. Section 5 gives some example which il-
lustrates a clear di¤erence between PPE and PSE. In that example, the PSE
payo¤ dominates not only the maximum symmetric PPE payo¤, but also the
whole PPE payo¤ set. In precise, a sequence of stage game is constructed
in such a way that the PSE payo¤ converges to the e¢cient frontier, while
the whole PPE payo¤ set shrinks to the stage game Nash equilibrium payo¤.
Section 6 discusses related literature and Section 7 concludes the paper.

2 The Model

Two players are taking part in a joint production. Players choose an e¤ort
level: ai 2 Ai = fH;Lg simultaneously. H and L can be regarded as a high
e¤ort and a low e¤ort respectively. After they choose actions; they observe
a public signal or outcome ! 2 ­ = fg; bg : The public signal and player i0s
action determine player i’s payo¤ at that period. Distribution of ! depends
on how many players put e¤ort in production. 0 < ¼j < 1 is a probability
to observe b when j players choose L. It is assumed that ¼0 5 ¼1 5 ¼2:
This implies that the signal structure satis…es Monotone Likelihood Ratio
Property(MLRP)2.

Let 4¼0 = ¼1 ¡ ¼0; 4¼1 = ¼2 ¡ ¼1; and let Lp = (1¡p)¼1+p¼2
(1¡p)¼0+p¼1 be the

likelihood ratio of the signal b with respect to the e¤ort level when the other
player is randomizing H and L with probability 1¡ p and p: This gives the
ratio of how the signal b is likely to realize when a player plays L instead of
H in such a situation.

It is assumed that (1; 1) ; (1 + ®;¡¯) ; (¡¯; 1 + ®) ; (0; 0) is the payo¤ pro-
…le corresponding to the action pro…le (H;H) ; (L;H) ; (H;L) ; (L;L) respec-
tively.

Since I am interested in the situation where (1): the cooperative outcome
(H;H) is not a stage game Nash equilibrium, (2): (L;L) is a Nash Equi-

2This assumption is made for simplicity. As long as the assumption is the paper is
satis…ed, the order of ¼0; ¼1; ¼2 is not essential.
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librium (3): (H;H) is e¢cient, it is assumed that ® and ¯ satis…es ® > 0,
¯ > 0; and 1+®¡¯

2
< 1:

For t = 2; ht = (!1; :::; !t¡1) 2 Ht = fg; bgt¡1 is a t¡period public history
and hti = (ai;1; :::; ai;t¡1) 2 Ht

i = fH;Lgt¡1 is a private history. Hence the

space of player i0s history isHi =
1

t = 0
S
(H t

i £H t) withH1
i £H1 = ;: Player

i0s (behavior) strategy ¾i is a mapping from Hi to 4Ai.
I call ¾i a private strategy if there exists some history (h0ti ; h

t) ; (h00ti ; h
t),(h0ti 6= h00ti )

such that ¾i (h0ti ; h
t) 6= ¾i (h00ti ; ht) : This is the complement of the set of pub-

lic strategies in the whole space of behavior strategies. From now on, I call
sequential equilibrium with private strategy private sequential equilibrium,
denoted by PSE.

Let me note that restricting attention to public strategy is not so restric-
tive as it seems. As [2] noted, for any pure strategy sequential equilibrium,
it is possible to construct a corresponding outcome equivalent pubic perfect
equilibrium. So, as long as pure strategy sequential equilibrium is concerned,
one can restrict attention to PPE without loss of generality. Private strategy
may matter only when player’s strategy depends on the past realization of
one’s own randomization on Ai = fH;Lg :

3 The Upper Bound of PPE

In this section, I derive an analogue of the ine¢ciency result in Radner,
Myerson, and Maskin[11] for this discrete version of partnership game.3

The upper bound of the pure strategy strongly symmetric PPE payo¤
is easy to obtain. Let vps be the best pure strategy symmetric PPE payo¤.
Since there are only two signals available, it is not possible to ”reward” one
player when the other player is “punished”. Both player has to be punished
at the same time when signal b is observed. So it is e¢cient to set the
punishment level as small as the level exactly where players are indi¤erent
between H and L. Of course, when signal 1 g is observed, it is e¢cient to
use vps again. These observations lead to an equation :4

3In [11]; the action space is continuum.
4It is assumed that players can access to a public randomization device. This is an

innocuous assumption because I am trying to get the upper bound of PPE, while we do
NOT use any public randomization device later in the construction of a private sequential
equilibrium. This assumption also implies the convexity of the PPE payo¤ set.
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(1¡ ±)® = ±4¼1 (vps ¡ µvps) (1)

A recursive formula for vps is also obtained:

vps = (1¡ ±) + ±
¡¡
1¡ ¼0

¢
vps + ¼

0µvps
¢

(2)

Solving equations (1) and (2) for vps and µ, the following well-known
formula is obtained.5:

vps = 1¡ ®

L0 ¡ 1 (3)

The upper bound of the pure strategy symmetric PPE payo¤ is the ef-
…cient stage game payo¤ minus the deviation gain over the likelihood ratio
minus 1. Note that this value is bounded away from 1 independent of the
discount factor. This is basically because punishment phase can start with
the probability ¼0 every period.

In the appendix, it is shown that a similar formula indeed gives the upper
bound of the strongly symmetric PPE payo¤ Moreover, the best symmetric
payo¤ is actually generated by the symmetric PPE for some parameter val-
ues.6 The best mixed strategy symmetric PPE is obtained just by using a
mixture of H and L with probability (1¡ p) and p instead of using the pro…le
(H;H) in (#). The equilibrium payo¤ is given by

1¡ p¡ p¯ ¡ (1¡ p)®+ p¯
Lp ¡ 1 (4)

The interpretation of this formula is exactly the same as before. It is
the stage game payo¤ minus the deviation gain over likelihood ratio minus1

5See [1].
6This contrast with a case with a rich signal space[5]. For example, if there are three

public signals available, then it might help to introduce the asymmetry to players’ strate-
gies to break the symmetry of information structure, which prevents players from punish-
ing each deviator separately. Such trick is not useful here just because there are only two
signals.

7



when the other player is mixing H and L with probability 1 ¡ p and p in
the cooperative phase. Note that if p = 0; then this is equivalent to (3) :
Why can mixing help to improve the best symmetric payo¤ even though
it reduces the stage game payo¤? It is because (1): deviation gain can
become small if ® > ¯ or/and (2): the likelihood ratio may increase. Now
let p¤ = arg p 2 [0; 1]max1¡ p¡ p¯ ¡ (1¡p)®+p¯

Lp¡1 . The following is the formal
statement with the strongly symmetric strategies:

Proposition 1 The bound of the strongly symmetric PPE payo¤ of this re-
peated partnership game is given by:
vs = max

n
1¡ p¤ ¡ p¤¯ ¡ (1¡p¤)®+p¤¯

Lp
¤¡1 ; 0

o
:

Proof: See Appendix.

As it should be clear from the construction of the equilibrium strategy,
this bound is a tight one. Whether the stationary strategy described above
obtains 1¡ p¤ ¡ p¤¯ ¡ (1¡p¤)®+p¤¯

Lp
¤¡1 or no cooperation is possible.

In order to get the bound of all the symmetric PPE payo¤, I have to
take care of the cases where the optimal strategy pare is asymmetric. If
that possibility is taken account, the upper bound has to be modi…ed in the
following way:

Proposition 2 The bound of the symmetric PPE payo¤ of this repeated part-
nership game is given by:

vs = max
n
1¡ p¤ ¡ p¤¯ ¡ (1¡p¤)®+p¤¯

Lp¤¡1 ; 1+®¡¯
2
; 0

o
and vs = V ¤1 +V

¤
2

2
for any

PPE payo¤ (V ¤1 ; V
¤
2 ) :

Proof: See Appendix.

Interestingly, when the asymmetric strategy achieves the best symmetric
payo¤, at least one player has to play L with probability 1 in the …rst pe-
riod. The payo¤ 1+®¡¯

2
is the upper bound for such a case. The equilibrium

where each player uses a di¤erent degree of mixture is not an e¢cient one.
It is easy to pick up a set of parameters where 1+®¡¯

2
is really the bound

and it is obtained by the asymmetric PPE where players play (H;L) (L;H)
alternatively. However, this bound may not be tight. When ¼n is linear
in n; which is the case analyzed in detail by Fudenberg and Levin [?], The
bound in Proposition 2 is tight in the sense that one of the three number³
1¡ p¤ ¡ p¤¯ ¡ (1¡p¤)®+p¤¯

Lp¤¡1 ; 1+®¡¯
2
; 0

´
is the bound and the bound is really

achieved by some strategy.

8



4 Construction of a Private Sequential Equi-
librium

In this section, a private sequential equilibrium is constructed and compared
to the bound of symmetric PPE obtained in the last section. The strategy
is described by a machine Mi = hQi; qi0; fi; ¹ii : In this quadruple, Qi =
fqi;g; qi;bg is the states of the machine with qi;g being the initial state. The
level of mixture between H and L at each state is determined by a function
fi : Qi ! [0; 1] . For example, fi (qi;k) is the probability to play L when player
i is in the state k: The transition function is ¹i : Qi £ Ai £ ­ £ ­i ! Qi
. Here !i 2 ­i is an outcome of a player i0s personal randomization device
and used to generate a behavior strategy after a certain type of history,
which is speci…ed later. Let ­i = f0; 1g be the space of the outcome of the
randomization device and Pr (!i = 0) = 1 ¡ ½ and Pr (!i = 1) = ½ where
½ 2 [0; 1] can be chosen arbitrary. Note that the state transition depends
on one’s own action. Each machine Mi induces a mixed strategy (but not a
behavior strategy). We denote by ¾i (Mi) a behavior strategy corresponding
to the mixed strategy generated by the machine Mi:

78

I use the following speci…c transition function ¹i with ½:

¹½i (qi;g; ai; !; !i) =

½
qi;g if (ai; !) 6= (L; b)
qi;b if (ai; !) = (L; b)

¹½i (qi;b; ai; !; !i) =

8
<
:
qi;b if (ai; !) 6= (L; g)
qi;g if (ai; !; !i) = (L; g; 1)
qi;b if (ai; !; !i) = (L; g; 0)

Players are using !i to randomize between staying qi;b and moving to qi;g
when player i0s action is L and a signal g is observed. Players control the
level of punishment by choosing ½: Since the strategy is strongly symmetric,
the subscript i is omitted in the following.

Most important element of the strategy ¾ (M) is f (qk), k = g; b: They
are de…ned to be a solution to the following equations.

(¤)
Vg = (1¡ ±) (1¡ pg ¡ pg¯) + ±

£
(1¡ pg)Vg + pg

©¡
1¡ ¼1

¢
Vg + ¼

1Vb
ª¤

(5)

7Aumann(1964)[3]
8This automaton can be “puri…ed” by introducing more private signal and expanding

the state space using a sophisticated transition function.
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(1¡ ±) ((1¡ pg)®+ pg¯) = ±pg M ¼1 (Vg ¡ Vb) (6)

Vb = (1¡ ±) (1¡ pb ¡ pb¯) + ±
£
(1¡ pb)Vb + pb (1¡ ½)Vb + pb½

©¡
1¡ ¼1

¢
Vg + ¼

1Vb
ª¤

(7)

(1¡ ±) ((1¡ pb)®+ pb¯) = ±pb½ M ¼1 (Vg ¡ Vb) (8)

If the solution
¡
p¤b ; p

¤
g

¢
of these equations are in [0; 1] ; then these numbers

can be used for the function fi (qi;k) and generate a behavior strategy ¾ (M) :
Then each equation has a natural interpretation. (5) is player j0s continuation
payo¤ if player i 6= j is using machine Mi and in state g: The …rst term is a
stage game payo¤ when player j playsH: The second term is the continuation
payo¤ if the continuation payo¤ of player j is given by Vk when player i is in
the state k: (6) is the indi¤erence condition between playing H and L when
he other player is in the state k. (7) and (8) can be interpreted in the same
way as(5) and(6). These equations imply that whatever state the other player
is in, a player is indi¤erent between playing H and playing L in the current
period provided that one’s continuation payo¤ is completely determined by
the other player’s state. Moreover, looking at these equations carefully, it can
be seen that a player’s continuation payo¤ is actually completely determined
by the other player’s state. So, a player cannot control one’s own payo¤ at
all. Any payo¤ di¤erence one can make in the current period is o¤set by the
di¤erence of the continuation payo¤. As a consequence, this strategy makes
the other player indi¤erent between all the repeated game strategy and that
in turn guarantees that this strategy is sequentially rational to itself.9 Note
that the logic is similar to the one for a totally mixed strategy equilibrium
in a …nite normal form game.

Lemma 3 If
¡¡
p¤g; p

¤
b

¢
; ½¤; V ¤g ; V

¤
b

¢
solves (¤) and 0 5 p¤k 5 1; k = g; b and

½¤ 2 [0; 1], then the strongly symmetric strategy pair (¾1 (M¤) ; ¾2 (M¤)) with

9The idea of strategy which makes the other player indi¤erent for all repeated game
strategies is …rst found by Piccione[9] in the context of private monitoring to deal with
private information. His strategy basically consists of a in…nite state automaton. This
paper and Ely and Välimäki[4], which also deals with private monitoring, are the …rst
papers to show independently that the same idea can be built into a …nite state automaton.
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fi (qi;k) = p
¤
k and ¹i = ¹

½¤ for all k = g; b and i is a sequential equilibrium
with a system of belief compatible with (¾1 (M¤) ; ¾2 (M¤)) and the equilibrium
payo¤ is

¡
V ¤g ; V

¤
g

¢
.

Proof:
Suppose that a player, say player 1, is using this machine M¤ and player

2 is playing always H after any history. If player 1 is in the state 0, player

2’s expected average payo¤ is V ¤g = 1 ¡ p¤g ¡ p¤g¯ ¡ (1¡p¤g)®+p¤g¯
L1¡1 : If player 1

is in the state 1, player 2’s expected average payo¤ is V ¤b = 1 ¡ p¤b ¡ p¤b¯ +
(1¡p¤b)®+p¤b¯

L1¡1
1¡¼1
¼1
: Now suppose that player 1 is actually in state g and there

exists a pure strategy for player 2 which gives more (or less) payo¤ than
V ¤g : Then, thanks to continuity at in…nity, I can replace this strategy with
another strategy which is the same as the original strategy until some period
and goes back to “always H" thereafter, keeping a payo¤ more(or less) than
V ¤g : Let the period to go back to “always H" be N: By indi¤erence conditions
(6) and (8), whatever state player 1 is going to be in the period N; players
are indi¤erent between playing H and L in the period N ¡ 1: So, I can
replace this strategy with another strategy which goes back to “always H"
in the period N ¡ 1 with the same expected average payo¤. This induction
goes back to the initial period and leads to a contradiction. 10So, any pure
strategy, henceforth any mixed strategy, generates the same expected average

payo¤ V ¤g = 1 ¡ p¤g ¡ p¤g¯ ¡ (1¡p¤g)®+p¤g¯
L1¡1 : Since the same result holds when

player 1 is in the state b, ¾ (M¤) is sequentially rational if the other player
is using M¤: This implies that (¾ (M¤) ; ¾ (M¤)) is a symmetric sequential
equilibrium with the belief corresponding to the machine M¤¥

What is going on here? Since the outcome of a player’s randomization
is a private information, a player never know what is the other player’s con-
tinuation strategy or which state the other player is in after the initial pe-
riod. So, in principle, players have to update the probability of the other
player being in state g or b and make sure that their continuation strategy
is actually sequentially rational. It is usually very di¢cult to guarantee
sequential rationality especially o¤ the equilibrium path and this problem
makes it di¢cult to deal with private information in discounted repeated

10The argument used here is the one shot deviation principle, which is usually invalid
when private information is present. Here, since the player’s payo¤ does not depend on
their belief, the accumulated private information is useless.
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games. However, players do not care about their belief dynamics here be-
cause whatever state the other player is in, a player’s expected payo¤ cannot
be a¤ected for themselves. Although whether the other player is in state g
or b matters for player’s expected payo¤ level, it does not matter in terms of
player’s incentive.

The following main proposition shows that for ± close to 1, I can …nd
a solution

¡
p¤g (±) ; p

¤
b (±) ; ½

¤ (±) ; V ¤g (±) ; V
¤
b (±)

¢
parameterized by ± for the

above equations (¤) such that p¤g (±) ¼ 0 and p¤b (±) = 1 with the appropriately

adjusted ½¤ (±) 2 [0; 1] : Since I can derive V ¤g = 1¡ p¤g ¡ p¤g¯¡ (1¡p¤g)®+p¤g¯
L1¡1 as

is derived in lemma 3 after some manipulation of equations (¤), this result
implies that the payo¤ arbitrary close to 1¡ ®

L1¡1 is achieved as a sequential
equilibrium for such ± using the private strategy generated by M¤ (±) which
is based on

¡
p¤g (±) ; p

¤
b (±) ; ½

¤ (±)
¢
: Note that this formula uses the likelihood

ratio L1 instead of L0; while the other components are exactly the same as in
the equilibrium payo¤ of the pure strategy strongly symmetric equilibrium.
Here players spend most of their time in the state qg playing H; but the
punishment happens only after (L; b) ; which allows me to use L1 instead of
L0:

Proposition 4 Suppose that M ¼1 > ¼1®+(1¡ ¼2) ¯11: Then for any ´ > 0;
there exists a ± such that for all ± 2 (±; 1) ; there exists a strongly symmetric
strategy pair (¾ (M (±)) ; ¾ (M (±))) parameterized by ±; which is a sequen-
tial equilibrium with a compatible belief system and generates the symmetric
equilibrium payo¤ (V (±) ; V (±)) such that V (±) > 1¡ ®

L1¡1 ¡ ´:

Proof:
Given that 0 < ± < 1; we can derive the following system of equations

equivalent to (¤).
(¤¤)

Vg = 1¡ pg ¡ pg¯ ¡ (1¡ pg)®+ pg¯
L1 ¡ 1 (9)

Vb = 1¡ pb ¡ pb¯ +
(1¡ pb)®+ pb¯

L1 ¡ 1
1¡ ¼1
¼1

(10)

11This assumption is equivalent to Vg > Vb where Vg and Vb is derived as a function of
parameters by solving this system of equations.
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(1¡ ±) ((1¡ pg)®+ pg¯) = ±pg M ¼1 (Vg ¡ Vb) (11)

pb =
pg®

pg (®¡ ¯) + ½ f(1¡ pg)®+ pg¯g
(12)

Once pg is obtained, then Vg; Vb; pb are obtained by (9) ; (10) and (12)
respectively. Since ½ can be an arbitrary number between 0 and 1, it is set
to be pg¯

(1¡pg)®+pg¯ so that pb = 1: This is actually between 0 and 1 if pg is
between 0 and 1. Substituting (9) ; (10) and (12) for Vg; Vb; pb; I can get a
quadratic equation, whose solution can be used for pg:

F (x; ±) = c2 (±)x
2 + c1 (±) x+ c0 (±) = 0 (13)

with

c2 (±) = ± f¼2 (1 + ¯)¡ ¼1 (1 + ®)g (14)

c1 (±) = (1¡ ±) (¯ ¡ ®) + ±
©
¼1®+

¡
1¡ ¼2

¢
¯¡ M ¼1

ª
(15)

c0 (±) = (1¡ ±)® (16)

(x; ±) = (0; 1) is clearly a solution. Since @F
@x

j(x;±)=(0;1) 6= 0 with the
assumption ¼1®+(1¡ ¼2)¯¡ M ¼1; Implicit function theorem can be applied
to get a C1 function pg (±) around ± = 1 with

dpg(1)
d±

= ¡
@F
@±
j(x;±)=(0;1)

@F
@x
j(x;±)=(0;1)

= ®
¼1®+(1¡¼2)¯¡M¼1

Since ¼1®+(1¡ ¼2) ¯¡ M ¼1 < 0 by assumption; pg (±) 2 (0; 1) for some
small interval (±; 1) and pg (±) ! 0 as ± ! 1: Vg and Vb can be derived from

(9) and (10) with pg (±) and pb = 1: ( pg; pb; ½; Vg; Vb) =
³
pg (±) ; 1;

pg(±)¯
(1¡pg(±))®+pg(±)¯ ; Vg (±) ;

¯(1¡¼
¼2¡¼

is a parametrized solution for (¤¤) : Now by lemma 3, (¾ (M (±)) ; ¾ (M (±)))

with f (qg) = pg (±) ; f (qb) = 1; and ½ (±) = pg(±)¯
(1¡pg(±))®+pg(±)¯ is a sequential

equilibrium with a compatible belief and the equilibrium payo¤ is Vg (±) ;
which converges to 1 ¡ ®

L1¡1 as ± ! 1: For any ´ > 0; we can pick ± such
that for all ± 2 (±; 1) ; (¾ (M (±)) ; ¾ (M (±))) generates the equilibrium payo¤
V (±) more than 1¡ ®

L1¡1 ¡ ´:¥
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Since the pure strategy strongly symmetric PPE payo¤ is 1¡ ®
L0¡1 with

high ± if ®
L0¡1 < 1; L1 > L0 is necessary for this PSE to dominate the

best symmetric PPE payo¤. Another necessary condition is M ¼1 > ¼1® +
(1¡ ¼2)¯ which is used to construct the PSE. The next theorem gives a
simple su¢cient condition for the PSE to dominate the best symmetric PPE
payo¤.

Proposition 5 If L1 > L0; M ¼1 > ¼1® + (1¡ ¼2) ¯; ¯ > ®; and 1+¯¡®
2

>
®

L1¡1 ; then there exists a ± such that for all ± 2 (±; 1) ; the equilibrium payo¤
generated by (¾ (M (±)) ; ¾ (M (±))) is larger than vs:

Proof: I just need to show that 1¡ ®
L1¡1 > vs:

(1): 1¡ ®
L1¡1 > 0

By M ¼1 > ¼1®+ (1¡ ¼2) ¯;

1¡ ®

L1 ¡ 1 >
(1¡ ¼2)¯

M ¼1 > 0

(2): 1¡ ®
L1¡1 >

1+®¡¯
2

1¡ ®

L1 ¡ 1 ¡ 1 + ®¡ ¯
2

=
1

2
¡ ®

L1 ¡ 1 +
¯ ¡ ®
2

This is strictly positive by assumption.
(3): 1¡ ®

L1¡1 > 1¡ p¡ p¯ ¡ (1¡p)®+p¯
Lp¡1 for all p 2 [0; 1]

LetM (p) = 1¡ ®
L1¡1¡

n
1¡ p¡ p¯ ¡ (1¡p)®+p¯

Lp¡1

o
: Then it is easy to show

that M 0 (p) < 0 for all p 2 [0; 1] because L1 > L0 and ¯ > ®; observing the
fact that Lp ¡ 1 is always less than L1 ¡ 1:

These imply that 1¡ ®
L1¡1 > vs = max

n
1¡ p¤ ¡ p¤¯ ¡ (1¡p¤)®+p¤¯

Lp¤¡1 ; 1+®¡¯
2
; 0

o
¥

Although there are many restrictions on the structure of the stage game,
there still exists a generic set of parameters, which satis…es all these restric-
tions. In the next section, I pick a example satisfying these payo¤ restriction,
where the PSE is much more e¢cient than any PPE.
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5 An Example.

Set ® = · > 0 and ¯ = 1¡ 2· > 0.
Also Set

8
<
:
¼0 =

1
2

¼1 =
1
2
+ "t

¼2 = 1¡ "t
and "t ! 0:

Note that these numbers guarantee that the assumption for Proposition
4 is satis…ed for small "t. As "t goes to 0; it gets more di¢cult to detect
the other players deviation if (H;H) is played. At a certain level of "t;
players have to randomize to support any strongly symmetric PPE payo¤
other than 0: If "t gets much closer to 0; then simply Nash repetition is only
the feasible strongly symmetric equilibrium. This is because the stage game
payo¤ becomes negative as players put too much weight on L for detecting
deviations e¤ectively.

You can see why strongly symmetric strategies do not work by examining
the formula of the payo¤ :1 ¡ p ¡ p¯ ¡ (1¡p)®+p¯

Lpt¡1
: This is 1 ¡ 2p (1¡ ·) ¡

(1¡p)·+p(1¡2·)
p

= ¡2p (1¡ ·) + 3·¡ ·
p
; which is clearly negative if k is small

enough
¡
if k < 8

17
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An another candidate of the PPE upper bound is simply 1+®¡¯
2

= 3
2
·: So

there exists a t (·) such that the sum of any PPE payo¤ is bounded by 3·
for all t = t (·) :

On the other hand, the upper bound of the private sequential equilibrium
payo¤ converges to 1¡ ®

L1t¡1
! 1¡·: Since · can be an arbitrary small positive

number, I can construct an example where the PSE approximates the e¢cient
outcome arbitrarily close and the whole PPE payo¤ set is contained in an
arbitrary small neighborhood of Nash repetition payo¤ (0; 0).

6 Related Literature and Comments

Since one of the important point in constructing PSE is to deal with pri-
vate information generated endogenously by private strategies, this paper
is closely related to literature on repeated games with private monitoring,
where signals are private information. In particular, Ely and Välimäki[4] in-
dependently created a similar strategy which is also described by a …nite au-
tomaton. The idea behind these strategies are the same as one in Piccione[9],

15



where the strategy is basically an automaton with countably in…nite number
of states.

However there is a critical di¤erence between this paper and Ely and
Välimäki[4]. While players play a pure action at each state in their paper,
players have to randomize at the initial state in this paper to use the private
action-signal pro…le with the highest likelihood ratio, which is the main focus
of this paper. This idea of e¢cient monitoring is an old and simple idea which
lies at the heart of the analysis of moral hazard. This paper suggests a way
to use private information to enhance informational e¢ciency in repeated
games.

As for e¢cient detection based on randomization, Kandori[7] applied the
same idea to an example of repeated partnership game. His example cor-
responds to the case where ¼1 is 0 and ¼0, ¼2 is between 0 and 1 in my
model: With this parameter, a similar strategy is actually able to achieve
e¢ciency. This is natural based on the result in this paper because it cor-
responds to L1 = 1 in my model. There are two comments on Kandori[7]
worth mentioning.

First, if ¼1 is 0; the timing to go to the punishment phase is common
knowledge. If a player plays L and observe b; then it has to be the case that
the other player also plays L and observe b: This implies that players do not
have to face with serious problems associated with private information and
they can use the Nash repetition as a punishment. This is why his construc-
tion requires ¼1 = 0: On the other hand, my private strategy works in a full
support environment with some additional assumptions on the parameter.

Secondly, it is interesting to see that what is going to happen if I take a
sequence of ¼1 converging to 0, keeping ¼0 and ¼2 constant. As long as the
assumption on the parameter is satis…ed, it is easy to see that the private
strategy in this paper can be constructed for each such ¼1:12 Is this sequence
of strategies converging to Kandori’s strategy? The answer is No. Since
players have to be indi¤erent between H and L even when the other player
is in state b; which is not the property of his model, the continuation payo¤
Vb is bounded away from 0 independent of discount factor. This property is
re‡ected in the fact that ¼1 = 0 is not su¢cient condition for the construction
of the private strategy in this paper. It also makes a di¤erence on the degree
of mixture at the state g for a …xed discount factor. However, this di¤erence

12As mentioned in the beginning, the assumption ¼0 5 ¼1 5 ¼2; which is violated here,
is not important for the construction of the private strategy in this paper.
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disappears as ± ! 1 because pg (±) converges to 0 in both model.

7 Discussion

In this paper, since the strategy is constructed in such a way that players are
always indi¤erent among all strategies, they can make their behavior depend
on not only public information but also private information, namely the past
realization of one’s own action. Because of this prevailing indi¤erence, this
PSE is robust to a various sort of change in information structure. First,
if parameters such as (®; ¯; ¼0; ¼1; ¼2) change slightly, then, of course, there
exists a PSE close to the original PSE. Secondly, suppose that each player
can observe additional signals which is informative about the other player’s
state. This does not change anything because a player does not care what
the other player’s state is. Finally, note that this strategy works even if there
is no public signal at all, in which case PPE does not have any bite at all
by de…nition. Suppose that the stage game is perturbed in the following
way: public signals follow the same distribution as before, but they are not
observable to players. Players observe a public signal plus private noise. Each
player observes the true public signal most of the time, but observe the wrong
one with small probability. The private strategy in this paper works even
in this setting. Again, this is because players do not care about the other
player’s state. Formally, this model belongs to repeated games with private
monitoring. However, this is not a model of repeated games with almost
perfect monitoring, which has been the main focus of private monitoring
literature because of its tractability. This is a repeated games with almost
public monitoring (Mailath and Morris[8]). Hence this strategy can serve as a
good example of strategy which works with almost public monitoring without
almost perfectness. Observe how this strategy is related to the conditions
suggested by Mailath and Morris[8]; which plays an important for a PPE to
remain an equilibrium with an almost public monitoring when a public signal
structure is perturbed slightly. The private strategy satis…es the necessary
condition (connectedness) but does not satisfy the su¢cient condition (…nite
memory).

There is one important open question left. Even though it is shown
that PSE is much more e¢cient than PPE in some case, we have no idea
what is really the best symmetric sequential equilibrium payo¤. More insight
is needed to see whether RMM’s ine¢ciency result extends to a class of
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sequential equilibrium or some e¢ciency result stands out surprisingly.
appendix:

Proof of Proposition 1
In this proof, it is shown that the strongly symmetric PPE achieves the

best symmetric PPE payo¤ among a large class of asymmetric strategies, not
just strong symmetric strategies. For this purpose, I do not restrict attention
to strongly symmetric strategies from the beginning.

Let vs be the best symmetric PPE payo¤. First, at least one player has to
play H with positive probability in the initial period. Otherwise, vs is 0; the
payo¤ by Nash repetition. Suppose that both player plays H with positive
probability in the initial period for now, which is a necessary condition for
the strongly symmetric PPE to achieve any outcome other than the stage
game Nash. Let pi be the probability for player i to play L in the initial
period. Let v1 and v2 be the equilibrium payo¤ such that vs = v1+v2

2
13 and

(¾¤1; ¾
¤
2) be a strategy pro…le supporting that payo¤ pro…le.:

v1 and p2 satisfy the following inequalities derived from the recursive
equation:

v1 5 (1¡ ±) (1¡ p2 ¡ p2¯) (17)

+±
£
(1¡ p2)

¡¡
1¡ ¼0

¢
v¤1 + ¼

0µ1v
¤
1

¢
+ p2

¡¡
1¡ ¼1

¢
v¤1 + ¼

1µ1v
¤
1

¢¤

and the incentive constraint:

(1¡ ±) ((1¡ p2)®+ p2¯) = ±
©
(1¡ p2) M ¼0 + p2 M ¼1

ª
(1¡ µ1) v¤1 (18)

v¤1 is the payo¤ generated by the continuation strategy of (¾¤1; ¾
¤
2) after the

signal g. µ1v¤1 might be higher than the true continuation payo¤ generated
by (¾¤1; ¾

¤
2) after the signal b because it is set as large as possible to satisfy

the incentive constraint to let player 1 to play H in the initial period
Similar inequality and equation holds for player 2:

v2 5 (1¡ ±) (1¡ p1 ¡ p1¯) (19)

+±
£
(1¡ p1)

¡¡
1¡ ¼0

¢
v¤2 + ¼

0µ2v
¤
2

¢
+ p1

¡¡
1¡ ¼1

¢
v¤2 + ¼

1µ2v
¤
2

¢¤

13Here I take account of the possibility that the best symmetric payo¤ is achieved by
randomizing between asymmetric equilibriua using a public randomization device.
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(1¡ ±) f(1¡ p1)®+ p1¯g = ±
©
(1¡ p1) M ¼0 + p1 M ¼1

ª
(1¡ µ2) v¤2 (20)

Adding (17) and (19) and using v¤1 + v
¤
2 5 v1 + v2; we can get

v1 + v2 5 1¡ pi ¡ pi¯ ¡ ± f(1¡ pi)¼0 + pi¼1g (1¡ µj) v¤j
1¡ ±

+1¡ pj ¡ pj¯ ¡ ± f(1¡ pj)¼0 + pj¼1g (1¡ µi) v¤i
1¡ ±

Substituting (18) and (20) into this equation ,

v1 + v2 5 1¡ pi ¡ pi¯ ¡ (1¡ pi)®+ pi¯
Lpi ¡ 1 + 1¡ pj ¡ pj¯ ¡ (1¡ pj)®+ pj¯

Lpj ¡ 1
Note that the bound of the player 1’s(2’s) payo¤ only depends on p2 (p1) :
Then, p1 = p2 = p¤ gives the optimal bound of v1 + v2 and

vs =
v1 + v2
2

5 1¡ p¤ ¡ p¤¯ ¡ (1¡ p¤)®+ p¤¯
Lp¤ ¡ 1

It is clear that this bound is supported by the strongly symmetric strategy
PPE where randomizing H and L with (1¡ p¤; p¤) is used instead of (H;H)
in (#) and that vs = v1 = v2:¥

This proof assumes that players can access to some public randomization
device, but it turns out they do not really need one. Another fact which
becomes clear from the proof is that if any asymmetric pro…le is used to
support vs; then some player has to play L with probability 1 in the initial
period. This fact makes the proof of the next proposition simple.

Proof of 2
Consider the case where one player play L with probability 1 in the initial

period. Suppose that this player is player 2 without loss of generality. The
payo¤ pro…le (v1; v2) satis…es vs = v1+v2

2
as before.

The recursive equations for players are:
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v1 = ¡ (1¡ ±) (1¡ p1)¯ (21)

+±
£
(1¡ p1)

¡¡
1¡ ¼1

¢
v¤1 + ¼

1v¤¤1
¢
+ p1

¡¡
1¡ ¼2

¢
v¤1 + ¼

2v¤¤1
¢¤

v2 = (1¡ ±) (1¡ p1) (1 + ®) (22)

+±
£
(1¡ p1)

¡¡
1¡ ¼1

¢
v¤2 + ¼

1v¤¤2
¢
+ p1

¡¡
1¡ ¼2

¢
v¤2 + ¼

2v¤¤2
¢¤

Since v¤1 + v
¤
2 5 v1 + v2 and v¤¤1 + v

¤¤
2 5 v1 + v2; adding 21 and 22,

v1 + v2 5 (1¡ p2) (1 + ®¡ ¯) 5 1 + ®¡ ¯

So, vs 5 1+®¡¯
2

¥
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