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Abstract: Can the knife-edge restriction on technology imposed by stan-
dard endogenous growth models be relaxed by allowing for nonrenewable
resources entering the technology? To answer this question we examine
whether stable endogenous growth is compatible with increasing returns to
scale with respect to producible inputs when nonrenewable resources are
a necessary input into the growth engine. In a one-sector optimal growth
model, we find that the existence and stability of a steady state is compat-
ible with a wide range of parameter values, including cases with increasing
returns to capital and/or the natural resource. However, in all cases, popu-
lation growth turns out to be necessary for stable growth in pr. capita con-
sumption. Thus, under these circumstances, (strictly) endogenous stable
growth is not possible, not even as a knife-edge case. But semi-endogenous
growth is an attractive alternative allowing a rich set of determinants of
long-run growth.
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1. Introduction

One of the weaknesses of endogenous growth models with balanced growth paths
(e. g. Lucas 1988, Romer 1990, and Bond et al. 1996) is that exactly constant
returns to scale with respect to the producible factors in the core sector of the
economy is a necessary condition for steady positive per capita growth. Slightly
increasing returns would lead to explosive growth, whereas slightly decreasing re-
turns lead to growth petering out unless some exogenous factor (e.g., population)
grows (cf. Solow, 1994). This is a serious challenge to the theory, as it implies
lack of robustness to even slight parameter changes. The defining characteristic of
these growth models (surveyed in Barro and Sala-i-Martin 1995) is that pr. capita
consumption in the long run grows at a constant positive rate even if there is no
exogenously given growth in any factor. We call this phenomenon (strictly) en-
dogenous growth. Necessary for its existence is that the ”growth engine” features
the knife-edge property mentioned.

The purpose of this paper is to examine if more robust results can be obtained
in a model where nonrenewable natural resources are a necessary input into the
growth engine and where there is utility discounting and consumption smoothing.
Intuition suggests that the strain on the economy imposed by the need to extract
successively smaller amounts of the resource might offset the potentially explosive
effects of increasing returns to scale with respect to the reproducible factor(s) of
the model. Even if this intuition may be valid as far as the pure technical feasibility
of growth is concerned, the problem of examining the restrictions implied by
optimality and stability still remains.

Our approach to this problem is based on an extension of the basic one-
sector optimal growth model with non-renewable resources due to Stiglitz (1974)!.
Stiglitz concentrates on the case of constant returns with respect to capital, labour,
and the resource taken together. We extend the analysis, characterizing steady
growth paths for a broader range of parameter values. In particular, in line with

endogenous growth theory, we allow for a constant or increasing marginal prod-

!Dasgupta and Heal (1974, section 1) analyzed a rather similar model. For convenience, in
the following we refer only to Stiglitz (1974).



uct of capital as well as of the other two production factors, labour and natural
resources.

Indeed, a constant marginal product with respect to (some kind of) capital is
essential to most endogenous growth models (and all those that display balanced
growth), such as the AK model. A non-decreasing marginal product may not seem
so unrealistic when we recognize externalities or if we interpret ”capital” broadly
as a combination of physical capital, technical knowledge, and human capital. If
a constant marginal product of capital is accepted, a slightly increasing marginal
product should be considered as equally realistic. Of course, such conditions may
not be consistent with a laissez faire market economy with perfect competition
and even less with a socially optimal market economy. However, in the growth
literature imperfect competition and/or tax and subsidy interventions a la Pigou
are often viewed as institutions that bring about an allocation approximating the
social optimum.

Whereas the Stiglitz (1974) model relies on exogenous technological progress to
generate growth, a number of later papers like Robson (1980), Takayama (1980),
Scholz and Ziemes (1996), Aghion & Howitt (1998, pp. 163-64), and Schou (1999)
have examined the implications of the presence of non-renewable resources in
various endogenous growth models. Common for all these papers is, however, that
the natural resource does not appear in the core sector (the growth engine) of the
model (even not indirectly in the sense that resources are a necessary ingredient
in the production of physical capital goods, which are then used in the growth-
creating sector, e. g., a research sector). This is a crucial feature compared to
the present model, and probably an unrealistic one. It seems unlikely that such
sectors should be completely independent of physical capital and thus ultimately
of the nonrenewable resource.

The present paper is related also to another model of Aghion & Howitt (1998,
pp. 162-63). They consider a one-sector AK-model with a nonrenewable resource
added in Cobb-Douglas fashion. In that model, positive long-run growth is not
possible. Our paper shows how this result may be reversed without violating

stability when population growth and an explicit productive role for labour are



introduced. By stressing the essential role of increasing returns and population
growth for positive pr. capita growth (when there is no exogenous technology
growth), our analysis has affinity with what Jones (1995) calls semi-endogenous
growth as distinct from (strictly) endogenous growth. An early example of a
semi-endogenous growth model is the famous learning-by-doing paper by Arrow
(1962); another example is the modification of the Romer-1990 model suggested
by Jones (1995). These ”"standard” semi-endogenous growth models (surveyed in
Eicher & Turnovsky 1999) differ from their (strictly) endogenous-growth relatives
by having long-run growth rates that are independent of preference parameters.
It turns out that when nonrenewable resources enter the growth engine, semi-
endogenous growth again assigns a role to preference parameters - hence also a
role to fiscal policy - as a determinant of the long-run growth rate.

The organization of the paper is as follows. The next section presents the
extended Stiglitz model and describes its steady state and transitional dynamics.
In section 3, the necessary and sufficient conditions for existence and stability
of a steady state in full generality are given followed by an examination of the
conditions for stable steady states with positive pr. capita growth. Section 4 deals
with a degenerate case arising when the output elasticity of the resource takes on
a critical value. Section 5 accounts for some comparative dynamics properties.

Conclusions are drawn in the final section.

2. The Model

Instantaneous utility of the representative infinitely-lived household is iso-elastic:
() -1 —pt nt
/ S N@edt, N() = N(0)e",= >0, p>n>0,N(0) >0 (21)
0 _
where c is per capita consumption, ¢ is minus the elasticity of marginal utility, N
is household size (interpreted as population size), p is the rate of time preference,
and n is the rate of population growth. (From now on we will normally suppress

the time argument.) To ensure that the nonrenewable resource is necessary for

production, but does not a priori rule out sustainable consumption, we follow



Stiglitz and assume an aggregate production function of Cobb-Douglas form:
Y = AK“NPRY, A, o,3,7>0 (2.2)

where Y is output of basic goods, K is the capital stock, and R is the flow of the
nonrenewable resource (from now just called the resource). In contrast to Stiglitz
(1974), we ignore exogenous technological progress. More importantly, we do not
impose an upper bound on «, (3 or . At least, as mentioned in the introduction,
a case can be made for larger values of these parameters than are assumed by
Stiglitz who concentrates on the case a+ 3+ = 1. A constant marginal product
with respect to (some index of aggregate) capital (i.e., o = 1) is indeed standard
and essential to most endogenous growth models. If K is interpreted as ”broad
capital” including technical knowledge and human capital, then the explicit role
of N in the production function would represent the role of raw physical labour.
If o =1 is accepted, values slightly above unity should be allowed as well.

Empirical examinations of resources such as minerals and fossil fuels usually
consider 7 to be considerably below unity, indeed, as low as 0.05 (according to
Dasgupta & Heal, 1979, p. 205). We want to note an alternative interpretation of
the resource which makes the potential value range of v larger: R could be taken
to represent pollution as an inevitable by-product of production, and possibly
with a value of v considerably above 0.05. In a situation with insufficient abate-
ment possibilities, all pollution detracts from the quality S of the environment,
considered to be a stock of "natural capital”. If cumulated pollution keeps grow-
ing, then at a certain point the environmental stock is completely exhausted, and
it will be impossible to pollute any more and hence to produce any further goods?.
In a similar manner, Stokey (1998) presents a growth model where the modelling
of pollution has some similarities with usual representations of a nonrenewable
resource.

Whatever the interpretation of R, output is used for consumption and for

2Though this interpretation is possible, in the following, to fix ideas we will refer to R as
input of a natural resource.



investment in capital goods, so that
K=Y -C - 6K, K(0)>0, §>0 (2.3)

where C' = ¢N is total consumption, and § is the capital depreciation rate (dis-
regarded in Stiglitz 1974). The resource stock S diminishes with the flow of the
resource:

S=—R, 5(0)>0. (2.4)
The social planner wants to maximize 2.1 subject to 2.2-4 and to the conditions
c>0,R>0 (2.5)

for the control variables, and
K>0,5>0 (2.6)

for the state variables.
The current-value Hamiltonian for this problem is:
l—e

1—c¢

H =

N + p(AK“NPRY — ¢cN — 6K) — ugR (2.7)

Necessary conditions for an interior solution are given by the following first-order

and transversality conditions:

= pg (2.8)
Y
PR = M (2.9)
0% Y
— =p—a—=+90 2.1
o poapt (2.10)
Hs —p (2.11)
Hg
Jim e P K =0 (2.12)
tlim e PugS =0 (2.13)

where 1, and pg are the co-state variables associated with physical capital and
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the resource stock, respectively.

Differentiating the production function 2.2 with respect to time, we get

gy = agg + Bn+vgr (2.14)

(where g; denotes the growth rate of variable 7). Differentiating 2.8 with respect
to time and combining with 2.10 gives the Keynes-Ramsey rule:

- (2.15)

Je

where Yy is the marginal product of capital. Similarly, differentiating 2.9 with
respect to time and combining with 2.10 and 2.11 gives the Hotelling rule for
optimal extraction of a non-renewable resource:

Vi

— =Yg — 6. 2.16

T~ Vi (2.16)
2.1. Steady State

We define a steady state as a path along which Y, R, C, K, and S are positive
and change with constant, though not necessarily positive rates. Along such a
path, output, capital and (total) consumption must have the same growth rate
(otherwise, 2.3 could not hold for all t). This common growth rate we call g.
Combining 2.15 and 2.16 and making use of the Cobb-Douglas specification, we

can derive the following steady-state condition:
gr=(1—¢)g+en—p. (2.17)

Now, let
D=1-a+(e—1)y.

Observe that D does not depend on p, 3, n, and 6. Assume

D #0. (A1)



Then, 2.17 together with 2.14 (with gy = gx = g) results in the following steady-

state growth rates, presupposing that a steady state exists®:

—p + (B +e)n

g = D (2.18)
g = (a—1)p+ (e(lD— a—pF)+B)n (2.19)
ge = g—n= —Yp + (CY +Dﬂ +y— 1)” (220)

Define the following ratios:
rT=—, z=—, U=-—. (2.21)

x, z and u are the consumption-capital ratio, output-capital ratio and resource
extraction rate, respectively. These ratios will be constant in the steady state.
Indeed, for z and z this follows from 2.3 and it applies to u as well, since, by 2.4,
u = —gg, which is, by definition, constant in a steady state. Using 2.15, 2.20,
2.3, 2.18 and 2.19, the steady-state values (denoted by an asterisk) of these three

variables are found:

) (1—a)(1—7)p+(6(ﬁ—(1—a)(1—7))—aﬁ)n+ l-—a

ot = — —s  (222)
., Q—a—)p+(a+pB+y—1)en 6

Z" = D —l-a (2:23)

ut = —gp = (1_a)p_(8(1l)_a_ﬁ)+ﬁ)n. (224)

As we have defined a steady state, it only exists if these three values are
positive. It is because of the endogenous growth perspective of this paper that
our definition of a steady state disregards the conceivable asymptotic stationary

states where x, z, and/or u approach zero, cf., e.g., Dasgupta and Heal (1974).

3When D = 0, there will be either no or, as a knife-edge case, infinitely many steady-
state growth rates g and gr fulfilling the necessary conditions for optimality. To avoid these
unimportant complexities, we assume in the remainder of this paper that Al holds.



The expressions 2.18-20 and 2.22-24 are straightforward generalizations of cor-
responding expressions in Stiglitz (1974). The interesting question is how the
larger range allowed for the parameters affects the existence and character of
steady states. However, we defer the examination of this question until after a

presentation of the transitional dynamics.

2.2. Transitional Dynamics

It follows from 2.21, 2.3 and 2.4 that

gg =2—T—0 (2.25)
9z =gc—2+x+0 (2.26)
g: =gy —z+x+0 (2.27)

Using the Cobb-Douglas specification, the Hotelling rule 2.16 can be rewritten as
gr =gy —az +90. (2.29)

In the same way the Keynes-Ramsey rule 2.15 together with 2.26 implies

Q o+ p
5

g =2+ (——1)z — +n+6. (2.30)

€

Inserting 2.25 and 2.29 into 2.14 yields, for v # 1%,

—)d
gy = ——% gt oy gy Srr =)l (2.31)
1—7 1—7
Using this expression in 2.27, we find
l—a—xv Bn+ (1 —a)d
= — -1 2.32
g = o+ (a = 1)z + (232
The growth of u is given by 2.28, 2.29 and 2.31:
— 1—a)d
P R 1 o ) R (2.33)

I—xv I—»v

*The case v = 1 is studied in section 4.
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The dynamical system for z, z and u is completely described by 2.30, 2.32 and 2.33.
The system is decomposeable. 2.30 and 2.32 constitute a dynamical subsystem
for = and z alone. In steady state, g, = g, = 0 (otherwise, 2.3 could not hold for

all t). We can form the steady-state Jacobian:

oi O T* (ﬂ—l)m*
J: ‘2 ﬁ - —a— * c *
l%—x 3—] l—* (a—1)z

where a star denotes a steady-state value. The determinant is

1-— —1 D
A e’ at(e ol =27«

(v—1e (y—1e

which is negative (hence, implying eigen values of opposite sign) if and only if

either (D > 0andy < 1) or (D <0andvy>1). (2.34)

In the case of constant returns to scale (a + 3 + v = 1), analyzed by Stiglitz
(1974), the condition (D > 0 and v < 1) is automatically satisfied.

In figure 2.1, a phase diagram is drawn for a particular constellation of the
parameters satisfying inter alia 0 < v < 1 ~ a < € so that 2.34 applies.

Along the saddle path, we have approximately

z2 = AMz"—2), (2.35)
r = f(2) (2.36)

where the constant A is minus the negative eigen value of J, and f is a linear
function that can be determined by standard methods.

Using this fact, we can construct a phase diagram in z and u (figure 2.2), using
2.35 and 2.33, where x is replaced by f(z). The determinant of the Jacobian of
this system is —Au* < 0.

Even though z, x, and u are all ”jump variables”, by substituting uS for R in

the production function 2.2 we get
2= AK* NPy S, (2.37)

11



Bn+(1-a)d
a+y-1

f0)

p—en+(1-£)d
€

af(0)—pn—-(1-a)d 4
T .

Figure 2.2: Dynamics of z and wu.
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showing that there is a bound between the values of z and u which must hold at
any t; thus, initially, ug = (A’lKé_aLaﬁSO_'yzO)%, cf. the dotted curve in figure
2.2. The intersection between this curve and the saddle-path determines uniquely
the initial values of z and u, zy and ug, required for convergence to the steady
state. The unique intersection between the line z = z7 and the saddle path in
figure 2.1 gives the required xo. Then, presupposing convergence, the movement
of the economy over time is along the saddle-paths of figures 2.1 and 2.2. (Again,
this analysis is just an outright extension of the corresponding stability analysis
in Stiglitz (1974). The slopes of the & = 0 and the Z = 0 lines in figure 2.1 may
be either positive or negative, depending on the parameters; in case v < 1, if « is
slightly above 1, then the Z = 0 line has positive slope and so has the & = 0 line
if there is to be stability.)

3. The Existence and Character of Steady States

We want to characterize the parameter set ensuring the existence and stability
of a steady state fulfilling the stated first-order and transversality conditions. In
particular, our emphasis will be on steady states with an increasing rate of pr.

capita consumption.

Proposition 3.1. Given the model 2.1-2.6, assume Al. A steady state (fulfilling
the first-order and transversality conditions above) exists if and only if the right-
hand sides of 2.22, 2.23 and 2.24 are positive. If, in addition, v # 1, then’:

a) this steady state is saddle point stable if and only if 2.34 holds and it is
totally unstable if 2.34 does not hold;

b) a stable steady state has increasing pr. capita consumption if and only if
the right-hand side of 2.20 is positive;

c) when v < 1, a stable steady state has non-decreasing pr. capita consump-

tion if and only if a + 3 >1 andn > vyp/(a+ B +~v—1).

Proof: See appendix.

% As to the case v = 1, see section 4.
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The proposition implies that there exists a stable steady state also outside
the range of parameter values examined in Stiglitz (1974)°. Indeed, as we shall
see below, existence is compatible with values of a (and/or «) above unity, so
that there can be increasing returns to scale with respect to capital (as well as
to the resource). Statement a) also has the implication that a multiplicity of
convergent paths never arises; either a steady state is saddle point stable or it is
totally unstable”. Further, as will become clear in the sequel, the set of parameter
values implying a stable steady state with growing pr. capita consumption is a
non-empty open set. As to statement c) of the proposition, the implication is
that, in the realistic case v < 1, increasing returns to scale with respect to capital
and labour taken together as well as enough population growth are required to
offset the effects of the decreasing input of the natural resource if a stable steady
state is to exist®.

It is not easy to state, in full generality, the various parameter conditions in a
more informative and concise way than done in proposition 1. We can, however,
do this for three particular benchmark cases: The case of no population growth (n
= 0), the case of constant returns to capital (o« = 1), and the case of logarithmic
utility (e = 1).

Case 1: No Population Growth

Proposition 3.2. Assume Al and n = 0. Then there can be no steady state (as

here defined) with g. = 0. There exists a steady state with g. > 0 if and only if

D < 0
a > 1
v o< 1

6Tt can be shown that Arrow’s sufficient conditions for optimality are fulfilled if and only if
a+ v < 1. We conjecture that even outside this range (at least as long as D > 0), a steady
state growth path fulfilling the necessary first-order and transversality conditions above is indeed
optimal.

"This holds even if v = 1 is allowed, since v = 1 automatically ensures "saddle point stabil-
ity”, properly defined, cf. section 4.

SRemember that due to the endogenous growth perspective of the present paper, we disregard
the possible asymptotic steady states where z, z, and/or u approach zero.
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—D§
p > —.
I—xv

A steady state with g. > 0 is completely unstable.

Proof: See appendix.

That g. > 0 requires o > 1 is seen from the Keynes-Ramsey rule and the
fact that otherwise, the marginal product of capital would tend to zero as capital
accumulates and resource use diminishes. The proposition sharpens a remark
made by Rebelo (1991, p. 519) in that sufficiency requires not only o > 1 (as
claimed by Rebelo), but @« > 1 and v < 1 (because a not too large productive
importance of the resource is required in order that capital accumulation can
offset the effect of the diminishing resource use)’. In any case, due to its lack of
stability, this steady state is not very appealing.

But an interesting implication arises when we compare proposition 3.2 with
the fact that, even with no population growth, capital accumulation can, from a
purely technical point of view, support any positive constant consumption growth
rate as soon as @ > 1 and v < 1 (in the case 6 = 0). This follows easily by
studying technically efficient paths (defined as technically feasible paths satisfying
the Hotelling rule, but not necessarily the Keynes-Ramsey rule), using the method
of Stiglitz (1974, section 2)!°. This is also what intuition suggests, namely, first
that the strain on the economy imposed by the need to extract successively smaller
amounts of the resource can be offset by increasing returns to scale with respect
to capital, and second that on the other hand the potentially explosive effects of
this type of increasing returns may be exactly counterbalanced by the dimishing
resource use. Now, proposition 3.2 not only tells us that a desire for consumption
smoothing combined with utility discounting restricts the feasibility of steady
states with g. > 0 when n = 0, but also that it completely excludes stability of
such paths.

9Further, Rebelo 's remark is concerned only with feasibility and does not relate to optimality
and stability.

W&ection 2 of the Stiglitz paper studies such technically efficient growth paths. Mostly con-
centrating on the CRS case, a + §+ v = 1, Stiglitz does not point at the conclusion mentioned.
Optimal growth in the CRS case is the topic of his section 3.
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This has implications for the ongoing discussion on endogenous growth. We
have defined (strictly) endogenous growth to occur if pr. capita consumption in
the long run grows at a positive constant rate even if there is no exogenously given
growth in any variable. Likewise, weakly endogenous or semi-endogenous growth
(as introduced by Groth (1992) and Jones (1995)) is said to occur if pr. capita
consumption in the long run grows at a positive rate without any exogenously

given technology growth. With these definitions, we have the following:

Corollary. In a Cobb-Douglas one-sector optimal growth model with non-
renewable natural resources, a stable steady state with endogenous growth does

not exist, not even as a knife-edge case.*!

The model, however, may display stable semi-endogenous growth. As propo-
sition 3.1 indicates and as we will explore in more detail below, there may be
stable positive pr. capita growth, but a necessary condition for this is that
there is enough population growth. It is worth mentioning that in contrast to
standard semi-endogenous growth models (surveyed in Eicher and Turnovsky
1999), we find that when nonrenewable resources enter the growth engine, semi-
endogenous growth features an interesting property similar to that of strictly en-
dogenous growth. This is the property that the long-run growth rate depends on
technology as well as preference parameters, thereby allowing even a direct role to

fiscal policy.

Case 2: Constant Returns to Capital (o =1)
Here we consider an AK model augmented with an explicit role for both the
labour force and natural resources in production. In this case the z = 0 curve in

figure 1 is horizontal. The growth rates 2.19 and 2.20 reduce to

gr = —Tﬁn (3.1)

=+ (B+)n
T T ey (32)

1 Obviously, this conclusion also holds if, instead of the classical utilitarian criterion in 2.1,
based on ”total utility”, the ”average utility”-criterion had been used (eliminate the factor N ()
in 2.1) since, when n = 0, the two criteria are the same.
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and assumption Al implies € # 1. We have the following

Proposition 3.3. Assume Al and o = 1. Then there exists a steady state with
ge > 0 if and only if n > 0 and
Bn
p—n
6n
p—n
When additionally v # 1, the steady state is stable if and only if

either ¢ > 1 AN <

or ¢ < 1 AN ~v>

either ¢>1 AN ~v<1 or e<l AN 4>1
Proof: See appendix.

When « = 1, a low willingness to intertemporal substitution (high ¢) requires a
counterweight in the form of a small output elasticity with respect to the resource.
Population growth still can ensure stable pr. capita consumption growth in the
long run. This contrasts with the model without resources (y = 0), where a
situation with a = 1, § > 0 and population growth is not compatible with a
steady state, but implies explosive growth. In the present model, population
growth is not only compatible, but necessary for positive stable growth. One of
the models examined in Aghion & Howitt (1998, pp. 162-63) is an AK model with
a non-renewable resource. In that model, however, labour does not appear in the
production function. Because of this, in that model positive long-run growth is
not possible!?.

A different perspective shows up if one accepts the Solow view that there is
probably an irreducibly exogenous element in the development of new technology

in society, at least exogenous to the economy (Solow 1994, p. 51). Following this

12 Aghion & Howitt carry on with another model based on what they call a Schumpeterian
approach to non-renewable resources (Aghion & Howitt 1998, pp. 163-64). Here the economy
has two sectors, a manufacturing sector and a R & D sector, both with constant returns to
scale to producible inputs. The authors find that now growth is possible (without population
growth) and they ascribe this to the Schumpeterian approach as distinct from the AK approach.
In our view, the key is rather that the ”growth engine” (the R & D sector) is modelled as not
depending on the resource (not even indirectly since the R & D sector does not use capital).

17



strand, with a slight modification of the model, the important parameter n could

be reinterpreted as representing this exogenous element.

Case 3: Logarithmic Utility (¢ = 1).
In this case, from 2.24, u* = p — n (a nice simple expression also noted by

Stiglitz).

Proposition 3.4. Assume Al and € = 1. Then there exists a steady state with

g. > 0 if and only if

—1
either o < 1 A <in A n>0
p—n
—1 —(a—1)8
or a > 1 A %n<7<l+M.
p—n p—n

When additionally v # 1, the steady state is stable if and only if
either a<1lAvy<1 or a>1Ay>1An>0.
Proof: See appendix.

The proposition implies that a necessary condition for steady positive pr.
capita growth when ¢ = 1is a+ 8 > 1. At the same time, there is a certain
relation between the sizes of a and v. When the output elasticity with respect
to man-made capital, «, is below a critical level, equal to 1, then also the output
elasticity with respect to the resource, v, must have an upper bound. Conversely,
when « is large (above 1), v must be not too small. Capital and the resource
have counter-acting influences on the possibilities for steady growth, so their im-
portance in production cannot differ too much. On the other hand, when « is
above 1, then v must also not be too large because that would make it impossible
for capital accumulation to offset the diminishing resource input. It is also seen
that if one of either o or «y is above 1, then stability of a steady state with g. > 0

requires that both o and vy are above 1.
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4. The Degenerate Case v =1

When v = 1, the formulas up to 2.30 are still valid, i.e., the steady state properties
are not qualitatively affected. But the transitional dynamics is changed radically.
Indeed, calculating the equivalents of 2.31 and 2.30 shows that there will be no
transitional dynamics, given Al (implying o # &, in this case). The system
degenerates into a recursive structure: x immediately jumps to its steady-state
value, (6n+ (1—a)d)/«, independently of the rest of the system, implying that in
turn z and then u take on their steady-state values. (It is convenient to extend the
notion of saddle point-stability to cover even this case.) Further, in this situation
2.20 shows that the existence of an optimal steady state with growing pr. capita

consumption again requires a growing population'?.

5. Comparison of Steady States

Assuming that the right-hand sides of 2.22-24 are positive so that a steady state
exists, we can examine the consequences for the constant growth rates 2.19 and
2.20 of varying the various parameters of the model. First, we note that neither
the productivity parameter A nor the depreciation rate 6 affects the steady-state
growth rate at all, in contrast to the usual one-sector endogenous growth model
(the AK model); this is true even when av = 1. (But 6 enters the conditions for the
existence of a steady state, cf. 2.22-24.) It is interesting that all the remaining
parameters of the model affect the rate of pr. capita growth. Hence, there is
a potential for tax and subsidy policies to influence not only the ”level” along
which growth occurs, but also the long-run growth rate. This is in contrast to
standard semi-endogenous growth models where policy has only level effects (cf.
Jones 1995).

Regarding the sign of the effect on growth of a change in a parameter, the

results depend crucially on the sign of the denominator D. We distinguish between

BSuppose v = 1, and n = 0. Then, by 2.20, g. >0 = D < 0 = a > ¢ = a > 1 since, by
2.24, ux = (1 — a)p/(e —a) > 0. But a > 1 contradicts = > 0, by 2.22.
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the standard case' (D > 0) and the ”paradoxical” case (D < 0).

5.1. The Standard Case (D > 0)

In this case, using (2.20), consumption pr. capita is seen to grow in the steady

state if and only if
(a+B+7y—1n>p (5.1)

which means that positive population growth and increasing returns to scale for
capital and labour taken together in the production sector (« + 3 > 1) are both
necessary conditions for a steady state with growing pr. capita consumption
(the last condition follows because yp > yn). More growth in population (often
considered detrimental to pr. capita growth) affects pr. capita consumption
growth positively, as long as there are increasing returns to scale. This is the net
result of three different effects: There is a direct positive effect on output growth
because a growing population means a growing labour force, magnifying the effects
of increasing returns to scale. In addition, there is an indirect production effect
because population growth also affects resource extraction (as seen from 2.19),
though the sign of this effect is ambiguous. Thirdly, given the growth rate of total
production, a larger population growth rate naturally means a smaller growth in
pr. capita consumption possibilities.

2.20 also shows the familiar effect from Stiglitz (1974) that a rise in impatience
(larger p) will affect the consumption growth rate negatively; and according to
2.24 this will be accompanied by an increased resource extraction rate, causing
the resource to diminish faster over time. A larger value of p will also cause
a smaller consumption growth rate when a > 1; interestingly, however, in this
case the extraction rate will fall. The reason must be that when the output
elasticity of capital is high, smaller capital investment is required so that a high
initial consumption level can be obtained with lower output early on, hence lower
extraction of the resource early on.

The effect of a rise in o, § or v (a permanent technology shock) on the pr.

capita consumption growth rate will be:

4Called so, because it is implied by the standard assumption, a + 3+ = 1.
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n
= —> :
agc o 9r
> ~ D <0, (5.3)
99 g
e =~ D (5.4)

Not surprisingly, a rise in 3, the output elasticity of labour, will raise the growth
rate of consumption, whereas a rise in v will lower it (v measures the importance of
the resource in production; the need to save increasingly on the resource is reflected
in the negative effect of this parameter on growth). The effect of & on consumption
growth depends on the sign of g, i.e., the growth rate of total production: When
output is growing then also capital is growing and an increase in the output
elasticity of capital, o, will increase growth further; similarly, when total output
contracts, a higher value of o implies a decrease in the already negative pr. capita
growth rate because the capital stock is falling, and a larger importance of capital
for production will speed up the contraction.
The sign of the effect on the extraction rate of a rise in «, 3, or v, depends on
the desire for consumption smoothing as measured by €. By 2.24, we have
—% = 8;@, = (e 1)%, i=a,B,7, (5.5)

where %% is given in 5.2-5.4. When people are very concerned with smoothing

consumption over time (¢ > 1), the sign of the effect on u* will echo that of
the effect on consumption growth. The resource extraction rate will adjust to
counteract the effect on the consumption level (caused by changed capital invest-
ment when growth changes) to spread out the potential gains or losses from a
permanent technology shock more evenly over time. Conversely, when the desire
for consumption smoothing is small, resource extraction is not prevented from ad-
justing in a complementary way to the change in the future marginal productivity
of the resource caused by capital accumulation.

The effect of a change in ¢ itself is

99c  —7Ye
de D’ (5.6)

21



agR o ou” _ (1_a)gc
o 0 D (5.7)

Naturally, a larger ¢ (preference for consumption smoothing) will lead to a numer-
ically smaller consumption growth rate. Indeed, from 2.20, if ¢ — oo, then g. — 0.

The sign of the effect on the extraction rate is the same as that of (1 — «a)g..

5.2. The Paradoxical Case (D < 0)

The denominator D is negative if and only if a« +v > 1+¢€7, i.e., the elasticity of
scale with respect to capital and the resource taken together must be considerably
above 1.When D is negative, all the formulas from the standard case are valid, but
the signs of the effects of parameter changes are reversed. Indeed, more impatience
results in higher pr. capita consumption growth, and higher population growth
implies lower pr. capita consumption growth, a rise in o will reduce consumption
growth when this is already positive, a higher elasticity of marginal utility leads
to larger differences in the consumption level over time, etc. All these results are
highly counterintuitive, but they are nevertheless compatible with the existence of
a stable steady state that exhibits positive pr. capita growth and satisfies the first-
order and transversality conditions 2.8-2.13. It cannot be excluded, however, that
in the case D < 0 these conditions do not signify optimality. However that may
be, the realism of the parameter values generating this situation is questionable

(as we have seen, stability in the case D < 0 requires v > 1!).

6. Conclusion

We have studied a Cobb-Douglas one-sector optimal growth model with non-
renewable resources (and no exogenous technological progress). A stable steady
state exists for a larger range of values than examined in Stiglitz (1974), and
this larger range also allows for some new comparative dynamics results (even
in the standard case D > 0). Indeed, existence and stability of a steady state
was shown to be compatible with increasing returns to scale with respect to the
reproducible factor capital and/or the natural resource. A high output elasticity

of capital need not lead to explosive growth paths because the need to save on the
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natural resource has a counter-balancing effect. Hence, the knife-edge character of
usual endogenous growth models without nonrenewable resources is not present.
However, population growth is a necessary condition for a stable optimal steady
state with positive pr. capita growth. Therefore, the extended Stiglitz optimal
growth model is not consistent with endogenous growth in the strict sense of
the word, i.e., the model cannot generate positive and stable pr. capita growth
without relying on population growth.

The conclusion is that the challenge of generating a generic model with strictly
endogenous growth cannot be met by simply including nonrenewable natural re-
sources. On the contrary, in this setting the phenomenon of stable endogenous
growth in the strict sense does not exist even as a knife-edge possibility! Hence,
to the extent that the presence of such indispensable natural resources in a macro
production function is considered realistic, the analysis has identified a new prob-
lem for the concept of strictly endogenous growth: It seems not possible to have
stable, strictly endogenous growth at all when non-renewable resources enter the
growth engine. This also applies, then, to market economies if they are considered
to be replicae, through tax and subsidy interventions, of social optima. Therefore,
the perspective suggested by the analysis is semi-endogenous growth.

It is a possibility (but we think an unlikely one) that this result could change in
a multi-sector model where the reproducible asset(s) generating growth would de-
pend on the resource (possibly indirectly). (The multi-sector endogenous growth
models with non-renewable resources mentioned in the introduction all share the
feature that the growth engine is not dependent on the resource). This problem
is left for future research.

A slightly different perspective shows up if one accepts the Solow view that
there is probably an irreducibly exogenous element in the development of new
technology in society, at least exogenous to the economy (Solow 1994, p. 51).
Following this strand, with a modification of the model, the important parameter
n could be reinterpreted as representing this exogenous element and we could
proceed with a kind of quasi-endogenous growth analysis based on this notion.

Interestingly, when nonrenewable resources enter the growth engine, both semi-
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endogenous growth and quasi-endogenous growth feature the property of standard
(strictly) endogenous growth that the long-run growth rate depends on technology

as well as preference parameters, thus allowing even a direct role to fiscal policy.

7. Appendix

7.1. Stability properties of the three-dimensional system when ~ # 1.

The Jacobian of the dynamical system for x, z and u, evaluated in the steady

state, when v # 1, is:

o 0¢ B¢ x* (¢ —=1az* 0
J=|2 % 2 lz—f;’zz* (a—1)z* 0
o 0z ou U 0 u’
The trace is
r+(a—1)"+u" =2u" >0
where we have used 2.25, 2.29, and 2.28. The determinant is
AN T = 2'u a——m—
(y—1e (y—1e

which is negative if and only if 2.34 holds. Hence, 2.34 implies one eigenvalue
with negative real value and two eigenvalues with positive real value, which is just
what is required for saddle-point-stability. If, on the contrary, the determinant is
positive, then there are three eigenvalues with positive real value, i.e., the system

is totally unstable.

7.2. Proof of proposition 3.1

Using 2.1 and 2.17, it can easily be shown that u* (= —gg) > 0 ensures that the
utility integral converges along a steady-state growth path; similarly, it is easy to
show that u* > 0 guarantees the fulfilment of the transversality conditions 2.12
and 2.13. Hence, existence and the statements a) and b) follow directly from

sections 2.1, 2.2 and 7.1. As to statement c), by 2.34 and appendix 7.1, v < 1 and
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stability (by statement a) stability is equivalent to saddle point stability) ensures
D > 0. Therefore, by 2.20,

ge2 0= (a+f+y—1n>yp=(a+B-1n=>yp—yn>0
from 2.1; but this implies
n>yp/la+pB+~v—1)>0Na+F>1.

7.3. Proof of proposition 3.2 (the case n = 0)

In this case, from 2.20 it is seen that a steady state with g. = 0 is not possible,
since p > 0. Further, by 2.20, D < 0 is a necessary condition for a steady state
with g. > 0. When D < 0, by 224 v* > 0 < a > 1. a > 1 will also ensure
that 2* > 0 (from 2.23). Furthermore, for D < 0 and o > 1, by 2.22 2* > 0
< (1—7)p > —Dé; hence, the conditions v < 1 and p > —% are required. This
proves the first part of the proposition. As to the second part, when D < 0 and

v < 1, the steady state is totally unstable as seen in section 7.1.

7.4. Proof of proposition 3.3 (the case o = 1)

In this situation, z* = u* = gn, from 2.22 and 2.24, so that positive population
growth is necessary and sufficient for positive values of these two variables. By
2.23 and 3.2, 2* =€g.+ 6+ p so that g. > 0= 2* > 0.

From 3.2, g. > 0 if and only if

fn or e<1IAy > ﬁn'
p—n p—n

e>1Ay<

From 2.34, necessary and sufficient conditions for saddle point stability (by propo-

sition 3.1 equivalent to stability) are that either

e>1Ny<1 or e<INy>1

7.5. Proof of proposition 3.4 (the case ¢ = 1)

In this case, from 2.24, u* = p—n >0 (from 2.1) and D =1 — «.
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Subcase a < 1. Here, g. > 0 & v < %in";ln, by 2.20. Hence, n > 0 is
also required in this case. As z* = é(gc +6+p),9. > 0= 2> 0. By, 2.22,
=1 =p+B+y—=Dn+(1-a)] > [(1-=7p+(B+y-1n—alp-
n)+ (1 —a)d] =(1—a)z* >0, by 2.23.

A necessary and sufficient condition for saddle-point stability (by proposition
3.1 equivalent to stability) in this case is v < 1 (from 2.34).

Subcase o > 1. Here, g. > 0 & v > %ﬁ;ln, by 2.20. We still have z* = é(gc‘l‘
6+ p) > 0 when g. > 0. As to x*, from 2.22 follows z* > 0 < v < 1+ %f‘n;%.

Now, when a > 1, by 2.34, v > 1 is necessary and sufficient for saddle-
point stability, given that the steady state exists. But v > 1 is only consistent
with the existence of the steady state, cf. the existence requirements o > 1 and
<14 W, if n > 0. Hence, the conclusion that also n > 0 is necessary for
saddle point stability (hence stability).

Remark. Logically it would be sufficient to say that, in the case a > 1, a

steady state is stable if and only if v > 1. We prefer, however, to put it the way

it is done in the proposition, making the necessicity of n > 0 explicit.
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