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Abstract

We investigate a general parametric model of adaptive learning. The model
includes most of the adaptive learning procedures studied in the literature
where agents optimize given their ranking over actions, perhaps allowing for
experimentation. It provides a convenient parametric framework to analyze
experimental data and to compare the performance of previously proposed
learning hypotheses. We show that several “parameter clusters” result in
qualitatively similarly behavior, hence making precise the important real-
tions between the di¤erent parameters. We also identify and analyze some
previously uninvestigated parameter clusters which lead to empirically plau-
sible behavior, such as “loss aversion.”



1 Introduction
There is an extensive and growing theoretical literature on adaptive learning
in games. All of the models posit some manner by which players rank their
strategies at any point in time. Choice behavior depends on this ranking
either deterministically or stochastically. Each model posits the way in which
players update their ranking upon receiving new information. The analysis
of the models focuses on the strategies the players converge to play over time.
A vast complementary literature uses these models to organize experimental
data on learning in games, and seeks to evaluate their relative performance.

The theoretical literature has greatly increased our understanding of dif-
ferent adaptive procedures according to which players learn in games. The
experimental literature has informed us about which models are more useful
in describing subjects behavior in di¤erent contexts. So far, however, there
are no theoretical studies which provide a general framework in which the
speci…c models of adaptive learning are “naturally” nested. Such a general
model would be particularly useful for experimentally distinguishing between
di¤erent learning hypotheses, as pointed out most recently by Camerer and
Ho (1999).

In this paper, we study a general parametric adaptive learning model ac-
cording to which players rank their strategies and update their ranking in
light of the information they observe after each period of play. The three
parameter model we propose nests almost all the ranking and updating pro-
cedures that have been proposed in the literature on adaptive learning, and
provides a useful framework in which the relative importance of di¤erent
learning hypotheses can be distinguished. Our framework also suggests new
models, or “parameter clusters” of the general model, that may represent
plausible and interesting learning behavior and which have hitherto not been
discussed in the literature.

We analyze asymptotic properties of the three-parameter model when a
player repeatedly plays a decision problem in which there are a …nite number
of possible states of the world, and a …xed probability distribution (over time)
on this set of states. The player does not have a model of the environment and
need not know whether he is playing against nature or strategic opponent(s),
or whether the environment is …xed or changes over time.

The agent associates with each action a scalar, which we refer to as the
score, according to which he ranks his actions. The score could, for example,
be the average payo¤ the action has historically received. After an action is
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taken and a state of the world is realized, the agent observes the payo¤ from
the action he has taken, and maybe also observes the payo¤s from actions he
did not choose. He could, for example, obtain information about unplayed
actions from reading newspapers or from talking with other agents. This
updating goes through three “cognitive operators” which describe how the
agent incorporates this new information in the scores.

The …rst cognitive operator evaluates this period’s perceived payo¤ from
each action. The perceived payo¤ is used by the agent to update the score.
For the action chosen this period, the perceived payo¤ is equal to the objec-
tive payo¤. For unplayed actions, the perceived payo¤ is proportional to the
objective payo¤ but is not necessarily equal to it. We believe that people may
distinguish between payo¤s from chosen actions, which are actually receive,
and payo¤s from unchosen actions, regarding which they have only indirect
experience. Although the information about the value of these untaken ac-
tions might be precise, it is the psychological attitude of the agent towards
this source of information that will determine how much “weight” she gives
to it. This cognitive operator is summarized in a parameter which measures
the discrepancy between the objective payo¤ and the perceived payo¤.

The second cognitive operator measures the amount of subjective experi-
ence the agent has had with each action. This includes two features. First,
the previously accumulated experience may decay over time. This decay
may arise because the agent has a limited memory or because he believes
that older information may not be as relevant as new information. Second,
the experience he accumulates in the current period with each action. Here
again, we believe that the decision maker may view the amount of experi-
ence obtained with played and unplayed actions di¤erently. We normalize
the amount of experience accumulated with the action chosen in the current
period to one, and require that it is assessed to be at least as great as the
amount of experience accumulated with unplayed actions. Two parameters
of our model capture these two features of the amount of experience the agent
has had with her actions.

The third operator computes next period’s score of an action given the
score this period, its perceived payo¤, and the subjective amount of experi-
ence the agent accumulated with the action. This is done by transforming
the subjective measure of experience into a pair of weights, one for the per-
ceived payo¤ and the other for the current score. The new score is calculated
by combining the current score and the perceived payo¤ using these weights.

The manner in which the agent ranks strategies and how he transforms
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these rankings given new information may seem very stylized. However, our
three-parameter model includes all of the better known adaptive learning
procedures. For instance, if initial scores represent the agents ranking of the
actions prior to the learning process, the perceived payo¤ for each actions is
equal to its objective payo¤, and each period counts for a unit of experience
for all actions then we obtain the well known adaptive learning procedure of
“…ctitious play.” In the next section, after formally stating the model, we
show how this model specializes to other well-known learning procedures.

Given the manner in which an individual ranks his strategies, two di¤er-
ent classes of choice rules may be distinguished: deterministic and stochastic.
According to the former, the agent chooses, at each time, the action which
he ranks the highest. Such a myopic choice rule is utilized in many adaptive
learning procedures including Cournot learning and …ctitious play. The sto-
chastic decision rule we consider allows the agent to randomly experiment
with actions not currently ranked the highest. However, he must eventu-
ally choose the action he ranks the best, i.e. he is asymptotically myopic.
Intuitively, random experimentation and asymptotic myopia (…rst discussed
by Fudenberg and Kreps (1993)) allow us to consider an agent who acquires
su¢cient amount of information about all strategies and eventually becomes
con…dent in his ranking.

When the individual gives each observation the same weight, we show
that the asymptotic behavior of the agent depends crucially on the relation-
ship between the “perceived per-period expected payo¤” and the objective
expected payo¤. The former can be di¤erent from the latter due to the dis-
crepancy between received payo¤s for played actions versus indirect payo¤s
for unplayed action, and also because the subjective experience with the two
types of actions di¤er. If the perceived per-period expected payo¤ for an
unplayed action is greater than its objective expected payo¤, and there is
some action for which this (in‡ated) perceived per-period expected payo¤
is greater than the objective maximal expected payo¤, it must be that the
agent converges to play more than one action. Although the scores of this
subset of actions converge to the same number and choice is deterministic,
play looks like a mixed strategy as these actions are played a …xed propor-
tion of the time. If the perceived per-period expected payo¤ for an unplayed
action is smaller than its objective expected payo¤, then play converges to
a single action, and it can be any action whose objective expected payo¤
is greater than the (de‡ated) perceived per-period expected payo¤ of the
expected-payo¤ maximizing action.
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The second goal of the paper is to explore the e¤ect of experimentation on
the asymptotic behavior. For some simple updating procedures, such as when
the score of an action is its time-average payo¤, we show that behavior in
the absence of experimentation can be very suboptimal. The introduction of
random experimentation and asymptotic myopia drastically changes this, and
results in convergence to the expected payo¤ maximizing action. However,
when the procedure is altered slightly, so that the most recent experience
gets positive weight, behavior deviates dramatically from expected-payo¤
maximization in the absence of experimentation and is not altered by the
introduction of experimentation.

We also identify clusters of parameters that have not received attention
in the past which lead to plausible patterns of behavior. These clusters
involve a discrepancy between the perceived per-period expected payo¤ for
an unplayed action from its expected payo¤. For example, such a procedure
can lead to behavior that is “loss averse.” In particular, the …rst time the
agent plays an action with a positive minimal payo¤, i.e., an action that only
ensures him gains, he never switches to a di¤erent action. We are also able to
get from this family of learning rules some rules that are sensitive to the size
of the expected payo¤, some to its sign, while others are sensitive to the size
or sign of the minimal payo¤. Also, some rules, though deterministic, involve
endogenous experimentation; after a certain action has not been played for
a while it looks more lucrative than it did the last time it was played, and
therefore it is revisited. Given such a behavior the parameters of this learning
rule can be interpreted as re‡ecting the agent’s attitude regarding the nature
of the environment. In particular, this can be justi…es as a sensible procedure
in a changing environment, though it is suboptimal in a …xed environment.

The theoretical literature is admirably summarized in a recent text by
Fudenberg and Levine (1998). Two large classes of learning models are dis-
tinguished: belief-based models and reinforcement learning models. In belief
based models the agent has a well-formed, though perhaps mis-speci…ed,
model of the environment. These models include Cournot learning and …c-
titious play. The agent myopically optimizes given his belief regarding how
others will play. These beliefs are updated upon observing how the choice
of the others players evolves. In reinforcement learning models the beliefs of
the agents are left unspeci…ed and only their behavior is studied. In most
such models agents choose stochastically. They only use information on the
payo¤ obtained from their chosen strategy in updating their behavior.

Papers by Sarin and Vahid (1999), Hopkins (1999) and Rustichini (1999)
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have further studied these models. Sarin and Vahid present a model in which
agents only use information on the payo¤ from chosen actions and optimize
given this information. Their model, hence, combines features of both be-
lief and reinforcement learning models. Hopkins shows that the asymptotic
properties of noisy versions of belief based models and reinforcement learning
models have similar asymptotic properties. Rustichini considers full informa-
tion and partial information models of reinforcement learning and discusses
their optimality properties. Easley and Rustichini (1999) provide an ax-
iomatic framework in which to model reinforcement learning models where
agents observe information of all actions in every period.

Experimental studies have tested the plausibility of these two classes of
learning models. These include papers by Camerer and Ho (1999), Erev and
Roth (1998), Feltovich (1999) and Sarin and Vahid (1999). The paper by
Camerer and Ho evaluates belief based and reinforcement learning models
by considering a more general parametric form that nests these two learning
hypotheses. Erev and Roth and Feltovich contrast the performance of rein-
forcement and belief based models in a large class of experiments and both
show that learning models explain behavior better than equilibrium predic-
tions. Sarin and Vahid show that their model performs at least as well as
reinforcement and belief-based models and is much simpler to analyze.

This paper is organized as follows. The next section presents the model.
Section 3 analyzes the model. Section 4 concludes and discusses some exten-
sions of the model.

2 The Model
We suppose that the individual has a …nite set of actions, A =

©
a1; :::; aI

ª
.

At each time, the individual takes an action and a state of the world is
realized. We suppose that there is a …nite set of possible states of the world
­ =

©
!1; :::; !J

ª
. Nature chooses the state of the world according to a …xed

probability distribution ¹ which does not change over time, where ¹j gives
the probability that state !j is selected in any period. We denote the state of
the world in period t by !t 2 ­. The agent in the model is assumed to hold
no model of the environment in which he operates. In particular, he does not
postulate as to whether he is playing against nature or against a strategic
opponent(s). Neither does he deliberate whether the environment is static
or changing over time. He only follows an adaptive learning procedure, by
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which he (almost always) optimizes given the score, where the parameters of
this procedure may be interpreted as representing his attitudenbelief about
the qualitative nature of his environment. After the individual chooses an
action, nature selects a state, and the objective payo¤s are realized. Denote
the state of the world realized in period t by !t 2 ­, then the objective payo¤
from action ai is denoted ¼i (!t). Let at 2 A represent the action chosen in
period t.

For the individual’s learning behavior, however, it is not objective payo¤s
that are important but the perceived payo¤s. The perceived payo¤ of action
ai at time t, ~¼it, is given by,

~¼it =
¡
± + (1¡ ±) I

¡
ai; at

¢¢
¼i (!t)

where I denotes the indicator function which takes a value of 1 when ai = at
and is zero otherwise. Hence, perceived payo¤s are equal to the objective
payo¤ for the chosen action, but are equal to a proportion ± ¸ 0 of the
objective payo¤s for the unplayed actions.1 If the agent does not obtain
any information about the payo¤s from unplayed actions then it would be
natural to have ± = 0. In other cases, when the agent obtains information
on these payo¤s he may not treat them the same as the payo¤ he actually
receives due to some psychological factors that lead him to discount or in‡ate
the inferred payo¤s. Hence the parameter ± represents the agent’s attitude
towards the information regarding the possible payo¤s of unplayed actions
to him or his attitude towards the fact that this experience is indirect. This
can be interpreted in many ways, such as uncertainty about the validity of
the source of information or about the relevance of idiosyncratic components
in the utility from a certain outcome (state of the world). Note that this
parameter ± is not action dependent, hence it represents the agent’s general
attitude rather than his attitude towards the action itself. In the special case
where ± = 1 he treats the payo¤s inferred about unplayed actions in the same
way as the payo¤s obtained from the played action. Hence, when ± = 1 the
agent makes the “correct” use of all the information he obtains.

Let the amount of experience the agent has had with an action ai upto
time t be denoted by N i

t . The following equation describes the manner in
which the agent updates the amount of experience he believes to have had
with any action at the beginning of period t+ 1:

1We suspect that all our results hold if we extend the relation between objective pay-
o¤s and perceived payo¤s to be ~¼i = ±¹¼i, for ± ¸ 0 (or some other order preserving
transformation) but have not checked all the details.
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N i
t+1 = ½N

i
t + ° + (1¡ °) I

¡
ai; at

¢
:

The parameter ½ measures the rate at which past experience decays, where
½ 2 [0; 1]. When ½ is equal to one, all observations get the same weight in
the agent’s score. While when ½ < 1 the weight put on the current per-
ceived payo¤ remains uniformly bounded away from zero, though it might
evolve over time. A parameter ½ = 1 may be interpreted as representing the
agent’s belief that the environment is …xed over time, therefore all observa-
tions carry the same weight, while ½ < 1 may represent the belief that the
environment is changing hence the last observation weighs more than previ-
ous observations. The agent augments his experience counter for the action
chosen in period t by one, though he is allowed to augment his experience
counter by a fraction ° for an unplayed action. Intuitively, as the agent does
not have direct experience with unplayed actions, although he might obtain
(perfect) information regarding their performance, he may treat the passing
period as providing some experience with unplayed actions. This parameter
°, like ½, can also be interpreted as capturing the agent’s attitude regarding
the dynamic nature of the environment; if the environment is believed to be
changing then the mere fact that a period has elapsed carries information
regarding the possible value of an action. If ° = 0, the agent behaves as if
he had no experience with an unplayed action this past period, whereas if
0 < ° < 1, he only considers that he has had some partial experience with
unplayed actions. If ° = 1 he feels he has had full experience with unplayed
actions in the current period.

Suppose that agent partially discounts the payo¤ information he obtains
from unplayed actions. Then, it seems intuitive that he may also partially
discount the experience he obtains in the current period from an unplayed
action. As we shall see in the next section, as long as 0 < ± = ° < 1 the
agent utilizes the information he obtains in the current period “optimally,”
i.e., his “perceived per-period payo¤” for an unplayed action is equal to its
objective payo¤.

Scores for any action ai are updated using information from the previous
score, the perceived payo¤ of the action and the subjective experience that
agent has had with that action. Speci…cally, the agent uses his experience
counter with an action to give weights on the previous score and the currently
perceived payo¤ from the action. In particular, the score of action i in period
(t+ 1) is given as:
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sit+1 =
½N i

t

N i
t+1

sit +
1

N i
t+1

~¼i (!t) :

That is, the score in period (t+ 1) is a convex combination of the previous
score and the perceived payo¤ in the current period for the played action,
where the weights on the previous score and the perceived payo¤ are in
accordance to the experience the agent has had so far with this action. The
same weights apply for unplayed actions, however, it is a convex combination
only in the case that ° = 1.

So far we have discussed the manner in which the agent ranks his strate-
gies at any time, and how new information causes the ranking to be updated.
We now turn to the discuss the behavior rule the agent uses to select among
the actions. Denote the behavior rule by ' = ('1; '2; :::) where 't(st) is
the behavior rule at time t and st is the vector of scores at time t. That is,
't(st) 2 ¢(A); where ¢(A) is the set of probability distributions over the
actions. We …rst suppose that at each period the agent chooses (determin-
istically) the action with the highest assessment, i.e., the agent is myopic.
Formally,

't(st)(a
j) = 1 for j = arg max

i=1;::;I
sit

't(st)(a
k) = 0 for k 6= j:

We also consider a di¤erent behavior rule which allows the agent to ex-
periment with each action in…nitely often before behaving myopically. Such
a stochastic choice rule involves experimentation by the agent with possibly
suboptimal actions. However, as experience accumulates, the agent’s con…-
dence in his assessments is required to grow, restricting the agent’s use of
inferior actions. Formally, the behavior rule is assumed to possess the fol-
lowing two properties. Let ³t = (!1; !2; :::) be the realization of states of the
world up to time t.

De…nition 1 Given a vector of score vectors s = fstg1t=0, we say that the
behavior rule ' = f'tg1t=1 is asymptotically myopic relative to s if for some
sequence of strictly positive numbers f"tg with limit zero, for every t, 't(st)
comes within "t of maximizing the agent’s payo¤ given the score vector st.
That is
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X

aj2A
't(st)(a

i)st(a
i) + "t ¸ max

aj2A
st(a

i):

In the de…nition of asymptotic myopia we are following Fudenberg and
Kreps (1993). Asymptotic myopia allows the agent to play slightly inferior
actions with large probability, or he can use grossly inferior actions, relative to
the scores, with very small probability, as long as the average suboptimality is
getting arbitrarily small. When the score vector is derived from an updating
rule, i.e., st( ³t), asymptotic myopia requires that "-optimality holds for each
³t.

De…nition 2 A behavior rule ' follows random experimentation if for some
strictly positive number ®, each action ai 2 A is played with a probability not
smaller than ®=t at time t, i.e., 't(st)(a

i) ¸ ®=t.

The simplest rule that satis…es asymptotic myopia and follows randome
experimentation is the following:

't(st)(a
i) = 1¡ ®= (jSjt) for k = argmax

aj2A
st(a

i)

and

't(st)(a
i) = ®= (jSjt) for i 6= k:

A direct application of Borel-Cantelli lemma implies that rate of experimen-
tation required from a behavior rule following random experimentation is
su¢cient to ensure that each action is played in…nitely often. The main
goal of introducing experimentation is to understand which patterns of be-
havior result from an agent that is myopic before enough experience with
di¤erent actions is accumulated from patterns of behavior that are robust to
this amount of experience with all actions. As the analysis will show, some
learning rules, time-averaging to name one, perform poorly in the absence
of experimentation but asymptotically pick the optimal outcome with this
amount of experimentation. For other rules, adding experimentation is not
enough to induce convergence to the action with the highest expected payo¤.

We brie‡y mention the di¤erent learning rules nested in the parametric
adaptive form presented above. In particular, when ± = 1 and ° = 1 di¤erent
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models of belief learning are spanned by di¤erent values of ½. The rule
specializes to …ctitious play when ½ = 1, and initial scores correspond with
prior beliefs about the value of the di¤erent actions. Cournot learning is
achieved for ½ = 0.

Reinforcement-learning type models are realized when ± = 0. For exam-
ple, scores that measure the time-average performance of each action are a
special case where ± = 0; ° = 0; ½ = 1: Also, averaging where the weight
on current perceived payo¤ does not vanish, while assessments of unplayed
actions remain unchanged, such as in Sarin and Vahid (1999),2 correspond
to ± = 0; ° = 0; ½ < 1. Other reinforcement learning models which use the
cumulative reinforcement learning rule, where current scores are discounted
by Á; and the payo¤ of the action currently taken is added to the scores of
that action, are easily included by the addition of one parameter.

Also, our stochastic decision choice rule with random experimentation
and asymptotic myopia allows choice to be stochastic as is often assumed in
traditional reinforcement learning models and is introduced in the stochastic
version of belief-learning rules like …ctitious play. We postpone the discussion
of how several stochastic choice rules (e.g. stochastic …ctitious play) are
nested in this choice rule.

3 Analysis
Some additional notation and de…nitions will prove to be useful in the analysis
of the model. When the individual chooses deterministically, some of the
results will depend upon the initial scores of the agent. We say that the
initial scores of the agent are realistic if, for each action, they are not below
the lowest payo¤ an action can give. Initial scores are said to be pessimist if
they are below the minimum payo¤ from an action, for all actions.

De…nition 3 Initial scores are realistic if sj0 ¸ ¼jmin for all j. Initial scores
are pessimistic if sj0 · ¼jmin for all j.

Let ¼imin denote the minimum payo¤ that action ai gives. Then the
maxmin action amaxmin and the maxmin payo¤ ¼maxmin are de…ned as follows.

2Sarin and Vahid (1999) assumes …xed weights on current assessments and current
payo¤s, therefore, our case is asymptotically equivalent to their model. This is all that is
needed to get qualitatively similar behavior.

10



De…nition 4 amaxmin is the maxmin action if it gives the highest minimum
payo¤, i.e. it solves argmaxai ¼

i
min. The maxmin payo¤ is the minimum

payo¤ that amaxmin gives.

We shall denote the objective expected payo¤ of ai by ¹¼i. For convenience,
we assume that all ¹¼i are distinct and …nite. We also suppose that the
minimum payo¤ the agent may obtain from the choice of any action ai, ¼imin
is unique. As we had assumed that all minimum payo¤s are distinct, the
amaxmin is unique. We now begin our analysis of the model. We …rst consider
the following parameter cluster.

3.1 ± = 0; ° = 0; ½ 2 [0; 1]
This corresponds to the case where the agent does not update his scores of
unplayed actions (as ± = 0), and where the current period does not count
as experience for unplayed actions (as ° = 0). The agent may not update
his scores of unplayed actions simply because he may not know what these
payo¤s would have been. Hence, this case is relevant for situations where
the agent does not know the payo¤ matrix and he does not observe the state
of the world. It may also be relevant in situations where the agent knows
the payo¤ matrix but does not update his information regarding it because
of the deliberations costs involved.3 Given that the agent does not use this
period’s information in updating his assessments of unplayed actions, it seems
natural that he does not take into account this period’s experience to update
his (experience) counters for the unplayed actions.4

Two distinct cases arise for this parameter cluster. When ½ = 1, each unit
of experience with an action chosen previously is given the same weight as
the current experience from the chosen action. Hence, past experience is not
discounted relative to the current experience. As this rule gives decreasing
weight to current payo¤s relative to the entire past, the payo¤s the agent ex-
periences early may in‡uence the choice of actions and therefore future scores
and consequently the action the agent converges to choose. In particular, the

3See Conlisk (1996) for a discussion of the importance of deliberational costs in eco-
nomic decision making.

4Camerer and Ho (1999) refer to the case where ± = 0 as the reinforcement learning
case because of the minimal information the agent uses in updating her assessments. Most
authors, however, de…ne reinforcement learning in a di¤erent way, even though updating
assessments in such models uses only minimal information.
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score of each action ai is the time average of the payo¤s the agent has re-
ceived from ai so far. Hence, if an agent converges to choose an action aj,
its score converges to its expected payo¤ ¹¼j. Proposition 1 states that choice
does indeed converge in this case. However, we cannot state which action
the agent converges to choose because of the importance of initial periods of
play.

The other case we consider involves supposing that 0 · ½ < 1. In this
case, the agent always places positive weight bounded away from zero on the
current payo¤.5 In this case, Proposition 1 shows that choice does converge
even while assessments do not. If the agent is realistic then he converges
to the maxmin action. We can also show that he converges to his maxmin
action among all the actions he has ever chosen, which in return depends on
the particular history of realizations. It is easy to see that a pessimist will
choose only one action forever: The action that has chosen initially since it
had the highest initial score.

Proposition 1 If ½ = 1, the agent converges to choose some action, the
assessment of which converges to its expected payo¤. If 0 · ½ < 1 then, along
any path of play, the agent converges to the action with the highest minimal
payo¤ among all actions taken along the path, even though his assessment
for this action does not converge. If the agent is an optimist he converges to
amaxmin.

Proof. Suppose ½ = 1 and that the individual does not converge to any
action. Then he will choose more than one action in…nitely often given
that A is …nite. The assessment of each of these actions will converge to
their expected values which we have assumed to be distinct. But, this is a
contradiction as the individual will choose only the strategy with the highest
assessment.

Let 0 · ½ < 1. Suppose that the individual plays strategy ai at some
time, and suppose that the individual has only ever chosen strategies ak 2 ~A,
and that ¼imin > ¼

k
min for all ak 2 ~A. Suppose that the individual converges

to a strategy ak 2 ~A, ai 6= ak. Then, at some time the agent will experience a
long enough run on the worst payo¤ ak can give and this will ensure that skT <
¼imin · siT for some …nite time T . The latter inequality can be deduced from
the fact that action i has been played in the past and has been abandoned.

5Note that when ½ = 0, the score and an action is equal to the most recent payo¤ it
recieved.

12



Consider that last occurrence of this; at that point, it must be that the payo¤
the agent got from the action was below its assessment at the time. At time
T , the agent will switch to ai. Hence, the agent cannot converge to any action
other than ai. The above argument also applies for any action ak 6= ai that
the agent plays in…nitely often. Hence, the individual cannot cycle among
actions. To see that the agent can converge to ai, it su¢ces to consider the
situation in which the individual assesses the payo¤ from all ak 2 ~A to be
lower than ¼imin, and that of action ai as being higher. At such states, which
clearly have a positive probability of being reached from all other states, the
individual will choose only ai.

Suppose 0 · ½ < 1, and that the individual is an optimist. This ensures
that the individual will converge to play his maxmin strategy at some time,
because in…nite play of any other strategy would result in a long enough run
of the worst possible payo¤ from that strategy. Now, the argument in the
above paragraph su¢ces to conclude the proof. ¥

The result reveals the sharp contrast in behavior induced by ½. In partic-
ular, it reveals that behavior is not continuous in ½. An interesting case arises
where 0 · ½ < 1 and ½ converges to zero. For any positive value of ½, as long
as N j

0 > 0, we get that in the limit, the agent’s next period assessment for an
action he chose in the current period is equal to the payo¤ he obtained from
that action, and the assessments of unplayed actions remain unchanged. It
is readily seen that even in this case, a pessimist will stick with the action
chosen initially and an optimist will converge to playing the maxmin action.

Proposition 2 With asymptotic myopia and random experimentation, (a)
if ½ = 1, play converges to the payo¤-maximizing action. (b) if 0 · ½ < 1,
the proportion of time in which the agent chooses amaxmin converges to one.

Proof. For part (a), note that the assessment of each action is a time average
of its history of payo¤s, and since each action is played in…nitely often, all
assessments converge to the objective expected payo¤. Since expected payo¤s
are distinct, asymptotic myopia implies that play converges to the payo¤-
maximizing action. As for part (b) the following steps are a sketch of the
proof. First, note that random experimentation ensures that the score of each
action is in the range of the support of the payo¤s of that action eventually.
Also, for each action, the weight placed on the current payo¤ in the updated
score is bounded away from zero. Then, there exists a time T1 < 1 (not
necessarily bounded) such that sj < ¼maxminmin with probability one for all
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aj 6= amaxmin . This follows from considering a sequence of play in which the
agent does not experiment and the realization of the state of the world is such
that the score of the intended action goes below ¼maxminmin for all actions. This
sequence has a positive probability bounded away from zero, and therefore,
it will eventually happen with probability one. Finally, at this point the
agent intends to play amaxmin but could experiment with some action aj

often enough so that the score sj > smaxmin. Note that the probability
of this event is declining to zero over time. If this happens, the agent will
intentionally play aj. Therefore, the probability that sj < ¼a

maxmin

min is positive
and bounded away from zero and increasing. Hence the probability of leaving
amaxmin declines to zero over time while the probability of leaving any other
aj goes to one. This ensures that the proportion of time goes to one as
argued.¥

Combined with Proposition 1, this result reveals that random experimen-
tation and asymptotic myopia results in better choices when ½ = 1, whereas
it has no signi…cant e¤ect when 0 · ½ < 1. The latter reveals the robustness
of the Sarin and Vahid (1999) maxmin result.

3.2 ° 2 (0; 1] ; ± ¸ 0; ½ = 1

This wide range of the parameters includes the familiar …ctitious play as
a special case where ° = 1; ± = 1. Note …rst that when ° = 1 all the
action-speci…c counters are equal and measure time, while when ± = 1, all
scores are being updated with the correct payo¤s regardless of whether the
action is played that period or not. Hence, the rule behaves like …ctitious
play with initial scores interpreted as the agent’s expected payo¤ for each
action given his prior belief about the environment. While it is immediate to
see why …ctitious play converges in this environment to the expected-payo¤
maximizing action, we will show that this is the case for any learning rule
for which ° = ± > 0 (and ½ = 1), since the “perceived per-period expected
payo¤” when the action is not played and its objective expected payo¤ are
identical. The only candidate for a limit of such learning rules is the expected
payo¤ maximizing action.

As ° > 0 a period counts as a positive fraction of experience for each un-
played action. The degree of payo¤ updating for unplayed actions varies with
±: it can go from no updating at all (± = 0) to in‡ation of the objective payo¤s
(± > 1). The main result in this section is that asymptotic behavior is of two
qualitative types depending on whether the ratio ±=°. This ratio determines
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the relationship between the “perceived per-period expected payo¤” when
the action is not played and its objective expected payo¤. Play converges
either to a single action or to a subset of actions that are played with positive
frequencies. Loosely speaking, the set of candidates to be played asymptot-
ically is determined according to how their “perceived per-period expected
payo¤” (when played and when not) relates to that of the expected-payo¤
maximizing action.

To illustrate this point, assume for simplicity that expected payo¤s are
positive and consider the case that ±=° < 1. If the expected-payo¤ max-
imizing action is not played asymptotically it will be shown that its score
converges to (±=°)¹¼max which is its “perceived per-period expected payo¤”.
Any other action with an objective expected payo¤ above this threshold is
a potential limit of play; since once such an action is played with high fre-
quency, its score gets closer to its expected value, while the score of all other
actions becomes lower than (±=°)¹¼max, which implies that the action is likely
to be played even more frequently.. Hence the agent converges to play one
of these potential actions. Note that when ± = °, the only such action is the
expected-payo¤ maximizing action. When ±=° > 1, it can easily be shown
why play cannot converge to a single action if there is at least one action
besides the optimal one, say ai, for which (±=°)¹¼i ¸ ¹¼max: Suppose play
converges to a single action, then its score must be approaching its expected
value, however the score of ai converges to ±=° times its expected payo¤,
hence eventually ai appears better than the action to which play converges,
which is a contradiction. Hence, it must be that play switches between at
least two actions, i.e., the asymptotic frequency of more than one action is
positive although play is deterministic.. To summarize,

Proposition 3 (a) When ¹¼max > 0 and ± > ° > 0, or ¹¼max < 0 and
° ¸ ± ¸ 0 a subset of actions for which (±=°) ¹¼i ¸ ¹¼max are played a positive
fraction of the time. The scores of these actions converge to the same number,
solving the system of equations

S =
®i¹¼i + (1¡ ®i) ±¹¼i

®i
:

(b) When ¹¼max > 0 and ° ¸ ± ¸ 0, or ¹¼max < 0 and ± > ° > 0 play converges
to some action which satis…es ¹¼i ¸ ±

°
¹¼max.
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Proof. Given ½ = 1, the score of any action ai at time (t+ 1) is,

Sit+1 =
1

N i
t+1

tX

¿=1

¡
I i¿e¼i¿ + (1¡ Ii¿ )±e¼i¿

¢

where Ii¿ is the indicator function for playing action ai at time ¿ , and

N i
t+1 = t®

i
t + t(1¡ ®it)°

where ®it denotes the frequency in which action ai has been played up to time
t. Sit+1 can be re-written as,

Sit+1 =
1

®it + (1¡ ®it)°

Ã
1

t

tX

¿=1

±e¼i¿ +
1

t

tX

¿=1

(1¡ ±)I i¿e¼i¿

!

As t becomes large, the law of large numbers implies that the …rst term
in the brackets gets closer to ±¹¼i. Since the choice of action ai at time t
is independent of the realization of the state at time t, condition on ®it,
it must be that as t becomes large, limt!1 1

t

Pt
¿=1(1 ¡ ±)I i¿e¼i¿ gets closer

(1¡±)®it¼i; that is, each term can be viewed as a product of two independent
random variables where I i¿ gets values of 1 and 0 with probabilities ®it and
(1 ¡ ®it) respectively. Therefore, the score at time t + 1 far in the future is
approximately given by

Sit+1 ' 1

®it + (1¡ ®it)°
¡
®it¹¼

i + (1¡ ®it)±¹¼i
¢
: (1)

Hence, if the frequencies of play converge, the score converges to a number.
We are left to show that the frequencies converge and then to observe what
are the possible limits for both the frequencies and the scores.

Note …rst, that the score is monotonic in the frequencies. It is monotoni-
cally increasing (decreasing) when (°¡ ±)¹¼i is positive (negative). Assuming
that the frequencies of play indeed converge, the score of unplayed actions
converge to ±¼i, while the scores of all actions for which the frequencies con-
verge to a positive number must converge to the same number, which should
be at least as high as the score of all unplayed actions since choice is myopic.
These conditions imply that the limit scores frequencies and scores must solve
the system of equations induced by these conditions, i.e.,

Si = lim
t!1

Sit = ±¹¼
i for ai such that ®i = lim

t!1
®it = 0 and
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Sj = lim
t!1

Sjt =
±¼j + (1¡ ±)®j¼j
®j + (1¡ ®j)° for aj such that ®j = lim

t!1
®jt > 0

subject to ®k ¸ 0,
X

®k = 1, Sj = Sj
0
for all aj; aj

0
such that ®j; ®j

0
> 0,

and Sj ¸ Si if ®j > 0 and ®i = 0.

Consider the case that ¹¼max > 0 and ± > ° > 0, and suppose that there
is at least one action ai such that ±

°
¹¼i ¸ ¹¼max. Suppose that this action is

played at a frequency lower than the frequency implied by the solution to
the above system of equations. Since the score is monotonically decreasing
in the frequency, as long as this frequency is below this limit, it must be that
eventually this score is above the scores of actions that are supposed to be
unplayed; this follows since the score of the action must be at least as high as
its limit value which is in return higher that the score of the action that are
unplayed in the limit. Hence the frequency of these action will decline from
that point onwards towards zero. Moreover, this score must then eventually
becomes higher than the score of other actions that are supposed to be played
with positive frequency. Hence, the frequency of action ai must increase while
the other frequencies decrease towards their limit values.¥

Several special cases of this Proposition are worth highlighting. When
° = 1 and ± = 0 we get a behavior that exhibits “loss aversion.” Speci…cally,
for both ½ = 1 and ½ < 1, any action with ¼imin > 0 is absorbing. That
is, the …rst time the agent chooses an action that ensures him only gains he
never switches away from it. This arises because with this parameter cluster
unplayed actions are averages with zero using the same weights as are used
for played actions, since ° = 1. In the case of ½ < 1, if there is an action
with ¼imin > 0, then any action with ¼kmin < 0 will be eventually abandoned.
Consequently, if the minimal payo¤ of the expected-payo¤ maximizing action
is negative, this implies that play will never converge to it regardless of initial
conditions.6

In the case of ½ = 1, if ¹¼max < 0, the Proposition implies that each action
ai is played with positive frequency and we get an analytical solution for the
frequencies:

®i =
¦i6=j¹¼j

§k (¦j 6=k¹¼j)

Conjecture 1 Proposition 3 holds under random experimentation and as-
ymptotic myopia.

6If ¼i
min < 0, every action is chosen in…nitely often.
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This conjecture still needs to be veri…ed. However, it should be true since
the limit points of the learning process are identi…ed by a system of equa-
tions concerning the limit scores which are (fully) determined by the limit
frequencies in which the actions are played, which in turn are not e¤ected by
random experimentation.

3.3 ° = 0; ± > 0; ½ = 1

This parameter cluster corresponds to the case in which the agent averages
the payo¤ received for the played action with its past score with the weights
implied by the subjective experience with the action. However, unplayed
actions are treated di¤erentially, for which the perceived payo¤ is equal to
± times the objective payo¤. In particular, it possesses the same sign as
the objective payo¤. However, the subjective experience with the action
does not update. Consequently, the perceived payo¤ is added to the past
score of the unplayed action. The implied behavior of such a rule resembles
the old saying “the grass is greener on the other side.” An action with a
positive expected payo¤, say ai, that has not been played for a while looks
lucrative with time, since while the played action(s) are being averaged with
the received payo¤s, hence are moving towards their expected payo¤s, the
score of ai rises in positive amount on average.

A number of results consequently arise. If at least one action has a positive
expected payo¤ then all actions with negative payo¤s are eventually aban-
doned. Also, each action with positive expected payo¤ is played a positive
fraction of the time. Similarly to the behavior investigated in the previous
section, the asymptotic behavior looks like a mixed strategy. Formally,

Proposition 4 If ¹¼max > 0, each (and only) action ai with ¹¼i > 0 is played
with a positive frequency asymptotically.. The frequency of play increases
monotonically in the expected payo¤. If ¹¼max < 0, then play converges to an
action and it can be any action.

The proof of the proposition is in the spirit of the proof of Proposition
3 with the observation that the expected move in the score of an unplayed
action is in the direction of its expected payo¤ and at a rate that is bounded
away from zero.

When ± = 1, we can solve analytically for the asymptotic frequencies of
play. Each action with a positive expected payo¤ is played with a probability
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that is proportional to its expected payo¤, i.e.

®i =
¹¼i

§k¹¼k

It is interesting to note the similarity between the asymptotic behavior of
this rule and that of a variation of “reinforcement learning” where scores
are updated for all actions in a cumulative manner and are normalized to a
probability vector using linear adjustment. This is the full information case
with linear adjustment analyzed in Rustichini (1999).

3.4 The RE model

Much attention has been given to the reinforcement learning model pro-
posed by Roth and Erev (1995, 1998). In this section we show that with an
additional our parametric form spans their basic model and many others (in-
cluding the “experience-weighted attraction learning model of Camerer and
Ho (1999)). We brie‡y discuss the formulation and results for this variation.
Suppose we add a parameter Á so that the scores are updated in the following
manner

sit+1 =
ÁN i

t

N i
t+1

sit +
1

N i
t+1

~¼it:

Note that when Á = ½ we are back to our parametric adaptive model. If we
set ½ = 0; Á = (0; 1]; N i

t = 1, then

sit+1 = Ásit + ¼
¡
ai; !t

¢
(2)

skt = Áskt (3)

which gives us several variants of the score updating procedure of “basic
model” of Roth and Erev. However, in the spirit of this paper, rather than
considering a speci…c function converting scores to choice probabilities, we
investigate the behavior of myopic agents and agents who are asymptotically
myopic and experiment.

With myopic behavior the following behavior arises: (a) Each action such
that ¼imin > 0 is absorbing;7 (b) If for all actions ai; ¼i > 0 and ¼imin < 0,

7However, play can converge to some action aj with ¼j
min < 0 with ¼j > 0.
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then play can converge to any action; (c) If for all actions ai, ¼i < 0 then
each action is played in…nitely often.

The intuition for the second result is that from any initial scores, any
action gets played for the …rst time with positive probability since ¼kmin < 0
for all other actions. Conditional on being play, there is a positive probability
that it is never abandoned since ¼i > 0. The third part follows immediately
since the scores of actions which are played in…nitely often declines without
bound.

For the case of Á = 0 we get a di¤erent pattern of behavior — any action
ai with ¼imin > 0 is absorbing, while any action ak with ¼kmin < 0 is transient.

Roth and Erev transform scores into probabilities of choice in a very
speci…c manner — they assume

P it =
sitP
k s

k
t

where P it is the probability of choosing action ai in time t. In the case
where all payo¤s are positive, this rule leads to convergence to the expected-
payo¤ maximizing action (Rustichini 1999). In stark contrast to the behav-
ior implied by this speci…c choice rule, agents who randomly experiment and
are asymptotically myopic do not behave qualitatively di¤erent from my-
opic agents. In the particular case of all positive payo¤s, such agents could
converge to anything.

4 Extensions
There are several extensions to the model suggested in this paper that may be
considered. Firstly, the analysis could be extended to decision environments
which are not stationary. It appears to us that our qualitative results should
also hold in environments which are Markovian. The analyses should also
be extended to games with many players. Many of the recent applications of
adaptive learning models have been to games. It would be interesting to see
how our results extend to various classes of games.

Thirdly, it would be nice to consider more general perceived payo¤ op-
erators. As we mentioned in footnote 1, we believe that most of our results
would tend to the framework in which the perceived payo¤ of an action is
a positive linear function of its expected payo¤, and more generally, to a
non-linear sign-preserving monotonically-increasing function of the expected
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payo¤. This allows us to consider a much richer class of rules by which
objective payo¤s are transformed to perceived payo¤s.
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