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Abstract

We consider the portfolio delegation problem in a world with potentially
incomplete contingent claim markets. A principal hires an agent to manage a

portfolio. When the agent has limited liability (that is, there is a lower bound on

the compensation contract), she may have an incentive to take on excessive risk.

With complete markets, the precise nature of the risk the agent may take on is

a large short position in the state with lowest probability, and a long position

in every other state. Our main result is that, with limited liability and a large

number of states, incentive compatibility alone restricts the feasible contract to

be either a 
at one or one with exactly two compensation levels (equal to the

lower and upper bounds on compensation). We examine the e�ectiveness of

Value at Risk compensation schemes in this context. An appropriately set VaR

scheme can be e�ective at controlling the size of the maximum loss su�ered
by the portfolio. However, in general, we do not expect it to attain the same

outcome as the optimal contract.
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1 Introduction

The portfolio delegation problem studies the agency problem that arises when an

investor (or \principal") contracts with a money manager (or \agent") to invest funds.

An important real-world feature of this agency relationship is the limited liability of

the agent: the principal cannot force the agent to share losses on the investment. For

example, the agent may be a fund manager or a trader at an investment bank. In

the former case, the contract usually has a �xed component that represents a lower

bound. In the latter, the agent may be �red if the portfolio performs poorly, but

cannot be forced to share in large losses.

In this paper, we study this principal-agent problem, and characterize the opti-

mal incentive scheme with limited liability. A unique feature of our analysis is that,

unlike existing literature on the delegated portfolio management problem (e.g., Bhat-

tacharyya and P
eiderer, 1985, and Stoughton, 1993), we describe the solution in a

contingent claims model. Our main result is that, if the limited liability constraint

binds at all and markets are complete, then the optimal contract takes a very spe-

cial form: the agent gets a 
at fee and gets a bonus if a large enough return on the

investment is obtained. We call this a \bang-bang" contract.

The contingent claims model highlights the role of limited liability in encour-

aging the agent to take on excessive risk. With complete markets, a feasible strategy

for the agent is to hold a portfolio that has a large negative payo� in the lowest prob-

ability state, and a positive payo� in every other state. We show that one implication

of this is that, if the lowest probability state has small enough probability, then the

only feasible (i.e., incentive compatible) contracts are close to either the 
at contract,

in which the compensation does not depend at all on the outcome, or the bang-bang

one.

One of the main roles played by the principal in our model is that he o�ers the

agent a chance to gamble. Limited liability for the agent is equivalent to the prin-

cipal underwriting all losses. It is, therefore, interesting to examine the relationship

between our work and recent regulation designed to control excessive risk taking by

�nancial institutions. Banking regulation now requires banks to report the Value at

Risk (VaR) of their portfolios.1 This, and related measures of risk, are intended to re-

duce excessive risk-taking. One reason given for the imposition of such risk measures

1Value at Risk is de�ned in Section 4 below.
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is the limited liability of most �nancial institutions and money managers.

However, a limit on some risk measure such as VaR is only one feature of a

contract, and its implications must be studied in the context of the complete con-

tract, which includes a description of the compensation scheme. As a benchmark, we

compare our results to a linear compensation scheme with a VaR limit. We call this

a VaR scheme. We show that, if there are only two securities, the two schemes are

identical. However, with three or more securities, the VaR scheme is not optimal.

We argue that the contingent claims framework is a natural one in which to

study risk-taking behavior by an agent. It highlights the nature of the risks an agent

will take under limited liability: large short positions in low probability states to

�nance long positions in high probability ones. While we do not characterize the

optimal contract in the general case, the model points to the strong implications of

incentive compatibility when there are a large number of states: the only incentive

compatible contracts are essentially 
at, in the sense that the payment to the agent,

when positive, is constant across realized wealth levels. This is consistent, for example,

with the 
at fee contracts often observed in the mutual fund industry.

The contingent claims framework also highlights one of the downsides to �nan-

cial innovation. We study the problem in an incomplete markets setting in general,

with complete markets as a special case. Financial innovation leads to a greater

degree of market completeness. To the extent that this increases the ability of the

agent to bet on �ner partitions of the state space, it exacerbates the agency problem

inherent in portfolio delegation. If the incentive compatibility constraint is binding in

the presence of innovation, the contract will have to be continually revised to remain

incentive compatible.

Previous work in this area includes Bhattacharyya and P
eiderer (1985), Dybvig

and Spatt (1986), Grinblatt and Titman (1989) and Stoughton (1993). Bhattacharyya

and P
eiderer (1985) consider a problem in which agents have di�erent types, and are

required to invest. They point out that quadratic contracts are incentive compatible

in this context, and lead agents to reveal their true information. As with Stoughton

below, they restrict attention to exponential utilities and a normal distribution for

the risky asset. Dybvig and Spatt (1986) show that risk-sharing is e�cient if and

only if the investor and manager have \similar" preferences.

Stoughton (1993) considers a moral hazard problem in this context. Set �, the

set of types, to be a singleton. There is one risky and one riskless asset. The agent
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expends e�ort e which leads to a signal, that gives a posterior distribution H over

the return of the risky asset. Stoughton considers two cases: contracts that are linear

and quadratic in w.

Under linear contracting, the agent chooses �x, the weight on the risky asset,

since it is not incentive compatible for the agent to simply reveal the signal truthfully

and let the principal invest. SinceH is assumed known only to the agent, the principal

must compute VaR based only on F , the prior distribution. A VaR rule then prohibits

certain choices of �x.

If the revelation principle is applied, one can think of the principal directly

choosing �x, after the agent has revealed his signal to the principal. In this setting,

a VaR-rule is clearly redundant. Bhattacharyya and P
eiderer (1985) show that a

quadratic contract is incentive compatible for the agent, and leads to truthful revela-

tion of signal. Stoughton (1993) shows that, as the principal's risk aversion coe�cient

approaches zero, the portfolio induced by the optimal quadratic contract approaches

�rst best.

Grinblatt and Titman (1989) show that, if there is limited liability, the agent

has an incentive to take on a riskier portfolio than otherwise. The solution they

propose is that the loss (to the agent) of underperformance outweigh the gain from

overperformance. In our model, this solution is infeasible due to limited liability;

instead, we focus on the implications of limited liability for the set of feasible contracts.

Some of the work in this area, including Grinblatt and Titman (1989) under

partial equilibrium, Admati and P
eiderer (1997), Lynch and Musto (1997) and Das

and Sundaram (1998) considers contracts based on a performance benchmark. Dy-

bvig, Farnsworth and Carpenter (2000) show that the optimal contract may involve

the use of a benchmark, over and above portfolio performance. In our framework,

there is no natural benchmark to use. In any case, even if contracts were conditioned

on some benchmark, limited liability restricts the set of feasible contracts. Ou-Yang

(1998) considers the optimal contract in a continuous time setting, but with unlimited

liability.

Palomino and Prat (1999) also consider a moral hazard problem in this context.

They consider a setting in which portfolios are de�ned by their mean and risk measure

(that is unspeci�ed), and in which a unique e�cient portfolio exists. This appears to

rule out the standard mean-variance case of a minimum variance frontier that gives

rise to a continuum of e�cient portfolios. They characterize the �rst-best single period
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contract in their setting, and show that the �rst-best outcome cannot be achieved in

two periods.

Our paper shares some common features with Palomino and Prat (1999), most

notably the lower bound on the agent's compensation function. However, unlike their

paper, we do not presuppose the existence of a risk measure; indeed, such a measure

should depend on the preferences of the principal and agent, and should therefore be

endogenous to a model. Another point of departure is that there is a unique e�cient

asset in the setting of Palomino and Prat (1999), whereas our framework allows for

a continuum of e�cient assets.

The notion of bounds on compensation contracts has been explored in contract

theory by, among others, Innes (1990). Innes considers a risk-neutral principal (en-

trepreneur) and agents (investors), with moral hazard on the part of the principal. In

our model, the moral hazard problem relates directly to the agent (the party taking

the contract), rather than the principal (the party designing the contract). Hence,

limited liability can lead to the agent taking on excessive risk, a notion absent in

Innes' model.

Recent work on VaR based portfolio management includes Basak and Shapiro

(1999). In a continuous time framework, they �nd that a VaR rule leads portfo-

lio managers to be uninsured in the worst states of the world, and insure against

intermediate-loss states. This corresponds to our bang-bang solution. In our frame-

work, since every state of the world has positive probability, an appropriately chosen

VaR rule can limit the worst outcome. Basak and Shapiro further �nd that an ex-

pected loss based rule is more e�ective at controlling the size of the maximum loss.

This will necessarily hold in any context in which the probability in a VaR rule is

set higher than that of the lowest probability state. A discussion between desirable

properties of various of a risk measure and the degree to which various popular risk

measures satisfy these is contained in Artzner, et. al. (1998).

While moral hazard is certainly present in our model (since the agent cannot

be forced to choose a particular portfolio, but must be induced to do so), there is

no asymmetric information or costly e�ort. Jiang (2000) considers a general model

which involves both traditional moral hazard (costly e�ort) and the form present

in our model, and shows that the optimal contract can involve convex and concave

regions. Garcia (2000), in a setting with CARA preferences and normally distributed

asset returns, �nds that the optimal contract may be a �xed wage. In our setting,
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with a large number of assets and complete markets, a �xed wage contract is the only

incentive compatible one.

We describe our model in Section 2 below. The importance of limited liability

and the bang-bang solution are studied in Section 3. Section 4 compares the optimal

contract to a VaR scheme, and is followed by some concluding remarks in Section 5.

2 Model

A principal hires an agent to manage his investments. Since the agent possesses no

superior information or skill, we assume that the principal lacks the time to invest on

his own. The agent constructs a portfolio of �nancial assets at time 0. There is a �nite

set of states, S = f1; : : : ; Sg, one of which will be revealed at time 1. �s represents the

probability of state s, so that �s > 0 for all s, and
PS

s=1 �s = 1. Let � = (�1; : : : ; �S).

There are J securities that can be traded at time 0, where 2 � J � S. Security j

pays o� an amount ajs � 0 in state s.2 The J securities are linearly independent, so

there are no redundant securities. The S�J matrix of security payo�s is denoted by

A, and the price of security j is represented by qj.

A special case of this model, of course, is that of complete markets; that is,

J = S. In this case, lack of arbitrage implies a unique set of state prices that can

be used to price securities. Further, when markets are complete, we can construct

portfolios that are Arrow{Debreu securities, where security s pays o� 1 unit in state

s and 0 in every other state. These securities are priced via the unique state prices

vector. To sharpen intuition about the problem, when J = S, we will assume (without

loss of generality) that the securities are Arrow{Debreu securities.

At time 0, the value of the initial portfolio is w0. This is interpreted as the

amount of money the investor turns over to the agent to manage. We assume that

the wealth of the principal is unbounded, so that the portfolio can sustain any �nite

loss.

The goal of the investor is to maximize his expected utility at time 1. The

investor's utility is a function of time 1 wealth alone, and is represented by u(�). The
investor is assumed to be risk-averse, so that u00(w) < 0 for all w.3 Further, u(�) is
de�ned for all wealth levels in R.4

2Disallowing negative payo�s leads to a cleaner de�nition of a short position in a security.
3If the investor were risk-neutral, her utility-maximizing problem is potentially unbounded.
4This rules out certain functional forms, such as u(w) = w
 , but does permit the CARA form
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The investor chooses a compensation function, I(�), which is a function of real-

ized wealth alone. That is, the investor does not observe the realized state, and can

make compensation contingent only on the realized value of the portfolio, w.5

The manager chooses a portfolio taking this compensation function as given.

The utility function of the manager is denoted by v(�). The manager is weakly risk

averse, with v00(w) � 0 for all w. In particular, this permits the risk neutral case.

We assume that the compensation function is bounded below, so that there is

a maximum penalty that the principal can impose if the outcome is not satisfactory.

Without loss of generality, this lower bound is taken to be 0. Therefore, we have

I(w) � 0 for all w. Further, v(0) is normalized to 0, and v0(0) <1.6 Both u(�) and
v(�) are assumed to be twice di�erentiable and strictly increasing at all w.

Let xj be the number of units purchased of the jth asset, with x = (x1; : : : ; xJ)
0

representing the entire portfolio. The realized income of the portfolio at time 1 is

w1 = (w11; : : : ; w1S)
0, where w1s =

PJ
j=1 ajsxj for each s = 1; : : : ; S. With a slight

abuse of notation, we de�ne I(x) = (I(w11); : : : ; I(w1S))
0 to be the income of the

agent across states when portfolio x is chosen. Is(x) represents the s
th element of the

vector I(x).

The problem faced by the agent can therefore be described as

Problem (A) max
x

SX
s=1

�(s)v(Is(x))

subject to:
JX

j=1

qjxj � w0:

The problem faced by the principal is:

Problem (P) max
x;I(�)

SX
s=1

�(s)u (w1s � Is(x)))

subject to: x 2 argmaxProblem (A); (1)
SX

s=1

�sv(Is(x)) � v(Io); (2)

u(w) = � 1



e�
w.

5This is the easiest method of introducing an agency problem, and a need to control risk-taking
by the agent, in this context. If either the state or the portfolio were directly observed by the
principal, the principal could induce the �rst-best outcome.

6The requirement that I(w) � 0 is meaningless if v0(c)!1 as c! 0. In such a situation, there
would be no limit on the ability to penalize the agent.
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I(w) � 0 for all w 2 (�1;1) (3)

Above, (1) is the incentive constraint on the agent, (2) the participation con-

straint, and (3) the restriction on I(�), re
ecting the limited liability of the agent.

Note that the participation constraint is speci�ed in terms of a certain income level

from an outside o�er, Io. This allows us to examine the e�ects of changing v(�).
The gambles that an agent can make will be de�ned in terms of self-�nancing

portfolios. These are portfolios that cost zero in aggregate, and so are easily replicated

to achieve unbounded security positions. For convenience, we compare across self-

�nancing portfolios for which the Euclidean norm of the payo�s is 1.

De�nition 1 A self-�nancing portfolio is a portfolio x with
PJ

j=1 qjxj = 0 and

kAxk = 1.

Let F be the set of self-�nancing portfolios. This set is non-empty for any

subset of securities, Ĵ , with jĴ j � 2. Corresponding to every portfolio f 2 F are a

set of states in which the portfolio has a negative payo� and a corresponding set in

which it has a positive payo�. Let Sf = fs 2 SjPj2J ajsfj < 0g denote the negative
payo� states, and let Sf = fs 2 SjPj2J ajsfj > 0g denote the positive payo� ones.

These sets, of course, are mutually exclusive, with Sf [Sf � S. Further, asset prices

are assumed to satisfy no arbitrage, so both Sf and Sf are non-empty.

To build some intuition about our problem, we �rst show that the compensation

function must be bounded. Given a compensation scheme I(�), let xI = (xI1; : : : ; x
I
J)

0

be the portfolio chosen by the agent; that is, xI is a solution to Problem (A). xI is

referred to as the portfolio induced by I(�).

Proposition 1 If v � I is unbounded, then xI is unbounded.

Proofs of all results are relegated to the Appendix (Section 6).

This proposition makes precise the notion of excessive risk-taking with limited

liability. If v�I is unbounded, the agent sells short an in�nite amount of some security

ĵ, and assumes an in�nite long position in another security ~j. Limited liability ensures

that Is(x) � 0 for all s, and, if v � I is unbounded, v(Is(x)) ! 1 for some subset

of states (intuitively, states which the portfolio of securities ĵ and ~j has a positive

payo�).
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Since the principal is risk-averse, an unbounded portfolio xI leads to a utility

to the principal of negative in�nity, so can never be optimal.

Proposition 2 If I(�) is an optimal contract, then xI is bounded.

An immediate consequence of the proposition is that, if v(�) is unbounded (for

example, if the agent is risk neutral), I(�) must be bounded. Conversely, an un-

bounded I(�) (such as a linear, increasing function) can be optimal only if v(�) is
bounded.

Corollary 2.1 If I(�) is an optimal contract, then

(i) I(xI) is bounded.

(ii) xI can be implemented by an equivalent contract bounded above by maxs2S I(xI).

Therefore, without loss of generality, we can restrict attention to compensation

schemes that are bounded above.

As is usual in principal-agent models, we assume that, when indi�erent over

portfolios, the agent chooses the portfolio most bene�cial to the principal. Then, given

that I(�) is bounded, the agent picks a bounded portfolio. Note that this assumption

is less innocuous here than in many other moral hazard models. In a model where

the action set is �nite, for example, the principal can often strictly induce the desired

action by a slight strengthening of the binding incentive compatibility constraints

to strict inequalities. In our model, strict incentives to choose the desired portfolio

cannot be achieved without a contract that is decreasing in some range of wealth, as

demonstrated in example 1 below.

Example 1

Suppose that J = S = 2. The states have unequal probability, and the securities

are Arrow{Debreu securities. Let h; ` denote the states with high and low probability,

respectively. Consider a non-decreasing salary plus bonus scheme, which can be

implemented with one target level, t̂, and an associated bonus Î. That is, the agent

gets 0 if realized wealth w(s) satis�es w(s) < t̂, and Î if w(s) � t̂. Suppose further

that t̂ > w0
qh+q`

, so that it is not feasible to attain wealth t̂ in both states.

Then, any portfolio in the following class is utility-maximizing for the agent:

choose xh � t̂ in the high probability state, and let x` = w0�qhxh
q`

. In particular,
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a portfolio with a large long position in security h and a corresponding large short

position in security ` is utility-maximizing.

Suppose that the principal is highly risk-averse, and, of this set of portfolios,

prefers the one with xh = t̂, rather than xh > t̂. Given the compensation scheme

described above, this portfolio is only weakly implementable. A strict incentive to

choose xh = t̂ must necessarily involve a compensation scheme that has I(w) < I(t̂)

when w > t̂.

Compensation schemes decreasing over some range of wealth are not ruled out

by our assumption that the realized compensation is increasing in wealth. Such

schemes correspond to penalizing the agent for doing too well. In our framework, there

are no arbitrage opportunities. The only way for an agent to earn excessive wealth

in one state is by being exposed to an excessive loss in some other state. A penalty

for superior performance in our model could correspond to, for example, a costly

audit if the return exceeds some threshold. Retirement funds, for example, routinely

scrutinize the performance of managers who earn returns above some threshold, on

the principle that they must be taking on too much risk.

Any portfolio x that the principal can implement can be implemented with a

target scheme, de�ned below.

De�nition 2 (i) A targeted bonus scheme is de�ned by a pair (t; I) 2 RS�RS
+, with

ts � ts�1. The agent receives Ik if w1s = tk for some k, and zero otherwise.

(ii) A step scheme is de�ned by a pair (t; I) 2 RS �RS
+, with ts � ts�1 and Is � Is�1

for s = 2; : : : ; S. The agent receives zero if w1s < t1, Ik if w1s 2 [tk; tk+1) for some k,

and IS if w1s � tS.

A targeted bonus scheme, therefore, need not be monotonic. By de�nition, a

step scheme is monotonic.

The S income levels I1; : : : ; IS can all be taken to be equal, so that this de�nition

encompasses the 
at fee contract. It also includes the null contract (e.g. set Is = 0 for

all s; since Io > 0, the agent will refuse this contract), and a bonus scheme whereby

the agent gets a bonus b if a target level �t is hit (set t1 = �t; I1 = b, and (ts; Is) = (t1; I1)

for all s > 1).

9



Any portfolio that can be induced by any compensation scheme (increasing

or not) can be induced by an appropriate targeted bonus scheme. If the original

compensation scheme is non-decreasing, then the target scheme can, further, be a

step scheme.

Proposition 3 Consider any compensation scheme I(�), and the portfolio induced by

it, xI. The same portfolio is induced by an appropriate targeted bonus scheme, (t; I t).

Further, if I(�) is non-decreasing in w, then xI can be induced by a step scheme.

We therefore restrict attention to targeted bonus schemes, where both t and I

are bounded.

The problem of the principal can now be stated as:

Problem (P'): maxfxjgJj=1; fIsgSs=1
PS

s=1 �su(
PJ

j=1 ajsxj � Is)

subject to:
PS

s=1 �sv(Is) � v(Io); (4)
PJ

j=1 qjxj � w0; (5)

Is � 0 for all s = 1; : : : ; S; (6)

x is Incentive Compatible for the agent, given fIsgSs=1: (7)

The solution (x; I) to this problem is converted to a targeted bonus scheme

(t; I t) by a suitable permutation of states. The only goal of the permutation is to

ensure that t is non-decreasing, that is, to satisfy ts � ts�1 for s = 2; : : : ; S.

The contract, therefore, is de�ned by (x; I). Since x must solve the agent's

problem, we sometimes refer to I(�) directly as the contract, and to x as the portfolio

induced by the contract I.

3 Role of Limited Liability

Consider any bounded targeted bonus scheme, (t; I). Let �t and �I be the maxima of t

and I, respectively. We de�ne a limited liability portfolio to be one that achieves zero

compensation in states Sf for some self-�nancing portfolio f , and compensation �I in

states Sf . By replicating a self-�nancing portfolio often enough, the agent ensures

that w1s � �t for all s 2 Sf . Conversely, w1s < t1 for all s 2 Sf , so that Is(x) = 0 for

these states.
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The limited liability portfolio that maximizes the agent's utility is termed a

bang-bang portfolio. This latter portfolio describes the optimal gamble an agent

would like to take, and therefore characterizes an important implication of the limited

liability constraint.

De�nition 3 (i) Given a bounded targeted bonus scheme (t; I) and a wealth level

w0, a limited liability portfolio is a portfolio x such that (a)
PJ

j=1 qjxj � w0, and (b)

for some self-�nancing portfolio f , Is(x) = 0 for all s 2 Sf and Is(x) = �I for all

s 2 Sf .

(ii) A bang-bang portfolio is a portfolio �x that maximizes the agent's utility, over the

set of limited liability portfolios.

A limited liability portfolio, therefore, can be formed by choosing some portfolio

x that satis�es the budget constraint with equality, some self-�nancing portfolio f ,

and replicating f often enough to reach the highest target level in states Sf and fall

below the lowest positive income target level in states Sf . The set of limited liability

portfolios will therefore vary with the security structure and compensation scheme.

A bang-bang portfolio further depends on the agent's utility function, v(�). The
agent earns zero in states Sf , �I in states Sf , and an intermediate compensation level

in states Sn(Sf [ Sf). The following example illustrates this dependence on v(�).

Example 2

Suppose S = 4 and J = 3. The payo�s of the three securities across the four

states are, respectively, (0; 1; 1; 0)0, (1; 0; 1; 1)0, and (1; 1; 0; 0)0. � = (0:4; 0:2; 0:2; 0:2)0,

and qj = q for all j. Consider some bounded targeted bonus scheme, (t; I).

Clearly, the bang-bang portfolio will involve replications of one of the following

two self-�nancing portfolios: f1 = (� 1p
3
; 1p

3
; 0)0, or f2 = (� 1p

2
; 0; 1p

2
)0. Every other

self-�nancing portfolio leads to a lower payo�.

For these two portfolios, we have
f1 f2

Sf f1; 4g f1g
Sf f2g f3g
The utility of the agent from the optimal limited liability portfolio that includes

replications of f1 is

v1 = 0:6v(�I) + 0:2v(
w0

q
):
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From the optimal limited liability portfolio that includes replications of f2, the agent

obtains

v2 = 0:4v(�I) + 0:4v(
w0

2q
):

The bang-bang portfolio will be the portfolio that results in utility maxfv1; v2g.
Clearly, this depends on v(�).

In the special case of complete markets (that is, J = S), the bang-bang portfolio

can be characterized more fully. Let S = argmins2S �s be the set of states that have

(weakly) lower probability than all other states, with s denoting a speci�c element of

the set. S is clearly non-empty. Let �s denote the probability of any single state in

S.7

In this case, if I(�) is any compensation scheme that satis�es the limited liability

constraint, the bang-bang portfolio consists of a short position in some state s 2 S

and a long position in all other states.

Proposition 4 Suppose J = S, I(w) � 0 for all w, and I(w) > 0 for some w. Then,

the bang-bang portfolio earns the agent Is(x) = 0 for some s 2 S, and Is(x) = �I for

all s 6= s.

There is a continuum of bang-bang portfolios. Given any bang-bang portfolio,

adding another unit of portfolio f , the underlying self-�nancing portfolio, creates a

new bang-bang portfolio. Where necessary, we will assume that, of this set, the agent

chooses the portfolio that is best for the principal. We note again that implementation

is, obviously, a serious issue in this context.

The bang-bang portfolio describes one of the implications of limited liability.

Given any targeted bonus scheme (t; I), the agent has the option of choosing to

take an income of zero in states Sf , where f is the self-�nancing portfolio associated

with some bang-bang portfolio �x, and obtaining �I in states Sf . That is, the target in

states Sf is simply ignored. Incentive compatibility, therefore, must rule out the agent

deviating to the bang-bang portfolio. While this does not characterize all implications

of incentive compatibility, this intuition itself is strong enough to characterize the

optimal contract in some cases.

7All states in S have equal probability, by de�nition.

12



One such case is if the optimal contract is designed to induce a portfolio that

leads to the agent achieving an income zero in some set of states that can be reached

by a self-�nancing portfolio. In this case, the induced portfolio xI must be a bang-

bang portfolio.

Proposition 5 Let I(�) be an optimal contract. Suppose there exists a limited liability

portfolio f such that I(xIs) = 0 for all s 2 Sf . Then xI is a bang-bang portfolio.

This proposition contains the main implication of limited liability. If the limited

liability constraint binds in any states that are reachable by a self-�nancing portfolio,

then the only achievable portfolio is a bang-bang portfolio.

If markets are complete (that is, J = S), then, if the limited liability constraint

is hit in any state, the induced portfolio leads to zero compensation in some state

s 2 S and a constant positive compensation �I in every other state.

Corollary 5.1 Suppose that J = S, I(�) is an optimal contract, and I(xIs) = 0 for

some s 2 S. Then I(xIs) = 0 for some s 2 S, and I(xIs) = �I > 0 for all s 6= s.

Further, xs < xs for all s 6= s.

The size of the position in state s depends on the target wealth �t required to

achieve the income �I. Since the portfolio actually chosen is assumed to maximize the

principal's utility, the size of this position also depends on the portfolio the principal

wishes to induce. That is, the risk inherent in the portfolio is controlled through �t.

We call the compensation scheme in Proposition 3.3 a bang-bang scheme. If

markets are complete, this contract is interpretable as a salary plus bonus contract.

The agent gets a salary of zero in all states. In every state except s, she also gets a

bonus �I.

With a bang-bang portfolio, the expected utility of the agent is at least as high

as �(Sf)v(�I). When �(Sf) is close to 1, the agent has a strong incentive to deviate

from the induced portfolio to the bang-bang portfolio. In this case, this implication

of incentive compatibility (that the portfolio suggested by the principal o�er higher

utility to the agent than a bang-bang portfolio) restricts the set of portfolios that the

principal can induce.

Given a targeted bonus scheme, let f denote the self-�nancing portfolio associ-

ated with a bang-bang portfolio, �x. As before, Sf denotes the states in which f has a

13



positive payo�.8 Finally, let I = mins2Sf fI(xs) > 0g be the minimum positive income

obtained by the agent across all positive payo� states, and �I = maxs2Sf fI(xs) > 0g
be the corresponding maximum positive payo�.

Proposition 6 Consider a sequence (qk; �k)! (q; �), and an associated sequence of

self-�nancing portfolios, fk, and incentive compatible compensation schemes, Ik. If

�k(Sfk)! 1 then (�Ik � Ik)! 0.

That is, if the set of states in which the agent can earn a positive payo� has

a high probability, the compensation earned in all states s 2 Sf is either zero or

approximately equal to �I.

With complete markets, we have

Corollary 6.1 Suppose J = S. Consider a sequence (qk; �k) ! (q; �), and an as-

sociated sequence of incentive compatible compensation schemes, Ik. If �k
s ! 0 then

(�Ik � Ik)! 0.

In other words, as the probability of the lowest probability state becomes small,

the lowest positive compensation level (hence all compensation levels less than the

highest one) converges to the highest one.

One implication of Proposition 3.5 is that completing markets can exacerbate

the agency problem. Suppose that there are a countably in�nite number of states, and

the number of securities is increased. As the number of securities becomes large, the

agent is able to gamble on �ner sets of states, sharpening the incentive compatibility

constraint.

Proposition 7 Suppose the set of states is countably in�nite. As J !1, IJ ! �IJ .

That is, completing markets restricts the set of incentive compatible contracts,

and hence adversely a�ects risk-sharing between the principal and agent, especially

when the latter is the less risk averse party.

As Elul (1995) shows, in an economy with no delegation, adding new securities

can fail to be Pareto improving (in fact, can reduce all agents welfare) if markets are

8Note that the sets Sf and Sf are common across all bang-bang portfolios, since they do not
depend on the number of replications of f required to achieve the upper bound �I .
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su�ciently incomplete. Complete markets, however, imply perfect risk-sharing. How-

ever, in an economy with delegated portfolio management, while complete markets

do facilitate risk-sharing between principals, they intensify the agency problem.

In a situation with �nancial innovation, the contract o�ered to the agent may

need to be continually revised, if the incentive compatibility constraint is binding.

If there is a cost to such revision, or a lag in the process for any reason, �nancial

innovation (which lets the agent bet on �ner partitions of the state space) may lead

to incentive compatibility being violated, and the agent taking on excessive risk.

Two incentive compatible schemes of particular interest are the the 
at scheme

and the bang-bang one. The 
at scheme is de�ned by I(w) = �I for all w, and the

bang-bang one by I(w) = 0 if w < �t and I(w) = �I if w � �t.

Hence, if the number of states and securities is large, all incentive compatible

schemes approximate either the 
at scheme or the bang-bang one. Therefore, in this

case, case, limited liability strongly restricts the feasible set of contracts. The choice

between a 
at scheme and a bang-bang one will depend on risk-sharing considerations

between the principal and agent.

The problem of multiple optimal portfolios with a bang-bang scheme was dis-

cussed at the end of the previous section. Note that it applies just as strongly with

the 
at scheme. When compensation does not depend on the portfolio at all, the

principal can weakly implement any portfolio. However, since there is no reason for

the agent to choose any portfolio over any other one, it is di�cult to characterize the

principal's portfolio as the outcome we can expect. We can only make the weaker

statement, that the agent has no incentive to choose a large short position in any

security.

4 Value at Risk

A general de�nition of Value at Risk is provided by Jorion (1997). Let F (�) be the
probability distribution (over wealth at time 1, w1) induced by a speci�c portfolio, x.

Then, the value of risk (VaR) of the portfolio, given a probability p, is de�ned as a

loss amount,

L(p; x) = max f ~L j F (w0 � ~Ljx) = pg:

If F is strictly increasing, this can be written more simply as L(p; x) = F�1(p)�w0.
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That is, the VaR indicates the maximum amount that the portfolio will lose

with probability p. Given p, portfolios with a higher VaR are considered risky. In

applied portfolio delegation contexts, the agent is often given a target VaR, �L, in

addition to a probability p, and is required to ensure that the chosen portfolio, x,

satisfy L(p; x) � �L.

In our model, w1s =
PJ

j=1 ajsxs. Hence, the loss in any state s is just w0 �
PJ

j=1 ajsxj. To de�ne the VaR of a portfolio x, order the states and associated prob-

abilities in increasing order of w1s (that is, in increasing order of wealth at time 1).

Using these ordered states, de�ne state ~s as the state for which

~s�1X
s=1

�s < p;

and
~sX

s=1

�s � p:

The VaR of the portfolio, L(p; x), is then de�ned simply as L(p; x) = w0�PJ
j=1 aj~sxj.

Since the portfolio x is not directly observed in our setting, a VaR rule is not

enforceable. In some applied contexts, the VaR of the portfolio is self-reported by

the agent to the principal in a repeated game. The principal can then estimate the

empirical frequency of a loss exceeding the reported VaR in any given time period,

and compare this to p. For example, the Federal Reserve Board uses such a mech-

anism to adjust the capital requirements of banks. Banks whose losses exceed their

self-reported VaR with a frequency signi�cantly higher than p have their capital re-

quirements raised.

We abstract away from the enforcement and observability issue in our static

setting. The results of this section can therefore be interpreted as a best case scenario

for VaR: if VaR were perfectly observed and enforceable, would a VaR rule be as

e�ective in controlling excessive risk, or lead to similar outcomes, as the optimal

contract?

Since a VaR restriction by itself does not help de�ne the size of the position

taken by the agent in states in which the VaR restriction is irrelevant, we de�ne a

VaR compensation scheme to include an associated compensation scheme, Ir.

De�nition 4 A VaR compensation scheme consists of a triple (L; p; Ir), where (L; p)

is a VaR restriction and Ir(�) is a compensation scheme.
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Now, we consider the following question. Suppose I(�) is a contract that solves
the principal's problem; that is, I(�) is incentive compatible for the agent and optimal

for the principal in this class of contracts. Does there exist a corresponding VaR

compensation scheme, (L; p; Ir), that implements the same induced portfolio, xI?

Suppose, �rst, that Ir = I for all w. Then, a VaR rule is redundant at best. If

the extra constraint added by the VaR restriction is not binding, then it is redundant.

If it is binding, then it induces a portfolio di�erent from xI , and so must lead to lower

utility for the principal. That is, it is sub-optimal if binding, and redundant if not.

Therefore, a VaR compensation scheme (L; p; Ir) is interesting only if Ir(xIs) 6=
I(xIs) for some s. In terms of excessive risk-taking, a natural comparison is to com-

pensation schemes Ir that are unbounded above. Following Proposition 2.2 above, we

consider the case in which the agent's problem is potentially unbounded. If, for ex-

ample, the agent were extremely risk averse, there may be no need for a VaR scheme;

even a linear, increasing contract will induce an interior solution and a limit on the

risk taken by the agent.

De�nition 5 Given a compensation scheme I(�), the agent's problem is potentially

unbounded if v � I is unbounded.

One example in which the agent's problem is potentially unbounded is when

the agent is risk neutral, and I(�) is unbounded. This includes, but is not limited to,

the case of a linear I(�).
Consider the optimal action of the agent when presented with a VaR scheme

(L; p; Ir(�)). The problem of the agent is expressed as

Problem (A') max
x

SX
s=1

�(s)v(Irs (x))

subject to:
SX

s=1

qsxs � w0

V aR(x; p) � L:

Let xr be the portfolio chosen by the agent when faced with the VaR compen-

sation scheme (L; p; Ir). For any portfolio x, de�ne the maximum loss the portfolio

can su�er as L(x) = w0 � mins
nPJ

j=1 ajsxj
o
. If a VaR scheme L(p; Ir) results in a

maximum loss that is �nite, we term the scheme e�ective.
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De�nition 6 A VaR scheme (L; p; Ir) is e�ective if xr satis�es the VaR restriction

(L; p), and L(xr) <1.

That is, a VaR scheme is e�ective if the portfolio chosen by the agent is �nite

(i.e., has a �nite position in each security). The scheme is ine�ective if the agent

takes on an unbounded gamble, which leads to an in�nite short position in some

state. An ine�ective scheme, therefore, results in an unbounded loss for the principal

with positive probability. The requirement that xr satisfy the VaR rule is to prevent

vacuous rules that no portfolio can satisfy.

To motivate the rest of this section, we present an example on the e�ectiveness

of VaR in this setting.

Example 3

Suppose S = 3, and J = 2. The probabilities of the three states are (0:2; 0:1; 0:7)0.

The payo�s of the securities are (1; 2y; 0)0 for security 1, and (0; y; 0:5)0 for security

2, where y > 0. Further, q1 = 0:6, q2 = 0:3, and w0 = 6.

With two securities, there are exactly two self-�nancing portfolios, with f1 =

( 1p
2
; �p2) and f2 = �f1 = (� 1p

2
;
p
2).

Suppose the agent is risk-neutral (so that v(c) = c), and Ir(w) = maxf0; �wg,
for some � > 0. That is, Ir(�) satis�es limited liability, and is linear for positive w.

Consider the following VaR scheme: (L; p; Ir), where L = 4, and p = 0:25.

Suppose, �rst, that y = 0:1. Then, every portfolio x = (x1; x2) with q1x1 +

q2x2 = 6 su�ers a loss of 4 in state 2. Therefore, to satisfy the VaR rule, the chosen

portfolio xr must have a loss strictly less than 4 in every other state. Therefore, it

must be that xr1 > �4, and xr2 > �8. Alternatively, the chosen portfolio can include at
most 4

p
2 replications of f1 or f2. In this case, the VaR scheme is equivalent to a short

sale constraint on either self-�nancing portfolio, and is e�ective, since L(xr) = L = 4.

Next, suppose that y = 0:2. Then, every portfolio that costs 6 has a payo� of

4 (and hence a loss of 2) in state 2. In this case, the VaR rule is ine�ective. Consider

any portfolio ~x that satis�es the budget constraint, and let x = ~x+ zf2, where z 2 R

represents the number of replications of f2. Since the agent's problem is potentially

unbounded, the agent maximizes utility by letting z !1. This leads to an in�nite

loss in state 1, but with a probability 0:2 < p. Hence, this portfolio satis�es the VaR

constraint.
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The implication of this example is that, if p is too high, the VaR scheme will be

ine�ective at controlling the size of the maximum loss. It is clear that, if p � �s, the

probability of the lowest probability state, such a scheme will result in L(xr) � L.

However, as the example indicates, depending on the security structure, p can be

higher than this and yet be e�ective.

Let f = argminf2F �(Sf), and f̂ = argmaxf2F �(Sf). That is, f is the

portfolio in the set of self-�nancing portfolios that has the smallest probability over

states of negative payo�. In terms of the utility of the agent, this is the cheapest

gamble the agent can take, in the set of self-�nancing portfolios. It minimizes the

probability of states over which the agent's limited liability constraint is binding.

Conversely, f̂ maximizes the probability over states with positive payo�. This is the

most rewarding gamble the agent can take. Note that the portfolios f and f̂ need

not be the same, but it must be that �(Sf) � 1� �(S f̂).

The portfolio f̂ helps de�ne a necessary condition for a VaR scheme to be

e�ective, and f de�nes a su�cient condition.

Proposition 8 Consider a VaR compensation scheme, (L; p; Ir). Suppose the agent's

problem is potentially unbounded under Ir. Then, the VaR scheme is e�ective if

p � �(Sf), and only if p � 1� �(S f̂).

With complete markets, f = f̂ . This portfolio has a negative payo� in state s

and a positive one in every other state. Hence,

Corollary 8.1 Suppose J = S. Consider a VaR compensation scheme, (L; p; Ir).

Suppose the agent's problem is potentially unbounded under Ir. Then, the VaR scheme

is e�ective if and only if p � �s.

Consider a situation in which there are a countably in�nite number of states,

and J !1, that is, the setting of Proposition 3.7. A static VaR rule will eventually

be in this situation as well. For any �nite p, the agent will eventually be able to

gamble on losses that have smaller probability.

Proposition 9 Consider a �xed VaR compensation scheme, (L; p; Ir). Suppose there

are a countably in�nite number of states, and the agent's problem is potentially un-

bounded under Ir. As J !1, there exists a Ĵ such that the VaR scheme is ine�ective

for J � Ĵ.
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This Proposition provides some insight into the intuition behind the Basak and

Shapiro (1999) result that, in their framework, VaR rules are completely ine�ective

at controlling risk-taking behavior by the agent. In their continuous time framework

with dynamically complete markets, there is no discrete analog to s or �s. However

low p is set in a VaR rule, any �nite p is too high, since the agent can take on excessive

risk with a smaller probability.

The optimal contract, I(�), induces a maximum loss L(xI). To achieve a max-

imum loss no higher than this, a VaR scheme requires a tighter su�cient condi-

tion than in Proposition 4.4. Suppose that Sf = fs1; s2g, with �(s1) < �(s2), andPJ
j=1 aj s1 f

j
<
PJ

j=1 aj s2 f
j
. That is, the self-�nancing portfolio f has a smaller

payo� in state s1 than s2. Then, a VaR restriction (L; p) with p = �(Sf) is su�cient

to ensure that w1s2 � w0 � L, but it is possible that w1s1 > w0 � L: the loss in state

s1 may well be higher than L. This is not a violation of the VaR restriction, since

this state has probability less than p.

To account for this, let ŝ = argmins �(s j s 2 Sf for some f 2 F ). Then, ŝ

represents the lowest probability state in which a negative payo� can be obtained. If

p � ~�ŝ, the VaR scheme ensures that L(xr) � L. The necessary condition remains

the same as earlier.

Proposition 10 Consider any optimal contract, I(�), and suppose that the agent's

problem is potentially unbounded under Ir(�). Then, a VaR scheme (L; p; Ir) with

L = L(xI) results in L(xr) � L if p � �ŝ and only if p � 1� �(S f̂).

Hence, an appropriately de�ned VaR rule is e�ective at controlling the maxi-

mum loss of a portfolio. In this setting, with p � �ŝ, the VaR rule is equivalent to a

short sale constraint on all self-�nancing portfolios with a negative payo� in state ŝ.

However, a VaR scheme with p set too high is completely ine�ective.

As before, with complete markets, the necessary and su�cient conditions col-

lapse to a single condition, p � �s.

Corollary 10.1 Suppose J = S. Consider any optimal contract, I(�), and suppose

that the agent's problem is potentially unbounded under Ir(�). Then, a VaR scheme

(L; p; Ir) with L = L(xI) results in L(xr) � L if and only if p � �s.

The intuition is clearest in the case of complete markets: if p is too high, there

is no e�ective restriction on xs, since the probability of losing w
0� xs is only �s < p,
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which is permissible under the VaR rule as speci�ed. Hence, for example, when there

are a large number of states, even a VaR rule with a low p may not be e�ective in

controlling the size of the maximum loss.

Finally, through an example, we show that a VaR scheme is not a good replace-

ment for an upper bound on compensation unless the number of securities is exactly

2.

Example 4

Suppose markets are complete (J = S), and the agent is risk-neutral. Let I(�)
be an optimal contract that achieves the bang-bang outcome, with xIs > 0 for at least

two states s 6= s. Let �I be the upper bound on I(�), and �w the wealth level that

achieves compensation �I. De�ne Ir(�) = I(�) for w � �w, and Ir(w) = �I + �(w � �w)

for w > �w, where � > 0.

Consider a VaR scheme with p = �s, and L = w0 �PJ
j=1 ajsx

I
j . That is, L is

set to the loss su�ered by xI in state s.

Proposition 11 Under the conditions of Example 4, (i) xr = xI if and only if S = 2.

(ii) the VaR scheme leads to the same utility for the principal as the optimal contract

I(�) if and only if S = 2.

That is, the VaR rule (L; p) can be thought of as equivalent to the optimal

contract (in terms of utility achieved by the principal) if and only if S = 2. However,

in this case, it must also be that the portfolio chosen by the agent, xI
r

, and the

realized income of the agent, xrIr, match. That is, Ir = I at the two points of

interest, x1 and x2. In this case, as argued above, the VaR rule is redundant if Ir is

incentive compatible. Hence, one interpretation of the use of a VaR scheme in this

context is that it is a substitute for the incentive compatibility constraints.

In the setting of Example 4, when faced with a VaR scheme with p = s, the

agent's optimal portfolio consists of a short position w0 � L in security s, and a

corresponding long position in the \cheapest" of the remaining states (that is, the

state with lowest �s
qs
. In all other securities, the agent invests zero. By contrast, the

bang-bang solution induces the same short position in security s, but an equal long

position in every other state. Hence, the overall riskiness of the VaR scheme is higher,

even though it leads to the same maximum loss.
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5 Conclusion

We examine the e�ects of portfolio delegation with limited liability, in a two-period

contingent claims framework. As has been observed by, among other, Grinblatt and

Titman (1989), limited liability provides the agent with an incentive to take on too

much risk. The innovation in our paper is that we incorporate this into the incentive

compatibility constraints for the principal's problem, and examine the resultant set

of incentive compatible contracts.

Limited liability in our model is interpreted simply as a lower bound on the

agent's payo�. We �rst show that, in any solution to the principal's problem, the

agent must earn at most a �nite payo� in any state. More generally, this implies that

any outcome that can be achieved can be achieved with a bounded contract.

The contingent claims framework enables characterization of the optimal gamble

the agent would like to take, in terms of the bang-bang portfolio. We �nd that the

impact of limited liability on incentive compatibility depends critically on the set of

states in which the agent is exposed to getting his worst outcome. If the probability

of this set is low, incentive compatibility is extremely restrictive. The contract must

be close to a 
at contract over all states in which the agent does not get this lower

bound. In the limiting case, as the probability of this set goes to zero, the contract

approaches the 
at contract over the remaining states. Depending on risk-sharing

needs, the optimal contract here may be either the 
at contract or the bang-bang

one.

We �nd that a VaR compensation scheme, appropriately set, can be e�ective

in controlling the maximum exposure of the portfolio chosen by the agent. In a

situation of �nancial innovation, however, the probability inherent in a VaR scheme

may need to be continually adjusted (i.e., lowered). Financial innovation allows an

agent to gamble on �ner partitions of the state space. This has the dual e�ect of

sharpening the incentive compatibility constraints (i.e., fewer compensation schemes

are now incentive compatible) and weakening the impact of an existing VaR scheme

with a �xed p.

While we study the static delegation problem, the results generalize in a straight-

forward manner to any �nite horizon economy. This is easy to see with complete

markets, where we can re-interpret the states as time-event pairs. Then, an agent's

optimal deviation would be to take on a large short position in the time-event pair
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with lowest probability, and all our results would follow. The in�nite horizon case

remains to be studied.

6 Appendix: Proofs

Proposition 2.2

Suppose v � I is unbounded. Note that, if xI is �nite, the resultant utility of

the agent is also �nite.

Now, consider the following strategy for the agent. Choose any two securities

ĵ and ~j. Consider a self-�nancing portfolio f , that consists of these two securities

alone (that is,
P

j=ĵ;~j qjxj = 0. Let x consist of any security positions such that
PJ

j=1 qjxj = w0, plus n replications of the portfolio f .

Now, as n ! 1, Is(x)) is bounded below by 0, so that v(Is(x)) is bounded

below by 0. However, since v � I is unbounded, as n!1, v(Is(x)))!1 for s 2 Sf .

Hence,
PS

s=1 �sv(Is(x))!1.

Any portfolio chosen by the agent must o�er at least as high a utility as the

above portfolio, and therefore must be unbounded.

Proposition 2.3

Suppose I(�) is unbounded. As argued in Proposition (2.2), the agent picks an

unbounded portfolio, x. In particular, x contains in�nite replications of some self-

�nancing portfolio, f̂ . Hence, w(s) � Is ! �1 for s 2 Sf̂ . For s 2 S f̂ , we could

have any of w1s � Is ! �1, w1s � Is 2 (�1;1), or w1s � Is !1. In the �rst two

cases, it is obvious that
PS

s=1 �su(w1s� Is)! �1. In the third, since u(�) is strictly
concave, again

PS
s=1 �su(w1s � Is)! �1.

Finally, note that when I(�) is bounded, the set of utility maximizing portfolios

for the agents includes bounded portfolios. For any such bounded portfolio, the utility

of the principal is also bounded. One feasible, bounded I(�) that leads to bounded

utility is the 
at contract; I(w) = Io for all w. This satis�es the participation

constraint and all incentive constraints, and can induce a �nite portfolio.

Proposition 2.6

Let xI denote the portfolio chosen by the agent when o�ered the contract I(�).
Re-order w, the realized wealth level under x, in ascending order; let wa indicate this
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re-ordered vector.

Consider the targeted bonus scheme (t; I t) = (wa; I(wa)). That is, if ws = wa
k

for some k, then the agent's compensation is I(wa
k), otherwise the agent is paid zero.

Let B(q) = fxjPS
s=1 qsxs � w0g denote the budget set faced by the agent when

choosing the portfolio. Then, if xI is chosen under compensation scheme I(�),
SX

s=1

�sv(Is(x
I)) �

SX
s=1

�sv(Is(x)) for all x 2 B(q):

Now, consider the agent's choice when o�ered the targeted bonus scheme (t; I t)

de�ned above. Clearly,
PS

s=1 �sv(I
t
s(x

I)) =
PS

s=1 �sv(Is(x
I)), and

SX
s=1

�sv(I
t
s(x

I)) <
SX

s=1

�sv(Is(x
I)) for all x 2 B(q); x 6= xI :

Hence,
PS

s=1 �sv(I
t(xIs)) �

PS
s=1 �sv(I

t(xs)) for all x 2 B(q). That is, portfolio

xI is optimal for the agent under the targeted bonus scheme (t; I t).

Next, suppose I(�) is non-decreasing. Then, the above arguments follow through

completely for a step scheme, with (t; I t) as de�ned above. Hence, in this case, xI

can be induced by a step scheme.

Proposition 3.2

First, choose any portfolio x̂ using the wealth w0. Then, consider a portfolio

that has a long position y in states s 6= s, and xs = �y
P

s6=s
qs

qs
< 0. The portfolio so

de�ned is a self-�nancing portfolio. Let f denote this portfolio.

Now, replicate this portfolio often enough to ensure that Is � �I for all s 6= s,

and Is = 0. Let n be the number of replications required, where n must be �nite,

since (t; I) is bounded.

Consider the portfolio ~x = x̂+nf . Then, the expected utility from this portfolio

is

�sv(0) + (1� �s)v(�I) = (1� s)v(�I):

Now, every other limited liability portfolio must have Is = 0 for some s. There-

fore, the portfolio ~x yields expected utility at least as high as the utility derived from

any other limited liability portfolio.

Proposition 3.3
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For some limited liability portfolio f , I(xIs) = 0 for all s 2 Sf . Now, the agent

can replicated f often enough to earn �I in states s 2 Sf , without a�ecting payo�s in

states s 2 Sf or s 2 SnfSf [ Sfg. Hence, xI must be a limited liability portfolio.

However, in the set of limited liability portfolios, the bang-bang portfolios are

optimal for the agent. Hence, any limited liability portfolio that is not a bang-bang

portfolio is not incentive compatible, and xI must be a bang-bang portfolio.

Corollary 3.4

Follows immediately from Propositions 3.3 and 3.2.

Proposition 3.5

Suppose I(�) is an incentive compatible contract. The expected utility the agent

obtains from the bang-bang strategy is

�(Sf)v(0) + �(Sf)v(�I) +
X

s2SnfSf[Sfg
�sv(Is) = �(Sf)v(�I) +

X

s2SnfSf[Sfg
�sv(Is):

Incentive compatibility implies that this must be no higher than
PS

s=1 �sv(Is), the

expected utility from the portfolio prescribed by the principal. This implies that

�(Sf)v(�I) � X

s2fSf[Sfg
�sv(Is):

As �(Sf)k ! 1,
P

s2Sf �sv(Is) converges to zero (since I(�) is bounded). Further,
by de�nition, Is � �I for all s 2 S. it must be that each term Is on the right hand

side also converges to �I. Hence, (�Ik � Ik)! 0.

Corollary 3.6

When J = S, Sf = Snfsg. Hence, as �s ! 0, �(Sf)! 1.

Proposition 3.7

In the limit, with J = S, there exists a self-replicating portfolio that has a

negative payo� in the state with minimum probability. s, and positive payo�s in

every other state. Hence, Sf ! Sns as J ! 1. Since S is in�nite, �(Sf) ! 1 as

J !1. From Proposition 3.5, IJ ! �IJ .

Proposition 4.4
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Suppose �rst that p > 1 � �(S f̂). Consider any portfolio x that satis�es the

VaR rule (L; p), and let ~x = x + zf̂ , where z 2 R+. Since the agent's problem is

potentially unbounded, the agent achieves a higher utility from letting z ! 1 than

any from choosing any �nite z. But then any portfolio chosen by the agent must

involve in�nite gain in some states, and in�nite losses in others. Hence, the VaR rule

is ine�ective, proving the \only if" part of part (i) of the Proposition.

Next, consider the \if" part. Let xr be the portfolio chosen by the agent.

Suppose the VaR scheme is ine�ective. Then, there must exist some self-�nancing

portfolio f such that xr includes in�nite replications of f . Therefore, Prob(w0�w1s �
L) � �(Sf) � �(Sf), where the last inequality follows by de�nition of f . Now,

p � �(Sf ). Hence, the VaR of xr at the probability level p exceeds L, which is a

contradiction. This proves part (i).

Corollary 4.5

With J = S, f = f̂ . Further, Sf = fsg, and S f̂ = Snfsg.

Proposition 4.6

Consider �J(Sf). As J ! 1, �J(Sf) ! 0. Hence, for any �xed p, and any

sequence of securities J ! 1, there must exist some Ĵ such that �J(Sf) � p for

J � Ĵ . The statement of the proposition now follows from Proposition 4.4.

Proposition 4.7

Consider any VaR scheme (L; p; Ir), with L � L(xI), where xI is the portfolio
chosen under the optimal contract I(�). Suppose �rst that p � �ŝ. Then, the portfolio

chosen by the agent, xr, must satisfy Prob(w � w0 � L(xI)) � �ŝ + �(Ŝ). Let

Ŝ = [f2FSf be the union of all states over which negative payo�s can be obtained.

By de�nition of �(ŝ), it follows that w1s � w0 � L(xI) for all s 2 Ŝ, with strict

equality for s 2 Ŝ such that �(s) > �ŝ.

Now, if Ŝ = S, then L(xr) � L. Suppose Ŝ 6= S. Then, states in SnŜ cannot be

reached by any security, and any portfolio must lose w0 in these states. But this must

be true of portfolio xI as well, so that L(xI) � w0. Therefore, L � L(xI), together
with the feasibility requirement of a VaR scheme, ensures that L(xr) � L(xI).

The \if" part follows directly from Proposition 4.7: if a VaR scheme is ine�ec-

tive, its maximum loss is in�nite, necessarily greater than any �nite L.

26



Corollary 4.8

When J = S, ŝ = s, and S f̂ = Snfsg.

Proposition 4.9

Suppose �rst that S = 2. Then, L restricts xrs � xIs. Since xIs was optimal

under I(�), it must remain optimal under Ir(�). Given the budget constraint, part (i)

of the Proposition now follows. Since Ir(w) = I(w) over this range of w, part (ii)

also follows.

Suppose, next that S > 2. Under the VaR scheme, the agent chooses xrs =

w0 � L. The net wealth obtained is (w0 + qsx
r
s). Since I

r is linear in w, the optimal

investment for the agent is to invest this entire net wealth in security ŝ, where ŝ =

argmins2Sns �s
qs
, and choose xrs = 0 for all s 6= s; ŝ. Clearly, this is a riskier portfolio

than xI . Parts (i) and (ii) of the proposition now follow.
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