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Abstract:

This paper proposes a new semiparametric estimator to determine the optimal programme
for an individual, who faces the decision problem to choose exactly one out of a variety
of available programmes. In a first step hypothetical outcomes are predicted for this indi-
vidual on the basis of realised outcomes of past programme participants. While nonpara-
metric estimation of average potential outcomes for various subpopulations is standard in
the evaluation literature, estimating individual potential outcomes conditional on a high-
dimensional explanatory vector usually requires a parametric specification. The proposed
estimator combines a parametric specification of the conditional outcomes with nonpara-
metrically estimated average outcomes within the GMM framework. This allows to test
whether the model is correctly specified and shall improve estimation when misspecified.
In a second step the programme attaining highest utility is determined. Finally the esti-
mator is applied to Swedish rehabilitation programmes.
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1 Introduction

This paper deals with programme selection or treatment choice!, where individual optimal-programme
recommendations are derived on basis of observed outcomes of past participants, which are contam-
inated with selection bias due to non-random programme selection. Consider the situation where
an individual has to participate in exactly one of R mutually exclusive and exhaustive programmes,
which usually include a ’'no-programme’ alternative. Either the individual herself chooses the
programme or is assigned to a certain programme by another individual or institution. In any
case the decision maker wants to select that programme which maximizes after-treatment utility.
To choose the most adequate programme he needs to predict ex ante for all R programmes the
hypothetical outcomes, which she would acquire would she participate in this respective programme.
A natural way to predict these hypothetical outcomes would be based on the realised outcomes of
former programme participants. However, in the absence of experimental data, it must be taken into
account that individuals are usually not randomly selected into the programmes.

Targeted programme assignment has received considerable attention in recent years for instance
with respect to active labour market policies. In some countries, e.g. Australia, Canada, Netherlands,
USA, statistical models are used to assign unemployed persons to programmes like job search assis-
tance, training, and employment programmes. In most cases these models intend to predict the prob-
ability of becoming long-term unemployed on basis of individual and regional characteristics and al-
locate the individuals with highest long-term unemployment risk to the most intensive programmes?.
Implicit is the assumption that the long-term unemployed or those likely going to become are those
who gain most from participation in more intensive programmes.? However, these models are often
rather ad-hoc and usually rely on parametric specifications and few explanatory variables. Berger,
Black, and Smith (2000) criticise the weak explanatory power of the operating unemployment profil-
ing systems in the USA in predicting unemployment duration. They show that relevant information
for predicting unemployment duration, e.g. employment histories, is neglected in most systems.?

The necessity of predicting treatment effects on an individual basis has for instance been indicated
in Heckman, Smith, and Clements (1997), which found considerable treatment effect heterogeneity
among individuals in the Job Training Partnership Act programme (JTPA, USA) and rejected the
assumption of a constant treatment effect. While clearly beneficial to some participants the JTPA
programme appeared to be harmful to other participants, in the sense that non-participation would
have been more advantageously to them. Also Black, Smith, Berger, and Noel (1999) reject the
constant treatment effect assumption with respect to worker profiling services in Kentucky.

'The words progamme and treatment are used synonymously throughout the text.

2The focus of this paper is entirely on outcomes. Utility during programme participation is neglected.

3Exceptions are the Service and Outcome Measurement System (SOMS) in Canada and the Frontline Decision Support
System (FDSS) in the USA, which directly predict hyptothetical outcomes on an individual basis to propose a suited
programme. For details consult: Australia (OECD 1998), Canada (Colpitts 1999), Netherlands (de Koning 1999),
USA: Worker Profiling and Reemployment Services (DOL 1999, Black, Smith, Berger, and Noel 1999), Welfare-to-Work
(Eberts 1998), FDSS (Eberts and O’Leary 1999).

"This does not hold, for instance, for the worker profiling system in the USA (Black, Smith, Berger, and Noel 1999,
Berger, Black, and Smith 2000), where those in the middle ranges of the profiling score gain most and the treatment
effect becomes even negative for individuals with high long-term unemployment risk. Obviously, it is also assumed that
the programmes are beneficial to the participants, which often is at least doubtful as many evaluation studies show, that
sometimes even find negative treatment effects (see e.g. Fay (1996), Gerfin and Lechner (2000), Lechner (2000), Puhani
(1999)).

For instance, the profiling system of Pennsylvania relies on only 8 explanatory variables to predict the probability
of UI benefit exhaustion and does not even contain race, age, and gender, as prohibited by law (O’Leary, Decker, and
Wandner 1998).



A more thorough theoretical foundation of treatment choice can be found in the work of Manski
Manski (1997, 1999, 2000) and Dehejia (1999), and from a different viewpoint in Berger, Black, and
Smith (2000). Berger, Black, and Smith (2000) analyse the use of profiling as an indirect method
for the selection of the optimal treatment. Instead of being directly guided by potential outcomes,
profiling proceeds by allocating individuals to the programmes on basis of their profiling scores, which
is a 'need’ or 'risk’ indicator, e.g. the probability of becoming long-term unemployed, indicating how
urgent active measures are. A close and positive relationship between the profiling variable and the
treatment effects is supposed, in the sense that individuals with high profiling scores are those who
gain most from treatment. Profiling might be a convenient way to select programme participants if
such a close relation between the profiling variable and the outcome variables of interest exists and
estimation of this profiling variable is more precise than direct estimation of the outcome variables
of interest. However, single-score profiling is unlikely to work well and transparent, if a variety of
different and heterogenous programmes is available to choose from or if multiple outcome variables
refer to conflicting programme goals.’

Particularly if some programmes are harmful to some individuals, the equity argument often
brought forward to argue that (potential) long-term unemployed are worst off and therefore most in
need for intensive programmes might become contradictory. This equity argument is also questioned
in Berger, Black, and Smith (2000) who show within the framework of a simple search model that
long-term unemployment and welfare must not necessarily be negatively correlated.

The work of Manski and Dehejia is directly concerned with potential outcomes. Dehejia (1999) an-
alyzed the GAIN experiment (Greater Avenues for Independence, USA) by explicitly considering the
treatment decision problem of an individual. Still based on a parametric model, he used a Bayesian
approach to take careful account of uncertainty in the individual decision making situation and looked
for first-order stochastic dominance relationships between participation and non-participation. Man-
ski, focusing on identification under weakest assumptions but neglecting estimation issues, analyzes
the individual treatment selection problem and statistical selection rules. In Manski (1997) he derives
bounds on the individual treatment effects under weak assumptions like monotonicity or concavity
which may in some cases be sufficiently informative to establish dominance relationships between cer-
tain treatments for a particular person, thus enriching the information set of the decision maker. Sta-
tistical treatment selection rules, which are allocation rules based on statistical models that directly
assign clients to treatments, are at the centre of Manski (1999, 2000). In Manski (2000) he analyses
treatment choice under ambiguity and dominance and optimality of selection rules. Assigning each
individual to the treatment with the highest expected potential outcome conditional on the observed
covariates E[Y"|X = z] is optimal in an utilitarian sense. Decentralised self-selection is at least as
good as a statistical selection rule if the individuals know more about their covariates than the statis-
tician, have rational expectations about their potential outcomes, maximize expected utility and are
risk neutral and if their objectives and preferences do not differ from the central planner’s. This makes
it, at least in some cases, questionable whether unguided self-selection is a wise selection process. Fur-
ther, dominance relationships between feasible treatment rules are derived for a simple setting with a
binary covariate, a binary treatment and a binary outcome variable. In Manski (1999) he compares
two selection rules, one taking account of covariate information and the other one neglecting it.

This paper is motivated by a more practical approach to develop a robust statistical decision
support system for choosing among multiple programmes, more elaborated and based on weaker

To illustrate the difference between profiling and targeting based on estimated potential outcomes consider unem-
ployment duration. Profiling would estimate for an unemployed individual the expected unemployment duration if the
individual does not participate in treatment and assigns those individuals with the highest expected duration to treat-
ment. Targeting would estimate unemployment duration in non-participation state as well as expected duraction if the
individual would participate in treatment and selects individuals on basis of both estimated durations or their difference.



assumptions than the currently existing systems, but requiring more structure than Manski’s work.
A new semiparametric estimator for selecting the optimal programme is developed and exemplary
applied to Swedish rehabilitation programmes.

To be able to discuss individually optimal programmes first the potential outcome framework of
Rubin (1974) shall be introduced. Let R be the number of different programmes of which each indi-
vidual has to choose exactly one. Suppose that for every individual potential (after-treatment) out-
comes exist for all R programmes, denoted by random vectors V', Y2, .., Y.t € RY | of which eventually
only that outcome vector will be observed that corresponds to the programme in which the individual
participates. These potential outcome vectors Y contain a variety of different outcome variables and
may include besides economic and monetary indicators also health, social, and psychological variables
corresponding to the multiplicity of goals to which the programmes are directed. Let X € R* de-
note a fine, i.e. detailed, set of exogenous individual characteristics. Then the expected potential
outcome E[Y"|X = Xj;| conditional on the characteristics of person 7 is a good approximation for the
expected potential outcome E[Y;"] for person i. Let u(-) : RV +— R denote a utility function mapping
the V-dimensional outcome vector Y into an one-dimensional utility index and assuming that utility
depends only on the expected outcomes, then the optimal programme can closely be approximated by

rf = argmaxu; (E[Y"|X = Xj]).
re{l,..R}

Accordingly, the proposed estimator consists of two steps. First the expected potential outcomes
E[Y"|X] are estimated. Since observations on Y7 are only available for former participants in pro-
gramme r, only E[Y"|X, D = r| is identified, where D € {1, ..., R} is the participation indicator that
indicates the programme in which a former participant has participated. Assuming that condition-
ing on a fine vector of explanatory characteristics X removes all selection bias, such that E[Y"|X] =
E[Y"|X, D = r], the potential outcomes are nonparametrically identified from the observed outcomes.
This conditional independence assumption is central to many evaluation studies (e.g. Angrist (1998),
Dehejia and Wahba (1999), Lechner (1999a)). However, as is well known from nonparametric statis-
tics, nonparametric estimation of the expected value of Y conditional on a high-dimensional predic-
tor X requires very large sample sizes. Due to this difficulty the profiling and targeting literature
has by and large employed fully parametric specifications, whereas the microeconometric evaluation
literature has concentrated on the nonparametric estimation of unconditional expectations EY" (e.g.
average treatment effects) and of conditional expectations on low-dimensional stratifying attributes,
like men vs. women (see Angrist and Krueger (1999), Heckman, LalLonde, and Smith (1999), Manski
(1995)). Estimating these average treatment outcomes is further eased by the balancing score prop-
erty of the participation probabilities. As shown by Rosenbaum and Rubin (1983) for R = 2 and by
Imbens (1999) and Lechner (1999b) for the multiple treatment case, conditional independence also
implies that E[Y"|p"(X)] = E[Y"|p"(X), D = r|, where p"(X) = pr(D = r|X) is the probability that
an individual with characteristics X participates in programme r. Thus, conditioning on the one-
dimensional participation probability p™ is sufficient to avoid selection bias. By the law of iterated
expectations the average treatment outcome is identified by EY" = E,rx)E[Y"|p"(X), D = r] and
can be estimated by first regressing Y on the observed participation probabilities p” and weighting
this estimate with the density of p" in the population. Heckman, Ichimura, and Todd (1998) proposed
local polynomial regression for the nonparametric first step estimation of E[Y"|p"(X), D = r] instead
of inefficient, though popular, pair-matching and developed asymptotic distribution theory, which can
be applied to the estimate of the average treatment effect EY”.

Since expected potential outcomes can be estimated for broad subpopulations without relying on
any parametric assumptions, but nonparametric estimation conditional on a fine vector of character-
istics X is practically infeasible, this paper suggests to combine parametric specifications of the con-



ditional outcomes E[Y"|X] with nonparametrically estimated average outcomes to test whether the
parametric model is correctly specified and to improve the coefficient estimates in case of misspecifi-
cation. Both models are combined within the GMM framework and the statistical properties of the
GMM estimator are derived in sections 2 and 3.7

After the expected potential outcomes have been estimated, determining the optimal treatment
as the second step is considered in section 4. In case that the utility function w; is known or the
potential outcomes Y contain only one variable, it is tested whether for a particular individual one
programme is jointly significantly better than all other programmes. This can easily be extended to
derive a semi-ordering of best, intermediate, and worst programmes by multiple-comparisons-with-
the-best (MCB, see Horrace and Schmidt (1996) or Hsu (1996)). If the utility function w; is unknown,
it is analysed whether a certain programme dominates other programmes in all outcome variables.
Finally, in section 5 this semiparametric estimator is applied to Swedish rehabilitation programmes
and section 6 concludes.

2 Statistical modelling

2.1 Nonparametric identification by the conditional independence assumption

Since for any individual which participated in programme D only the potential outcome Y can be
observed but never any of the counterfactual outcomes Y?*, where s # D, the expected outcomes
E[Y"|X] are generally not identified, but only E[Y"|X,D = r|. Identifying E[Y"|X]| from the
observations Y, of individuals who have participated in this programme (D; = r), requires either a
local instrumental variable (Heckman and Vytlacil 1999), which influences programme choice but
does not affect the potential outcomes, or a sufficiently fine conditioning vector X which controls
for all selection effects, such that no selection on unobservables remains (see e.g. Manski 1993).
Following the latter approach requires that all exogenous variables which simultaneously influence
the selection process and the potential outcomes are included in X, usually resulting in a conditioning
vector of high dimension. This is expressed in the conditional independence assumption for multiple
programmes (Imbens 1999, Rubin 1974):

Y'U1(D =r)|X vr € {1..R}, (1)

where Il denotes statistical independence and 1(-) is the indicator function. It states that given the
characteristics X knowledge whether an individual selected into programme r or into any other pro-
gramme contains no further information about her potential outcome, i.e. conditional on X treatment
selection is random. With other words, treatment selection depends on the potential outcomes only
to the extent to which they can be anticipated on basis of the exogenous characteristics X, but not
on an anticipation based on unobserved characteristics.

The plausibility of this assumption hinges on the extent to which individuals deliberately or un-
consciously select into programmes on basis of characteristics related to their potential outcomes and
to which extent these characteristics are observed. If self-selection is limited or if detailed information
about participants’ characteristics and behaviour is available this assumption may be reasonable.

Conditional independence implies E[Y"|X = z] = E[Y"|X = z,D = r], such that the expected
potential outcomes are identified from outcomes of former participants for all « values, for which there
is positive probability to being selected into programme 7. Thus E[Y"|X = z] is identified only for

"This differs from combining Micro and Macro data as in Imbens and Lancaster (1994), since they combine moments
from two different datasets, whereas here moments from two different models based on the same data are combined.
The nonparametric model is the just-identified model, while the parametric model introduces additional structure to the
nonparametrically identified model.



all z € 8", where S', 5%, .., S with S"™ = supp Ix|p=r = {7 : fx|p=r(x) > 0} denotes the support
of X in the subpopulation of participants in treatment r and fx|p—(x) is the density of X in the
subpopulation participating in treatment r. S = supp fx = {x : fx(x) > 0} is the support in the
population.

2.2 Nonparametric estimation of average treatment outcomes

Although the expected potential outcomes E[Y"|X] are nonparametrically identified by the con-
ditional independence assumption, nonparametric regression on a multivariate predictor becomes
quickly imprecise with increasing dimension of X. However, at least in economic applications with ob-
servational data, controlling for a large number of characteristics is mandatory to eliminate selection
on unobservables. In consequence most evaluation studies have abstained from estimating conditional
outcomes and concentrated on average treatment outcomes® EY” for broad subpopulations, which
can be estimated more precisely (even with y/n-convergence Heckman, Ichimura, and Todd (1998)).

The dimension-reducing balancing score property of the participation probabilities facilitates the
estimation of average treatment outcomes as the conditional independence assumption (1) also implies
that

EY"p"(X =x)|=EY"|p"(X =z),D =] Vo e ST, (2)

where p"(x) = pr(D = r|X = z) is the probability to be selected into treatment r (Rosenbaum and
Rubin (1983) for the case R = 2 and Imbens (1999) and Lechner (1999b) for multiple programmes).
Le. if treatment assignment is ignorable conditional on X, then it is also ignorable conditional on the
participation probability p”(X). With known or consistently estimated participation probabilities the
expected outcomes conditional on the (one-dimensional) participation probability p”(X) can easily be
estimated by nonparametric regression”. By the law of iterated expectations the average treatment
outcome EY7" is identified for the population with characteristics in the support S™ by

B BT (X).D =] 1(X € 57)

EsY = E EY'P'(X)= E EY'p(X),D=r]=
Y= s P = L Y0, D= pr(X € 57X € 9)

(3)
and can be estimated as
n S (X)) - (X € §7)

ESTYT = A ’ (4)
=1 1(X; € 97)

where (Xi, Di,Y;.D 1) are a random sample of n independent observations and S’“, p" and m"(.) are

preliminary estimates of the support S”, the participation probability p”(z), and the regression curve
m”(p) =E[Y"|p"(X) = p|, respectively. All operations with respect to the vector Y" are defined
as element-wise in Y. Notice that outside the support S™ the conditional outcome E[Y"|X] is not
identified, such that the population expectation of Y is not a useful concept.

8The focus of most evaluation studies is on treatment effects, which are the difference between two potential outcomes.
Tt still remains the problem to estimate pr(D = r|X) without strong parametric assumptions. However, at least in
the simulations of Todd (1999), comparing parametric and semiparametric estimators of the participation probability,
the parametric estimation was quite robust and misspecification of the participation probability seemed to be less serious.



2.3 Parametric modelling of potential outcomes

In contrast to the microeconometric evaluation literature, the operating profiling and programme-
targeting systems aim to predict potential outcomes specifically for a particular individual and are
usually based on fully parametric models. Since the joint distribution of the potential outcome vectors
is not identified, the potential outcomes can be modelled separately for each programme r by specifying
a vector-valued function A" (z,0"), with coefficient vector " of dimension &, and finding values for 6",
such that h”(x,0") approximates E[Y"|X = x| as well as possible. The approximation is based on the
participants in programme r, since only for them the outcome Y" can be observed. Consequently the
approximation to the expected potential outcome may be weak for x values which are distant from
the region where the density mass of the participants in programme r lies.

In the case that the parametric functions h" are correctly specified, i.e. there exist coeflicient
vectors {0g}r—1_r such that under the conditional independence assumption (1)

EY'|X =x,D=r|=E[Y"|X =x] = h" (z, 07) Ve e S, Vre{l.R}, (5)

then standard asymptotic theory for parametric estimators can be employed to show convergence of
h"(z, @T) to the true expected outcomes A (x, 0f), where the R outcome relationships can be estimated
independently from the subsamples of respective participants.

If no coefficient vectors {6j}r=1.r exist that satisfy (5) then the parametric model is misspecified
and at least one of the functions A" is not sufficiently flexible to embrace the true mean function for
all z. Necessarily any estimate h”(w,@T) must be biased for at least some x values and the quality
of the approximation to the mean function could be deficient with respect to the whole population,
if the distribution of X in the population and in the subpopulation of participants in programme 7
differ (cf. Section 3.3 below).

2.4 The semiparametric model

Extracting the essence of both the nonparametric and the fully parametric model, it follows that in
observational studies of reasonable sample size the nonparametric estimation of E[Y"|X = z] is often
extremely difficult due to the high dimension of X, while the nonparametric estimation of E[Y"|p" = p]
and consequently of E[Y"] is fairly straightforward. On the other hand, by parametrically specifying
the outcome relationships E[Y"|X = z] can easily be estimated, though at the cost that the results
may be biased due to misspecification of the functional forms. The semiparametric model proposed
below combines the parametric equations with nonparametric estimates of E[Y"].

If both models were correct, their predicted mean outcomes should converge to the same limit. I.e.
the average treatment outcome with respect to the population (within S™) once estimated nonpara-
metrically as

A ST (X3)) - 1(X; € §7)
EgYy =~

S1(X; € 57)
i
and once implied by the parametric model

ST (X;,07) - 1(X; € S7)
Eg Y™ =~

Y 1(X; € 57)



should be identical. This implies the equality condition

3 <hT(XZ-,@T) — (pT(X,»))) 1(X; € 87) = 0. (6)

%

Supposing consistent estimates of p"(-) and m”(-), a violation of the equality condition (6) would
indicate a misspecification of the parametric model (5).

Such an equality condition must also hold for any subpopulation defined on the X characteristics.
To state the equality conditions (6) concisely for L different subpopulations define a vector-valued
indicator function A(x) of dimension L x 1, which is one in the components A;(z) for which x is part of
the corresponding subpopulation and zero otherwise. An example of this multidimensional indicator
function defining the 3 populations: whole population, subpopulation of males, and subpopulation
aged 40 to 50 would be

1
A(z) = | 1(gender = male) | . (7)
1(age € [40,50])

Then the semiparametric model can be summarized as:

Estimate h"(x,6") from the observations (X;,Y;") with D; =r

sucht that (8

5 (ACXG) @ A (X, 0) — il (57 (X0) ) - 1(Xs € 87) = 0 vr € {1..R},

2

where myj,; is a column vector of length VL of all stacked nonparametric estimates of E[Y"|p"], ,
such that the first V' elements correspond to the outcome vector for population one, the second V
elements to the outcome vector for population two, and so forth. Le. mj,, (p"(X;)) = (M}’ (p"(X;) -
A (X5), ) (D7 (X5) - Mi(X5), .,y (7 (X5) - Ap(X;)) is the column vector of all estimated outcome
variables Y’ (p"(X;) = (W55(), .., My (+), .., ()" in all populations { = 1,.., L, where 17, (") is an
estimator of the expectation E[Y, |[p"(X) = p", Aj(X) = 1] of the v-th variable of the potential outcome
vector Y7 in the [-th subpopulation defined by A;(X) conditional on the participation probability. ®
is the Kronecker product operator.

Obviously, the larger the number of subpopulations L the more detailed information about sub-
group heterogeneity will enter into the model. On the other hand, the smaller the subpopulations get
the less precise the nonparametric estimates will be and their additional value as equality restrictions
for the parametric model will decline.

3 Estimation of the semiparametric model

3.1 GMM Estimator

The semiparametric model of (8) can neatly be expressed in the framework of the general method of
moments (GMM). The GMM estimator of 6" is constructed from two sets of moments. The first set
of moment conditions emerges from the parametric equations as E[Y" — h"(X,0()| X = x,D =r] =0,
supposed the parametric functions are correctly specified. Conditioning on D = r is essential, since
otherwise the outcome Y is not observed. This implies that

E[A"(X)-(Y" = h"(X,6)|D =7r] =0, (9)



with A”(x) any vector-valued function of x. Suppose that A"(z) is a k x 1 vector-valued function,
such that a GMM estimator based on only these moments would be just identified, since 6 contains
k coefficients.

Combining these moment conditions with the equality conditions discussed in the previous section
leads to the moment vector g,

AT(XG) - (Vi = W (X3,07)) - 1(D; =) > (10)

(O 1’ S”f‘:*1 A
M’mw’>”f§ﬂmm®mxﬂwmhwamu&ew

of length k + VL. The upper part of the moment vector, i.e. the first k£ elements, corresponds to
the moment conditions (9) multiplied by n,/n. The lower part of the moment vector correspond to
the VL equality conditions as introduced in the previous section. Remember that V is the number
of outcome variables in the potential outcome vectors and that L is the number of (sub)populations
considered. 1y, (p"(-)) is the column vector of the stacked nonparametric estimates of E[Y”|p"(-)]
for all considered subpopulations. While the moments emanating from the parametric equations are
evaluated over the subsample with D; = r, the equality condition between the nonparametric and
parametric estimates provides a set of moments for the whole population. Adding these equality
conditions as additional moments to the moments of the parametric model shall ensure that the
coeflicients " are estimated such that parametric equations and the nonparametric estimates predict
similar outcomes. Then 6 can be estimated by GMM as the solution to

AT

Qn = arg H;irng:;(er, r’h{/L’ S),WTQZ(Qra rhT{/La S)’

where W™ is a weighting matrix with plim Wr=wr" positive semidefinite.

Since the joint distribution of the potential outcomes is not identified the joint distribution of
the moment vectors gl (0'),..,gF(6") is also not identified. If the potential outcomes Y1, .., Y% are
assumed to be independent then the moment vectors gl(6'), .., g(6f) are uncorrelated (see Lemma
3 in the appendix). With ¢7 and 6., asymptotically normal, as shown below, 8" can be estimated
separately for each r without loss in efficiency. Thus, in the following the estimation of {0"},—1 g
proceeds independently for each r (except for the participation probability model, which is estimated
only once).

3.2 Properties of the GMM estimator

First the statistical properties of the GMM estimator are investigated when the parametric outcome
relationship A" is correctly specified, i.e. there exists a true parameter vector () in a compact parameter
space such that

HY: W(2,00) =EY'|X =a]=EY"|X =2,D=r] VeeS witho]eco.

Under this hypothesis the moment function (10) has expectation zero at the true values 0, my,, , i.e.
Eg; (05, mY,;,S") = 0, and y/n-consistency and asymptotic normality of the coefficient estimates 0"
will be shown. Proofs are found in Appendix A. Furthermore with a suited weighting matrix the GMM
statistic is asymptotically x? distributed and the J-test of overidentifying restrictions (Hansen 1982)
can be used to test the null-hypothesis that the model is correctly specified, i.e. whether the parametric
model prognosticates potential outcomes which are in line with the nonparametric estimates.



Theorem 1 (Consistency) If

(i) the parametric function h™(x,0") is continuous in 0" over a compact parameter space ©,

(i1) has a unique solution 0y € O" such that h"(z,0") = E[Y"|X = x| Vax € S” if and only if 0" = 05,

(i) for each subpopulation defined by A(x) the moments E sup ||A™(X) - (Y" —h"(X,60"))| and also
gmcor

E sup ||h"(X,07)-1(X € S") — E[Y"L(X € S")]|| exist, and the number of subpopulations is finite,
orcor

(iv) a consistent estimator of mi,, (p") and S” is available, and
(v) the weighting matrix W converges in probability to a positive definite matriz.
then the GMM estimator with moment vector (10) is consistent.

Remark 1 Assumption (iii) of Theorem 1 could be relazed to the form given in Corollary 5. However,
i its current form it is more intuitive, where the first moment existence condition is the condition
that would apply if only the parametric model would be estimated by GMM and the second condition
requires that the parametric function re-centred by its mean has finite expectation for all admissible
coefficient values.

To establish the limit distribution of the GMM estimator I draw on the results of Heckman,
Ichimura, and Todd (1998). To apply their results the preliminary estimators mj,; and p" are restricted
to the class of asymptotically linear estimators with trimming (see Definition 1 in the appendix).
Heckman, Ichimura, and Todd (1998) have shown that local polynomial estimators, e.g. kernel or local
linear regression, belong to this class and that mj, ,; (p"(x)) with p"(x) estimated either parametrically
or nonparametrically by local polynomial regression is also asymptotically linear with trimming.

For the following theorem define n;, as the number of participants in treatment » who belong to
the [-th subpopulation, let ¥; , denote the influence function stemming from the estimation of the
participation probabilities p"(-) and V; ,, denote the influence function from estimating m”(-) (see
Corollaries 6 and 7 in the appendix).

Theorem 2 (Asymptotic Normality) Suppose the estimator m"(p"(x)) of E[Y"|p"(X = z)| is
asymptotically linear with trimming for all outcome variables in all considered subpopulations of the
form

g (07 () —mf (9" (2))] - M) 1(w € §7) =

_nl 12\11 YT D],X],ZL' IZ\P Yr D],X],ZL')—l—b[( ) Rf(fﬂ); (11)

with E[U; (Y7, D;, X;: X)X = a] = 0, E[U],, (Y], Dj, X;; X)|X = a] = 0, plim 03 Y 0(X;) =
b] < oo, and ns SR (X;) = 0p(1). Furthermore suppose that

(i) VL - Var (\Iflfm(YjT,Dj,Xj;Xi)) = o(n) = VL -Var (\Iflfp(YjT,Dj,Xj;XiD for each outcome
variable v and in each subpopulation I,

(ii) some regularity conditions on J (see appendiz),

(11i) the parametric model is correctly specified Hf : h"(x,0) = E[Y"|X = ] Vo € S, where 0] €
interior of O, with ©" compact in R*, h™ continuously differentiable with bounded derivative in a
neighbourhood of 0f, E [HA”(X)(Y - (X, 9”)||2} < 00, and G"WTG" nonsingular where G” is the
expected gradient of the moment vector

(iv) 7}13;0”[_7; = N, with 0 < A, < oo for each subpopulation | =1,..,L,

(v) the estimated support 8™ = {x : fx(x) > qo} is estimated such, that sup,cg |fx(x) — fx(z)

converges a.s. to zero where S = {x : fx(x) > qo}, fx is a kernel density estimate with kernel with



moments 1 through k equal to zero, and fx is k + 1 times continuously differentiable with (k + 1)-th
derivative Hélder continuous,
(vi) W™ converges to W P d.
then the GMM estimator § = arg mmgn(Q w, , S") W gL (67, , ") with moment vector (10) is

asymptotically normally distributed wzth

lA_T_> Ok I o\ —1 oty r 77! T (T ry—1
@ =85 N (| g sgmmg, |- (€ WG W BT W G wren )
(12)
where
J' = ¢'(Z",0p,myp) (13)

O
)‘17,71"E[ (Yl7D17X1aX2)|1/17D17X1]+E[ (leaDlelaXQNleleaXl]

)‘Z}r‘ ' E[\Ilim(ylr: Dy, Xi; X2)|1/1T7 D17X1} + E[\I[Lp(}/iTa Dy, X; X2)|Y1r7 Dy, Xl}

Remark 2 If the number of outcome variables and the number of subpopulations does not grow with
sample size, then assumption (i) reduces to

lim n='Var (\1/ (Y].T,Dj,Xj;Xi)) —0= limn Var (wgp(ng,Dj,Xj;Xi)).

n—oo n—oo

Remark 3 Also the moment vector g, is asymptotically normal

n3 gl (05, iy, S7) —5 N ([ gﬁ } ,EJU”) . (14)
VL

Remark 4 The bias term could be made to vanish, by choosing a bandwidth sequence h,, that converges
faster to zero. Hence by smoothing less the nonparametric regression curve m the bias can be abolished.
Less smoothing however will lead to a more wiggly curve and the absolute value of the first derivative
will on average increase. This could lead to a drastic increase in the variance of the estimation since the
sampling imprecision of the discrete choice step enters multiplicatively with the slope of the regression
curve m. If the propensity score were known, one would like to estimate the regression line m with
little bias to track the true line of the regression curve. However, with p(x) imprecisely estimated one
wants to estimate the regression curve m with less variance such that m(p(x)+e¢) =~ m(p(x)), since p is
not estimated precisely. This will lead generally to higher bias and lower variance and the less precise
the first step estimation of the discrete choice model is the less variance one wants. To allow for more
smoothing, the bandwidth sequence must be allowed to decrease at a lower rate to zero, resulting in the
bias term in the limit distribution. However, the bandwidth sequence must converge sufficiently fast to
zero to ensure that the average bias term multiplied by \/n is nonstochastic.

By standard GMM theory the asymptotically efficient GMM estimator chooses W = [EJ"J™|~!
which simplifies the asymptotic variance to (G'[EJJ’ ]_1G)_1. With this weighting matrix the GMM
statistic multiplied by the sample size is x? distributed with number of freedoms equal to the number
of overidentifying restrictions V'L

A d
9 g = Xy
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with " a consistent estimate of the efficient weighting matrix [EJ"J"”]=1. This statistic gives a
criterion of how well the parametric fit conforms with the nonparametric averages and rejection of the
J-test is an indication that the parametric model might be misspecified. The efficient weighting matrix
[EJ"J"] ! can be estimated by its sample average n [>> J7J7"]™". Evaluation of J7 however requires
expected values of the influence functions ¥;, and ¥;,,, which themselves can also be estimated
by sample averages. The influence functions depend on the employed estimators for the participation
probabilities p” and the regression curves m”. These are given in the appendix for maximum likelihood
estimation of p” and kernel regression estimation of m” (p").

3.3 Properties under misspecification

In the previous section the properties of the GMM estimator have been derived under correct specifi-
cation of the outcome relationship A". In this case, however, substantial gains in precision by adding
the equality moments to the moments of the parametric model are unlikely, since the average pro-
gramme outcomes are unknown and M (p") needs to be estimated. But if the conditional mean func-

tion is misspecified, i.e.
H{: V§"€©" 3JxreS suchthat A"(z,0")# E[Y"|X = 1],

then considerable reductions in Mean Squared Bias should be possible. In this case the class of
functions spanned by A"(-) does not contain the true mean function and since there is no ”true” 6
for which h” and the true mean function would coincide, any estimate A" (x,8 ) must be biased for at
least some x values.

Figure 3.1: Bias of purely parametric estimator and of the GMM estimator
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Estimated regression lines of parametric and GMM estimator. Bias as a function of x.
Left picture: Parabolic line is true regression curve with true mean 0.65 (horizontal dashed line). Observations of
participants depicted by + signs, unobserved observations of non-participants by circles. Estimated regression lines:
OLS (solid) and GMM (dashed). Right picture: Bias as a function of « of OLS (solid) and GMM (dashed)

This situation is illustrated by an example in Figure 3.1 (left picture). There Y” and X are both
one-dimensional and the true mean function E[Y"|X = z] is parabolic. The parametric function is
specified as linear. Data on 80 observations are available, of which 40 participated in programme
r and the remaining 40 participated in any other programme. The observed (Y;", X;) pairs of the
participants are marked by + signs, the pairs (Y], X;) of the non-participants are marked by circles.
Notice that the counterfactual outcome Y;" of the non-participants is unobservable and only shown for

illustration. The density mass of X of the participants lies to the left of that of the non-participants.

11



The true mean EY" is 0.65, which could be estimated nonparametrically. Estimating the purely
parametric model, e.g. by OLS, on basis of the observed outcomes of the participants yields the solid
regression line. Estimating the semiparametric model, which includes the information on average
potential outcomes, gives the dashed regression line. In the right picture of Figure 3.1 the conditional
bias b"(x) = E[Y" — h"(2,6 )| X = 2] as a function of z is displayed. As expected, the OLS regression
line approximates the true mean function better in regions where the participants are concentrated,
but departs seriously from the true mean function for x large. The GMM regression line stays on
average closer to the true mean EY” and is less biased for large values of z. Mean squared bias
E [bT (ZL')Q] as a criterion of approximation quality is significantly lower for the GMM regression line
than for the OLS regression line.

Assessing the quality of the approximation by expected squared bias with respect to the distribution
of X in the whole population appears sensible, as the potential outcomes shall be predicted for any
individual drawn randomly from the population to select a suited programme. However, although
intuitive, a general proof of the superiority of the semiparametric model to the purely parametric model
seems difficult and shall be developed in future research.'” Obviously substantial gains in efficiency or
approximation quality can only be expected, if the density distributions fx(z) and fx|p—,(z) differ,
since an estimator based on the purely parametric model seeks to minimize mean squared error with
respect to fx|p—r (), while fx(x) would be the relevant weighting function. Then the average outcome
predicted by the parametric model usually will differ from the true mean EY”. Hence, although the
parametric approximation will in most cases be more precise for the participants in programme 7,
it will on average be biased and might be unreliable for x values where the density fx p—r(x) of
the participants is small. In this sense it is suspected, that including nonparametric estimates of
average expected outcomes EY”" for various subpopulations as additional information will improve the
approximation to the true conditional mean function. As such the semiparametric GMM estimator
should be more robust to misspecification than an estimator based only on the parametric model.

4 Choosing the optimal programme

After satisfactory specifications of the functions A”(-) have been found and the coefficients 6" have
been estimated, the expected potential outcomes can be estimated for a particular person with char-
acteristics x as

Y'(z)=E[Y"|X =2] =h"(2,6)  Vre{l.R}. (15)

Since the 6 are asymptotically normal with known covariance matrices and uncorrelated among each
other the approximate distribution of Y7 (z) for given z can easily be simulated.

For determining the optimal programme r* = argmaxu (Y (x)) consider first the case where either
the utility function is known, e.g. a weighting function assigning different weights to the V' components
of the potential outcome vector, or where the potential outcome vector is a scalar random variable,
i.e. V=1, and it is known that the utility function is monotone. Then the probability that a certain
programme 7 generates higher utility than any other programme is

pr {u (f/r(ac)) >u (Yl(ac)) U (YT(ZL')> >u (Y2($)> .t (f/r(ac)) >u (YR(x)) } . (16)

19Notice that it is fairly easy to show that absolute average bias | Eb" ()| will usually be smaller with the semiparametric
model than with the parametric model. However, average unbiasedness of the estimated potential outcomes is of limited
practical use, if an adequate programme needs to be choosen for a particular person, since average unbiasedness could
also be achieved with large positive biases for some x values and large negative biases for other = values.
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If for instance YT(L’E) can be approximated as multivariate normal and if the utility function is a
linear weighting function then (16) corresponds to the probabilities of the likelihood function of a
multinomial probit model. Thus the dominance probability that programme r is the best programme
given characteristics x can readily be computed for all programmes. A test whether programme 7 is
optimal at the significance level a corresponds to the dominance probability of programme r being
larger or equal to 1 — a.

For larger numbers of available programmes R it will often be the case that no programme domi-
nates all other with high probability, but that a semi-ordering into best, intermediate, and worst pro-
grammes is possible. The subset of best programmes jointly dominates all other programmes with
high probability, but among these best programmes no statistically significant ordering is possible.
Such a clustering of programmes is accomplished by multiple-comparisons-with-the-best (MCB) tech-
niques (Horrace and Schmidt (1996), Hsu (1996)), which are not further considered in this paper.

In the case where the utility function w is unknown it might be best to directly provide the decision
maker with the estimation results, e.g. in the form of Table 4.1. This table displays 95% confidence
intervals of the estimated potential outcomes for a given person for V' = 2 outcome variables and
R = 3 available programmes. The 95% confidence intervals provide the decision maker with some
indication of the estimation precision. Although determining the optimal programme will in most
cases be impossible without engaging in valuing the different outcome variables!!, still various forms
of dominance relationships can be derived, if the utility function is monotone in all arguments and it
is known for all outcome variables whether utility is nondecreasing or nonincreasing in this variable.
For each of the V outcome variables separately, e.g. each row in Table 4.1, the best and the worst
programmes can be determined as described above. Furthermore, probabilities can be derived that
a certain programme r dominates another programme s jointly in all outcome variables, which is
simply pr (Yr(ac) >Ys (az)) if the utility function is nondecreasing in all arguments. Again, if this
probability reaches 1 — « implies that programme r statistically significantly dominates programme
s. Analogously, this dominance concept can be extended to joint dominance of programme r over a
set of programmes s and if programme r jointly dominates all other programmes significantly then
programme 7 can be declared as the optimal programme without knowing the exact form of the utility
function.

Table 4.1: Expected potential outcomes for a particular individual

Programme 1 Programme 2 Programme 3
Re-employment chances 0.12-0.18 0.10-0.19 0.18-0.22
Programme costs 910-990 90-95 650-670

Note: Entries refer to 95% confidence intervals.

"For instance, how much weight is placed on programme costs certainly depends on who is bearing the cost. For a
discussion why the statistician should provide disaggregate information and should not aggregate all these information
into a single number, as in a cost-benefit analysis, see for instance Mohr (1999). Furthermore the decision maker might
have additional information about the characteristics of the individual facing treatment which did not enter into the
statistical system. Incorporating this supplementary information into the decision making will be easier with disaggregate
information than with aggregated results. Especially in the case of (partial) self-selection, where the individual knows
best about her unobserved characteristics, disaggregate information is constructive to complement personal knowledge
with statistical recommendations on basis of observed covariates. This might also provide incentives for individuals to
reveal their characteristics truthfully to be able to obtain better statistical information for their personal decision making.
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5 Application to Swedish Rehabilitation Programmes

In this section the Swedish rehabilitation policy is briefly examined, optimal choices of rehabilitation
programmes are elaborated, and it is assessed, to which degree the current participants-to-programme
selection was efficient. However, it should be mentioned in advance that due to limited sample size only
a very broad categorization of rehabilitation programmes is feasible, such that policy recommendations
will stay rather general.

The Swedish rehabilitation policy distinguishes between vocational and non-vocational re-
habilitation and is directed towards individuals with reduced work capacity due to long-term
sickness of at least one month. Non-vocational rehabilitation contains medical rehabilitation as
well as social programmes for individuals with alcohol, drug or psychiatric problems and intends to
re-establish independency of the sick individual from medical or therapeutical assistance. Vocational
rehabilitation consists of workplace training and occupation-related educational measures and aims at
restoring lost working capacity and fostering independence of financial social assistance. The Swedish
National Social Insurance Board is responsible for the co-ordination of vocational rehabilitative
measures and grants them only if recovery within less than a year is expected and the recovered
work-capacity seems economically valuable to the Swedish labour market.'? In 1994 a retrospective
survey of about 75’000 long-term sickness cases between 1991 to 1994 has been conducted by the
Swedish National Social Insurance Board of which NV = 6287 observations in Western Sweden have
been selected. A full description of the relevant institutions, the dataset, and the justification of the
conditional independence assumption is found in the evaluation study Frolich, Heshmati, and Lechner
(2000a). In that study the rehabilitative measures were grouped into the six categories passive,
workplace, educational, medical, social, and no rehabilitation, and the effects of rehabilitation on
the two outcome variables re-employment and re-integration into the labour force were estimated.
In general no positive average treatment effects of rehabilitation were found, but sometimes even
negative effects, particularly of educational rehabilitation.

Since the categories passive, educational, and social contained only rather few participants,
the rehabilitation programmes are summarised here into only three categories: No rehabilitation,
vocational rehabilitation (VR), and non-vocational rehabilitation (NVR).}* Notice that within these
categories programme heterogeneity is still substantial, e.g. workplace training appeared to be
much more successful than educational rehabilitation in Frolich, Heshmati, and Lechner (2000a,
b). Concentrating on a single outcome variable re-employment at the end of the sickness spell,
in a first step the expected potential outcomes conditional on observed characteristics shall be
estimated. Table 5.1 gives the number of participants in the three rehabilitation groups and the
share of participants who engaged in regular employment at the end of their sickness spell. These
unadjusted re-employment shares provide a first impression of the magnitude of re-employment
after long-term sickness, and represent the gross success rate of the rehabilitation programmes
not taking into account that the characteristics of the participants differ substantially among the
programmes. On this account about 46% of all long-term sick achieve re-employment after sickness.
The employment rate is lower for the participants in vocational rehabilitation (46.7%) than for
the non-participants (48.3%), and of the participants in non-vocational rehabilitation only 40.5%
encountered re-employment. However, such figures might be expected if the individuals participating
in rehabilitation generally face poorer labour market prospects. Thus, Table 5.1 might display merely

2For instance, if the sick individual was occupied in a declining sector and successful re-training to a different sector
seems improbable, then vocational measures are denied.

3 These groups correspond to Frolich, Heshmati, and Lechner (2000a) as follows: No rehabilitation (contains also the
passive rehabilitation programmes), vocational rehabilitation (contains workplace and educational rehabilitation), and
non-vocational rehabilitation (contains medical and social programmes).
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selection effects and in particular does not provide any information about which of these programmes
are recommendable for a particular person.'

Table 5.1: Number of observations and unadjusted re-employment shares

All | None Vocational Non-vocational
# Observations | 6287 | 3502 1478 1307
Re-employment | 46.3 | 48.3 46.7 40.5

Note: Share of transitions to employment of all sickness cases (in %).

To estimate the binary outcomes Y” the regression curve is parametrically specified as a probit
with different coefficients for each of the three potential outcomes:

E[yNone|X — JC] — hNone(m’ QNO) — (I)(QJIQNO)
EYVEIX =2] =hnVE(z,0"R) = o(2'0VE) (17)
E[YNVR‘X — l‘} — hNVR(x’QNVR) — (I)(mIQNVR)

For the instrument matrix A"(X;) the instruments of the scores of the log likelihood Olnl(z'6") _

oo™
@(x'QTQ)sEff@)(z'm))m - (y — ®(2'0")) are taken, which yields the moment function (10):

(Yi—®(X10))-p(X10)

gn = an( sy i HDi =) > (18)
TS\ (AK) - BT i (7 (X)) 10X, € )

with » = {None, VR, NV R}. The upper part of (18) corresponds to the parametric specification (17)
while the lower part ensures that the estimated coefficients of the parametric model are in line with
nonparametrically estimated average outcomes for various subpopulations. Since by Lemma 3 and
Theorem 2 the moment vectors g], are uncorrelated and asymptotically normal, the three potential
outcome relationships can be estimated by separate GMM estimators.

Preliminary estimates of " (x), %, (p) and S"(z) are required for (18), which are contained
in Appendix B. The participation probabilities p"(-) are estimated by maximum likelihood using a
flexible multinomial probit model, with no rehabilitation as the reference group.'® Table B.1 shows
the estimated coefficients from which the estimated participation probabilities p” are computed for
each observation. Table B.2 provides the correlation coefficients between these estimated participation
probabilities, and Figure B.1 displays the distribution of these probabilities. Non-participation and
participation in rehabilitation programmes are negatively correlated, while the propensity to vocational
or non-vocational rehabilitation are almost uncorrelated. The support regions S”(x) are approximated
by the supports of the estimated participation probabilities p” and are delimited by the minimum and
the maximum of the estimated participation probabilities in the respective treatment groups (Table
B.3 in the appendix). Table B.3 also shows that almost all observations lie within the estimated
supports sr.

With these estimated participation probabilities the regression curves m”(p") = E[Y"|p"] =
E[Y"|p", D = r| are nonparametrically estimated. Using only the observations which participated in

"1t should be mentioned that among the vocational rehabilitation programmes workplace training is substantially
superior to educational programmes (Frolich, Heshmati, and Lechner 2000a).

15The multinomial probit model is highly flexible among discrete choice models and particularly does not hinge on the
Independence of Trrelevant Alternative assumptions, as e.g. the multinomial logit model does. It is estimated by weighted
simulated maximum likelihood using the GHK simulator for simulating the multivariate normal distribution function,
with 400 random numbers for each observation and each choice equation (see Borsch-Supan and Hajivassiliou 1993).
Using simulators for the multivariate c.d.f. is not strictly necessary with only three choice alternatives, but would
become essential were the rehabilitation programmes grouped into more than 4 categories.
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programme 7, their observed outcomes Y are regressed on their estimated participation probabilities
p" by Nadaraya-Watson kernel estimator. These regression curves are also estimated for various
subpopulations (Table 5.2), where m] (p) = E[Y"|p"(X) = p, Ay(X) = 1] is estimated by

SVTK (PO - A(X) - 1D, =7)
S (FEEE) - A(X;) - 1Dy = 1)

my (p) =

where K is a symmetric weight function'® and % is a bandwidth parameter. The bandwidth A is
chosen by penalised cross-validation, which performed best in a simulation study of Frolich (2000).17
In Figure B.2 the estimated 7] (p") are plotted within their respective support regions.

For illustration the nonparametrically estimated average potential outcomes are displayed in Table
5.2, which are computed as

Es, [YTIN(X)=1] = Y1y (7 (Xi)) - A(X5) - 1(AXZ- )
> A(Xy) - 1(X; € 57)

using the results of (??7). These average potential outcomes indicate that for most subpopulations no-
rehabilitation is the superior treatment and, not surprisingly, non-vocational rehabilitation the worst
in re-integrating long-term sick into the labour market. This ranking, however, might not be true for
those in need of vocational rehabilitation, for those who have been sick for more than 60 days in the
previous six months, and for the age group 36-45 years.

, (19)

Table 5.2: Nonparametrically estimated average outcomes for selected subpopulations

Population Observations | EYNone gy Vocational [y Non—VR
All 6227 47.1 45.1 40.6
Employed 5006 57.0 52.2 50.5
Men 2819 47.6 43.4 40.0
Age 46-55 2260 47.7 45.9 40.3
Manufacturing 1974 50.5 43.6 42.4
Rehabilitation needed 1996 36.3 46.1 37.6
Alvsborgslin 2998 48.9 45.5 42.6
Virmlandsldn 1912 52.6 48.2 41.4
Previously long-term sick 1760 44.8 50.6 32.4
Rural community 1350 45.6 40.1 41.4
Age 36-45 1341 36.0 36.5 26.8

Note: Estimated mean outcomes for various subpopulations within the support S”. Number of observa-
tions corresponds to the smallest number of subpopulation members after trimming at the supports S7¥°m¢,

SVR, or S'ZNVR, respectively. Rehabilitation needed refers to the non-medical VR recommendation: VR
needed and defined (in Table B.1).

With 1, (p) and S7 estimated the GMM estimator can be employed to estimate the coefficients
oNo, gVE 9NVE of the three potential outcome relationships. The following results are preliminary

"*Throughout this study the Epanechnikov kernel K(u) = 2 (1 —u?)1j_1,1(u) is always employed because of its
optimality properties (Fan, Gasser, Gijbels, Brockmann, and Engel 1997).

""The Akaike penalised cross validation selector chooses the bandwidth which minimises C'V (h) = (Vi — m(p(X:)) -
exp(2/nh) (Pagan and Ullah 1999, p. 119). In the simulations of Frslich (2000) a local linear variant of Seifert and Gasser
(1996, 2000) actually turned out to be more precise in small samples than the kernel or local linear estimator, while
local linear regression was particularly disappointing and performed often even worse than one-to-one pair matching.
However, since it would complicate the estimation of the GMM covariance matrix, it is not implemented here.
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and exemplary and will be replaced soon. All three outcome equations AV, hVE BNVE contain the
same b explanatory variables (plus constant) and 6 equality moments, corresponding to the first six
populations in Table 5.2, are included in the GMM estimation. Accordingly the number of moments
in (10) is 12 and the number of overidentifying restrictions is 6. The explanatory variables are gender,
previously employed, previously long-term sick, sickness degree 100%, and medical diagnosis is injury.

First, neglecting the equality conditions and regressing the observed outcomes on the explanatory
variables by standard Probit provides the coefficients 6%, ,;; of the purely parametric model as
starting values for the 2-step GMM (Tables 5.3a,b,c). The GMM estimates 6] are computed with
the identity matrix Ii» as weighting matrix. Then the efficient weighting matrix is estimated as
Qr(07) = [EJT(07)J7(05)]1. J" is computed by formula (13) with the influence functions v,
stemming from the maximum likelihood estimation of the participation probabilities p” given by (38)
in the appendix and the influence functions \If” according to the Nadaraya-Watson kernel regression
of m"(p") = E[Y"|p"] given by (39). These 1nﬂuence functions take account of the additional variance
due to the estimation of the expected outcome conditional on the estimated participation probability
and need to be computed for all subpopulatlons [ € {1..L}. With this estimated efficient weighting
matrix QT GMM is re-estimated to obtain 92 (Q”) To verify the integrity of the GMM estimates the
weighting matrix is also re-estimated as Q5 (65) = [EJ"(05)J7(63)]~! and standard errors of 0y are
computed as well with respect to Q{ as with respect to QQ.

Tables 5.3a,b,c report estimated coefficients and standard errors of the parametric probit and the
semiparametric GMM for the three potential outcomes Y Nore YVE and YNVE Except for gender
and sickness degree most coefficients are significant with t-values above 2. The first step GMM results
07 exhibit a similar pattern as the probit estimates 0%,;,;;, with (almost) no sign changes occurring
between 6, ., and 07. The standard errors of 0] are generally somewhat larger than those of 0%, ;-
In contrast, the second step GMM results 65 are surprisingly almost identical to the probit estimates.
A closer examination of the estimated weighting matrix €7 (not reported here) clarified the reasons for
this behaviour. The influence functions U] = stemming from the nonparametric estimation of m”(p")
increased those elements of EJ"J" corresp,onding to the equality moments of the moment vector (10)
drastically, whereas the moments according to the parametric model are unaffected of this, see formula
(13). As a consequence, very small weights are placed on the equality moments in the estimate of the
weighting matrix [EJ"J™]~!, leading to estimates governed by the moments of the parametric model.
This effect is even more prevalent the smaller the number of observed participants in programme 7.
Interestingly, the influence v, of the estimation of the participation probabilities had only a very

small impact on the weighting matrix Q{ and on the GMM results é; and @;, which might have been
expected from the Figures B.2 in the appendix where the slopes of m”(p") are small in most cases.
However, it is not obvious here whether the efficient second-step GMM estimates are preferable to the
first-step GMM estimates. Apart from known numerical problems with the estimation of 2] when the
number of overidentifying restrictions is large, the weights assigned by 2] to the moment conditions
may not correspond to the credibility weights, which the econometrician attributes to the parametric
and the nonparametric moments, since the weights 2] reflect only variance but not bias. Obviously,
the variance of the parametric model is lower than that of the nonparametric estimates and if the
parametric model is correctly specified €27 is right to pick the parametric model. However, the greater
robustness of the nonparametric estimates is not incorporated in {2 and in case of misspecification of
the parametric model placing almost zero weights on the equality conditions does not appear sensible.
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Table 5.3a: Coefficients for the potential outcome YN with 6 equality moments

Variables oNome “(Std.) 6N (Std) O™ (Stdy,Stds)
Constant -1.87 (0.10) -1.75 (0.15) -1.86 (0.10,0.10)
Male 0.10 (0.05)  0.07 (0.06)  0.12 (0.05,0.05)
Employed 178 (0.08) 170 (0.12)  1.78 (0.08,0.08)
Previously long-term sick  -0.24 (0.06) -0.38 (0.07) -0.25 (0.06,0.06)
Sickness degree 100% 0.29 (0.06) 021 (0.07)  0.27 (0.06,0.06)
Diagnosis: Injury 0.54 (0.07) 0.75 (0.08) 0.54 (0.07,0.07)

Note: QML robust standard errors of probit estimates #527%%,. " are the GMM estimates with
identity matrix as weighting matrix. #2°"¢ are the GMM estimates with asymptotically efficient
weighting matrix. Standard errors of the GMM estimates are based on the asymptotic covariance

matrix. The covariance matrix of O™ is computed as (G'IG)"*G'IQT IG(G'IG) ™ . For gy one
two standard errors are reported. The first stems from the covariance matrix (G'Q1G)™! and the
second from (G’ G) TGO UG (G'QG)

Table 5.3b: Coefficients for the potential outcome YV with 6 equality moments

Variables 0P, (Std.) 677 (Std.) 05T (Std,,Stdy)
Constant 110 (0.16)  -1.14 (0.27) _ -1.09 (0.16,0.16)
Male -0.06 (0.07)  -0.06 (0.08)  -0.06 (0.07,0.07)
Employed 113 (0.11)  1.09 (0.15)  1.13 (0.11,0.11)
Previously long-term sick  -0.20 (0.08) -0.15 (0.09) -0.21 (0.08,0.08)
Sickness degree 100% 0.07 (0.12) 0.17 (0.19) 0.08 (0.11,0.11)
Diagnosis: Injury 0.25 (0.10) 0.15 (0.13) 0.24 (0.10,0.10)

Note: See Table 5.3a

Table 5.3c: Coefficients for the potential outcome YNV with 6 equality moments

Variables Op it (Std.)  oYVE(Std) 6NV (Stdy,Stds)
Constant 167 (0.18) 241 (0.77)  -1.68 (0.20,0.18)
Male 0.09 (0.08)  0.02 (0.10) 0.9 (0.08,0.08)
Employed 176 (0.15) 227 (0.62)  1.77 (0.17,0.15)
Previously long-term sick  -0.46 (0.10)  -0.48 (0.14)  -0.48 (0.10,0.10)
Sickness degree 100% -0.07 (0.11) 0.19 (0.26) -0.07 (0.11,0.11)
Diagnosis: Injury 0.22 (0.11) 043 (0.21)  0.21 (0.11,0.11)

Note: See Table 5.3a

To verify the parametric specifications Table 5.4 presents the results of the J-tests for overidenti-
fying restrictions for the first and the second step GMM estimates. The J-tests with respect to the
second-step estimates é; are reported as well with respect to Q’l’ as with Qg, which should lead to
similar conclusions. For the potential outcome in absence of any rehabilitation Y Vo™ the parametric

. . . . AN AN . .
specification is clearly rejected at the 1% level for 6, " and 0, . For the potential outcome with

vocational rehabilitation the parametric specification cannot be rejected at the 10% level as well for
~VR ~VR ) L . ) ~NVR
0, as for #, . For non-vocational rehabilitation the J-test strongly rejects with respect to 6,

but does not reject with respect to @QVVR. This might indicate that the first step GMM estimates
do not satisfy the equality conditions but the second step estimates do. However, it might also be
an indication that the first step estimates with the identity matrix as weighting matrix have stayed
more attached to the nonparametric averages, but with Q’l’ assigning almost all weight to the para-
metric model the incompatibility of the first step estimates with the observations on the participants
in non-vocational rehabilitation (on which the parametric model is based) becomes evident. For the
second step estimates @; this does not occur, since as well é; as Q{ nearly ignore the nonparametric
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estimates and therefore do not reject the J-test. Overall the J-test based on é; is probably the more
reliable indicator of the plausibility of the parametric specification.

Table 5.4: Tests for overidentifying restrictions
None Vocational Non-VR

T

n-gr(0))rgr (@) 50.89 7.24 922.39
n- g’ (05)Qrgr(6y)  33.85 5.05 6.25
n- gt (0y) g (By)  33.62 5.02 6.64

6 degrees of freedom. X%e) critical values are: 10.64(q—o0.10),
12.59(4=0.05), 14.45(a=0.25), 16.81(q—0.01)-

On this account it would appear advisable to search for more adequate specifications of the po-
tential outcomes YN and YNVE, This is currently in progress, though for explanatory purposes I
continue with the specification of Tables 5.3a,b,c. Having found a proper specification of the potential
outcomes the expected individual treatment outcomes can be computed and the optimal programme
(or a set of optimal programmes) can be determined for any individual. Since the probit specifica-
tion is a strictly increasing function of its argument /6" the probability that programme r dominates

R ~N R

all other programmes for an individual with characteristics x is identical to Pr(z’ 0" > /0 o,az’ 0" >
NG ~NVR

207, 20" > 270 ). These dominance probabilities are computed for all 6287 individuals of the

data set and Table 5.5 gives the number of individuals for which no-rehabilitation, vocational rehabil-
itation, and non-vocational rehabilitation, respectively, are optimal at the significance level specified
in the first column. For instance, for 2187 individuals the hypothesis that participation in either vo-
cational or non-vocational rehabilitation would improve their re-employment chances can be rejected
at the 5% level and for 1864 individuals even at the 1% level. (This corresponds to their dominance
probabilities of no-rehabilitation being larger or equal than 95% and 99%, respectively.) For slightly
more than 1000 individuals vocational rehabilitation is their optimal programme and non-vocational
rehabilitation is for no-one optimal to foster re-employment prospects at the end of sickness spell.

Table 5.5: Number of individuals for
whom programme is optimal

a-level | None Vocational Non-VR
20 % 3893 1245 176

10 % 2196 1082 0

5% 2187 1044 0

1% 1864 1020 0

The cell entries give the number of the 6287 in-
dividuals for which the programme in the respec-
tive column is the optimal one, with significance
level given in the first column.

When comparing these predicted optimal programmes with the treatments actually received
it is found that of the 2187 individuals for whom no-rehabilitation is optimal at the 5% level
1174 received no rehabilitation, while 574 participated in vocational and 439 in non-vocational
rehabilitation. Of those 1044 individuals for whom vocational rehabilitation is optimal 599 did not
participate in rehabilitation, whereas 193 received vocational and 252 non-vocational rehabilitation.
Taken together, 1367 of the 3231 individuals for whom a unique optimal programme could have
been determined with high probability received their optimal treatment, while 1864 participated in
a sub-optimal programme, implying an efficiency ratio of 42.3%. This efficiency ratio is virtually
identical when derived analogously for the 1, 5, and 20% significance level, respectively.
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6 Conclusions and further research

This paper has developed a new semiparametric approach to determining the optimal programme
among a number of available programmes for a particular individual, based on observations from past
programme participants. Such a statistical system is useful in at least two respects. It can be employed
ex ante as a decision support system to provide recommendations when a particular individual faces
the choice between various treatments. Such a system can also be used ex post to assess the efficiency
of the selection process, which had assigned the past programme participants to the programmes.
Measuring the degree to which individuals have received their optimal treatment could be utilized
as a performance indicator for monitoring and assessing agencies, which either assign individuals to
available programmes or advise them in choosing a programme, e.g. local public employment services.
Inefficient participant-to-treatment allocation might suggest a re-organization of the selection process,
e.g. from individual self-selection to assignment or vice versa.'®

The proposed estimator has been applied to rehabilitation programmes in Sweden, which had been
grouped into just three categories (no rehabilitation, vocational rehabilitation, non-vocational reha-
bilitation) on the grounds of small sample size. Only one outcome variable, returning to regular em-
ployment at the end of sickness, has been considered. It turned out that for nearly 2200 of the 6287
individuals of the data set no-rehabilitation would have been the optimal treatment, for just above
1000 individuals vocational rehabilitation would have been optimal, and for no-one non-vocational
rehabilitation would have been most recommendable. For the remaining over-3000 individuals none of
the three treatments was jointly significantly superior to the others at the 10% significance level, but
for another approximately 2000 persons an optimal programme could be determined at the 20% signif-
icance level. For the remaining persons a semi-ordering could be established by multiple-comparisons-
with-the-best. Contrasting these results with the treatments that the individuals have actually re-
ceived it is found that only about 42% of all individuals for whom an unrivalled optimal programme
was found received their optimal treatment. If re-employment at the end of sickness spell would be the
only relevant outcome variable of interest (which surely is not the case e.g. for medical rehabilitation)
and if the model specification were correct (which in the current version of the paper is not yet the
case), one would be tempted to conclude that the selection process in place during 1991 to 1994 in
Sweden, assigning about 58% of the easy-to-classify cases to sub-optimal rehabilitation programmes,
was highly inefficient.

In future work multiple comparisons with the best shall be incorporated and it shall be addressed
which and how many of the overidentifying equality moments should be included in the GMM estimator
and how the proposed estimator behaves under misspecification.

A Appendix: Theorems and corollaries

A.1 Proofs of Theorems

Lemma 3 If the potential outcomes Y?',...Y are independent, then the moment vectors g}L(Ql), .
B (01 are uncorrelated.

Proof. E [(g,(0") — Eg,(0")) - (¢5(0°) — Eg3(6°))'] = EE[(g5(0") — Egp,(67)) - (95(0°) — Eg5(6°))'
IX1,.., Xn,D1,.., D] =n 23S EE K An - An >\X1,..,Xn,D1,..,Dn ,
i j A21 A22

¥ Notice that efficiency is with respect to the relevant utility function. Thus, although self-selection might appear
ideal when characteristics such as motivation or work commitment are unobservable to the case worker, it might also be
that programme costs and personal monetary and non-monetary costs are valued differently in the utility functions of
the individual and that of the programme operator.
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with Aqy = (A"(X;) - (Y7 — W'(X:,07)) - 1(D; = 7) — E [A"(X)(Y" — h"(X,07))1(D = r)]) -

) (
!

(4°(X5) - (V7 = B°(X;,6) - 1(D; = 5) - [m<x8—mawmuD=MyAm=
(M) @ b (X, 07) = 1, (57 (X)) 1(Xs € 87) = B [(A(X) @ (X, 07) — s, (57 (X)) 1(X € §7)] )

!
(M) © h*(X5,0°) = 1 (5 (X)L € §°9) = B [(A(X) © h*(X,0%) =1, (P*(X))L(X € )] ),
A = (A"(X;) - (Y] = h"(X3,07)) - U(D; = r) = E[A"(X)(Y" — h"(X,07))1(D = 7)]) - ,
(m<»®h%&ﬁg—mv<%&»chsw B [(A(X) ® h*(X, 0%) - mzcwxnchﬁﬂ)
and As; analogously.

Multiplying out and taking the expectation conditional on X1, .., X,,, D1, .., D), all terms cancel to
zero, by noticing that from the independence of the potential outcomes Y1, .., Y it follows with ex-
pectations conditional on X7, .., X, that E[(Y" —h"(X;,0"))- (Y*—h*(X;,6°))] = E[(Y"—h"(X;,07))]
(Y — WG], Bl — W) - () ©0G,8) — (o)) = Bl =
(X2, 07)] - BIU(ACY;) @ (X, 0°) — ing (5°(X) )], and E[((ACX) @ B (X, 07) — 1y (7 (X))
C((AGX) @ (X5, 0°) — i (9°(X,))] = EI(AXD) © (X007 — g, (77 (X0)] - EIACX) @
h*(X;,0°) — i, (p°(X;))'], since mj,, is estimated from the observed outcomes Y” and f,, is
estimated from the observed outcomes Y*. B

Consistency of the GMM estimator
Recall the moment vector

e Gr o N A"(X;) - (Vi — h"(X5,07)) - L(Ds =)
gn (07, 8" mi,;)=n 1;<(A(Xi)®h (XZ',QT)—I?IVL(]?T(X ) - (X EST)>

where 1, (7" (X:)) = (R (77 (X2) - Aa(X0), s 9 (7 (X0) - MCXa), o 9 (7 (X0) - AL (X0))' s the col-
umn vector of length VL of all estimated outcome variables M (p"(X;) = (@55(+), . 0 (+), .., 3% (1))
in all populations [ =1, .., L.

Define

)=n" Zm J1(X; € 87,

Q

as the column vector of length V' L which converges in probability to

plim&" (S",A) = E(A(X)® E]Y"|X]-1(X € S;)) = ap(S", A).

n—00

Then the moment function can be written as

gu(0", 07 12( ; hT(})L;();",)QT)EXZ- (EDS:) T)> B <d*(g’]:,A)>' (20)

In analogy to Newey and McFadden (1994) the proof proceeds in three steps. In Corollary 4
. ., . . . AT ~ . A A
sufficient conditions for the consistency of an extremum estimator 6 (&") = arg nin Qr(0",a") are
Tc@r

laid down. In Corollary 5 these sufficient conditions are specified more precisely for a GMM estimator,
which is a member of the class of extremum estimators. Finally, in Theorem 1 it is shown that the
specific GMM estimator based on the above moment vector does under mild conditions satisfy the
conditions of Corollaries 4 and 5. Since the different coefficient vectors " are estimated separately
the superscripts r will henceforth frequently be suppressed to ease notation.
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First, sufficient conditions are given for a generic extremum estimator of the form 0(&) =
arg min Qn(ﬂ, &) to be consistent, where Q.. is a stochastic objective function and é a nonparametric
preliminary estimate of ag. Be Qg the nonstochastic limit function of Qn and 6y and ag the true
values. Suppose that the estimator & converges in probability to ag. Define B(ay) as an arbitrarily
small ball around ay. Consistency of & implies that with probability approaching one & lies in the
ball B(ay), hence

lim Pr(& € B(ay)) = 1. (21)

n—oo

Corollary 4 If

(i) Qo(0, ) is uniquely minimized at (0p, o),

(ii) Oy € ©, with © the compact parameter space,

(1i3) Qo(0, o) is continuous,

(iv) Qn (0, ) converges uniformly in © to Qu(6,cx) for all o € B(aw), hence

lim Pr (sup ’Qn — Qo(b, )’ < 61) =1 Va € B(ay) with €1 > 0, (22)
n—oo 0cO

(v) plim & = ay,

then the estimator (&) = arg rom(ngn( , &) converges in probability to 6.
e

Proof. With & consistent it follows by the Slutzky theorem that also the nonstochastic function
Qo(0o, &) is convergent:

nhnolopr (‘Qo(eo,a{) - Q0(907a0)| < 62) =1 with g5 >0 (23)
First it is shown, that Qo(@, &) converges to Qo(bo, ap) from above. Write Qo(@, &) — Qo(0o, o) as

(Qo( &) — Qn(0, ))+(Qn(@,@) - Qn(QO:d)>+<Qn(907a) - QO(QO,@)>+(Q0(90,5¢) — Qo(bo, p)).
From the uniform convergence assumption (22) together with (21) it follows that with probability
approaching 1 (w.p.a.l) )Qn(@,d) - QO(@,d)’ < &1 and w.p.a.l )Qn(ﬂo,d) - QO(QO,d)’ < e1. From

(23) it follows that w.p.a.1 [Qo(fo, &) — Qo(fo, )| < €2. The term Qn(0, &) — Qn(bo, &) is negative
by the definition of the estimator with Q,(0,&) = IeniélQn(Q,d). Thus the first, third and fourth
c

terms are w.p.a.l smaller than an arbitrarily small number and the second term is smaller than zero.
Accordingly it follows with ¢ = max(e1, e2)

Qo(0, &) < Qo(fy, ) +3¢  w.p.a.l. (24)

The following reasoning is similar in spirit to that of Theorem 2.1 in Newey and McFadden (1994).

Let AV be any open subset of © with g € A and let N¢ = ©\N be its complement. From N¢ compact

and Qo(0, a) continuous it follows that gir}\ff Qo(0, ap) > Qo(bo, arp), since dy uniquely minimizes Q.
6 c

Choosing 3e = oir}\f/ Qo(0, a0) — Qo(bo, ag) it follows w.p.a.l that Qo(@,&) < gir}\f/ Qo(0, o). This
eNe CNe

means that w.p.a.1 6 cannot be element of A’ and thus # € A" must hold. Hence for sufficiently small
¢ all open subsets of © which contain 6y also w.p.a.1 contain 6 and all subsets of © which do not
contain y also w.p.a.1 do not contain #. Thus 0 converges in probability to . B

Now the sufficient conditions of Corollary 4 are specified for a generic GMM estimator.
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Corollary 5 Suppose

(i) & is a consistent estimator of ag and B(a) a ball around oy, such that lim Pr(é& € B(ay)) =1,
n—00

(i) the data Z; = (X;,Y;) are iid, W L5 W, where W a positive semidefinite matriz,
(iii) WEg(Z,0,a) =0 if and only if 0 = 6y and o = axg,

(iv) 0y € O, with © compact,

(v) 9(Z,0, ) is continuous in 6 and o

(vi) E'{ sup supllg(Z,0,a)| | <oo
a€B(ap)0€0©

then the GMM estimator of Qn(0,é&) = (%Zg(Zi,Q,&))/W(%Zg(Zi,Q, &) with limit function
Qo(0,) = (Eg(Z,0,a)) W (Eg(Z,0,a)) satisfies the conditions of Corollary 4 and the GMM

estimator is consistent.

Proof. Showing that the conditions of Corollary 4 are satisfied follows with only minor modifications
Lemma 2.4 and Theorem 2.6 of Newey and McFadden (1994) and is here omitted. W

Proof. [of Theorem 1] It must be shown, that all conditions of Corollary 5 are satisfied. Conditions
(i), (ii), (iv) and (v) of Corollary 5 are satisfied by assumption. If /i is consistent then also &. The
identification condition (iii) and the moment existence condition (vi) need to be analysed. Condition
(iii) requires that W is strictly positive definite. Then the upper part of the moment vector (20),
which is independent of e, can only have expectation zero if it represents the true mean function. By
assumption (ii) on the parametric equation h(x,#) this can only be the case if § = 6. But then the
equality conditions, the lower part of (20), can only be zero if & = ay.

Turning now to the moment existence condition (vi):

E sup sup ||g(27 97 a)”

a€B(ag)0€0
X;) - (Yi—h(X;,0)) - 1(D; =
= I sup sup _IZ< ( ( ( ) (A T))
a€B(ao)0cO AX;) @ M(X;,0)-1(X; € ST)— &

~ FE sup sup
a€B(ag)dcO

) -

)
1N (A - (Yi = (X3, 0)) - 1(D; = )
Z( A(X;) @ h(X;,0) - 1(X; eST‘)—d)

G (¥ h(X,0) (D = )|
= B P o +22|A,<X> W(X,0) - 1(X € §7) — G

I

where h,(X,6) is the v-th outcome variable, A;(X) the I-th element of the multivariate indicator
function (7) and &, the element of the estimated é&-vector corresponding to the v-th outcome variable
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and the [-th subpopulation.

JA(X) - (Y = h(X, )]
< F sup su ~
S e 3 +ZZ|AZ<> o(X,0) - 1(X € ™) — atur0] + |0 — Bl

< EzugHA( ) - (Y — h(X,0)) ||+ZZEsup|A, X) - hy(X,0) - 1(X € S7) — auugl
c

+E sup |oy,0 — Gl
a€B(ao)

if all these terms have finite expectations. The last term is finite, since the size of the ball B(ay)
around ag can be chosen arbitrarily small. Hence, if for each outcome variable and each subpopula-
tion E'sup||A(X) - (Y —h(X,0))|| < oo and Esup|h(X,0)-1(X € S;) — ap| < oo and the number of
subpopulations is finite, then the moment existence condition (vi) of Corollary 5 is satisfied. W

Definition 1 Asymptotic linearity with trimming Heckman, Ichimura, and Todd (1998)
An estimator 0(x) of the conditional expectation function Og(z) = EY|X = a] is asymptotically linear
with trimming 1(z € S) iff there is a function 1, and stochastic terms b( ) and R(x) that satisfy the
following conditions:

(i) [0(z) = Oo(@)] - 1(z € §) =n~" é@bn(Yjan; z) +b(x) + R()
(i) B (3, X5 X)X = 2] =0
(#3) plimn~ 3 Zb( j)=b< o0

n—oo

(i) n~ 2ZR( i) = 0p(1)

Condition (i) demands that the deviation of the estimator from its true mean can be decomposed
into three components: the sum of a local influence function, a local bias term and a local residual
term. The local influence function 1,, represents the influence of a particular observation on the
deviation of the estimator from its true value and is well known from the class of asymptotically linear
estimators as covered in Newey and McFadden (1994). Observe that the local influence function v,
is allowed to vary with n for instance through bandwidth parameters that converge with sample size.
The second term b(x) is a local bias component, whose population average must be zero and the
limit distribution of its average multiplied with /n must be degenerate and converging to a finite
nonstochastic number b. Parametric estimators are often locally unbiased with b(x) zero. For many
nonparametric estimators the /n average bias could be made to be zero by choosing a bandwidth
sequence that converges faster to zero, though in terms of mean squared error even more smoothing
would be desirable, but this would imply a non-degenerate asymptotic distribution of the /n average
bias. Heckman, Ichimura, and Todd (1998) have shown that under some smoothness conditions the
local polynomial regression estimator is asymptotically linear with trimming (see Corollary 6), and that
the local polynomial regression estimator m” (p"(x)) of E[Y"|p" (X = x)] on the estimated participation
probability is also asymptotically linear with trimming if the estimator of the participation probability
model is asymptotically linear with trimming (Corollary 7).

Proof. [of Theorem 2] To improve readability the superscripts r are frequently suppressed. The GMM
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estimator 0,, = arg meingn(H, 1y 7, S Wign (6, thyr,, S) can be expressed by its first order condition

~

Gn(0,8)W - gn(0,102y 1, S) = 0, (25)

where G, = W} is the gradient of g,, with respect to 6,which does not depend on my .

Applying the mean value theorem to gn(@,ﬁf{/L,S’) around the true coefficient vector 6y and
inserting this into the first order condition (25) yields, with 6 on the line between @ and 6,

G0, 8)W - [gn(eo, vz, S) + Ga(8,5) - (0 — 60)] = 0. (26)

Solving for 6 — 6o gives

~

P a1 A A, A N
(0= 00) = = (Gu(0, S WG(9,9)) ~ GulD, S)'W - n¥ gu (00,1071, 9). (27)

N[

n

By inserting the moment vector (10) the last term can be written as

n%gn(éo, IilVL,g) = n_% Zg(Zi, 90, myy, S) (28)
1 O
DS ((A(Xi) ® h(X;,00) — myL(p(X;))) - [I(Xi €9 —1(X; € 5)})

1 04
- Z <(ﬁ1VL(ﬁ(X¢)) —my(p(Xi))) - 1(X; € ST))’

1

where Z; = (Y;,D;, X;). The first term corresponds to the case where my and S where known,
the second term corrects for the estimation of the support and the third term takes acgount for the
estimation of m and p. The second term goes to zero by assumption (v), since n=z > (A(X;) ®

h(X;,00) — my(p(X;))) - 1(X; € 8) and n- 3 SA(X;) ® (X4, 00) — myr(p(Xi)) - 1(X; € S) are
asymptotically equivalent as shown by Heckman, Ichimura, and Todd (1998, p. 291). Since the
nonparametric estimator is asymptotically linear with trimming for each outcome variable and in all
relevant subpopulations it follows that

1 .G _1
n?gn (00, thy 1, S) =72y g(Zi,00,my L, S) + 0p(1) (29)
Og
e 3 (Y, Dy Xy Xi) + 0 30, W1 (Y, Dy, X Xo) + b (Xi) + Ra(X)

nph S Unm (Vi Dy, X3 Xa) + 07t Y Uy (Y, Dy, X3 Xa) + bu(Xs) + Ri(X5)

Consider first the elements corresponding to population [ of the latter term in (29)

_1
WQE § Uy (Y5, Dy, X Xi) + 1 3§ § U,,(Y;, D, X3 Xi) +n z§ bi(X;) +n~ z§ Ri(X
;

%

(30)
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which can be reformulated as

3
2

ETR LD I ’) P (v )
+n22bl —}—nZZRl

with ¥, (Y;, Dj, X;; X;) abbreviated as \I’j’ and U; (Y}, D;, X;; X;) as \Ilj’p. Notice that the last
term converges to zero and the third term to a nonstochastic blas term. The first two terms in curly
brackets are von Mises statistics (e.g. see Serfling 1980) Wthh are asymptotically equivalent to their

W+, 4w
asymptotically equivalent to the projection of the correspondlng U-statistic (Corollary 8). Assumption
v, + v,

(NI

corresponding U-statistics and if E = o(n) holds, then these terms are

(i) ensures that this condition is satisfied. By assumption (i) E

= o(n) since with

2 -
+ \I’Ul m) where \I’fj’zm denotes the

. .2 |4
Euclidean norm this term equals E H\I}g::" + \I};:an =F Zl <\I’f)’l m
V=
influence function on outcome variable v in subpopulation [. With E \Ilg ’:n = 0 this term corresponds

to the sum of the variances ), Var (W” + \val m) <> ., 4Var (W“ ) < 4V - max, Var (‘I’%l m)

vl,m
As assumption (i) is to hold for each outcome variable and each subpopulation this term is o(n). The

2
same reasoning does hold analogously for E H\If{ ’; + \Ifl’p and since covariances between the influence

functions for p and m are bounded by their variances the projection theorem is applicable.
Replacing the von Mises statistics by the projection of the corresponding U-statistics expression
(30) can be stated as

n

1l n
= 2N BV, Di X5 X))V, Di, X)) 403y B[, (Y, Dy, Xi X;)|Yi, Dy Xi] - (31)

nyr

i=1 i=1
n
+n"2 bi(X;)+n"2 R )+o + o0p(1),
SO0 E ST 4o () +out1)

to which a central limit theorem is directly applicable, where the asymptotic distribution is determined
by the first two terms since all other terms converge in probability

To be able to apply the U-statistic projection theorem simultaneously to all subpopulations [ in
expression (29) requires that the full influence function vector containing all outcome variables and
all subpopulations has expected squared norm of order o(n), which is satisfied by assumption (i) since
the squared norm is smaller or equal than the sum of the squared norms of all vector elements, which
by assumption are o(n).

Defining J; as
O
Ay E[01m(Ys, Dy, X3 X5)|Yi, Dy, Xi] + E[W1,,(Yi, Dy, X33 X;5)|Ys, Dy, X
Ji = 9(Zi,00,myr) — :

N LB (Y, Diy X X5)|Yi, Dy, Xi) + E[91,,(Yi, Diy X3 X5)[Y;, Dy, X5

)
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it follows by the multivariate Lindeberg-Feller central limit theorem (Greene 1997, Theorem 4.14)
under the regularity conditions that E.J;J! < co Vi, that all mixed third moments of the multivariate

distribution are finite, that lim n 1Z:EJ J] = EJJ' a finite and positive definite matrix, and that

—
n—aod i=1

-1
lim (ZEJZJZ'> EJ;J! = 0 Vi, that the moment function (10) g,(fo,hy 1, S) is asymptotically
i=1

n—oo

normal:

négn(OO,ﬁle,g) AN ({ O ] ,EJJ') ) (32)
by,

It remains to show that Gy, and W converge in probability to G and W, respectively. The gradient
of the moment vector (10) is

- ) (Y; — 280y (D =)
Gl Z( %jel 1(X; € 5) ) (%)
- ) (v; — 20 1Dy =) 0
Z( X)) ® 4603 1(X; € S) >+<A( X;) @ 2iX.0) [(?QES)—l(XiGS)})

The latter term converges to zero since the first derivative of h(.) is bounded by assumption and
1(X; € S) converges to 1(X; € S). The first term converges to G and the weighting matrix converges
to W by assumption. Hence the GMM estimator is asymptotically normal

%(9 0o) 4N <[ —(G’WG)O—le’WbVL } ,(leG)1G/WE[JJ/]WG(waG)1> .

Corollary 6 (Asymptotic linearity of /" (p"), Heckman, Ichimura, and Todd (1998) )
Assuming that

(i) sampling of (Y], X, Dj) is iid with finite variance of Y], and X; € Rk

(i) the regression function m'"(p") is twice continuously differentiable with second derivative Hélder
continuous,

(iii) the stochastic bandwidth sequence an, = ap > 0 for some deterministic

nT—>oo
sequence {hy, } that satisfies = }Z’TT — 00 and limn,.h* < oo,
(iv) the kernel function K is compact and symmetric, [ K(u)du=1, [uK(u)du=0.

(v) the estimated support " = {x : fx(z) > qo} is estimated such, that sup,eg |fx(x) — fx(x)

converges a.s. to zero where S = {x : fx(x) > qo}, fx is a kernel density estimate with kernel with
moments 1 through k equal to zero, and fx is k + 1 times continuously differentiable with (k + 1)-th
derivative Hélder continuous,

(vi) m"(-) is estimated at interior points,

then the local polynomial regression estimator " (p"(z)) of polynomial order < 19 is asymptotically

'9The local polynomial regression estimator of order 0 is the Nadaraya-Watson Kernel estimator and the local poly-
nomial regression estimator of order 1 is the local linear estimator.
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linear with trimming:

(" (p" () = m" (p" (x))) Lz € 57) = 1Z¢m 7P (X5);p") - W(Dj = 7) + b (p") + B (p")-

Corollary 7 (Asymptotic linearity of m"(p"), Heckman, Ichimura, and Todd (1998) ) If
(i) an estimator p"(x) of the participation probability is asymptotically linear with trimming

(0 (@) =" (@) La € §7) =~y "4y (D, Xy @) + by(x) + Ry(2),
j
(i7) %p(frl and p"(x) are uniformly consistent and converge to %Tp—rl and p"(x), with %Tp—rl con-

tinuous,

amemTZb<<mu@—w—mmmeWQZﬁﬁﬁiBmﬂ&»=mw

Ny —00 n—00

(v) plim n~ ZZ [amr(p X)) _ ol T(XJ))} Ry(X) =0,

n—0o0 6})

(vi) plim n=s ZZ {6mr(p ) 6mr(pT(Xj))} Y, (D, X1; X5) = 0, where p'(x) is a function defined

n—oo apr
by a Taylor’s expanswn of m"(p"(x)) around p"(x),
then also the estimator " (p"(x)) of m" (p"(x)) = E[Y"[p"(X = z)| is asymptotically linear with trim-
ming: [ (7 () — " (5" ()] - 1(z € §,)

*1Z¢m 70" (X5);p")1U(D; :T)+M 7121/1]3 (Dj, Xj; ) )+ b(x) + R(x) (34)
and
plim n 2Zb( ) = bp + by

Remark 5 Corollary 7: If the participation probability is estimated either nonparametrically by local
polynomial regression or parametrically, e.g. by mazimum likelihood, then the conditions (i) to (vi)
are satisfied (Heckman, Ichimura, and Todd 1998). In the latter case the local bias by(x) is zero.

Corollary 8 (Asymptotic equivalence of V-statistic, U statistic and its projection) Let
H,(z1,72) be a symmetric function, X1, .., X, iid random vectors. A natural estimator of EH,, is
the one-sample U-statistic

—1
n
Up = <2> Z H,(Xi, X;)

1<i<j<n
The associated von Mises statistic is

n n

Vo=n"2 " Ha(X;, X))

i=15=1

and the projection of the U-statistic is defined as

. _9
0, ="

Xo| X1 = X;).
=1

If E||Hy,||* = o(n) then nz (U, — Uy,) = 0p(1) and n%(Vn —U,) = 0,(1). See Hoeffding (1948) and
Serfling (1980). Eztended by Powell, Stock, and Stoker (1989) to allow H,, to depend on sample size.
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A.2 Influence functions of particular estimators

First the influence function for the parametric estimation of the participation probabilities p” is derived.
Thereafter the influence function of kernel regression estimator of m” is given. As shown in Newey
and McFadden (1994, p.2141 ff) Maximum Likelihood estimators of parametric regression models are
asymptotically linear in the sense
n
A 1
(B=Po) =n"2 Y (¥;, X;) + 0p(1),

Jj=1

N

n

with ’global’” influence function

(35)

0¥}, X;) = - [Eaﬁnf@?vleﬁo)} Oln f(¥;, X;|50)

0pos’ op

This influence function is global in the sense that it affects the estimate of the coefficients 8 and
not only the estimate of the conditional mean at a certain point x. Let p(z,3) denote a parametric
mean function, then under some regularity conditions the "local’ asymptotically linear representation

can immediately be obtained by an expansion of u(x,3). Under some regularity conditions it follows
that

1 A 13 1
nb (ule )~ (e, 50)) = 0% 50 D005, + (1) (36)
=1
_ 3/1(33 /30) -1 Oln f(Y;, X;; By)
= —n" oF [EH)] Z 56 J

where F'H is the expected Hessian at 3, in (35); Thus a Maximum Likelihood estimator is asymptot-
ically linear with trimming with zero local bias by(x) = 0.

+OP(1)7

The influence function of the kernel regression estimator in the one-dimensional regression setting
is (Heckman, Ichimura, and Todd 1998):

K (pT()}ii)r—pT)

E K (pT(Xz‘)*pT>
Xj‘D:T nr

V(Y07 (X); 07 (2) = (Y] = E[Y]|p'(X;),D; =7]) (D; =7)1(z € S")

K (pT(Xz)—pr>
o Dj=r)l(z e S,

= (Y’]’f‘ _ mr(pT(X]))) h—mEpr|D:r(pT(x))

since h 1EK (w) = [hlK (M) + folp=r(P"(v))du where f,p_, is the density of

p” conditional on D = r and fpr‘ p—r(+) denotes a kernel density estimate using the same bandwidth
hy,,. Noting that by continuity of the density [h™'K (%) + folp=r(P"(u))du converges to

folp=+(P"(x)) - [ K (u) du (Pagan and Ullah (1999), p. 362, 364 or Parzen (1962)) and since the kernel
function is supposed to integrate to one, the influence function converges to:

| K (pT(Xj)*pT)

nr

1/Jm(Y}r,pr(Xj);PT(33)) N (Y’JT _ mT(pT(Xj))) Em

1(D; = r)l(z € S7).

29



The corresponding bias function by, (p") is

Tyip—r ")
b (p7) = hZ | m™ (P)% ; @
pT|D=r

where f() denotes the first derivative of the density and m™@) and m™® are the first and second
derivative, respectively, of m.

A.3 Combination of both estimators:

From Appendix A.2 it follows that if m”(p"(z)) is estimated for a subpopulation defined as {z|A;(z) =
1} by a combination of Maximum Likelihood estimation for the participation probability and Kernel
regression for the conditional regression curve and the assumptions of corollaries 2.1 and 2.2 are
valid for this subpopulation, then the resulting estimate 1] (p"(x)) of EY"|p"(X = x), Aj(x) = 1] is
asymptotically linear with trimming: )

g (7 () — m} (7 (@) - Au(a)1(x € 57)

=nj 12\1/ (Y], Dj, Xj;2) +n~ 1Zw,py’“ Dj, Xj; x) + by (2) + R} (2), (37)
j
with

Omi (p"(x)) Op"(, By)
" op'

1 mﬂf(Djan;ﬁo)
B

where Ep”(z) is parametrically specified as p"(z, 3y) and E'H is the expected Hessian at 3,. Further
X;) —pr($)> Ay(z)L(x € 57)

Efprip=ra—1 (0 ()’
(39)

;,p(ijTa Dj,Xj;.’E) -

[EH]

MA@z e s, (39

Ay(X;)1(D; =)
hnl,r

W7, (Y], D5, X ) = (Y] —m (7 (X)) K (W

where fpr‘ D=r.A,=1(P"(x)) is the kernel density estimate in the common subpopulation of the partici-
pants in treatment r and the subpopulation defined by A;(x) obtained with the same bandwidth by .-
Tt holds that E[\I/” (Y7, Dy, Xj; X)|X = 2] = 0, B[], (Y], D}, X;; X)|X = 2] = 0

n A~
and plim n; QZbT (P"(X;))A(X;)1(Dj =7) =b < 00 and ns > R"(X;) = 0p(1). To ease notation,
ny,r—00 ]21
multlple outcome variables, i.e. Y" being a vector, are treated sequentially one after the other and
are stacked thereafter to the vector (mf,, —mfj, )1(x € S7).
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B Appendix: Swedish Rehabilitation Programmes

Table B.1: Estimation of a multinomial probit model, No Rehabilitation as reference group

Variable

Vocational Non-vocational

Constant -2.53 -3.19
Age: 18-35 years 0.17 0
46-55 years -0.20 -0.14
Citizenship: Swedish born 0.15 0
Marital status: widowed -0.31 0
Occupation in: Manufacturing -0.10 0
Employment status: employed 0.34 0
Qualifying income: (in SEK/1000) 0.14 0
Previous sickness days  31-60 days 0 0.29
(in last 6 months): > 60 days 0.18 (0.07)
Previous participation  in vocational rehabilitation 0.31 0.28
Unemployment rate (in %) 0 0.10
County: Hallandslédn 0 2.36
Bohuslian -0.11 0.84
Alvsborgslin 0 -0.38
Goteborgskommun -0.41 1.18
Community type: urban / suburban region -0.39 -1.08
major / middle large city -0.24 -0.49
industrial city 0 0.68
Sickness registrated in 1991/92 0 0.27
Sickness registration by psych./social med. centre 0 0.37
Sickness degree: 100% sick leave 0.48 0
Indications of alcohol or drug abuse -0.18 0.28
Diagnosis: musculoskeletal 0 0.38
injuries 0.14 0.21
Case assessed by: employer 0.59 0.31
insurance office 0.40 0
10 on behalf of the employer 0.32 0.20
not needed -0.55 -0.41
Medical VR wait and see (-0.10) 0.59
recommendation: VR needed and defined 1.38 1.12
eligible to disability pension 0 0.38
Non-medical VR VR needed and defined 1.68 0.55
recommendation: eligible to disability pension 0 -0.34
VR prevented by: medical reasons 0 0.52
other factors 0 0.32
Medical and non-med- wait and see 0.54 0
ical recommendation: VR needed and defined -1.38 -0.43

Note: VR stands for vocational rehabilitation. Bold coefficients are significant at the 1% level (2 sided-test),
numbers in italics are significant at the 5% level, coefficients in brackets () are insignificant at the 10% level.
Weighted simulated maximum likelihood estimates based on the GHK simulator with 400 replications (Bérsch-
Supan and Hajivassiliou 1993). 2 Cholesky factors have been estimated (i.e. the maximum number of identified
elements. Value of log-likelihood: -4610.9. Coefficients of the group no rehabilitation and the coefficients marked
with 0 in the table are fixed to zero. Inference is based on the QML covariance matrix (Manski and Lerman 1977).
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In this appendix additional estimation results are provided. In Table B.1 the estimated coefficients
of the multinomial programme-choice probit model are given, where no rehabilitation is the reference
group. Different sets of explanatory variables have been tried and insignificant variables have been
deleted subsequently. From the estimation results of the multinomial probit model the estimated
participation probabilities pVo"¢(X;), pV(X;), pVVE(X;) are computed for all observations. Table
B.2 shows the correlation coefficients between these estimated probabilities. Non-participation is
strongly negatively correlated with vocational and non-vocational rehabilitation, while vocational and
non-vocational rehabilitation are nearly uncorrelated. This indicates that selection to the programmes
is clearly influenced by observed characteristics, separating the individuals in need for rehabilitation
from those unlikely to receive rehabilitation.

Table B.2: Implied correlation matriz of the participation probabilities

None Vocational Non-vocational
None 1 -0.72 -0.61
Vocational 1 -0.11

Note: Sample correlation coefficients between the estimated participation probabilities.

Nonparametric estimation of the supports of fx|p—,(z) in all subpopulations appears difficult
with X containing this many variables. As in many evaluation studies the supports of fx|p—, are
approximated by the supports of the participation probabilities p". Figure B.1 shows kernel density
estimates of the estimated participation probabilities p” for all three treatment groups, i.e. the long-
dashed line in the left picture displays the distribution of p¥°™€ in the group of participants in no
rehabilitation, the solid line represents p™¥o"¢ for the participant group in vocational rehabilitation,
and the short-dashed line stands for the participants in non-vocational rehabilitation. Expectedly, the
density masses for the respective participants lie most to the right, but cover most of the region where
the participation probabilities of the respective non-participants are located. The supports S”(p") are
approximated by the interval delimited by the smallest and largest estimated participation probability
p" among the participants in treatment r. These cut-off points pl . , P .. are given in Table B.3 and it
is seen that for all three categories more than 99% of all observations lie within the estimated support
S7. The support intervals are estimated analogously for all considered subpopulations and apart from
few exceptions the estimated supports cover always about 99% of all observations. The estimated
supports for each subpopulation are discernible from Figures B.2, where the estimated regression
curves are plotted only within the respective support region.

Figure B.1: Distribution of the estimated participation probabilities

° S -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

D(3715l‘“/ Uf ﬁNanc Densit_y 0/‘ ﬁ"ocal’ional Devls'ity 0/‘ ﬁNonf'uocalionaI
Note: Kernel density estimates of the estimated participation probabilities in all treatment groups:
Non-participants (long-dashed), Vocational group (solid), Non-vocational group (short-dashed). Bandwidth=0.10.
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Table B.3: Estimated supports of the participation probabilities

SN one SVocational SN on—wvocational
Minimum p" (in %) 1.7 0.6 0.5
Maximum p" (in %) 99.4 89.3 94.0
Observations in support | 6283 6231 6227

Note: Minimum corresponds to the smallest estimated participation probability p” in the subsample
of participants in programme r. Maximum is defined analogously. Numberin support gives the number
of observations of the full sample whose estimated participation probability p” lies within the estimated
support S”.

After the participation probabilities have been computed the conditional expectations E[Y"|p"]
are estimated by Nadaraya-Watson kernel regression for all considered subpopulations. The band-
width value is selected by penalised cross-validation according to Frolich (2000). The estimated
regression curves 7, are graphed within the respective support regions in Figure B.2. In most cases
the cross-validation selector has chosen quite large bandwidth values, leading to smooth regression
curves. For non-vocational rehabilitation the shapes suggest (at least for some subpopulations)
that re-employment chances decrease with higher propensity to non-vocational rehabilitation,
which could indicate more serious health problems. On the other hand the expected outcomes for
non-participation and participation in vocational rehabilitation slope vaguely upwards with higher
propensity to participate in these programmes, indicating better labour market prospects of these
individuals. Table 5.2 in Section 5 gives the average potential outcomes which are obtained by
integrating the regression curves in Figure B.2

Figure B.2: Estimated regression curves with mj (p") on the abscissa and p” on the ordinate
m” for the whole population
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