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Abstract: When analysing macro economic data it is often of relevance to allow
for structural breaks in the statistical analysis. In particular cointegration analysis
in the presence of structural breaks could be of interest. To do this a vector
autoregressive model is proposed with known break points in the structural breaks.
Within this model it is possible to test cointegration rank, restrictions on the
cointegrating vector as well as restrictions on for instance the slopes of broken
linear trend.

1. Introduction

In the analysis of economic time series it is often necessary to include dummies
representing breaks in the deterministic components. When allowing for breaks
the timing is important, this could either be known in advance or an algorithm
searching for breaks could be applied. While both issues are discussed in the
literature and mainly in a univariate setting, this paper focuses on cointegration
analysis in a multivariate setting in the presence of breaks at known points in time.

!Comments from Maria Cristina Leali, Graziano Vigand and Anders Rahbek are gratefully
acknowledged. This paper replaces a manuscript by Johansen and Nielsen from 1993 with the
title ‘Asymptotics for cointegration rank tests in the presence of intervention dummies - manual
for the simulation program DisCo’.



The suggested approach is a slight generalisation of the likelihood-based cointegra-
tion analysis in vector autoregressive models suggested by Johansen (1988, 1996).
There are only few conceptual differences and the major issue for the practitioner
is that new asymptotic tables are needed.

Structural breaks have been discussed intensely in the context of univariate
autoregressive time series with a unit root. An important finding is that a time
series given by stationary fluctuations around a broken constant level is better de-
scribed by a random walk than a stationary time series, see Perron (1989, 1990)
and Rappoport and Reichlin (1989). Addressing this issue, these authors sug-
gested various univariate models allowing for breaks in the deterministic term. In
particular, Perron (1989) suggested three models: (A) ‘crash model” with change
in intercept but unaffected slope of the linear trend, (B) ‘changing growth model’
with no change in intercept but changing slope of trend function, and (C) where
both intercept and slope are changed at the time of the break. The model pre-
sented here generalises model (C) and allows for testing hypotheses corresponding
to model (A).

A related concern in econometrics models is parameter stability which is in-
vestigated by methods related to those for known break points. These methods
typically allow for structural breaks at unknown times, and have been discussed
for instance in the special issues of the Journal of Business & Economic Statis-
tics, volume 10, 1990 and the Journal of Econometrics, volume 70, 1996. More
recently a test of this type has been suggested by Inoue (1999) in connection with
cointegration testing in a vector autoregressive setting. While those authors and
also this paper are concerned with breaks in the deterministic terms some proce-
dures for analysing breaks in the cointegration parameter have been presented by
Kuo (1998), Seo (1998) and Hansen and Johansen (1999).

The approach taken here is to analyse cointegration in a Gaussian vector au-
toregressive model with a broken linear trend with known break points. Likelihood
analysis of cointegration is then given in terms of reduced rank regression, a com-
bination of least squares regression analysis and canonical correlation analysis.
The model and the rank hypothesis is discussed in Section 2. Section 3 presents
tests for cointegration rank for models with broken trend, broken level and out-
lier dummies. The asymptotic distributions have been simulated and the results
described by response surface analysis. Next, in Section 4 various tests for linear
restrictions on the slopes for the broken trend are given. Most of these tests are as-
ymptotically x? distributed. In Section 5 the suggested procedures are illustrated
using data for purchasing power parity between Italy and Germany.



Throughout the paper the following notational convention is used. For a ma-
trix, a, with full column rank let @ = a(a’a)™!. Further, let a, satisfy a’,.a = 0
and have the property that (a,a, ) has full rank.

2. The Model

This section defines the statistical model. The observed time series is denoted X;,
t=1,...,T and divided into sub-samples according to the position of the break
points. For each sub-sample a vector autoregressive model is chosen, so that the
parameters of the stochastic components are the same for all sub-samples, while
the deterministic trend may change between sub-samples, so that the process can
have breaks. In that case the process can be given rather simple representations
and interpretations in each period and statistical analysis akin to that of the usual
vector autoregressive models.

2.1. Formulation of model and rank hypothesis

The model allow for any pre-specified number of sample periods, q say, of length
T, —Tj 1 forj=1,...,qand 0 =To <1 <Tp < --- < T, =T. It follows
that the last observation in the j-th sample is 7; and, consequently, T; + 1 is the
first observation in sample period number (j + 1). A vector autoregressive model
of order k is considered. In analogy with the usual models without structural
breaks the model is formulated conditionally on the first k& observations of each

sub-sample, that is X7,  ,1,..., X7, 14 and it is given by the equations
X k—1
i=1
for j =1,...,qand T;_ 1 + k < t < T;. The innovations are assumed to be

independently, identically normal distributed with mean zero and variance (2. The
parameters vary freely, so that II, I';, €2 which relate to the stochastic component
of the time series are the same in all sub-samples and of dimension (p x p) with
) being symmetric and positive definite, while the p-vectors Il;, ji; relate to the
deterministic component and they could be different in different sample periods.

A cointegration hypothesis can be formulated in terms of the rank of either
IT alone or in conjunction with II;, ..., II,. The latter gives nicer interpretations



and some advantageous similarity properties and are given by

/

g

H(r): rank (IL IT, ..., II,) <r or (ILIL,...,II,) = « _Ph ,

Tq

where the parameters vary freely so that «, 3 are of dimension (p x 7) and ;
is of dimension (1 x 7). The notation H; indicates that in each sub-sample the
deterministic component is linear both for non-stationary and cointegrating rela-
tions. This feature will become evident from the Granger representation below.
A related hypothesis arises in case of no linear trend but a broken constant level,

H.(r): rank(H,,ul,...,,uq)Sr and IL,..., 11, =0.

As an alternative to the models H; and H. a rank hypothesis could be formulated
for IT alone,

H (r): rank IT < r, and IL,...,II, = 0.

In terms of nesting this hypothesis is related to the previous as H.(r) C H;.(r) C
H,(r). However, a hypothesis of the type H;. is less attractive for two reasons.
First, as indicated by the sub-index, the hypothesis H;. implies that the common
trends have a broken linear trend while the cointegrating relation has a broken
constant level. Thus, the hypothesis questions both the stochastic and the deter-
ministic behaviour of the process. In contrast, by choosing H; the deterministic
behaviour is not questioned in the rank determination. Secondly, in Section 3.3
it will be demonstrated that the asymptotic analysis is heavily burdened with
nuisance parameters. These issues are discussed in further detail by Nielsen and
Rahbek (2000).

2.2. Another formulation

The above description involves writing ¢ model equations of the type (2.1). In
order to write these as one equation which is more conformable with standard
econometric computer packages some dummy variables are introduced. Let

1 fort =T, 4, . L,
Dj,t—{ 0 otherwise, j=1,...,q¢; t=...,—1,0,1,...,



so that D, ; is an indicator function for the i-th observation in the j-th period.
Further,

T,—Tj 1

1 for T; 1 +k+1<t<T;
Ej = Z Dj,ti:{ - - =

0 otherwise,
i=k+1

is the effective sample of the j-th period. It is convenient to gather the sample
dummies and the drift parameters for the different sample periods:

Et = (El,ta-"7Eq,t)/7
= (Ml?"'a/‘l’q)a
v = (V-7

of dimensions (¢ x 1), (p x q) and (g x r) respectively. The model equation then
becomes

/ k—1 E o q
X
AXt =« ( g > ( t_Ett ! > + ,LLEt + E FiAthi + E E K/j,’iDj,tf’i + Ei, (22)

i=1 i=1 j=2
where the dummy parameters x;,; are p-vectors and the observations Xi,..., Xj

are held fixed as initial observations. Note, that the dummy variables D 1,..., D g
corresponds to the observations X, .1, .., X7, which are held fixed above.

2.3. Interpretation

A process satisfying the hypothesis H;(r) can be interpreted using Granger’s rep-
resentation theorem. That is, a linear combination of the process, given by (3,
cointegrates while the process exhibits a linear trend in each of the sub-samples.
As usual it is necessary to assume that the process actually is an I(1) process.

Assumption 1. Assume that the roots of the characteristic polynomial,

k—1
Az)=(1-2)I,—af'z— ZFZ»(I —2) 2,

are outside the complex unit circle or at 1 and that the matrices o, have full
column rank r. Further, define ¥ = I, — Zf;ll I'; and assume full rank of the
matrix:

V3. (2.3)



The Theorem 4.2 of Johansen (1996) can be generalised as follows.

Theorem 2.1. Granger’s Representation Theorem. Suppose Assumption 1 is
satisfied. Then, for each period the initial values Xt; ,y1,..., X7, ,1x can be
given a distribution such that 3'X; +75t and AXy are stationary processes and all
linear combinations of the process have a linear trend. In particular:

t
X, =C Z € + Y}',t + Tej + Tt (24)
i=Tj_1+k+1

forg=1,...,¢. T, 1+k<t<T; and C =3, {a’L\IfﬁL}_l o/\. The processes
Y. are stationary, identically distributed and have zero expectation. The slope
parameters, T;; can be expressed as

715 = Cpy + (C¥ = 1) B},

whereas the level coefficient 7. ; depends on initial values in such a way that B'1 ;
15 an identified function of the parameters:

Bre; =0 (VC — 1) p; + o (VCU — \II)B% — 7;-.

Note, that for each sample period the process 'X; + tY'E; is a stationary
process and hence it has no trending behaviour. Further, the process o/, VX, is
a combination of a random walk, a linear trend with slope o/ p; as well as a
stationary component.

The representation shows that in each sub-sample all linear combinations of
the process exhibit a linear trend, which generalises the model (C) suggested
by Perron (1989). Tests for linear restrictions on the slope parameter 7, are
discussed in Section 4. The Granger Representation shows that the slope for the
cointegrating vector, 3'7; = —+/, has to be treated separately from the slope of
the common trend, o/, Ut; = o . An example is the two period model, ¢ = 2,
with common slopes, 7,17 = 7,2, which corresponds to Perron’s model (A). In
general these hypotheses are of the form, defining 7, = {...,7;;,...},

H' (r) : frGL=-/GL=0 o =Gy (2.5)
for the cointegrating relation and

H! (r) : o\ UM, =o' uM, =0
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for the common trends. Here G and M are known matrices of dimension (g x g)
and (¢ x m), respectively, with g,m < ¢ and full column rank. In particular
Perron’s model (A) is given by G = M = (1,1)’, which means that v, = 7, and
o) iy = &) iy

A more subtle question is how the transition happens from one sample period
to the next. The suggested conditioning on k£ or more initial values in each
period allows for great flexibility and these transition periods can be extended if
necessary. An alternative approach would be to use a specific transition function
of some kind. Suppose it is of interest to model an instantaneous break. Using
an unobserved components formulation one could then write

Xt = Tc,ll(thl) + Tc,21(t>T1) + Zta
AZt = aﬂlzt—l + &;.

such that for 2 <t < T,
AX; =af {Xt—l — Teilpg—1<m) — Tc,21(t—1>T1)} +Te1Alg<r) + Te2a Al sty + &t

Using the definitions of D;; and E;;, in particular that Dy; = 1—r), E1: = lu<m)
and Ey; = 1>r 49), it follows that

AX; = af (X2 — Te1Ervi — TeaBat) + {72 — (I, + o) Te1} Dog1 + &

Comparing with equation (2.2) or rather (3.6) it is found to be of the form

/
X
Atha(g) ( ét1)+/€2,1D2,t1+€t

with 7 = —B'7Tcj, for j = 1,2, and ko1 = T2 — (I +af') 7.1 which are restricted
as
Bgr = (I + fa) vy — s
This restriction on kg is related to only one observation and is therefore difficult
to test. For models of higher order the conditions for a instantaneous breaks
would similarly involve all transition parameters x;,. This issue is discussed in
further detail for the univariate case by Perron (1990).
Another type of restriction of interest is co-breaking, see Hendry (1997) or
Clements and Hendry (1999, p. 249-252). Co-breaking hypotheses are expressed
in terms of the expected value of the process, and in particular for the cointegrating



relation, 4’ X;, this is denoted equilibrium mean co-breaking. From the Granger’s
Representation Theorem 2.1 the expectation of the cointegrating vector is found
to be

B (e +7it) By = (87, —7't) E,.

If there exist an r-vector w such that /37, = —w'y’ = 0 then the process is
equilibrium mean co-breaking with w as a co-breaking vector. Thus co-breaking
is a hypothesis related to the column space of 7 or row space of v. When ¢ < r
or when the rank of v otherwise is smaller than r then the process is indeed
equilibrium mean co-breaking. In that case there are (r—rank-y) co-breaking
relations given by the {(r—rank~y) x r}-matrix v,. The hypothesis formulated
in (2.5), v = G, relates to the column space of v and hence it is not that helpful
in finding co-breaking vectors. However, an upper bound for the rank of v and
thereby a lower bound for the number of co-breaking vectors is found. When
g is smaller than r there are at least (r — g) co-breaking vectors given by the
{r x (r—rank ¢) }-parameter (¢'), .

3. Test for Rank

The cointegration rank can be tested by modifying the procedures suggested by
Johansen (1996). Whereas the statistical analysis is hardly unchanged the as-
ymptotic results are related but different. New asymptotic distributions arise
which are first formally described for three different cases: H;: reduced rank of
(IL Iy, ..., IL;), He: reduced rank of (I, puy, ..., p,) and ITy, ..., II; = 0, and H:
reduced rank of II while II;, ..., I, = 0. The analysis of the latter hypothesis is
burdened with nuisance parameters and less useful than the first two. Models
with outliers rather than breaks are closely related to these and will be analysed
briefly. Finally, the asymptotic distributions related to H; and H, are described
by response surface analysis which can easily be programmed.

For the suggested model the likelihood function can be maximised using canon-
ical correlation methods as developed by Hotelling (1936), Bartlett (1937), Ander-
son (1951), and implemented in cointegration analysis by Johansen (1996, Section
6). In particular, in case of model H; inference is based on squared sample canon-
ical correlations, 1 > 5\1 > > 5\p > 0, given by

X 1=1,...,k—1
CanCor{AXt,( tE, )‘Et,Ath’,Dj,ti’ i=2....q }’



where the notation indicates that AX,; and the vector of X;_1,tF; are first cor-
rected for remaining terms in the model and next sample canonical correlations
of the residuals are found. The likelihood ratio test statistic for the hypothesis of
at most r cointegrating relations, H;(r), against H,(p) is given by

-7 zp: log (1 - )\> . (3.1)

i=r+1

The asymptotic distribution of the test statistic is discussed below.

3.1. Asymptotic distribution: a broken linear trend

Inference should ideally be based on the exact distribution of the test statistic
(3.1). Unfortunately this is not feasible so some kind of asymptotic distribution
approximation has to be made. In order to ensure a good approximation the
breaks need to be treated with care. The approach taken here is that the relative
break points given by v; = T} /T are fixed while an asymptotic argument in 7 is
made.

For the asymptotic results the following notation is convenient. As defined
above, let v; = T;/T denote the relative break points so that 0 = vy < vy < --- <
vy = 1, and let Av; = v; —v;_;. Further, define a ¢-dimensional vector of indicator
functions for the sample periods, e, = {..., 1(v;_1 <u < wv;),...}. This arises as
the limit of Fp, as T increases.

Theorem 3.1. Suppose H, (r) and Assumption 1 are satisfied. Then the asymp-
totic distribution of the likelihood ratio test statistic for Hy(r) against Hy(p) is

given by
1 1 -1 .1
{ [awr ([ rra) /W} 32
0 0 0

as T — oo and for fized relative break points, v;. Here W is a standard Brownian
motion of dimension (p — 1) and F is a (p — r + q)-dimensional process. For the
J-th period, v;_1 < u < vj, the i-th coordinate of the process F is given by
Wi (u) =z [/ Wils)ds fori<p—r,
Fi(u) =< u-— A%}j ;;{1 sds fori=p—r+j, (3.3)
0 otherwise.

The asymptotic distribution has been simulated and the results analysed by a re-
sponse surface analysis presented in Section 3.5.
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For analytic reasoning and for computer simulations it is convenient to rewrite
the representation of the distribution given by (3.2). This is based on two ideas.
First, the distribution is invariant with respect to linear transformations of the
vector process F. So if the first (p — r) components are regressed on the last ¢
components the transformed version of the matrix ( fol FF'du) ! is block-diagonal.
It follows that the expression (3.2) can be rewritten as the sum of two terms which
do not involve the levels of the Brownian motion, see (3.4) below. Secondly, when
looking at a Brownian motion in two or more sub-samples while regressing on
the level for each of the sub-samples, then the sub-sample Brownian motions are
independent. This is also reflected in the representation (3.4) which involves ¢
independent (p — r)-dimensional Brownian motions.

Theorem 3.2. The asymptotic distribution (3.2) can be expressed as

tr <Zq: KjAUj) {Zq: Lj (AUj)Q} <Zq: KjAUj) + <Xq: JJIJJ> . (34)

Here J;, K;, L; are defined as

[ )}

1
K = [ Wpaw,
0

o= [ (") w
0

where W(l)l. .., W@ are independent (p—r)-dimensional standard Brownian mo-
tions and W@ is WU corrected for a constant and a linear trend, that is

1 1
W<j>:W<j>_/ Widy —19 (v L /Wm v 2\ g
u u 0 v 2 0 v 2

From the second representation of the limit distribution (3.4) it is seen that the
asymptotic distribution only depends on the relative length of the sample periods,
not on their ordering. For instance, in case of one break point, the asymptotic
distribution is the same if 77 = T'/3 as if 17 = 27'/3. Moreover, the first term in
(3.4) is the trace of a (p — r)-dimensional square matrix while the second term is

10



the sum of inner products of (p —r)-dimensional vectors. This reflects the degrees
of freedom arising from the matrix IT and the vectors II;, respectively.

This representation also shows another feature of the limit distribution. Let
DF,1(v1,...,v,) denote the asymptotic in case of ¢ + 1 sample periods. When
the length of one of sample periods tends to zero it follows that

Alviigo DFyi1(v1, ..., 0g41) = DFy(v1, ..., 051,041, - -, Vg41) +X° (0= 1), (3.5)

where the DF,, and the x? distributions are independent. The additional x? term
arises because the dimension of the vector (X, ;,tE}) is preserved although one
of the relative sample length vanishes, and hence the dimension of the restrictions
imposed by the rank hypothesis is unaltered. On the other hand if the dummies
with the vanishing sample length are taken out of the statistical analysis, the
additional y2-distributed element disappears.

The asymptotic distribution given above does not depend on the parameters
for the deterministic component. The test is therefore asymptotically similar
with respect to these parameters provided that Assumption 1 is satisfied, see also
Nielsen and Rahbek (2000).

In order to estimate the rank a sequential testing procedure is necessary. One
suggestion is to test the hypotheses

H (0),H (1),...,H (p—1)

sequentially against the unrestricted model H;(p). If H;(r) is the first hypothesis
to be accepted then the cointegrating rank is estimated by r. For consistency
properties of this procedure see Johansen (1996, section 12.1).

3.2. A broken constant level

In some applications the level of the data may change from time to time but the
data do not exhibit a linear trend. Then the model is given by

k—1 k q
X
AX, = (L, ) ( B ) D TAXei+ Y Y kDjiten (36)
i=1 i=1 j=2

The hypothesis of reduced cointegration rank is given by H.(r): rank (IT, u) < r, or
equivalently that (II, ) can be written as a(3',~'), while the likelihood ratio test
statistic for H.(r) against a general alternative, H.(p), is of the form (3.1). Further

11



the result of Theorem 3.1 applies with F' replaced by a (p — r + ¢)-dimensional
process with components:

VVZ(U) fOTiSP_Ta
Fi(uy=<¢ 1 fori=p—r+j, v <u<uwv,, (3.7)
0 otherwise.

3.3. On models with unrestricted parameters for the broken trend

The hypothesis H, (r) in the model (3.6) imposes rank restrictions on the first or-
der autoregressive parameter as well as the parameter for the broken deterministic
trend. In some situations it may seem reasonable to analyse a rank hypothesis
which only involves the first order autoregressive parameter:

H (r) : rankIT < r or II=af,

while p is left unrestricted. This hypothesis is analysed by correcting AX; and
X;_1 for the remaining components in the model and subsequently performing a
canonical correlation analysis of the residuals. The likelihood ratio test statistic
for H,.(r) against H;.(p) = H, (p) is of the form (3.1). Its asymptotic distribution
is given as follows:

Theorem 3.3. Suppose H,. (r) and Assumption 1 are satisfied. Let W be a (p—r)-
dimensional standard Brownian motion and F the (p — r + q)-dimensional process
gwen in Theorem 3.1. The asymptotic distribution as T — oo of the likelihood
ratio test statistic for H.(r) against Hi.(p) depends on o u, in particular, let
n =rank (o/| p).
(1) Supposen > (p—r). Then the test is asymptotically x*{(p—r)*} distributed.
(2) Suppose n = q < (p —r). Then the asymptotic distribution is given by:

1 1 -1 1
tr { / AW F' N’ (N / FF’duN’) N / FdW’} (3.8)
0 0 0

where N is a (p —r) X (p — r + q)-dimensional matriz given by:

Y P Op—r—g)xq 0
N_<0 0 I, |

12



(3) Suppose n < q < (p — r). Then there exist matrices £&,m of rank n and
dimensions {(p — r) x n} and {q x n} respectively such that o' u = &n'. The
asymptotic distribution is then given by (3.8) with N replaced by:

o Ipf'r‘fn O(pfrfh)xn 0
N = ( 0 0 n )

The test is not as attractive as the previously considered tests. The limit
distribution is a function of o/, 1. The test is therefore not asymptotically similar
with respect to the slope parameters for the broken trend. Moreover, it depends
on o, v in a complicated way. Although the third situation in Theorem 3.3 only
occurs on a null subset of the parameter space the issue ought to be addressed in
the statistical analysis. Had there been no breaks in the trend the test strategy
suggested by Johansen (1996, Section 12.2) could be used. A generalisation of
that idea is not simple for two reasons. First, the limit distribution depends
continuously on the nuisance parameter. Secondly, in many applications it could
be of interest subsequently to test hypotheses corresponding to rank restrictions
on o) pu. Such tests are discussed in section 4.

3.4. Models with outliers

Outlier dummies, or one period dummies are often included in econometric mod-
els. These are particularly used when there are extreme residuals which would
indicate a violation of the assumption about normal innovations and their timing
can often be associated with particular events in economic history. Such dummies
can be included in two ways, either with an unrestricted parameter or alternatively
the parameter could be restricted to be included in the cointegrating vector. The
asymptotic distribution of the rank test is not affected in the first case, whereas it
is indeed in the second case. On the other hand the first type of dummy implies
a persistent effect whereas there is no long-run effect of the restricted dummy.

Outlier dummies with unrestricted parameters could be included in the model
H; in the following way. For notational convenience suppose there is only one
of these, Dy, taking the value one at time T}, and zero otherwise. Here the time
Ty is required to be in the effective sample, that is, it must not fall in 7, ; +
1,...,T;_1 + k for any j. Starting from the model equation (2.2) this results in a
model given by

I k—1 k q
X
AXt = ( /j ) ( t%,tl > + ILLEt + I/Db + E FiAthi + E E 'Lij,’iDj,tfi + E¢,
=1

- i=1 j=2
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where v is an unrestricted p-vector. Granger’s Representation Theorem 2.1 indi-
cates an additional common trends component, Cv1(t > Tj), showing a persistent
effect of the shock. Note, that for this argument, k£ observations after the time
T, need to be conditioned upon. When it comes to the asymptotic theory, the
common trends are normalised by v/T" and hence this additional component van-
ishes and there is no effect to the asymptotic distribution of the rank test. This
shows that the rank test is asymptotically similar with respect to the parameter
v. Correspondingly, dummies for seasonal effects can be included as long as there
is an unrestricted constant in the model. These issues are briefly discussed by
Johansen (1996, Section 5.8).

Outlier dummies could alternatively be restricted to the cointegrating space
in a model of the following type

/

I} X1 k—1 E g
AXy=a | v tE; + pksy + Z DAX,  + Z Z KjiDje i + €,
6 Dy, -1 =1 j—2

where ¢’ is an unrestricted r-vector. This extention has little effect on Granger’s
representation Theorem 2.1, since v = a8’ and hence Cv = 0. There is an effect to
the asymptotic distribution of the rank test, simply because the sample canonical
correlations are now taken of vectors of greater dimension, hence the asymptotic
distribution is now of the type (3.5). A proof for a low dimensional situation is
given by Doornik, Hendry and Nielsen (1998, Section 12.2.2). In applications this
type of dummy is not so common, but it has been applied by for instance Doornik
and Hendry (1994).

3.5. Critical values for rank tests

Exact analytic expressions for the asymptotic distributions are not known and
the quantiles have to be determined by simulation. The asymptotic distributions
depend on a number of factors: number of non-stationary relations, location of
break points and the trend specification. The moments of these distributions have
been approximated using a large number of simulations and a subsequent response
surface analysis based on these factors. Then, the quantiles can be approximated
using the empirical observation that the shape of rank test distributions typically
are approximated rather well by I' distributions, see Nielsen (1997) and Doornik
(1998). Since the parameters of a I' distribution are given by the first two mo-
ments, it suffices to report adequate approximations to the asymptotic mean and

14



variance of the trace test distributions. The quantiles can then be determined
using a numerical routine for the incomplete I' integral or a x? distribution with
non-integer degrees of freedom which is available in most statistical computer
packages.

In the following the cases with a broken trend or a broken level are considered
with up to three sample periods, ¢ = 3. The cases with ¢ = 1,2, 3 can be described
jointly. Let v; = T;/T denote the break points as percentage of the full sample.
For the case ¢ = 3 there are three relative sample lengths, v; — 0, v — vy, 1 — vs.
Let a and b denote the smallest and the second smallest of these. For the case
q = 2 there are two relative sample lengths v; — 0,1 —wv;. Let b denote the smallest
of these and let a = 0. Finally, for g =11let a = b= 0.

The moments of the asymptotic distributions are unknown functions of (p—r),
a, b. We have found that such functions are very precisely approximated by the
polynomial:

lOg (moment) ~ fnwment {( - T) a, b T}
2

— Z O, + Z BimTi + Z Z VijmTiTj + Z Z Z Oijkm@iT; T | dim,

m=0 =1 >4 =1 >4 k24

(3.9)

where 11 = (p—7), xs = a, z3 = b, x4 = T, d,, = (p — r)"™. This function is
essentially a third order polynomial in (p —r), a, b and T!, where the terms in
(p—r)~t and (p—r) 2 play the same role as the dummies for dimensions 1, 2 and
3 used in Doornik (1998), but give a better fit. Notice that the regression includes
the inverse of the sample size, T—!. The role of the sample size in fitting response
surfaces for the trace test is discussed in Doornik (1998). The asymptotic moments
are easily calculated from (3.9) by letting T" — co. Notice also that z1d; = dy = 1
and z1ds = dy. Some of the parameters in (3.9) are not identified, and therefore
are set to zero. The remaining 75 parameters have been estimated by ordinary
least squares, adding an error term to (3.9) and minimising the sum of squared
residuals.

The moments of the asymptotic distribution were simulated for various values
of (p —r), a, b and T. The involved Brownian motions can be discretised in
several ways. One possibility is to mimic the representation (3.2) and generate
one random walk with 7" steps in each simulation, and associate a percentage of
this to each sample period. In order to avoid poor approximations for cases with
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Figure 3.1: Values of a and b used in the simulations

Unrestricted Restricted

# Par. R* o # Par. R* o
Model H., log (mean) 75 0.999997 0.00178 31 0.999996 0.00206
Model H., log (variance) 75 0.999963 0.00586 19 0.999936 0.00759
Model Hy, log (mean) 75 0.999998 0.00115 31 0.999996 0.00177
Model Hj, log (variance) 75 0.999940 0.00676 24 0.999894 0.00886

Table 3.1: Goodness of fit measures for the response surface

relatively short sample periods the representation (3.4) was used. The idea is to
generate three random walks each with 7' steps and then scale them according
to the relative lengths of the sample periods. The values of T" were the integer
part of 500/t for ¢t = 1,...,10. The considered number of non-stationary relations
was (p —r) = 1,...,8. Finally 20 different values of a and b were chosen as
illustrated in Figure 3.1, to be representative of all pairs (a,b) such that a < b
and b < (1 —a—0b). Notice that there is a more dense sampling when a = 0,
corresponding to one single break. This gives 1600 case which were repeated
N = 100,000 times.

The fit of (3.9) is excellent, even when the number of parameters is dra-
matically reduced starting from the least significant, as illustrated in Table 3.1.
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Variance
Mean  125/1.009 125  125*1.009
80/1.002 98.99 99.08 99.17
80 99.15 99.24 99.33
80*1.002 99.31 99.40 99.49

Table 3.2: 95th Percentiles of the Gamma distribution

Variance
Mean  125/1.009 125  125*1.009
80/1.002 .0480 .0487 .0494
80 .0493 .0500 .0507
80*1.002 .0505 .0513 .0520

Table 3.3: Right hand tail probability of Gamma distribution for the value 99.24

Standard errors are about 0.2% for the mean and 0.9% for the variance, an or-
der of magnitude actually very close to the Monte Carlo sampling variation in
log (moment). Notice that such small errors in the moments are virtually negligi-
ble for all practical purposes when computing the quantiles and tail probabilities
of the I' distribution. This point is illustrated in Tables 3.2 and 3.3, where quan-
tiles and tail probabilities are computed for the values mean=80 and variance=125
and small variation thereof. These values of mean and variance are approximately
equal to the average of the values found in our simulations.

It is important to remark that the residuals of (3.9) are approximately ho-
moschedastic in all cases, which means that there are no values of (p — r), a, b
and T in which the errors are much bigger as a percentage of the moment. This
is what motivated the choice to model the log of the moments rather than the
moments themselves. We also tried to model the moments directly, without tak-
ing the logs, using weighted least squares with (p — )™ as weights to account for
heteroschedasticity, along the lines of Doornik (1998). However, the fit appears
to be slightly poorer with that specification.

The estimated coefficients are reported in Table 3.4 , where the coefficients
referred to the variable x, = T ! are not reported, since they are irrelevant for
computing the asymptotic moments.

Notice that when a or b or both are zero, that is when g = 0, 1, the asymptotic
moments may still be computed by (3.9), but the formula has to be corrected
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H,

log (mean) log (variance) log(mean) log (variance)
Constant 2.80 3.78 3.06 3.97
(p—r) 0.501 0.346 0.456 0.314
a 1.43 0.859 1.47 1.79
b 0.399 0.993 0.256
(p—r)° -0.0309 -0.0106 -0.0269 -0.00898
(p—r)a -0.0600 -0.0339 -0.0363 -0.0688
(p—r)b -0.0195
a? -5.72 -2.35 -4.21 -4.08
ab -1.12
b? -1.70 -2.35
(p—r)? 0.000974 0.000840
(p—r)a® 0.168
a? 6.34 3.95 6.01 4.75
ab? 1.89
a2b -1.33
b3 1.85 -0.282 2.04 -0.587
(p—7r)" -2.19 -2.73 -2.05 -2.47
a(p—r)" -0.438 0.874 -0.304 1.62
b(p—r)" 1.79 2.36 1.06 3.13
a?(p—r)* 6.03 -2.88 9.35 -4.52
ab(p—r)"" 3.08 3.82 -1.21
v (p—r) " -1.97 -4.44 2.12 -5.87
a*(p—r)""! -8.08 -22.8
ab*(p—r)"" =579 -7.15
B (p—r)" 4.31 -4.95 4.89
(p—r) 0.717 1.02 0.681 0.874
b(p—r)? -1.29 -0.807 -0.828 -0.865
a*(p—r)"° -1.52 -5.43
v (p—r)? 2.87
ad(p—r)"° 13.1
b (p—r)"° -2.03 1.50

Table 3.4: Estimated surface responses
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mean of H, variance of H., 95th percentile of H,

(p—r) (3.10) Doornik (3.11) Doornik (3.10)-(3.11) Doornik
1 4.1 4.1 7.0 6.7 9.2 9.1
2 12.0 12.1 19.6 20.0 20.1 20.3
3 24.2 24.0 38.5 38.6 35.2 35.0
4 40.2 40.0 63.2 63.2 04.1 53.9
5) 60.2 60.1 94.0 93.8 77.0 76.9
6 84.1 84.1 131.1 130.4 103.8 103.7
7 111.9 112.1 174.2 173.6 134.5 134.6
8 142.8 144.1 222.6 221.6 169.2 169.4
9 180.3 180.1 274.9 276.2 208.4 208.3
10 222.5 220.1 329.3 336.8 253.2 251.1

Table 3.5: Comparison with Doornik (1998) (a=b=q=0)

using result (3.5), as follows:

mean =  expP { fucan [(p —7),a,b,00]} — (2—¢q)(p—1) (3.10)
variance &~ exp { fuariance [(D — 7),a,b,00]} —=2(2—¢q) (p—7r) (3.11)

These formulae allow to make a comparison with the approximation formulae
computed in Doornik (1998) for the case with no breaks. This is illustrated
in Table 3.5 in the case of model H.. The formulae, although quite different
at first glance, give very similar results for the most relevant values of (p — r),
expecially as far as the rightmost quantiles are concerned. For (p — r) > 10, the
differences become more relevant, and this is of course related to the fact that
our approximation is based on surface responses with (p — ) < 8, and therefore
should not be used for dimensions much bigger than 8. The same analysis has
been done for H;, with similar results.

4. Restrictions on the slope parameters

When the cointegrating rank is known it is usually desirable to test further restric-
tions on the parameters. In this section hypotheses on the slope of the determin-
istic trend will be considered. Recall from Theorem 2.1 that the slope parameter
is given by:

715 = Cu;+ (CY — 1) B(B8)
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in the j-th sample period. In particular, the deterministic slope for the cointe-
grating relations, 3'X;, is therefore 57, ; = —v;. In brief, the results are:

1. tests for linear restrictions on the slope for the cointegrating relation, 57,
are asymptotically x?-distributed.

2. tests for linear restrictions on the slope in general, 7;, are asymptotically
x2-distributed.

The two tests can be formed sequentially, by first imposing a restriction on the
slope for the cointegrating relation, 37, and then, if accepted, imposing the same
restriction on the common trend, o/, Ur,;. In this way it is possible to impose more
restrictions on the slope for the cointegrating relation, 3'7; than on the slope in
general, 7;.

Note it is not straight forward to do these two tests in the opposite order.
In that case the test for slope of the common trend is burdened with nuisance
parameter. This is related to the issue that the common trends are not uniquely
defined. Mathematically it is convenient to define common trends as either o/, ¥.X,
or 3, X, but it could be defined as a linear combination of any of these and the
cointegrating relation and often there is no particular valuable interpretation to
any of these.

4.1. Slope of the cointegrating relation

The slope for the linear trend in the cointegrating relation is given by the para-
meter «. Linear restrictions on this parameter can be formulated as:

H) (r): ~=_Gyp,

where G is a known (¢ x g)-matrix of rank g, where g < ¢, and the parameter ¢
is a (g x r)-matrix. Under the hypothesis the slope for the cointegrating relations
is therefore

BTE, = -G E,.

As an example suppose ¢ = 2. By the choice G = (1,0)’ the linear trend is absent
in the second period whereas if G = (1,1)" then the slope is not altered by the
break. It is convenient to introduce the notation 37 = (3, ¢)" for the extended
cointegration vector. Note, that when there is no cointegration, r = 0, then
vanishes, hence H; (0) = H;(0).
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As before the likelihood is maximised by canonical correlatlon analy51s The
squared sample canonical correlations of the residuals, 1 > /\ > > )\ >0,
are given by

CanCor {AXt, ( t)é;tl__El )‘Et,AXti,Djﬂgi, Zji;]-;k;]- },
¢ =1,...,

and the likelihood ratio test for the hypothesis H,' (r) in H; (r) is then given by:

LR{H) ()| H (r)} = TZlog{( >/(1—)\>}

see Johansen (1996, Theorem 7.2). The asymptotic distribution of the test sta-
tistic is given as

Theorem 4.1. Suppose H] (r) and Assumption 1 are satisfied. Then the likeli-
hood ratio test statistic for H (r) in H; (r) is asymptotically x*{r(q—g)}-distributed.

The restriction on the linear term of the cointegrating vector, v = G, could
be combined with for instance a linear restriction on the cointegrating vector itself,
B = Hi, where H is a known, full-rank, (p x h)-matrix and the parameter v is
of dimension (h x 7). The likelihood ratio test statistic for this hypothesis is also
asymptotically x?. The degrees of freedom is {r(p—h)} if the alternative is H;(r)
and {r(p — h+q— g)} if H;(r) is the alternative.

4.2. Slope of the common trends

The common trends is a linear combinations of the levels of the time series which
does not cointegrate. They could be chosen in various ways, for instance as 3| X;
or o/, VX, and are essentially given by the random walk component o/, 2221 (e;+
pE;) in (2.4). In correspondence with the previous sub-section it is of interest to
impose linear restrictions on o/ p given by a (¢ x m)-matrix M where m < q.
With the formulation

H(r): p=C(M +ad' M|

where (, 6 are of dimension (p x m) and {(qg—m) x r} respectively, then o/ is left
unrestricted whereas o/, pu is restricted so that o/, uM; = 0. Now, the common
trends can be chosen is various ways. On the one hand if the common trends
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are chosen mathematically convenient as o/, ¥.X; then the hypothesis imposes the
restriction
o\ U =d p=a (M.

On the other hand for common trends given by 3 X, the slope is

gim = BLCu+B.CUB(88)
= BLOCM +B,.CUB(FB) " ¢,

showing that the slope of the common trends is linked intimately with the slope of
the cointegrating relation. Thus if span(G) Cspan(M) then the restriction by M
applies for all definitions of common trends, in fact it applies to the entire process,
so that under that condition 7,M | = 0. In the following the likelihood ratio test
for H" (r) in H;' (r) is discussed. For the asymptotic analysis the restriction G €
span M is crucial for avoiding nuisance parameters. Note, that in the unrestricted
model when there are up to p cointegrating relations then the hypothesis H}'
entails no restriction on the parameters, hence H'(p) = H;(p).

The squared sample canonical correlations of the residuals, 1 > S\lf > >
S\Z > 0, are now based on

Ar1 i=1,....,k—1
CanCor AXt, tG,Et M,Et, AXLL_Z', Djﬂg_i, ’ ’ s (4].)
M. E, j=1,...,q

and the likelihood ratio test statistic for the hypothesis H!* (r) in H,' (r) is given
by
p A~ ~
LR{A! () H ()} =T Y log (1-A7) / (1-X)
i=r+1
see Johansen (1996, Theorem 6.2).

For the asymptotic analysis it is important that the restrictions to the common
trends slope also apply to the cointegrating relations slope, that is G € span M.

Theorem 4.2. Asymptotic distribution of likelihood ratio test statistic for H' (r)
in H] (r). Suppose H) (r) and Assumption 1 are satisfied. If in addition G €
span M then the likelihood ratio test statistic for H (r) in H;' (r) is asymptotically

X —r)(g—m)}.
On the other hand if G ¢ span M then the asymptotic distribution of the test
statistic involves nuisance parameters.
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5. Empirical Illustration

This section illustrates the suggested statistical analysis, applied to a five dimen-
sional data set with variables relevant for analysing the Uncovered Interest Parity
(UIP) hypothesis between Germany and Italy. The economic model is very simple,
and should be regarded as an illustration rather than a contribution to the ongoing
economic debate. The analysis have been done using MALCOLM 2.4 (Mosconi,
1998), where all the techniques illustrated in this paper are implemented in a user
friendly menu driven environment.
Let us consider the vector

Y% = [AptI7ApztD7Aet7i7{7ilfD]

where Ap! and ApP are first difference of log Consumer Price Index and repre-
sent inflation rates in Italy and Germany. The variable Ae; represents the first
difference of log nominal exchange rate between Italian Lira and German Mark
(LIT/DM), while 4/ and i’ are Italian and German nominal interest rates on long
term treasury bonds, given as annual rates divided by 4, to make them dimen-
sionally matching with the other variables. As for the sources, prices are from
EUROSTAT (except 1973-1975, where prices are from UN - Monthly Bulletin of
Statistics); notice that, after october 1990, German prices refer to unified Ger-
many. Exchange Rates are from the Bank of Italy (average quarterly exchange
rates). Interest Rates are from IMF, International Financial Statistics. The data
are available from the authors.

The data, which are shown in Figure 5.1, are quarterly, ranging from 1973.2
to 1996.1 (7=92). When the UIP holds, assuming rational expectations, the
following linear combination:

Ae, — (if_, —ify) (5.1)

is zero for some lag ¢ > 0. More weakly, we would expect it to be stationary with
zero mean. Even more weakly, we might expect it to be stationary around some
mean, which may be interpreted as a risk premium: a positive mean, say p, means
that investors require (i1 ; —i2 ;) > p > 0 to move capital from Germany to Italy.
The expected cointegration rank is at least equal to one, but of course it may be
higher, since we do not have theoretical reasons to exclude more stationarity in
the data.

To model these data, we use the model H;, with two breaks. The last ob-
servation of the first period is 1979.4, while the last observation of the second
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Figure 5.1: The data
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k  Akaike Hannan-Quinn Schwartz Godfrey x2,s (125)
1 -53.81 -53.07 -501.97 0.005
2 -54.40 -53.26 -51.57 0.244
3 -54.44 -52.90 -50.61 0.717
4 -54.83 -52.89 -50.01 0.915
5 -55.13 -52.79 -49.32 0.971

Table 5.1: Maximum lag analysis (p-value for Godfrey test)

Equation Skewness Kurtosis Sk+Kur

Apl 0.352 0.581 0.557
ApP 0.149 0.155 0.129
Aey 0.011 0.570 0.032
il 0.346 0.130 0.204
i’ 0.750 0.010 0.033

System 0.198 0.018 0.021

Table 5.2: Jarque-Bera Normality tests (p-values)

period is 1992.2 (77 = 27, T, = 77; v1 = 0.29, v, = 0.84; a = 0.16, b = 0.29).
The first break coincides with the creation of the EMS, but it is also supposed to
catch the oil shock and the modification of the US monetary policy. The second
break corresponds to the exit of Italy from the EMS, but also the unification of
Germany.

The analysis to determine the maximum lag k is reported in Table 5.1 . The
information criteria suggest different values of k, in which case it is common
practice to prefer Hannan-Quinn criterion. Therefore, & = 2 has been selected,
since it is also the first lag to give approximately white noise residuals, according
to the Godfrey test.

Jarque-Bera normality tests, reported in Table 5.2, show some problems with
skewness in the Ae; equation and kurtosis in the i equation, so that, at the
system level, normality is rejected. Due to the illustrative aim of this analysis
we did not try to analyse these problems any further. Notice, however, that all
residuals based misspecification tests, like Godfrey and Jarque-Bera, should be
modified in the present setting to take into account that the first k residuals of
each period are set to zero by the presence of the dummies D;;_,;, whose purpose
is to condition upon the first k observations of each period. This might partly
explain the problems with kurtosis.
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Hypothesis  Test  p-value
r=20 274.73  0.000
r<1 145.37  0.000
r<2 75.64  0.022
r<3 2836 0.692
r<4 8.82 0.861

Table 5.3: Rank Tests

Root r=2>5 r=3
1 0.76 + 0.15¢ 1.00
2 0.76 — 0.157 1.00

3 0.06 —0.76¢  0.06 — 0.767
4 0.06 +0.76¢  0.06 + 0.767
5 0.69 0.47 — 0.20¢

Table 5.4: Characteristic roots of the models

The tests for cointegration rank are reported in Table 5.3. The analysis sup-
ports cointegration rank of r = 3, which is consistent with our prior expectation.
Therefore, we estimate the model with » = 3. Table 5.4 reports the five largest
characteristic roots for both the unrestricted and the restricted models, which
seems to be consistent with the I(1) assumption rank (o/, ¥3,) = (p — r).

Before trying to set up identifying restriction on the cointegration space, let
us illustrate some interesting tests on the deterministic components. The slope of
the deterministic trend for the cointegrating relation, v, is a (3 x 3)-matrix in our
example, whose i-th column represents the trend coefficients of the i-th stationary
relation in the three different periods. Consider the matrices

00 10 10 1
Gi=|10]| , Go=|0o0]| , Gs=|01]| , Gua=1]1
0 1 0 1 00 1

and the restrictions
H(3): v =Gip.

The first three set the trend coefficient to zero in all stationary relations in period
1, 2 and 3 respectively. The fourth restriction means that there was no break in
any of the stationary components, that is, the trend slope did not change. Notice
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Hypothesis x*(n) n p-value
H,(3) 511 3 0.164
H1,(3) 707 3 0070
Hj,(3) 3144 3 0.000
H),(3) 3528 6 0.000
H™ (3)

HI(3) 1052 6 0.105
HI(3) 1434 13 0.351

Table 5.5: Test statistics on several hypotheses

that these hypotheses may be also written as

me: o= =1% &0

which is easily implemented in standard cointegration software. The results are
given in Table 5.5, which shows that there is no evidence of a trend in stationary
components in the first and second period (joint test of H), (3) and H, (3) also
accepts: x2(6) = 8.8, p-value = 0.185), but the trend can not be removed from
the third period. Also, since HZ 4 (3) is strongly rejected, there is evidence that
the trend in the stationary components did change significantly between periods.

Let us now illustrate a joint hypothesis about the commond trends and the
stationary components, namely

=(M' + a8 M
HH(3) — 4 ¢ 1
OB S
with
1
M=11
1

When H;* (3) holds, then 7,M, = 0 (i.e. 7, = ¢'M’), so that the slope of both the
stationary and the non stationary components remains the same in all periods. It
is important to remark that, even under H;* (3), breaks may occur in the constant
term 7. in both the stationary and non stationary components. Part of H;" (3),
involving the stationary components, has been already tested and rejected with
H, 7 4 (3): as shown in Table 5.5, the joint test also ends up in a rejection.
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In order to (over)-identify the cointegration space, we suggest the following
stationary linear combinations:

21t = Aet — (’LL{ —ZtD)

o = (i = Apf) — (i — App)
The first represents the UIP hypothesis: notice that the lag ¢ of (5.1) is not in this
formula, but this is not important since Ai! and Ail” are stationary processes and,
for example, i, = il — Ail. The second linear combination represent the German

real interest rate, while the third represents the real interest rate differential.
Notice that, if these linear combinations are stationary, then also

2y = 2+ 23 = Aey — (Aptl - APP)

Zst = Zot+ R3t = (Ztl - Aptl)
are stationary, and could be used to find an alternative and equivalent basis of
the cointegration space. Identifying restrictions may be written as

HZ'I (3) = ﬂy = [ 5 ] = [Bl,iblaBQ,ianBS,ibB] .

In order to test the local trend stationarity of zi; ,zo; and z3;, we set up the
following identifying restrictions:

0 000 0 00 0 -1 00 0
0 00 0 -1 00 0 1 000
1 000 0 00 0 0 000
~10 0 0 0 00 0 1 000
Bu=1 19 0900l 2= 1 000 B~ 1000
0 100 0 100 0 100
0 010 0 01 0 0 010
| 0 0 0 1| 0 00 1| | 0 0 0 1|

while, in order to place some plausible restrictions on the deterministic part, we
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use the following restriction matrices:

N =)
—_
=R ===

o O O

which exclude the linear trend from z7; and zy; in the first and second periods, and
from z3; in all periods. As shown in Table 5.5, both H{ (3) and H! (3) can not be
rejected. Figure 5.2 represent zy4, 2o; and z3;, together with their deterministic

components estimated under HJ (3).

This shows that in the period (79.1,92.2), in which Italy belongs to the EMS,
both z;; and z3; are approximately zero on average. The mean of zy;, which is
the distance from the UIP, is positive and quite large in the first period, meaning
that the ”risk premium” on Italy before the EMS was around 4% on annual
basis. In the third period, the mean of z;; is again positive, and impressively high
immediately after Italy went out the EMS, but is negatively trending, reaching

zero in 1995.
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Figure 5.2: The stationary components

30



A. Appendix: Mathematical Details

The techniques in the proofs follow are closely related to those presented in the
monograph by Johansen (1996) - which we in the following will refer to as (J).
One major difference is that the monograph focuses on models, H;., where the
parameters for the deterministic terms are unrestricted under the rank hypothesis,
whereas here the focus is on models, H;, where the deterministic component is
not affected by the rank hypothesis. In the following, modified versions of the
theorems and lemmas of (J) will be given and differences in the proofs will be
pointed out.

A.1. Proof of Theorem 2.1

FEach sub-sample can be considered separately because of the conditioning on the
first k& observations in each period. The representation (2.4) therefore follows from
Theorem 4.2 (J). It is a consequence of his proof that the stochastic behaviour of
the process does not depend on the deterministic terms and, hence, the stationary
components of (2.4), Y;,, are identically distributed with zero expectation. To find
the representation of the slope parameter 7;,; and the intercept parameter note
that the processes 3 (X; — 7.E; — 1 Eit) and AX; — 71+ have zero expectation
taking expectations in (2.2) with these expressions. In order to obtain a model

with zero level it must be that

()= ("2 ) (5%
7;' B —0 0 ﬁ/TC,t '

The expressions in the Theorem then follows by noting that

C (CV - 1,) B U+af —a)
a(vC—1,) @ (VOU —U)3—1, -3 o )

A.2. Some asymptotic results

The asymptotic properties of the residual product moment matrices are discussed
under the hypothesis H;' (r) by modifying the Lemmae 10.2 and 10.3 of (J). One
difference is that here an explicit study of the asymptotic behaviour of the process
X is avoided. Further, the definitions of the relevant residuals and the necessary
transformation matrices are somewhat different.
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The statistical analysis is based on canonical correlation analysis. It is im-
portant to note that the sample canonical correlations are invariant with respect
to linear transformations of the data, whereas this property is not shared by the
corresponding canonical vectors which are used for estimating the cointegrating
vector.

Since the data exhibit a linear trend according to Theorem 2.1 it is convenient
to detrend the levels of the process, that is (X;_,,tFEG) = Qr{(X;_,|[tE,G), tE,G}Y
where

-1
O0n— ( 1, (S0 XEGH) (S 16 B EG) ) |
0 g
Hence define the residual process

AX, o
( gw ) — ! [ X tGE,\ | B, AX Dy _.i"l' LAk TN
1,¢ tG/Et .]_ 7"'7q

and the residual product moment matrices
T
Soo Sor } _ 1 Z Ry, Ro;
S0 S T = Ry, Ry )~

The squared sample canonical correlations, 1 > A; > --- > X\, > 0 and A; = 0 for
t=p+1,....,p+ g of Ry and R; are then given as solutions to the eigenvalue
problem

1 o
510 _o
[AS11 — S10S00-S01| = 0

The corresponding eigenvectors, v;, satisfy
SuAivs = S10S40 Sorvi-

~0
The matrix of the r first eigenvectors is denoted # and the parameters 3, ¢ are
then estimated from the equation

@;B”:@;(g)zﬁ.

A corresponding asymptotic relation can be established for the parameters using
the representation in Theorem 2.1

s oy (BNP [ B)
ar=a(0)2(5)-7 (A2)
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In the asymptotic analysis under H;(r) the residuals, R;;, are decomposed using
three orthogonal matrices

r=(0) () me(0)

Under the hypothesis H; (r) the asymptotic results also depends on the {(p—1) x
(¢ — g)}-dimensional parameter o/, uG . If this has reduced rank, n say, there
exist matrices &, n of dimension {(p — ) x n} and {(q — g) x n} respectively and
with rank n such that 8|, 7,G. = & and o uG ) = o/, W3, &n'. Thus define

By = Bi§, (&HLCQC%LQ)A/Q : By = Bi€

which are orthogonal if 3, is normalised so that ', 3, = I,_,. Further, define
Br = (Bi1, BieT7'?, ByT7V?) | Ar = (87, ByT7'?),

where A7 has full rank and By = (B, B,TY?).

The asymptotic results are expressed in terms of two independent standard
Brownian motions V, W of dimension r and (p — r) respectively. These are
the limits of the independent random walks (o/Q o) 2a/Q 13" &,/T"/? and
(2! Qa) W2a, Y, e /TV2.

Lemma A.1. Asymptotic properties of B/yR;. (J, Lemma 10.2)

Suppose the hypothesis H, (r) and the Assumption 1, are satisfied. Let F be the
(p—r+q) -dimensional process given by (3.3) and define the {(p—r+g) X (p—r+q)}
-matrix

Ip—r—n O(p—r—n)xn 0

N=| o0 0 nG {1, - ZG(G'ZG)" G} |, (A.3)
0 0 G

where G = fol u?eyel du. Then as T — oo
1 D

Note, that under the hypothesis Hy(r) then G = I, n = 0, hence N = I, ,.,.
Under Hy.(r) then G = 0, hence N reduces to the matrices given in Theorem 3.3.
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The proof relies on the representation of the process X given in Theorem 2.1
t
B\ X =0.C Y B +t8,7E +O0p(1) (A.5)
i=Tj_1+k+1

for Ty 1 +k < t < T;. Using the identity I, = GG’ + GG, and the definition
B 1iG = & it follows that

t
X =B.C Y B, +tyG E +t3 GG + Op (1).
i=Tj_1+k+1

The result then follows by regressing on tG’E; and normalising this expression
appropriately. O

For each periode the processes AX; and X, | + t¢'G'E; can be given sta-
tionary initial distributions, see Theorem 2.1. Apart from a changing level the
stationary distributions are identical. Thus define

S0 o5\ _ v AX,
Eﬁo Eﬁ[g 6/Xt_1+tQOIGIEt

Lemma A.2. Asymptotic behaviour of S;;. (J, Lemma 10.3)
Suppose the hypothesis H;' (r) and the Assumption 1 are satisfied. Then asT — oo

Soo So13 P [ Moo 2og
!/ /! . A.
(ﬁo S B"Suf ) T\ Ta Tis (A.6)

This asymptotic covariance matriz satisfies the identity

AXt—z’,Dj,t—z‘, Zzli,...,k—l).
j_la"'aq

ot = Vg Tos (SaoT0 Dos)  SeoVog = oL (@ Q) el (AT)
Moreover, in the non-stationary directions the product moment matrices satisfy
1
T~ B,.S11Br > N / F,F.duN’, (A.8)
0
_ -1/2 ;-1 1
(@Q ) a0 D dv, et
( (@, 00) e, ) I f L aw, ) PR
(B7S10, BpSup’) = Op(1), (A.10)

where Sgl = 501 — ozﬂ’y'QTSH.
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The proof of the equations (A.8)-(A.10) mimicks that of Lemma 10.3 (J),
where Lemma A.5 is used instead of Lemma 10.2 (J). The equation (A.6) follows
by noting that for ¢ € E;;, the representation (2.4) implies:

AXt = Cé?t + AY;"LL + Tijs
X1+t GE, = [ (Y +7.E +trE).
The distribution of Y}, is the same in all periods. Consequently, the processes

B'X,_1 + t¢'G'E; and AX, are stationary and the conditional variance, (A.6), is
the same in all periods. Further

(ﬂ,Xt_1| tG/Et) = (/BlXt_l -+ tQO/G/Et| tG/Et)

and hence the limit in (A.6) is expressed in terms of the long-run variance of
B' X1 + t¢’G'E;. Finally, the equation (A.7) follows from Theorem 10.1 (J). O

A.3. Proof of Theorem 3.1

The proof follows that of Theorem 11.1 (J). The only difference is that Lemma
A.2 with G = I, is used instead of Lemma 10.3 (J) and that some of the notation
is changed. That is, the terms 3, G, B, W should be replaced with the terms (7,
F, W, Q2. Note that the arguments between equations (11.20), (11.21) (J) are
redundant with the present model formulation and that the proof requires that
the identity (A.7) is satisfied. O

A.4. Proof of Theorem 3.3

The proof resembles that of Theorem 3.1 with the difference that G' = 0, so that
g = 0 and G, = I;. The asymptotic theory therefore depends on the rank of
o uG, = o p. In particular if rank(o/ ) = (p — r) then the function NF is
deterministic, see (A.4). The asymptotic distribution is therefore x2. U

A.5. Asymptotic properties of (3 under H) (r)

0
The proof of Theorem 4.1 uses the asymptotic properties of 5 . To discuss these
it is convenient to consider a normalisation depending on the unknown parameter

3°
BO _ @0 <BOIZ30> *1'
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Since the matrix (5°, Br) has full rank and orthogonal blocks, 8By = 0, it
—/ JR—
follows that I, = 88° + BTBT/. Consequently

[30 =3+ BTB_T/BO = 3%+ ByUp where Ur = B_TIBO.

Correspondingly, define & = dBOIBO so that dBO, = &BOI. Modified versions of the
results of Lemma 13.1,13.2, Theorem 13.8 (J) then hold.

Lemma A.3. Asymptotic behaviour of S;; (J, Lemma 13.1)
Suppose the hypothesis H]' (r) and the Assumption 1 are satisfied. Then the esti-

~0 .
mators under the hypotheses, B, &, €2, are consistent and

3'sup = BYS1B°+ op (1),
~0r

B S = 50/510 + op (T_I/Q) )

The proof mimicks that of (J). O

Lemma A.4. Asymptotic distribution BO. (J, Lemma 13.2)
. ~0 . . . .
The estimator B is mized Gaussian in the sense

1 -1 1
TU, = By (BO _ 50> LA (N / FUF;duN'> N / FdV! (/9 ') 2,
0

0

where F,N is given by (3.3),(A.3).

The proof is unaltered. Note that (o/Q'a)Y?V, = (o/Q1a)Y2a/Q W in (J)
is denoted V' here. a

In the Lemma A.6 below the test for a simple hypothesis on (37 is discussed.
For the proof both of the parameters 37 and (° are referred to. Thus recall the
above definition of the residual product moment matrices S;; where the levels
of the process are detrended. Correspondingly let S]j be the residual product
moment matrices where the levels are not detrended, hence,

ShoSuN (L 0 N{Sw Su\(I 0
St St ) L0 Qr S0 Sn 0 Qp )"
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Lemma A.5. Detrending of levels residuals.
Suppose the hypothesis H; (r) and the Assumption 1 are satisfied. Then

Ayl ~ 07 Ayl ~ ~ 01 ~0
B'Sly =08 S0,  B'SLB =5"SuB, (A.11)
B8l =6"Sw+op (1),  BVSE =SB +op(1). (A.12)

The proof. The identities (A.11) follows from the eigenvalue problem described
between equations A.1),(A.2). For (A.12) combine the approximation (A.2) and
the results of Lemma A.2. For instance,

B7Sly = " QrSio = {Q/Tﬁ7 - 50}/ S0+ 8" S1o

where Q/,37 — 3° converges in probability to zero by (A.2) and Sy is of stochastic
order one by (A.6) and (A.10). O

Lemma A.6. Test for simple hypothesis on 3. (J, Lemma 13.8)
The likelihood ratio test statistic for a simple hypothesis on 37 against the hypoth-
esis H, (r) is asymptotically distributed as the random variable:

1 1 -1 1
tr { / dVF'N' (N / FF’duN’> N / FdV’} .
0 0 0

This variable has a x*{r(p —r + g)} distribution.
The proof is slighly different from that given in (J). First, as in (J) the likelihood
function is expanded around 3”. This is done in terms of 67 and 579 Using Lemma

A.5 is then possible to replace 57, B’Y and ng with °, BO and S;; without changing
the asymptotic results. The remaining of the arguments of (J) then apply. The
degrees of freedom is given by the product of dim V' = r and dim(NF) = p—r+g.

A.6. Proof of Theorem 4.1

The proof follows that of Theorem 13.9 (J) using Lemma A.6 instead of Lemma
13.8 (J) and where the (random) matrices

N’(/OIFF') , /;dVF(/;FF’)

replace his matrices M’ and Z. The degrees of freedom is given by the product of
dimV =r and dim(N_ F) = (¢ — g). O

1/2 ~1/2
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A.7. Asymptotic results under the hypothesis H)' (r)

For the asymptotic analysis of H}* (r) the assumption G € span M is important.
Had this not been satisfied nuisance parameters would appear. The easiest exam-
ple of that phenomenen is seen in a model without break, ¢ = 1, two lags, k = 2,
a linear trend for the cointegrating relation, G = I; = 1. Tests of the hypothesis
that the common trends slope is absent, M = 0, leads to inference burdened with
nuisance parameters.

The likelihood ratio test statistic for H;*(r) in H; (r) is based on the sample
canonical correlations given in (4.1). Due to the invariance properties of canonical
correlations it is equivalent to consider

Xi1[tG'Er, M1 E, i=1,... k-1
CanCor § AXy, tG'Ey| M E, M'Ey, AXyi, Djyiy - _ 77
M' E ] = 1, ...,q
1+t

and corresponding sample product moment matrices, Si”j say. The asymptotic
behaviour of Sfj is partly described in Lemma A.2. To see this define the residuals

Tot . AXt ’ 4 o Zzl,,k/’—]_
(rl,t ) _{(MiEt )‘MEMAXI:Z)D]JZ? ]:1,,q

and the product moment matrices

T T
1 ) 1 )
8012—5 T0,tT1 ¢ S11 = =+ g 1,671 -
T o T e
t=1 t=1

It follows that
TR Soo + 501511 S10 So1 So1
Sto So1
SE - gH = S1o S 0
10 P11 $10 0 sy
The asymptotic properties of S;; are given in Lemma A.2, whereas s;; has the
following properties:

Lemma A.7. Asymptotics for s;;.
Suppose the hypothesis H|' (r) and the Assumption 1 are satisfied. Further, as-
sume that either G € span M or k = 1. Define the (¢ — m)-dimensional function

-1

1 1
fu=M\ e, — Mi/ eqe, duMl (M’/ eue;duM) Me,.
0 0
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Then

TY%s01 = Op(1), (A.13)
1
s11 > / Fuf'du, (A.14)
0
1
T 25000 (o, Qa1) V2 D / FudV. (A.15)
0

It then follows that Sk, 2 S0 and hence

-1
(Sto) ™ = (Sto) b8 {88t (St) " S8} 8 St (St)
2ol (o Qa)) t e, (A.16)

where " is the {(p+ g+ q—m) x r}-matriz (3',0). Note, that when G ¢ span M
and the slope parameter satisfies 1M, # 0 then sg; =Op (1) and the limit in
(A.16) involves nuisance parameters.

For the proof the main observations is that for a stationary process, Z;, with
Zero mean:

T T
S EE=0(T), > EZ=0p(VT). (A.17)
t=1 i=1

In order to use those results the differenced process need to be analysed carefully.

The Theorem 2.1 and H}' imply the representation

AXt = Céft + AY;Et + TlEt,

where _
7, =CC(M' + (CV — 1) B'G.

If G € span M then G'M, =0 and 7; = @M’ for some parameter 6. It follows
that the residuals of AX; corrected for M'E; equal the residuals of the zero mean
stationary process Ce; + AY, E; corrected for M'E;, that is

(AXt‘ M/Et) = (Cgt + AY%Et’ MIEt) . (A18)

For the asymptotic analysis of s;; the regression on lagged differences can be
ignored which is seen from (A.17)-(A.18), hence

T
1
s = > (M E|M'E,, Dy ;) (M{ E| M'Ey, Djy ) +op (1), (A.19)
t=1
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For asymptotic purposes also the regression on the dummies can be ignored and
(A.14) follows. For the asymptotic analysis of s;y note that (A.18) implies that

T
S1g = Z (MiEt) (Cgt + AY;EA M,Et, Céft_i + AY;‘,—z’Et—i; Dj,t—i), . (A20)

t=1
Then (A.17) shows that s is of order T~'/2. Moreover, using the model equation

(| AXy| M'E,,Cey_; + AY, ;E,_;, Dj; ;)
= (d\&| M'E;,Ceys + AY,;Ey_;,Djy ;).

Now, for a stationary process Z; adapted to the natural filtration for €, it follows
that S°1_, Zi_1e, = Op(\/T). Together with (A.17) this implies

T
T 2s00 =T V2N (ML E) (! &t] M'Ey, Dy ) + op (1), (A.21)

t=1

and this leads to (A.15). For the convergence (A.16) note that when sy is of
order T2 while Sy, 511 are of order one then Sk, = Spo+op(1). Using that
B St = %Sy it then follows that

-1
(S6)™" = (Sto)™" St {38ty (Sho) ™ St} 58t (Sho) ™
= 5’0701 . S(?OISOlﬁO {ﬁOISIOS&Jl ‘5’0160}_1 ﬁOISIOS(;(Jl + O'p(l)

which by (A.6)-(A.7) is equivalent to ) (o/, Qay )™t .

In the general case, when 7;M| # 0 and hence G' ¢ span M and §'m, M #
0, then (A.18) and (A.20) fail and sio is of order one. In particular 3'sy; =
B'71811+ op(1), which is of order one. d

A.8. Proof of Theorem 4.2

The case GG €span M. The proof follows in two steps. First it is established that
the likelihood ratio test statistic for H' (r) against H}' (p) = H; (p) converges in
distribution to

(Lo VL) )b [ )]
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The proof is the same as that of Theorem 3.1 with By replaced by

Br 0
B’él; = ( 0 Tl/Qqum ) .

Next, mimicking the proof Corollary 11.2 (J) it is argued that the likelihood ratio
test statistic for H}* (r) against H;' (r) converges in distribution to

o { [ awr ( [ fffdu)l [ def} |

It then follows that the test is asymptotically x* with dimW = (p —r) times
dimf = (¢ — m) degrees of freedom.

The case G ¢span M. In general, the result (A.16) fails and the above argument
does not hold. It follows that nuisance parameters are involved in the asymptotic
distribution. O

41



B. References

Anderson, T.W., 1951. Estimating linear restrictions on regression coefficients

for multivariate normal distributions. Annals of Mathematical Statistics 22,
327-351.

Bartlett, M. S., 1938. Further aspects of the theory of multiple regression. Pro-
ceedings of the Cambridge Philosophical Society 34, 33-40.

Clements, M.P., and Hendry, D.F., 1999. Forecasting non-stationary economic
time series. MIT press, Cambridge MA.

Doornik, J.A, 1998. Approximations to the asymptotic distribution of cointe-
gration tests. Journal of FEconomic Surveys 12, 573-593.

Doornik, J.A., and Hendry, D.F., 1994. Modelling linear dynamic econometric
systems. Scottish Journal of Political Economy 41, 1-33.

Doornik, J.A., Hendry, D.F. and Nielsen, B., 1998. Inference in cointegrating
models: UK M1 revisited. Journal of Economic Surveys 12, 533-572.

Hansen, H. and Johansen, S., 1999. Some tests for parameter constancy in
cointegrated VAR models. To appear in Econometrics Journal.

Hendry, D.F., 1997. The econometrics of macroeconomic forecasting. Fconomic
Journal 107, 1330-1357.

Hotelling, H., 1936. Relations between two sets of variates. Biometrika 28,
321-77.

Inoue, A., 1999. Tests of cointegrating rank with a trend-break. Journal of
FEconometrics 90, 215-237.

Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of
Economic Dynamics and Control 12, 231-254.

Johansen, S., 1996. Likelihood-based inference in cointegrated vector autoregres-
siwe models. 2nd printing. Oxford University Press.

Kuo, B., 1998. Test for partial parameters stability in regressions with I(1)
processes. Journal of Econometrics 86, 337-368.

42



Mosconi, R., 1998. MALCOLM: The theory of practice of cointegration analysis
in RATS. Venice: Ca’ Foscarina.

Nielsen, B., 1997. Bartlett correction of the unit root test in autoregressive
models. Biometrika 84, 500-504.

Nielsen, B., and Rahbek, A.,; 2000. Similarity issues in cointegration models. To
appear in Oxford Bulletin of FEconomics and Statistics 62.

Perron, P., 1989. The great crash, the oil price shock, and the unit root hy-
pothesis. FEconometrica 57, 1361-1401. Erratum, 1993, Econometrica 61,
248-249.

Perron, P.; 1990. Testing for a unit root in a time series with a changing mean.
Journal of Business € Economic Statistics 8, 153-162. Corrections and
Extensions by Perron, P., and Vogelsang, T., 1992, Journal of Business &
Economic Statistics 10, 467-470.

Rappoport, P., and Reichlin, L., 1989. Segmented trends and non-stationary
time series. Fconomic Journal 99 supplement, 168-177.

Seo, B., 1998. Tests for structural change in cointegrated systems. Econometric
Theory 14, 222-259

43



