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1 Introduction

The dependence of equilibrium outputs, price and profits on industry concentration is
a fundamental issue in economic analysis. Interest for this topic at various levels has
traditionally extended to several subfields encompassing high theory and antitrust
practice. Conventional wisdom contends that with more firms, industry price must
decline. This corresponds to the so-called property of quasi-competitiveness for a
Cournot oligopoly. Likewise, per-firm output and profit ought to decrease with the
number of firms.

The purpose of the present paper is to thoroughly examine the validity of these
assertions for a Cournot industry with symmetric firms. Our primary aim is to derive
precise and minimal sufficient conditions under which these conclusions - which are
often taken to be universally true - do, in fact, hold. Our findings only partly confirm
conventional wisdom. In order to provide a summary, let P (-) and C (-) denote the
inverse demand and the common cost function respectively. The key determinant of
the overall analysis is the sign of A £ —P' (z) + C" (z), where z and x stand for
aggregate and single-firm outputs, respectively.

If A is globally positive, there always exists at least one symmetric equilibrium
and no asymmetric ones. Furthermore, the extremal (i.e., maximal and minimal)
equilibria call for a total industry output which increases in the number of firms n,
and hence for an equilibrium price which decreases in n. This is the so-called property
of quasi-competitiveness. As n increases, per-firm equilibrium output decreases if
demand is log-concave, and it increases if demand is log-convex and production costs
are zero. Apart from this very last statement, the above results are perfectly intuitive
and form the conventional wisdom.

On the other hand, when A is globally negative, two different types of Cournot
equilibrium can coexist. A monopoly equilibrium always exists, where one firm pro-
duces the optimal monopoly output and the other (n — 1) firms produce nothing.
More generally, whenever a symmetric Cournot equilibrium exists for an m-firm mar-
ket, it remains an equilibrium for an n-firm market for any n > m, with the additional

(n — m) firms producing no output. These equilibria are all clearly insensitive to the



number of firms. Given quasi-concave profit functions, a unique symmetric equilib-
rium also exists, which leads to per-firm and industry outputs that are decreasing in
the number of firms. The latter fact, or quasi-anticompetitiveness, is highly counter-
intuitive, particularly given its global nature: industry price rises in response to entry
by a new firm, regardless of the initial number of firms. Finally, with A < 0, we show
that no other type of equilibrium exists.

A key feature of the present paper is its reliance on the lattice programming
methodology. This approach allows for a clear-cut separation of the overall analysis
into two mutually exclusive cases sharing no common extraneous assumptions that
would have (unessential) economic meaning. This allows for a very simple and clean
interpretation of the conditions (on the sign of A) that drive the comparative statics
conclusions: See Section 2.4. Furthermore, this simplicity and transparency of the
analysis involved is nicely complemented here by the fact that the two possible global
signs of A also separate the issue of existence of Cournot equilibrium into two natural
cases.

As far as per-firm profits are concerned, conventional wisdom fully prevails. All
the Cournot equilibria discussed above give rise to equilibrium profits that are non-
increasing in the number of firms.

The results of the quasi-anticompetitive case can be usefully related to some of
the theories of industry structure, in particular to the theory of natural monopoly
(Sharkey (1982)). This is defined as any industry with a subadditive cost function,
a purely supply-side criterion. By contrast, one can present our condition A < 0 as
an alternative criterion integrating demand and supply effects (through the terms P’
and C” respectively). Since the monopoly outcome is a Cournot equilibrium of the
oligopoly here, this criterion rests on well-defined game-theoretic foundations. (This
discussion is continued in Section 2.4.)

There is an extensive literature on the topics at hand, and our results have several
antecedents. Existence of a symmetric equilibrium when A is globally positive is an
interesting (though straightforward) extension of a classic result due to MacManus

(1962, 1964) and Roberts and Sonnenschein (1976) and relying on convex costs. On



the other hand, the existence question with A globally negative has not been analyzed
previously.

As for quasi-competitiveness and profitability, several studies have developed re-
sults that overlap with ours, including MacManus (1962, 1964), Frank (1965), Ruffin
(1971), Okuguchi (1973), Novshek (1980), and Seade (1980a). Since these studies
relied on methods based on the Implicit Function Theorem and signing derivatives,
unnecessary simplifying assumptions were typically made, such as concavity of payofts
in own output, decreasing marginal revenue, differentiability of reaction curves, etc...
Furthermore, unclear or imprecise conclusions were sometimes derived, particularly
in the presence of multiple Cournot equilibria (see below).

By contrast, the approach of the present paper, based on lattice-theoretic methods
as developed by Topkis (1978, 1979), Vives (1990), Milgrom and Roberts (1990), Mil-
grom and Shannon (1994) and Milgrom and Roberts (1994), leads to unambiguous,
consistent and meaningful statements about these issues. First, for the comparative
statics questions under consideration to even make sense, any set of sufficient condi-
tions must include provisions for a Cournot equilibrium to exist for any number of
firms. Second, to account for possible multiplicity of Cournot equilibria, one must
have a systematic and meaningful way to make statements about equilibrium sets
or well-defined equilibrium selections, as the number of firms varies. Third, it is de-
sirable to obtain tight comparative statics relying only on critical or fundamentally
needed conditions and not on convenient assumptions imposed only by the use of an
inappropriate methodology.!

For a thorough discussion of the merits of the lattice-theoretic methodology over
the traditional approach along the lines raised above, the reader is referred to Mil-
grom and Roberts (1994). In the present context, due to the discrete nature of the
parameter of interest - the number of firms - some of the disadvantages of the previ-
ous studies are magnified. For instance, consider the problem of multiple equilibria.

Assume that for n = 2 (say), there are three (symmetric) equilibria, given by the

!Such convenient assumptions often cloud the economic intuition behind the conclusions and
prevent a clear-cut separation between different and potentially mutually exclusive cases of analysis

(such as the cases A > 0 and A < 0 in the context at hand).
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intersection of the reaction curve r (-) with the 45° line, and that for n = 3, there are
five equilibria, given by the intersection of r (-) with the 22.5° line (see Figure 1).2
We prove that, as n increases, the maximal and minimal equilibria call for the output
by the other (n — 1) firms to increase, which is clearly true here. However, no mean-
ingful statement can be made about the shift of the middle equilibrium when n = 2
to the three middle equilibria when n = 3. Thus, while our approach yields clear
global statements about the extremal equilibria, the traditional approach gave rise to
local statements that are not always well-defined. Moreover, the latter also have the
drawback of requiring exact knowledge of the equilibrium point under consideration
as they are expressed via an inequality condition at that point. However, with such
knowledge, the comparative statics could also be checked directly by evaluating the
variation of the equilibrium point with respect to the number of firms.

In the context of Cournot oligopoly, the two extremal equilibria enjoy particular
welfare properties. The largest [smallest] equilibrium output is most [least]| preferred
by the consumers, but least [most| preferred by the firms. Nonetheless, under particu-
lar circumstances, one might be interested in the comparative statics of a nonextremal
equilibrium. To such an end, the methodology of lattice programming may or may
not be invoked in a local sense (see Milgrom and Roberts (1994) for more on this).

This paper is organized as follows. Section 2 provides a description of the basic
model, a statement of our results, and several illustrative examples, followed by a
discussion relating our results to the theory of industry structure. Section 3 contains
the proofs of this paper. Finally, a very simple and self-contained review of the

lattice-theoretic notions and results needed here forms the Appendix.

2 The Model and the Results.

This section provides a description of the Cournot model with identical firms, and a

statement of all our results. The fundamental questions under consideration here can

2We argue later on that with n firms, a symmetric equilibrium corresponds to an intersection of

the (common) reaction curve r (Y) and the line —X= (see proof of Theorem 2.5).



be simply phrased as follows: How do total equilibrium output (and hence industry
price), and per-firm profit and output vary with the number of firms in the industry?
Alternatively, what are the effects of entry on equilibrium outputs and profits?

We consider these fundamental questions in the framework of equilibrium com-
parisons (as in Milgrom-Roberts (1994)), the exogenous parameter being the num-
ber of (identical) firms in the industry. The methodology for equilibrium com-
parison evoked here rests on the fundamental results from supermodular optimiza-
tion/games: Topkis (1978, 1979), Milgrom-Roberts (1990,1994), Sobel (1988) and
Milgrom-Shannon(1994). In particular, we build on the results of Amir (1996a)
which relate supermodularity analysis and Cournot oligopoly (also see Amir and
Grilo (1997).)

We begin with some basic notation and definitions. A symmetric Cournot oligopoly
is fully described by the quadruplet (P,C, K,n) where P : Rt — R* is the inverse
demand function, K > 0 is the production capacity of each firm, C : [0, K] — R" is
the cost function (common to all firms), and n is the number of firms in the industry.
(Here, R stands for the nonnegative reals.)

Let x denote the output variable for the firm under consideration, and let y be
the total output variable for the remaining (n— 1) firms. The variable z will stand for
cumulative industry output, i.e., z = z+y. In view of the (possible) nonuniqueness of
Cournot equilibria in our setting, the following notation is needed. Let X,,,Y,,, Z,, P,
and II,, denote the following sets respectively, given that the industry is comprised of
n identical firms: equilibrium outputs for a single firm (at a symmetric equilibrium),
equilibrium total output for the remaining (n — 1) firms, equilibrium total output,
equilibrium price, and equilibrium (per-firm) profit. Whenever any of these sets is a
singleton, it will be denoted by the corresponding lower-case letter.

The profit function of the firm under consideration is
[ (r,y) = oP (2 +y) - C () (2.1)

Alternatively, one may think of the firm as choosing total output z = = + y, given

the other firms’ cumulative output y, in which case its profit is given by

M(z,y)=1(z —y,y) =(z—y) P(2) = C (2 —y) (2.2)
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Let A (z,y) denote the cross-partial derivative of II with respect to z and v,
A(z,y) =P (2)+C" (2 —y) (2.3)

Note that both IT and A are defined on the lattice ¢ = {(z,y) : y > 0,z > y}.

The following Standard Assumptions are in effect throughout the paper:

(A1) P (-) is continuously differentiable and P’ (-) < 0.

(A2) C(-) is twice continuously differentiable and nondecreasing.

Note that, although convenient, the smoothness assumptions are by no means
necessary for our main results, as will be argued below.

Whenever well-defined, denote the maximal and minimal points of a set by an
upper and a lower bar, respectively. Thus, for instance, Z,, and Z,, are the highest
and lowest total equilibrium outputs, with corresponding equilibrium prices P,, and
P, respectively. Performing comparative statics on equilibrium sets will consist of
predicting the direction of change of these extremal elements as the exogenous pa-

rameter varies. Accordingly, the usual notion of quasi-competitiveness from models

with a unique equilibrium (Ruffin (1971)) is extended as follows:

Definition. A symmetric Cournot model is said to be quasi-competitive [quasi-
anticompetitive] if the extremal equilibrium total outputs Z,, and Z,, are nondecreasing

[nonincreasing/ in n.

The two mutually exclusive assumptions on P and C' that respectively establish
quasi-competitiveness and quasi-anticompetitiveness are also those needed to sepa-
rate the issue of existence of a Cournot equilibrium into two distinct cases: A > 0
globally on ¢, and A < 0 globally on ¢. (The comparative statics of per-firm output
x, requires additional information.) Consequently, it is convenient to consider two

distinct cases.



2.1 The Quasi-Competitive Case.

Here, we provide conditions on P (-) and C (-) ensuring that (i) a symmetric Cournot
equilibrium exists for each n = 1,2, ..., and (ii) the model is quasi-competitive, and
leads to extremal equilibrium profits which are nonincreasing in n. These properties
are widely believed to hold very generally - and indeed the conditions we provide
are very natural - although, as will be seen in Section 2.2, there are also plausible
conditions under which quasi-competitiveness fails to hold.

We begin with the existence result.

Theorem 2.1 [n addition to the Standard Assumptions, suppose that A (z,y) > 0
on ¢. Then, for each n € N, the Cournot oligopoly has at least one symmetric

equiltbrium and no asymmetric equilibria.

This theorem extends the classic McManus (1962, 1964) result which assumes the
convexity of C' instead of A > 0, and which was also independently rediscovered
by Roberts and Sonnenschein (1976); see also Amir (1996a) for an alternative proof,
based on lattice-theoretic arguments. Since P' < 0, it is clear that the convexity of
C implies A > 0 on ¢. An example is provided below illustrating that the conditions
of Theorem 2.1 can hold even when the cost function is everywhere concave, thereby
establishing that the extension embodied in our result here is meaningful.

It is important to note that differentiability of the demand and cost functions is
assumed purely for convenience (and for ease of interpretation of the conditions on
A). As will become apparent in the proofs, the fundamentally needed assumption is
the supermodularity of II on ¢ (which, under smoothness conditions is equivalent to

A > 0,3 by Topkis’s Characterization Theorem: see Appendix). Equivalently, all we

3Furthermore, we would need to assume that I is strictly supermodular on ¢ to obtain the
monotonicity of every best-reply selection (as opposed to the two extremal selections only: see

Topkis’s Theorem in Appendix), which is weaker than A > 0 on ¢ (under smoothness assumptions).



definitely need is* (dropping the term zP (z) of II):
yP (z) + C (z — y) is submodular on ¢. (2.4)

The key consequence of this assumption is that the line segment joining any two
points on the graph of the reaction correspondence of a firm must have a slope > —1,
which in particular precludes downward jumps (while allowing for upward jumps).

We are now ready for the main result of this section.

Theorem 2.2 Under the hypothesis of Theorem 2.1, the following hold:

(a) The extremal equilibrium cumulative outputs of (n — 1) firms, Y,, and Y,
are nondecreasing in n.

(b) The extremal equilibrium total outputs Z, and Z, are nondecreasing in n,
and hence the corresponding prices P, and P, are nonincreasing in n.

(¢c) The extremal equilibrium profits 11,, and I, are nonincreasing in n.

Rephrasing these conclusions in terms of per-firm equilibrium outputs X,,, Parts
(a) and (b) would say that nX,,nX,,(n —1) X, and (n — 1) X,, are nondecreas-
ing in n. Thus the Cournot model is quasi-competitive here. Note that X, is the
Pareto-dominant Cournot equilibrium for the firms while X, is the Pareto-preferred
equilibrium for the consumers. Theorem 2.2 contains no information about how these
extremal values of X, vary with n. Both directions of change are possible, depending
on whether the reaction correspondences are downward or upward sloping: Theorems

2.3 and 2.4 provide sufficient conditions for the two cases, respectively.

Theorem 2.3 In addition to the hypothesis of Theorem 2.1, assume that P (-) is
log-concave. Then, there exists a unique and symmetric Cournot equilibrium, with

per-firm equilibrium output x, monincreasing in n.

4 Alternatively, letting D denote the direct demand function so that p = P (2) iff z = D (p), (2.4)
can also be expressed as: yp+ C [D (p) — y] having nondecreasing differences on {(y,p) : y < D (p)}.
With smoothness, this becomes C” [D (p) — y] D’ (p) < 1.



The fact that the log-concavity of P (-) is sufficient to yield downward-sloping
reaction correspondences, and that uniqueness of Cournot equilibrium (without the
symmetry assumption) follows from the additional condition of convex costs, have
been proved in Amir (1996a). The uniqueness part of Theorem 2.3 may thus be
viewed as an extension of the latter result as it replaces the assumption of convex
costs with the assumption A > 0. In view of these facts, it becomes obvious that
Theorem 2.3 follows directly from Theorem 2.2(a) since z,, is the best-response to yy,

here. Next, we state the result for the case of upward-sloping reactions.

Theorem 2.4 In addition to the hypothesis of Theorem 2.1, assume that P () is
log-convex and that C (-) = 0. Then the extremal equilibrium per-firm outputs X,

and X, are nondecreasing in n.

There are some major differences between the two cases. First, the presence
of (nondegenerate) production costs favors downward-sloping reactions, so that the
condition of zero costs is actually needed here (in particular, for the case of linear
costs cz, Amir (1996a) shows that P (-) — ¢ cannot be a log-convex function, in
nondegenerate cases). Furthermore, while log-convexity is, in some sense, the dual
notion to log-concavity, the latter notion is much more widely satisfied as a condition
imposed on a demand function. It is easily seen via examples that log-convexity is
a rather stringent requirement. These points are discussed in great detail in Amir
(1996a). Finally, note that the hypothesis of Theorem 2.4 does not necessarily lead
to a unique Cournot equilibrium, whence the need to specify the extremal selections
again.

We conclude this subsection with three illustrative examples. The first shows that

our results here can hold even when the cost function is everywhere concave. Recall

that the classic antecedent of the existence part of our results here required a cost
function which is everywhere convex (McManus (1964) and Roberts-Sonnenschein

(1976)).
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Example 1 Consider a symmetric Cournot oligopoly with the inverse demand and

cost functions given by

2—2 , z<

2
P(z) = and C(x)=Log(x+1),z>0.
0 , 22>2

Assume that there are no capacity constraints here. The profit function is

o . . . 1 .
The first-order condition for max, I (z,y), given y € [0,2], is 2 — 2z — y — -1 =0,
which reduces to 222 + zy +y — 1 = 0. Solving this quadratic equation, one arrives

at the following best-response function and monopoly output z:

—y+VF—8y+8| , if y<1

if y>1

r(y) = and zM =1 (0) =

[ N
ol
[\

Y

It is left to the reader to verify that r’ (y) > —1 for y € [0,1]. Note also that II is
concave in z for fixed y (in the relevant domain).
To compute per-firm equilibrium output, one solves the equation z = r [(n — 1) z],

which leads to the quadratic equation (n + 1) 22+ (n — 1) z — 1 = 0, whose only valid

root is
1
= — ,2 .
T 2(n—|—1)[1 n—+vn +2n+5},n21
Then, clearly,
n—1 n
"7 _ 2 _ "4 7 _
Yn 2(n+1)[1 n-++vn —I—2n+5}andzn 2(n—|—1)[1 n+vn —|—2n+5}

It is left to the reader to verify that x,, is decreasing in n while y, and z, are both
increasing in n. In particular, this specification leads to a quasi-competitive outcome
in spite of the concavity of C. The key determinant is of course that
/ " 1

ANzy)=—-P (2)+C (z2—y) =2——5>0 for 0<y<2z<2
(z—y+1)
Finally, since P is clearly log-concave, this example satisfies Theorem 2.3 and not
Theorem 2.4.

The remaining examples are of interest from a quantitative standpoint. The next

example shows that, in the context of Theorem 2.4, it is possible for % and i—f to be

arbitrarily large.
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Example 2 Consider the symmetric Cournot oligopoly with no production costs, and

wverse demand given by

1
P = > 1
(2) CE z2>0, a>

The reaction curve is r (y) = L2, for y > 0. The unique (symmetric) Cournot

equilibrium output, total equilibrium output and per-firm profit are respectively,

_mya—1
4 if a>n = if a>n s
Ty = Zn = Ty =

400 if a<n +oo if a<n 0 if a<n

if a>n

It is easily verified that the ratio of monopoly to (per-firm) duopoly profits %

converges to +00 as o — 2, and that $2 converges to +oo as a — 2 (note that z,, is
increasing in n, as in Theorem 2.4).
The last example relates to both Theorems 2.3 and 2.4 and shows that strict

monotonicity of z,, in n does not hold (without additional hypothesis).

Example 3 Consider a symmetric Cournot oligopoly with no production costs and

inverse demand function

P(z)=e¢*,2>0.
Following a simple computation, we have x, = 1, 4, = n — 1 and z, = n, for all n.
The reaction function of a firm is r (y) = 1, Vy > 0, so that each firm has a dominant

strategy of unit output. Thus, this example fits Theorems 2.1 - 2.4.

2.2 The Quasi-Anticompetitive Case.

In this subsection, we provide (i) conditions on P (-) and C'(-) ensuring that a Cournot
equilibrium, with one firm as a monopoly and the other firms not producing, always
exists, and (ii) stricter conditions under which a unique symmetric Cournot equilib-
rium always exists. Furthermore, whenever a symmetric equilibrium for an m-firm
oligopoly exists, it is unique (say with per-firm output z,,), and the following output
configuration is always an equilibrium of the n-firm market (for all n > m): m firms

each produce z,, and the other (n — m) firms produce nothing. All the asymmetric

12



equilibria here are (clearly) insensitive to the number of firms in the industry. On
the other hand, the symmetric equilibrium reflects quasi-anticompetitiveness but still
leads to per-firm profits that are decreasing in the number of firms.

Naturally, quasi-anticompetitiveness is quite counter-intuitive. Most observers
of market behavior would think of equilibrium prices that increase in the number of
sellers as pathological features. Nonetheless, although the associated assumptions are
easily seen to be rather restrictive, it is interesting to note that the above conclusions
can hold under a set of assumptions which is not degenerate. For a related result,
also see Rosenthal (1980).

For the case at hand, it will be convenient (though not essential) to assume that
K = +o0, i.e., no capacity constraint. As will become apparent in the proofs (in
Lemmas 3.1-3.2), it would be sufficient to assume K > 2™ (z™ = monopoly output).

Lety & P! (C" (0)) and A (-) be the Average Cost curve, i.e., A (z) = %f), x> 0.
By I'Hospital’s rule, we have P (7) = C' (0) = A(0), so that 7 is that output by the
other firms that equates price and average cost when the responding firm produces

nothing. We are now ready for the existence result.

Theorem 2.5 In addition to the Standard Assumptions, suppose that A (z,y) < 0
on . Then, for any number of firms n € N, the following hold:

(a) For any m < n, whenever a symmetric equilibrium ezists for the m-firm
oligopoly, it must be unique (say with output x,,), and the following output configura-
tion constitutes an equilibrium for the n-firm oligopoly: Fach of any m firms produces
T, while the remaining (n — m) firms produce nothing. In particular (with m = 1),
an n-firm equilibrium always exists in which one firm produces the optimal monopoly

output and the other (n — 1) firms produce nothing.”

®Such an equilibrium can be characterized as follows: With (say) Firm 1 as the monopoly, z}, = 2,

and Y 2! = 0 for all n (with superscripts indexing firms). Symmetry imposes, in the case of n
i#1

firms, that each possible permutation of this output vector constitute an equilibrium. Hence, there

would be n such monopoly equilibria.

n

In total, for a fixed pair (n,m) with m < n, there are ( ) asymmetric equilibria. Hence, for

m
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(b) A unique symmetric Cournot equilibrium exists if 11 (x,y) is strictly quasi-
concave in x for every y € [0,7].

(¢) No other Cournot equilibrium (than those of Parts (a) and (b)) can ezist.

As in the other case, we remind the reader that smoothness assumptions are only

made for convenience. All we really need to have (for Parts (a) and (c)) is

yP (2) + C (2 —y) is supermodular on ¢ . (2.5)

Furthermore, in the present case, this relaxation of a convenient assumption has
important economic content in that it makes it clear that (avoidable) fixed-costs in
production are allowed here.%

As will be seen in the proofs, the key consequence of the assumption A (z,y) < 0
(in conjunction with the structural properties of the Cournot model) is that the
interior part of the best-response correspondence (i.e., the part of the graph with > 0
values) has all its slopes bounded above by —1. This means that as the joint output
of the other (n — 1) firms is increased, the firm under consideration optimally reacts
by contracting its output so much that the resulting total output decreases. Hence,
the best-responses are (strongly) decreasing. Thus, for n = 2, the Cournot oligopoly
is a supermodular game (upon reversal of one firm’s output ordering), independently
of the symmetry of the game. This is no longer true for n > 3 (see Amir (1996a)).

A sufficient condition to ensure the existence of a symmetric equilibrium for all
n here is the quasi-concavity of a firm’s profit function in own output. This would

lead to the best-response being a (single-valued) continuous function. Without this

a fixed n, there is a total of anl ( " ) of these equilibria that are possible.
m= m

Indeed, it is easy to see that if C'(0) =0 and C (x) > & > 0 for > 0 and some ¢ > 0, (2.5) is

more easily satisfied, since it requires in effect strong concavity of C (-). On the other hand, such

a fixed-cost would typically destroy the quasi-concavity of the profit function in own output, and

might thus lead to nonexistence of the symmetric equilibrium for some values of n. Note that in

such a case, our equilibrium comparisons might be rephrased as follows: z,, decreases in n, for those

n for which a symmetric Cournot equilibrium exists.
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condition, the best-response may have a downward jump where it skips over the
45° line, thus implying the absence of a symmetric equilibrium in the duopoly case
(n =2). A similar remark can be made for n > 3, too.

The comparative statics of the equilibrium outcomes as n varies is as follows.

Theorem 2.6
(a) Under the hypothesis of Theorem 2.5 (a), all the asymmetric Cournot equilibria
for all m < n are invariant in n, in the sense that all entering firms produce zero.
(b) Under the hypothesis of Theorem 2.5 (b), the symmetric Cournot equilibrium
satisfies: Other firms’ joint output Y, is nondecreasing in n, while per-firm output
X, industry output Z, and per-firm profit Il,, are nonincreasing in n. Hence equi-

librium price is nondecreasing in n.

Since for each m = 1,2,...,n — 1, a subset of m firms produces the total output
mz,, and all other firms produce zero output, Part (a) holds in an obvious way. Part
(b) contains all the nonintuitive results. Observe that there is no need for analogs to
Theorems 2.3 and 2.4 here since z,, is always strongly decreasing in n, which follows
from the fact that z, = nz, is nonincreasing in n. In view of the counter-intuitive

nature of these results, an example illustrating the various points is highly desirable.

Example 4 Consider a symmetric Cournot oligopoly with the inverse demand and

cost functions given by

4—6z , z<
0

1
and C(r) =3z —3z? — 323, s < K = =

P(z)= 3

vV
W Wi

, Z

First, we compute, for y < z < %,
A(z,y)=—P (2) +C" (2 —y) = 18 (2 —y) < 0.
The profit function is then
M(z,y) =2[4—6(x+y)] —3z+3z*+ 3% z < %, r—y< %

The reaction function and the monopoly output are:

15



11— /6yl if y<
3[ \/_y} v= and 2 =r (0) =
0 if y>

r(y) = %

S~ O

It is easily checked that r' (y) < —1 for y < 1 (i.e., whenever r (y) > 0).

Next, X, solves © =r[(n—1)z] = % [1 —4/6(n—1) x} This leads to
Xn:%[n— n2—1] ,Yn:"T_l [n—\/nQ—l] and ang[n— 71,2—1}.
It is easily verified that X, is a valid equilibrium (i.e., 0 < X,, < %), X,, and Z,, are

decreasing in n, and Y, is increasing in n. Hence, the example is in accordance with

the general results of the quasi-anticompetitive case.

2.3 The Hybrid Case.

We have so far derived general conditions under which the symmetric Cournot oligopoly
satisfies the natural properties of quasi-competitiveness and restrictive but nondegen-
erate conditions under which the opposite property holds. The latter case requires
strongly increasing returns to scale in production, and is thus related to the litera-
ture on natural monopoly and oligopoly (e.g., Baumol, Panzar and Willig (1982)), as
described below.

Naturally, there are also hybrid cases, where the determinant /A changes signs on
. Assuming the existence of Cournot equilibria, these cases would be characterized
by a lack of monotonic relationship between the number of firms and the endogenous
variables of interest (per-firm output, price level). The fact that a Cournot equi-
librium may fail to exist in this case is established by counter-example by Novshek
(1985). We do not have any general results regarding these hybrid cases, other than
the following interesting unifying observation about the existence of Cournot equilib-
rium in general symmetric settings, which is a direct corollary of Theorems 2.1 and

2.5.

Proposition 2.7 In addition to the Standard Assumptions, suppose that A (z,y) # 0
for all (z,y) € ¢. Then the symmetric Cournot oligopoly has a Nash equilibrium.

We close with an illustrative example now:
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Example 5 Consider a symmetric Cournot oligopoly with

1 1
P(Z):Z+1,ZZO&DdC(Z‘):ELog(x_i_l)’ 1‘20
Assume no capacity constraint. It is easily checked that A (z,y) takes on both signs

on ¢. The profit function per firm is

T 1
IT =———-L 1 > > 0.

The reaction function and monopoly output are, respectively:

T—¢%  if y<1
r(y) = Y V= and =z
0 , if y>1

Alzl

Thus, for y <1, » (y) > (=) (<) =1 as y < (=) (>)

|

Per-firm output z,, solves x = \/ 1 — (n—1)*22 | which leads to
1 n—1 n

—_— Yypy=—————and 2, = ———
vVn? —2n+2 vVn? —2n+2 vVn? —2n +2

T, =

In particular, z; = 1, 29 = /2 ~ 141, 23 = % ~1.34, 2z, = \/% ~ 1.26... Hence,
the model is not quasi-competitive for all n > 1 (since zo > z3 > ... and P, < P3 <
...). However, quasi competitiveness does hold for n € {1,2} only, as is easily verified.
In view of this, one can observe that quasi-competitiveness holds if and only if the
sequence of equilibrium outputs z, lies in the part of r (-) such that ' (y) > —1, i.e.,
for n € {1,2}.

For a thorough analysis of a general class of such hybrid cases characterized by

piecewise linear reaction functions, the reader should consult Novshek (1984).

2.4 Economic Scope and Interpretation

As asserted before, the key advantage to using the lattice-theoretic approach, from
the applied economist’s standpoint, is that by casting the overall analysis in a frame-
work of fundamentally needed assumptions, it may often allow for a better intuitive
understanding of the economic driving forces behind the conclusions. In the present

paper, this approach naturally led to two separate cases based upon the global sign of
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A only, and not on other nonfundamental assumptions that would typically be com-
mon to the two cases, such as concavity of profits in own output, decreasing marginal
revenue, etc....

Under this (new) perspective, the following simple and appealing interpretation
can be attributed to our main result: Industry (equilibrium) price decreases [increases|
with the number of competing firms whenever inverse demand or price decreases faster
[slower| at any given output level than does marginal cost at all lower output levels.
(It is worthwhile to note the global nature of the condition: To check it at a fixed
total output z, it is necessary to know marginal cost at all output levels between 0
and z).

Further insight into the economic nature of this key condition can be gained by
breaking the overall effect (on the sign of A) into its two separate components. The
first is measured by the rate of change of the price function and may thus be termed
the market or demand-side effect, while the second is measured by the rate of change
of marginal cost and may thus be referred to as the production efficiency or supply-
side effect. The market effect always contributes to lowering industry price as the
number of firms increases. On the other hand, the production efficiency effect goes
in the same |opposite| direction whenever the cost function is convex [concave].

Under this perspective, the main result at hand can be succinctly reinterpreted as
follows: Industry price decreases with the number of firms if the market and efficiency
effects go in the same direction (which happens when costs are convex); otherwise,
price decreases [increases| with the number of firms whenever the market effect is
stronger [weaker| than the efficiency effect. (Which of the two effects dominates is
clearly determined by the sign of A, in a global sense.)

We now turn to a discussion of the economic scope of the conclusions of this
paper. As far as the quasi-competitive case is concerned, the results are so natural
and intuitive that the only aspects one can stress are the level of generality of the
analysis and the easy-to-verify nature of the required condition. On the other hand,
the other case can be viewed in relation to some well-known developments in the

theory of industry structure, in an instructive way.
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Recall that in the theory of contestable markets, natural monopoly is defined by
the subadditivity of the cost function (i.e., C(z +y) < C(z) + C(y) for all z,y > 0)).
In other words, a natural monopoly is one for which it is never cheaper to subdivide
production across several firms than to produce the whole output in one firm (see
Baumol, Panzar and Willig (1982) or Sharkey (1982)). This is clearly a purely supply-
side criterion, as it implicitly applies regardless of the demand structure. By contrast,
the second case here may be regarded as a possible definition of natural monopoly
that integrates demand and supply effects. Such a criterion would clearly be more
restrictive than the one offered by contestability theory: A natural monopoly in the
former sense remains one in the latter sense, but not (necessarily) vice-versa.’

Furthermore, in the present context, this criterion rests on clearly laid out game-
theoretic foundations in (at least) two different ways. First, we know from Theorem
2.5 that the natural monopoly constitutes a Cournot equilibrium (although the ac-
tive firm is unspecified, since it may be any one of the n firms). Second, the same
situation may also be regarded as the (unique) Stackelberg equilibrium of a game
with sequential moves and perfect information,® involving an ordered line-up of the n
firms. The designated first-mover will obviously produce the monopoly output, and
all subsequent firms will choose to remain inactive. Such a sequential framework for
quantity oligopoly (with U-shaped average cost curves) has been proposed by Robson
(1990).

Interestingly, similar remarks apply likewise to what may be termed natural
oligopoly. According to Theorem 2.5, with n firms in the market, m firms producing
X, (the symmetric Cournot equilibrium for the m-firm oligopoly, for any m < n)
with the remaining (n —m) firms inactive constitutes a Cournot equilibrium for the

n-firm industry. Furthermore, this outcome may also be viewed as a Stackelberg equi-

"Even in the limit case (of the present framework) where inverse demand is flat, the criterion
A < 0 is equivalent to the concavity of the cost function C, which implies (but is not implied by)

the subadditivity of C.
8We continue to use the term ”Stackelberg equilibrium” from the classical oligopoly literature,

although the term subgame-perfect equilibrium (of the game with sequential moves) would be more

precise.
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librium where the m firms are (simultaneous) first-movers and the remaining (n —m)
firms are followers or second-movers (who may move in any order after observing
the first movers’ actions). Clearly, the preceeding discussion does not extend to the
quasi-competitive case. Indeed, with a total output of mX,, already in the market,
the (m + 1)* firm would find it profitable to produce some output.

As a final part of this discussion, we now relate our conclusions to some recent
developments in game theory itself. The main issue here is equilibrium selection
in the quasi-anticompetitive case. It is well-known that the symmetric equilibrium
is unstable in the sense of not being the limit of Cournot (best-reply) dynamics,
see Seade (1980b). On the other hand, the monopoly equilibrium is locally stable
(in the same sense). Plausibility of the symmetric equilibrium emerges then as a
natural question, the importance of which is enhanced by the fact that it is the only
equilibrium outcome leading to economically counter-intuitive results.

Interestingly, none of the standard Nash equilibrium refinements for one-shot
games (such as normal form perfection, stability in the sense of Kohlberg-Mertens
(1986), ...) could be invoked to rule out unstable equilibria (in the sense of Cournot
dynamics). On the other hand, these equilibria could clearly be ruled out by some
convergence criteria based on adaptive learning (Milgrom and Roberts (1991)), which
includes Cournot dynamics, fictitious play, ..., or on some selection criteria developed
in the theory of evolutionary games (see e.g., Kandori, Mailath and Rob (1993)).

Finally, recent behavioral studies have also addressed the issue of equilibrium
plausibility /selection in the very setting of a Cournot output game. Experimental
evidence suggests that the interior equilibrium (with strictly positive outputs) predicts
play well if the equilibrium is stable (Holt (1995)) and poorly if the equilibrium is
unstable (Cox and Walker (1997)). More precisely, the latter study is based on a
Cournot duopoly with linear reaction curves with slopes < —1 (whenever interior)
and reports no regular pattern of (laboratory) behavior that supports any of the three
equilibria, one of which is stable and interior and the other two unstable and on the

boundaries.
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3 Proofs

This section contains all the proofs of this paper (with a summary of the lattice-
theoretic facts in the Appendix). We begin by setting the relevant notation. A firm’s

best-response correspondence is defined as usual by (for 0 <y < (n —1) K)
r(y) =argmax{zP(zr+y)—C(x) : 0<z < K} (3.1)

It will often be convenient to think of a firm as choosing cumulative output z, given
the other (n — 1) firms’ total output y, instead of simply choosing its own output z.

With z £ z + y, the objective (3.1) can be rewritten as
max{(z—y)P(z) —C(z—y) : y<z<y+ K} (3.2)

The following mapping, which can be thought of as a normalized cumulative best-
response correspondence, is the key element in dealing with symmetric equilibria for

any n:
B,:[0,(n—1)K] — 200®-DK]
(3.3)
y — "t +y)

Here, &' denotes a best-response output level by a firm to a joint output y by the
other (n — 1) firms. It is readily verified that the (set-valued) range of B, is as given,
ie, if 2" € [0,K] and y € [0,(n — 1) K], then 2L (' +y) € [0, (n — 1) K]. Also, a
fixed-point of B,, is easily seen to yield a symmetric Cournot equilibrium, for it must
satisfy 7 = "T_l (? + y), or ¥/ = ;T}l, which says that the responding firm produces

as much as each of the other (n — 1) firms.

Proof of Theorem 2.1

The cross-partial derivative of the maximand in (3.2) with respect to z and y is
easily seen to be given by A (z,y), which is assumed > 0 here. Hence, the maximand
in (3.2) has strictly increasing differences on the lattice

p={(zy) : 0<y<(n-1)K, y<z<y+K}
Furthermore, the feasible correspondence y — [y,y + K| is ascending in y. Hence,

by Theorem A.1 (see Appendix), every selection from the arg max, Z*, of (3.2) is
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nondecreasing in y. Since Z*(y) = =" + y, this is equivalent to saying that, for each
fixed n, every selection of B,, (as defined in (3.3)) is nondecreasing in y. Hence,
by Tarski’s fixed-point theorem (Theorem A.3), B, has a fixed-point, which is a
symmetric Cournot equilibrium, as argued above.

Next, we show that no asymmetric equilibrium exists. To this end, it suffices
to show that the mapping y — Z* (the argmax in (3.2)) is strictly increasing
(in the sense that all its selections are strictly increasing). For then, to each 2z’ €
Z*corresponds (at most) one y, such that z' = 2" + y with 2’ being a best-response
to y (see Novshek (1984)). In other words, for each total equilibrium output z', each
firm must be producing the same =" = 2 — y, with y = (n — 1)z

Let Z be an arbitrary (single-valued) selection of Z*. Proceed by contradiction
and assume that Z (y;) = Z (y2) for some y; > yo (recall that Z is nondecreasing by the
first part of this proof). Then, it is easily seen that Z (y;) and Z (y2) can w.l.o.g. be

taken to be interior in the maximization of (3.2) and satisfy the first-order conditions

7 7

Pyl +[Zw) —ulP 2] - C [Z(y:) —w] =0,i=1,2. (3.4)

~

Since Z (y1) = Z (y2) =2, (3.4) implies

P (2) = C' (2 =) = =P (2) = C' (z — ), or
—P' (z) 4 Lm=C ) _ () Since this equality holds for all ye [y, 4] (as a

Yy2—y1

result of the fact that Z (y) = z for all y€ [y, y1] since Z is nondecreasing), we can take
limits as y» — y; to obtain —P' () + C"(z — y1) = 0,a contradiction to A (z,y) > 0
on .

Hence, 7 is strictly increasing and an asymmetric equilibrium cannot exist. .

Proof of Theorem 2.2

(a) The maximal and minimal selections of B,, denoted B,, and B,, respectively, exist
(by Topkis’s Theorem). Furthermore, the largest equilibrium value of the output
of (n—1) firms, i.e., Y, is the largest fixed-point of B, (see (3.3)). Since = is
increasing in n, B,, (y) is nondecreasing in n, for every fixed y. Hence, from Theorem
A.4, the largest fixed-point Y, is also nondecreasing in n. A similar argument, using

the selection B,,, establishes that Y, is also nondecreasing in n.

=n>
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(b) The fact that Z,, is nondecreasing in n follows from the fact that Y, is nonde-
creasing in n and the fact that every selection of the arg max of (3.2) is nondecreasing
(from the proof of Theorem 2.1). A similar argument applies to Z,,.

(c) First, we observe that II,, and II,, are the equilibrium profit levels corresponding
to the equilibrium outputs X,, and X,,, respectively. This follows from the fact that
the profit function of a firm, II (z,y), is (strictly) decreasing in y. Thus, II,, is the
optimal profit a firm gets by optimally reacting to (n — 1) X,,, and similarly for II,,.
Hence, we have

I, = X,P(nX,)-C(X,)
X, P X, +(n-1)X,]-C(X,)

> X, PX, i+ (n—-1)X,] —C(X,.1), by the Cournot property
> X, P X +nX, ]| -C(X,p),since (n—1)X, =Y, <Y, . ,=nX,,
from Part (a).
= XpuPln+1) X, 0] - C (X)) =i
A similar argument for II,, (using X,,) completes the proof of Part (c) n

Proof of Theorem 2.3

We first argue that uniqueness of Cournot equilibrium holds here. From [Amir
(1996a), Theorem 2.1], we know that every selection of the best-response correspon-
dence r (+) is nonincreasing, given that P (-) is log-concave (this is true for any nonde-
creasing left-continuous cost function). Moreover, the fact that every selection from
the arg max of (3.2) is nondecreasing in y (see proof of Theorem 2.1) is equivalent
to the fact that every selection from r (-) has all its slopes bounded below by —1,
since Z* (y) = r (y) +y. All together then, all the slopes of every selection from r (-)
lie in [—1,0]. This leads to the uniqueness of Cournot equilibrium through a well-
known argument, a proof of which is given in [Amir (1996b), Lemma 2.3, p.127] in a
different context (see also [Amir (1996a), Theorem 2.3]). Symmetry of this Cournot
equilibrium follows from Theorem 2.1.

Now, the fact that x,, is nonincreasing in n follows from the facts that z, = r (y,),

Yn is nondecreasing in n, and r’s selections are all nonincreasing. This completes the
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proof of Theorem 2.3 "

Proof of Theorem 2.4

>From [Amir (1996a), Theorem 3.2|, we know that every selection from r (-) is
nondecreasing as a consequence of the log-convexity of P () and the absence of costs
(this follows from Log II (z, y) having nondecreasing differences in (z,y) and Topkis’s
Theorem). Then, the fact that X,, and X, are nondecreasing in n follows from the
facts that X,, = r (?n), X, =7r(,), Y, and Y,, are nondecreasing in n (Theorem
2.2(a)), and r’s selections are all nondecreasing. This completes the proof of Theorem

2.4. .

The proof of Theorem 2.5 requires two intermediate results. The first says that
whenever interior, r’s slopes are all below —1 (also, recall that since K = +oc here,

the domain of y is, a priori, [0, 00)).

Lemma 3.1 Under the assumption of Theorem 2.5 (a), there holds ﬁz < —1 for
1 2

all y1,y2 > 0 and all vy € 7 (y1) , o € 7 (y2) with r1,r9 > 0.

Proof of Lemma 3.1

The cross-partial of the maximand in (3.2) with respect to z and y is given by
A (z,y), which is assumed < 0 here. Hence, the maximand in (3.2) has strictly
decreasing differences in (z,y). However, the feasible set [y, c0) is ascending (and
not descending) in y. Nevertheless, from Topkis’s Theorem, we can still conclude
that every selection of the argmax, Z*, of (3.2) is nonincreasing whenever its graph
is contained in a rectangle that is fully inscribed in ¢, i.e., if y1 > yo, 21 € Z* (y1),
29 € Z*(ya), then z; < zo, provided the four points (y1,21), (y2,22), (y1,22) and
(y2, z1) are all contained in . Call this property Rectangle Monotonicity or RM for
short.

Next, we show that if yo € Z* (y,) for some yo > 0, then Z* (y) = {y} for all
y > 1o (or, in words, if the graph of Z* ever hits the diagonal, it coincides with it

thereafter). Suppose not, i.e., there is § > yo and z € Z* (y) such that zZ > y. Since
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Yo € Z* (y0), the optimal profit of responding to v is II (yo, yo) = I (0, 40) = 0. But
I (2, y0) = 1(Z —yo,y0) > 11 (2 —4,%) > 0 = I (yo, yo), since P is strictly decreasing
in y wherever P > 0, a contradiction to the fact that yo € Z* (y9). Hence, we conclude
that Z* (y) = {y} for all y > yo.

Since the optimal monopoly outputs are finite (i.e., all elements of Z* (0) are fi-
nite), RM clearly implies that the graph of Z* eventually intersects the 45° line, and
then, as shown above, the graph of Z* will coincide with the 45° line. Going back to

the reaction correspondence r (-), via r (y) = Z* (y) — y, the conclusion of Lemma 3.1

clearly follows. o

Lemma 3.2 Under the assumptions of Theorem 2.5 (b), r (-) is a continuous function
such that r (y) > 0 for y € [0,7), and r (y) =0 for y > 7, where y = P~ (C" (0)).
Proof of Lemma 3.2

Since II is strictly quasi-concave in own output, r must be a (single-valued) con-
tinuous function. From Lemma 3.1 (and its proof), we then know that r decreases
at a rate greater than one (in absolute value) from the unique monopoly output =
to 0. We now show that 0 € r (7). The first-order condition to max 11 (x,7), which
is also sufficient for a global maximum in view of the quasi-concavity of II in x, is
P(z+7)+zP (x+7)—C (x) <0. Since P (7) = C' (0), it is easy to see that z = 0
satisfies the first-order condition with equality, and hence that 7 is the smallest y for
which 7 (y) = 0 (as seen in the proof of Lemma 3.1, r (y) = 0 for all y > 7). This

completes the proof of Lemma 3.2. "

Proof of Theorem 2.5

(a) For the monopoly equilibrium or m = 1, it suffices to show that z™ € r (0)
and 0 € r (xM ), for then one firm is producing its optimal monopoly output and
all the other firms are best-responding with a zero output. Note that = € r (0) is

true by definition of 2. We now show 0 € r (mM ) Suppose not. Then every point

in r (xM> is > 0. Let ' be such a point. We then have “;A}fl\g =L —-1> -1,

which says that although r (z,,) > 0 and r (0) > 0, there is one slope in the graph
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of r (joining images of 0 and z™) which exceeds —1, a contradiction to Lemma 3.1.
Hence 0 € r (xM ) The proof for the other values of m (i.e., 1 < m < n) is similar
and left to the reader (note though that existence of a symmetric equilibrium for the
m-~firm market needs to be assumed here). This completes the proof of Part (a).

(b) An n-dimensional vector (z,z,...,z) is a symmetric Cournot equilibrium if

Yy
(n—1)"

and only if y = (n — 1)z satisfies r (y) = which says that each firm’s best
reaction is to produce as much as each of the other (n — 1) firms. Clearly, in view
of Lemmas 3.1 and 3.2, the functions r () and 7 have an intersection for every
n > 2. Uniqueness (for each n) follows in an obvious way from the facts that the
two functions are strictly decreasing (whenever interior) and increasing, respectively.
This ends the proof of Part (b).

(c) Proceed by contradiction and suppose that another equilibrium (than those
of Parts (a) and (b)) exists. Then it must be asymmetric and have at least 2
firms producing unequal nonzero outputs. Denote this equilibrium output vector
by (2}, 22, ...,2™) and let z =% 2" be the total output. Assume that (say) z! > z? > 0
to reflect asymmetry. Deﬁne: y' by ¢t = r(y%), i = 1,2. We must have z! + y* =
z? + y* = z, with y* > y' (since ! > z?). But this contradicts the fact that the
mapping y — Z* = argmax in (3.2) is strictly decreasing as long as Z* > 0 (the
latter point follows from an analogous argument to that of the second part of the

proof of Theorem 2.1). .

Proof of Theorem 2.6

(a) Since all entering firms produce no output, it is obvious that all the equilibria
at hand here are invariant in n.

(b) We first show that y,, is nondecreasing in n (recall that the symmetric Cournot
equilibrium is unique here.) Since a firm’s profit function is strictly quasi-concave in

its own output, r and B are continuous functions here. Since 21

is increasing in
n, B, (y) is nondecreasing in n, for each fixed y. Hence, the (unique) fixed-point y,,
(equilibrium joint output of (n — 1) firms) is nondecreasing in n (by Theorem A.4).

The fact that equilibrium total output z, is nonincreasing in n follows now from

26



the fact that the mapping y — Z* = argmax in (3.2) is nonincreasing (from the
proof of Theorem 2.5(c)) and the above conclusion on y,. The fact that per-firm
equilibrium output z,, is nonincreasing in n follows from the fact that z, = 7 (y,)
and r (+) is strictly decreasing (as long as r is interior).

Finally, the fact that 7, is nonincreasing in n follows from the proof of Theorem
2.2 (c), upon dropping the ”"bars” due to uniqueness here. This completes the proof

of Theorem 2.6. n

Proof of Proposition 2.7
If A(z,y) # 0 on ¢, then A (z,y)is either <0 everywhere or >0 everywhere, so
that either Theorem 2.1 or Theorem 2.5 applies, and existence of a Cournot equilib-

rium follows. n
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APPENDIX: A Survey of the Lattice-Theoretic Framework

In an attempt to make this paper self-contained, we provide a summary of all
lattice-theoretic notions and results invoked here, in the simplest framework for our
needs. Dealing with real decision and parameter spaces results in a simple presenta-
tion. Every theorem presented here is a special case of the original.

A function F': R2 — R is supermodular [submodular| if, for z1 > z2,y1 > o

F(z,y1) — F(2,91) > [S] F (21,92) — F (22, 72) - (1.1)

If F' is twice continuously differentiable, Topkis’s (1978) Characterization Theorem
says that supermodularity [submodularity] is equivalent to gj—gy > 0[< 0], for all ,y.
Furthermore, % > 0[< 0] implies that F' is strictly supermodular [submodular],

0y
the latter notion being defined by a strict inequality in (1.1).

F has the single-crossing property of SCP [dual SCP] in (z,y) if
F(x1,12) = F(22,42) = [S]0 = F (21, 51) — F (22,51) > [<]0 (1.2)

It is obvious that (1.1) implies (1.2), while the converse is generally not true. Note
that (1.1) is a cardinal notion, while (1.2) is ordinal. Thus, the SCP is sometimes
also referred to as ordinal supermodularity. No smooth characterization of the SCP
is known.

For x € Ry, let A(x) = [a; (x),a2 (x)] C R, with ay (-) and as (-) being real-
valued functions. A (z) is ascending [descending| (in z) if a; and ay are nondecreasing
[nonincreasing] in z. The following results on monotone maximizers are central to

our approach.

Theorem A.1 (Topkis (1978)) If F' is upper semi-continuous (or u.s.c.) and su-
permodular [submodular], and A (-) is ascending [descending], then the maximum and
minimum, selections of y* (z) £ arg maxyeA(z) I (z,y) are nondecreasing [nonincreas-
ing/ in x. If F is strongly supermodular [submodular], then every selection of y* ()

is nondecreasing [nonincreasing].

Theorem A.2 (Milgrom-Shannon (1994)) If F is w.s.c. and has the SCP
[DSCP], and A(-) is ascending, then the conclusion of Theorem A.1 holds.

30



If F has the strong SCP [strong DSCP], defined by (1.2) with a strict inequality on
the RHS of the = sign, then the conclusion of Theorem A.2 holds for every selection
of y* ().

The main fixed-point theorem within this framework is due to Tarski (1955).
Theorem A.3 Let C' C R. be a compact interval, and B : C' — C be a nondecreasing
function. Then B has a fized point.

Our equilibrium comparisons rest on the following result due to Milgrom and

Roberts (1990, 1994) and Sobel (1988): See Figure 2 for an illustration.

Theorem A.4 Let C C Ry be a compact interval, and B; : C' — C be a nonde-
creasing function (¥ t > 0) such that By (x) is also nondecreasing in t, Vx. Then the
manimal and mazximal fixed-points of By are nondecreasing in t.

We close with the following terminology. A function F': R, — R is log-concave
[convex] if the function Log F is concave [convex]. Similarly, a function G : Ry x Ry —
R is log-supermodular if Log G is supermodular.

A game with compact real action spaces is supermodular [ordinally supermodular]
if each payoff function is supermodular [ordinally supermodular|, under a specified
order on each of the action spaces, and u.s.c. in own actions. Supermodularity is typ-
ically interpreted as a complementarity property: The marginal returns to increasing
a player’s strategy are higher if the other player uses a higher strategy. Naturally, if
the order on one player’s action set is reversed, supermodularity then characterizes a

substitutability property in two-player games.
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