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Abstract

In this paper we develop some statistical theory for factor models of large dimen-
sions. The focus is the determination of the number of factors, which is an unresolved
issue in the rapidly growing literature on multifactor models. We propose a panel Cp

criterion and show that the number of factors can be consistently estimated using the
criterion. The theory is developed under the framework of large cross-sections (N) and
large time dimensions (T ). No restriction is imposed on the relation between N and
T . Simulations show that the proposed criterion yields almost precise estimates of the
number of factors for configurations of the panel data encountered in practice.
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1 Introduction

The idea that variations in a large number of economic variables can be modelled by a small

number of reference variables is appealing and is used in many economic analysis. In the

finance literature, the arbitrage pricing theory (APT) of Ross (1976) assumes that a small

number of factors can be used to explain a large number of asset returns.1 The observed

comovements in a large number of macroeconomic time series have likewise generated enor-

mous interests in developing ways to account for business cycle dynamics by a small number

of reference variables. In demand analysis, Lewbel (1991) showed that linear engel curves

can be expressed in terms of a finite number of factors. Factor analysis also provide a con-

venient way to model the aggregate implications of microeconomic behavior. For example,

Forni and Lippi (1997) showed that explicit consideration of the cross section units can ex-

plain excess sensitivity in aggregate consumption. Central to both the theoretical and the

empirical validity of factor models is the correct specification of the number of factors. To

date, this crucial parameter is often assumed rather than determined by the data.2 This

paper develops a formal statistical procedure which can consistently estimate the number of

factors from observed data. The theory is developed under the assumption that N → ∞
and T → ∞. We demonstrate that the penalty for overfitting must be a function of both N

and T in order to consistently estimate the number of factors. Consequently the usual AIC

and BIC which are functions of T alone do not work for factor models.

There are additional motivations to studying the dimension of factor models. Stock

and Watson (1999) showed that the forecast mean squared error of many macroeconomic

variables can be reduced by including diffusion indexes, or factors, in structural as well as

non-structural forecasting models. Knowledge of the number of factors can also be used to

test the validity of economic assumptions and models. For example, if a demand system has

one common factor, budget shares should be independent of the level of income. Therefore

if more than one factor is found in the data, homothetic preferences can be rejected. From

an econometric perspective, cross-country and sectoral datasets are becoming increasingly

available. Data on asset returns are also available over an increasingly long span. In many

cases, the time dimension of such datasets, although small relative to the cross section

1Cochrane (1999) stressed that financial economists now recognize that there are multiple sources of risk,
or factors, that give rise to high returns. Backus, Forsei, Mozumdar and Wu (1997) made similar conclusions
in the context of the market for foreign assets.

2Lehmann and Modest (1988), for example, tested the APT for 5, 10 and 15 factors. Stock and Watson
(1989) assumed there is one factor underlying the coincident index. Ghysels and Ng (1998) tested the affine
term structure model assuming two factors.
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dimension, is too large to justify the assumption of a fixed T .

A small number of papers in the literature have also considered the problem of deter-

mining the number of factors, but the present analysis differs from these works in important

ways. Connor and Korajcyk (1993) developed a test for the number of factors in asset re-

turns, but their test is valid for large N and fixed T . Furthermore, because their test is

based on the comparison of variances over different time periods, covariance stationarity

and homokedasticity are not only technical assumptions, but are crucial for the validity of

their test. Also under the assumption that N → ∞ for fixed T , Forni and Reichlin (1998)

suggested a graphic approach to identify the number of factors, but no theory is available.

Assuming N, T → ∞ with
√
N/T → ∞, Stock and Watson (1998) showed that a modifica-

tion to the BIC can be used to select the number of factors optimal for forecasting a single

series. Their criterion is restrictive not only because it requires N >> T , but also because

there can be factors that are pervasive for a set of data and yet have no predictive ability for

an individual data series. Thus, their rule is inadequate outside of forecasting framework.

Forni, Hallin, Lippi and Reichlin (1999) suggested a multivariate variant of the AIC but the

theoretical properties of the criterion are not known. Lewbel (1991) and Donald (1997) used

the rank of a matrix to test for the number of factors, but these theories assume either N or T

is fixed. Cragg and Donald (1997) also developed procedures to select the number of factors

based on test statistics and information criterion with a fixed dimension. In addition, their

tests is based on the rank of the data matrix after being projected onto a set of explanatory

variables. As their simulations showed, standard information criteria such as the AIC and

the BIC do not have good properties, especially when the model dimension is large. The

theory we develop below estimate the number of factors in the observed data directly and

performs well for many configurations of the data.

We set up the determination of factors as a model selection problem. In consequence, the

proposed criteria depend on the usual trade-off between good fit and parsimony. However,

the problem is non-standard not only because account needs to be taken of the sample size

in both the cross section and the time series dimensions, but also because the factors are

not observed. Section 2 sets up the preliminaries and introduces notation and assumptions.

Estimation of the factors is considered in Section 3 and the estimation of the number of

factors is studied in Section 4. A number of specific criteria are also proposed in Section 4.

Simulations are used to illustrate the finite sample properties of the proposed criteria and

results are reported in Section 5. Concluding remarks are provided in Section 6. All the

proofs are given in the Appendix.
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2 Preliminaries

Let Xit be the observed data for ith cross section unit at time t, for i = 1, . . . N , and

t = 1, . . . T . Granger (1987) defined a sequence of random variables to be a dominant

common factor of Xit if the variance of the sum of the first N terms in the sequence increases

at rate N2. Consider the following model

Xit = λ′
iFt + eit. (1)

Since
∑N

i=1 Xit has variance dominated by var(NFt), Ft are common factors of Xit in the

sense of Granger (1987). Then λ′
iFt is the common component of Xit, λi are the factor

loadings associated with Ft, and eit is the idiosyncratic component of Xit. Equation (1) is

then the factor representation of the data. Note that the factors, their loadings, as well as

the idiosyncratic errors are not observable.

Let F 0
t , λ

0
i and r denote the true common factors, factor loadings, and true number of

factors, respectively. Note that F 0
t is r dimensional. At a given t, we have

Xt = Λ0 F 0
t + et.

(N × 1) (N × r) (r × 1) (N × 1)
(2)

where Xt = (X1t, X2t, ..., XNt)
′, Λ0 = (λ0

1, λ
0
2, ..., λ

0
N )

′, and et = (e1t, e2t, ..., eNt)
′. The ob-

jective is to determine the true number of factors, r. The classical factor analysis (e.g., ?)

assumes a fixed N , the independence of factors and the errors et, as well as diagonality of the

covariance of et. Normalizing the covariance matrix of Ft to be an identity matrix, we have

Σ = Λ0Λ0′ + Ω, where Σ and Ω are the covariance matrices of Xt and et, respectively. The

classical factor analysis starts with a root-T consistent and asymptotically normal estimator

of Σ, say the sample covariance matrix Σ̂ = 1
T

∑T
t=1(Xt − X̄)(Xt − X̄)′ and makes inference

on r based on Σ̂. However, when N → ∞, consistent estimation of Σ (a N × N matrix) is

not a well defined problem. For example, when N > T , the rank of Σ̂ is no more than T ,

whereas the rank of Σ can always be N . Fortunately, when T is fixed, this N ×N problem

can be turned into a T × T problem, as noted by Connor and Korajcyk (1993) and others.

The essentials of the classical factor analysis carry over to the case of large N but fixed

T . In either case, the theory developed for a fixed dimension delivers poor performance for

moderately large N and T , as documented by the Monte Carlo simulations in Cragg and

Donald (1997) as well as by our simulations.

In this paper, we develop the theory of factor analysis for large dimensional factor models.

Classical factor analysis does not apply to this situation. In addition, we allow for cross-

sectional and serial dependence in et and cross-sectional and serial heteroskedasticity. Some
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weak dependence between the factors and the errors are also permitted. Simulation shows

that the theory of large dimensional factor analysis works well even if one of the dimensions

is small (as small as 10, not reported in the simulations).

Before proceeding further, we consider several concrete examples where model (1) is

pertinent.

1. Arbitrage pricing theory. In this case, Xit represents the return of asset i at time t,

Ft represents the vector of factor returns and eit is the idiosyncratic returns. The number

of factors can be determined when N and T are large. The factor returns Ft can also be

consistently estimated (up to a invertible transformation).

2. The rank of demand system. Consumer demand theory postulates that the demand

system may be described byXit = ai1G1(zt)+· · · airGr(zt)+eit, whereXit is the consumption

good i’s buget share for the tth consumer, Gj(z) is a nonparametric function of observable

variable z, which includes income and relative prices. The number r is called the rank of the

demand system. Let Ft = (G1(zt), ..., Gr(zt))
′. The system is of the form of (1). When the

number of goods (N) is large, the theory of this paper promises a consistent estimation of

the rank of the demand system without the need of estimating the nonparametric functions

Gj(·). Nevertheless, as a by product, the nonparametric functions evaluated at zt, i.e.,

Ft is also consistently estimable. Furthermore, the nonparametric functions Gj(·) may be

recovered (up to a matrix transformation) from F̂t(t = 1, .., T ) via nonparametric estimation,

especially when zt is of small dimension. For example, zt is the income variable when the

data are taken at the same time period for all consumers because of the relative prices are

the same for all consumers.

3. Forecasting with diffusion indices. Stock and Watson (1998) consider forecasting

inflation with diffusion indices (”factors”) constructed from large number of macroeconomic

series. The underlying premise is that the movement of a large number of macroeconomic

series may be driven by a small number of unobservable factors. The factors can be extracted

from these series and then used as an input in the forecasting equation. To be specific,

consider the scalar series

yt+1 = α′Ft + β′Wt + εt,

which is the forecasting equation. The variable Wt is observable. Let

Xt = ΛFt + et (t = 1, 2, ..., T ) (3)

where Xt is N × 1 for some large N . Extract Ft from system (3) and denote it by F̂t. Then
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regress yt on F̂t−1 and Wt−1 to obtain the coefficients α̂ and β̂. The forecast is formed by

ŷT+1|T = α̂′F̂T + β̂WT

This approach of forecasting outperforms many competing forecasting methods, see Stock

and Watson (1998, 1999) and thus is quite promising. Note the vector series Xt may have

a structural representation determined by Ft and Xt itself. We interpret (3) as the reduced

form representation of Xt in terms of the unobservable factors. In this paper, we show that

the factors Ft can be consistently estimated (up to a matrix transformation). This result

can be used to show that the forecast ŷT+1|T is a consistent estimation of the conditional

mean of yT+1 conditional on the information up to time T .

We now consider other representations of model (1) as well as assumptions imposed on

the model. Let X i be a T × 1 vector of time series observations for the ith cross section unit.

For a given i, we have

X i = F 0 λ0
i + ei,

(T × 1) (T × r) (r × 1) (T × 1)
(4)

where X i = (Xi1, Xi2, ..., XiT )
′, F 0 = (F 0

1 , F
0
2 , ..., F

0
T )

′ and ei = (ei1, ei2, ..., eiT )
′. For the

panel of data X = (X1, . . . , XN), we have

X = F 0 Λ0′ + e,
(T ×N) (T × r) (r ×N) (T ×N)

(5)

with e = (e1, ..., eN).

Let tr(A) denote the trace of A. The norm of the matrix A is then ||A|| = tr(A′A)1/2.

The following assumptions are made:

Assumption A: Factors

E‖F 0
t ‖4 < ∞ and T−1 ∑T

t=1 F
0
t F

0′
t → ΣF for some positive definite matrix ΣF .

Assumption B: Factor Loadings

‖λi‖ ≤ λ̄ < ∞, and ||Λ0′Λ0/N −D|| → 0 for some r × r positive definite matrix D.

Assumption C: Time and Cross-Section Dependence and heteroskedasticity

There exists a positive constant M < ∞, not necessarily the same throughout, such that

for all N and T ,
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1. E(eit) = 0, E|eit|8 ≤ M ;

2. E(e′set/N) = E(N−1 ∑N
i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M for all s, and

T−1
T∑

s=1

T∑
t=1

|γN(s, t)| ≤ M ;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t. In addition,

N−1
N∑

i=1

N∑
j=1

|τij| ≤ M ;

4. E(eitejs) = τij,ts and (NT )−1 ∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M ;

5. For every (t, s), E|N−1/2 ∑N
i=1

[
eiseit − E(eiseit)

]
|4 ≤ M .

Assumption D: Weak dependence between factors and idiosyncratic errors

E
( 1

N

N∑
i=1

‖ 1√
T

T∑
t=1

F 0
t eit‖2

)
≤ M.

Assumption A is standard for factor models. Assumption B ensures that each factor has a

non-trivial contribution to the variance of Xt. We only consider non-random factor loadings

for simplicity. Our results still hold when λi is random, provided they are independent of the

factors and idiosyncratic errors, and E||λi||4 ≤ M . Assumption C allows for limited time

series and cross section dependence in the idiosyncratic component. Heteroskedasticities in

both the time and cross section dimensions are also allowed. Under stationarity in the time

dimension, γN(s, t) = γN(s − t), though the condition is not necessary. Given Assumption

C1, the remaining assumptions in C are easily satisfied if the eit are independent for all i

and t. The allowance for some correlation in the idiosyncratic components sets up a model

to have an approximate factor structure as defined in Chamberlain and Rothschild (1983).

It is more general than a strict factor model which assumes eit is uncorrelated across i, the

framework in which the APT theory of Ross (1976) was based. Thus, the results to be

developed will also apply to strict factor models. When the factors and idiosyncratic errors

are independent (a standard assumption for conventional factor models), Assumption D is

implied by Assumptions A and C. Independence is not required for D to be true. For example,

suppose that eit = εit‖Ft‖ with εit being independent of Ft and εit satisfies Assumption C,

then Assumption D holds. Finally, we note that the model being analyzed is static, in the

sense that Xit has a contemporaneous relationship with the factors. The analysis of dynamic

models is beyond the scope of this paper.
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3 Estimating the common factors

To determine the number of factors, it is necessary to examine the consistency property of the

estimated common factors. This differs from the classical factor analysis, in which a root-T

consistent and asymptotically normal estimator for covariance matrix of Xt is available. So

thattest statistics can be constructed based on the eigenvalues of the matrix. Because of the

normality assumption, chi-square limiting distribution is obtained. Such a luxury is not at

our possession for large models, and a different strategy is called for. It turns out that we

need to explore the consistency property of the estimated common factors. In any case, the

behavior of the estimated common factors is of important interest on its own right.

When N is small, common factors are often expressed in its state space form, normality

is assumed, and the parameters are estimated by maximum likelihood. For example, Stock

and Watson (1989) used N = 4 variables to estimate one factor, the coincident index. The

drawback of the approach is that, because the number of parameters increases with N ,3

computational difficulties make it necessary to abandon information on many series even

though they are available. But common factors can also be estimated (non-parametrically)

by the method of asymptotic principal components for large N , both when T is small and

when it is large.4

Since the true number r is unknown, we start with an arbitrary number k (k < min{N, T}).
The superscript in λk

i and F k
t signifies the allowance of k factors in the estimation. Estimates

of λk and F k are obtained by solving the optimization problem

V (k) = min
Λ,F k

(NT )−1
N∑

i=1

T∑
t=1

(Xit − λk
i F

k
t )

2

subject to the normalization of either Λk′Λk/N = Ik or F k′F k/T = Ik. If we concen-

trating out Λk and use the normalization that F k′F k/T = Ik, the optimization problem

is identical to maximizing tr(F k′(N−1XX ′)F k). The estimated factor matrix, denoted by

F̃ k, is
√
T times eigenvectors corresponding to the k largest eigenvalues of the T × T ma-

trix XX ′. The estimated factors are thus the first k principal components. Given F̃ k,

Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′X = F̃ k′X/T are the corresponding factor loadings.

3Gregory, Head and Raynauld (1997) backed out a world factor and seven country specific factors from
output, consumption, and investment for each of the G7 countries. The exercise involves estimation of 92
parameters and has perhaps stretched the state-space model to its limit.

4The method of asymptotic principal components of Chamberlain and Rothschild (1983) was used in
Connor and Korajcyk (1986) and Connor and Korajcyk (1988) for fixed T . Forni et al. (1999) and Stock
and Watson (1998) considered the method for large T .
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A mathematically equivalent estimator, denoted by Λ̄k, can be constructed as
√
N times

the eigenvectors corresponding to the k largest eigenvalues of the N ×N matrix X ′X. Using

the normalization that Λk′Λk/N = Ik, we have F̄
k = XΛ̄k/N . The second set of calculations

is computationally less costly when T > N , while the first is less intensive when T < N .5

Define

F̂ k = F̄ k(F̄ k′
F̄ k/T )1/2,

a rescaled estimator of the factors. The following Theorem summarizes the asymptotic

properties of the estimated factors.

Theorem 1 For any fixed k ≥ 1, there exists a (r × k) matrix Hk with rank(Hk) =

min(k, r), and CNT = min(
√
N,

√
T ), such that

C2
NT

(
1

T

T∑
t=1

||F̂ k
t −Hk′F 0

t ||2
)
= Op(1).

Because the true factors (F 0) can only be identified up to scale, what is being considered

is a rotation of F 0. The theorem establishes that the time average of the squared deviations

between estimated factors and those that lie in the true factor space vanish as N, T → ∞.

The rate of convergence is determined by the smaller of N or T , and thus depends on the

panel structure.

Using similar argument as in Theorem 1 and under an additional assumption that∑T
s=1 γN(s, t)

2 ≤ M for all t and T , it can be shown that6

C2
NT‖F̂t −Hk′F 0

t ‖2 = Op(1) for each t (6)

However, there is no guarantee that such a convergence is uniform over all t. As a con-

sequence, Theorem 1 and (6) are not equivalent. Uniform convergence is considered by

Stock and Watson (1998), which has a much slower convergence rate and the result requires√
N >> T .

An important insight of this paper is that, to consistently estimate the number of factor,

neither (6) nor uniform convergence is required. It is the average convergence rate of Theorem

1 that is essential. Theorem 1 has important ramifications. Using Theorem 1, it is possible to

obtain the limiting distribution of the estimated common factors and common components

(i.e., λ̂′
iF̂t). This result is under further investigation.

5A more detailed account of computation issues, including how to deal with unbalanced panels, is given
in Stock and Watson (1998).

6The proof is actually simpler than that of Theorem 1 and is thus omitted to avoid repetition.
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4 Estimating the number of factors

To compare with the standard model selection problem, suppose for a moment that we ob-

serve all potentially informative factors but not the factor loadings. Then the problem is

simply to choose k factors that best capture the variations in X and estimate the corre-

sponding factor loadings. Since the model is linear and the factors are observed, λi can be

estimated by applying ordinary least squares to each equation. This is then a classical model

selection problem. A model with k+ 1 factors can fit no worse than a model with k factors,

but efficiency is lost as more factor loadings have to be estimated. Let F k be a matrix of k

factors, and

V (k, F k) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(Xit − λk′
i F

k
t )

2

be the sum of squared residuals (divided by NT ) from the cross-section regressions of X i

on k factors. Then a loss function V (k, F k) + kg(N, T ), where g(N, T ) is the penalty for

overfitting can be used to determine k. Because the estimation of λi is classical, it can be

shown that the BIC with g(N, T ) = ln(T )/T can consistently estimate r. On the other

hand, the AIC with g(N, T ) = 2 may choose k > r even in large samples. The result is the

same as in Geweke and Meese (1981) derived for N = 1. The penalty factor does not need

to take into account of the sample size in the cross-section dimension. Our main result is to

show that this will no longer be true when the factors have to be estimated, and even the

BIC will not always consistently estimate r.

Since F̃ k, F̄ k and F̂ k span the same column space, without loss of generality, we let

V (k, F̂ k) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(Xit − λk′
i F̂

k
t )

2 (7)

denote the sum of squared residuals (divided by NT ) when k factors are entertained. It

should be clear that V (k, F̃ k) = V (k, F̄ k) = V (k, F̂ k). We want to find penalty functions,

g(N, T ), such that criteria of the form

IC(k) = V (k, F̂ k) + kg(N, T )

can consistently estimate r. Let kmax be an bounded integer such that r < kmax.

Theorem 2 Suppose that Assumptions A–D hold and that the k factors are estimated by

principal components. Let k̂ = argmin0≤k≤kmaxIC(k). Then limN,T→∞ Prob[k̂ = r] = 1 if (i)

g(N, T ) → 0 and (ii) C2
NT · g(N, T ) → ∞ as N, T → ∞, where CNT = min(

√
N,

√
T ).
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A formal proof is provided in the Appendix. The crucial element in consistent estimation

of r is a penalty factor that vanishes on the one hand, but still dominates the difference in

the sum of squared residuals between the true and the overparameterized model. Let σ̂2 be

a consistent estimate of (TN)−1 ∑N
i=1

∑T
t=1 E(e0

it)
2. Consider the following criteria:

PCp1(k) = V (k, F̂ k) + k σ̂2
(
N + T

NT

)
ln

(
NT

N + T

)
;

PCp2(k) = V (k, F̂ k) + k σ̂2
(
N + T

NT

)
· lnC2

NT ;

PCp3(k) = V (k, F̂ k) + k σ̂2

(
lnC2

NT

C2
NT

)
.

Since V (k, F̂ k) = N−1 ∑N
i=1 σ̂

2
i , where σ̂2

i = ê′iêi/T , the criteria generalize the Cp criterion

of Mallows (1973) developed for selection of models in strict time series or cross section

contexts to a panel data setting. For this reason, we refer to these statistics as Panel Cp

(PCp) criteria. Like the Cp criterion, σ̂2 provides the proper scaling to the penalty term. In

applications, it can be replaced by V (kmax, F̂ kmax).

The proposed penalty functions are based on the sample size in the smaller of the two

dimensions. All three criteria satisfy conditions (i) and (ii) of Theorem 2 since C−2
NT ≈

N+T
NT

→ 0 as N, T → ∞. However, in finite samples, C−2
NT ≤ N+T

NT
. Hence, the three criteria,

although asymptotically equivalent, will have different properties in finite samples.

To understand the conditions imposed by Theorem 2, we also consider:

Test1(k) = V (k, F̂ k) + k σ̂2
(
N + T

NT

)
ln(N + T );

Test2(k) = V (k, F̂ k) + k σ̂2
(
2

T

)
;

Test3(k) = V (k, F̂ k) + k σ̂2

(
lnT

T

)
.

Consider first Test1 and suppose N > T . Then N+T
NT

≈ 1
T

for large N . The condition

that g(N, T ) → 0 would fail if ln(N + T )/T �→0. For example, if N = exp(T ), r will not

be consistently estimated in theory, even though such a data configuration is unusual in
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practice. But for N = Tα, with α an arbitrary positive constant, then Test1 meets the

conditions of Theorem 2, we therefore expect Test1 to perform well for a wide range of N

and T . Test2 and Test3 resemble the AIC and the BIC respectively. Although g(N, T ) → 0

as T → ∞, Test2 fails the second condition for all N and T . When N << T such that

N log(T )/T �→∞, Test3 also fails condition (ii) of Theorem 2. Thus we expect Test2 will not

work for all N and T and Test3 will not work for small N relative to T .

5 Simulations

We simulate data from the following model:

Xit =
r∑

j=1

λijFtj +
√
θeit

= cit + eit,

where the factors are T × r matrices of N(0, 1) variables, and the factor loadings are N(0, 1)

variates. Hence, the common component of Xit, denoted by cit has variance r. Results with

λij uniformly distributed are similar and will not be reported. Our base case assumes that

the idiosyncratic component has the same variance as the common component (i.e. θ = r).

We consider 15 configurations of the data. The first five simulates plausible asset pricing

applications with five years of data (T = 60) on 100 to 2000 asset returns. We then increase

T to 100. The next two configurations with N=60, T=100 and 200 are plausible size of

datasets for sectors, states, regions, and countries. The large T configurations are reported

for completeness. All computations were performed using Matlab Version 5.3.

Reported in Tables 1 to 3 are the average k̂ over 1000 replications, for r = 1, 3, and 5

respectively, assuming that eit is homoskedastic N(0, 1). Of the three criteria that satisfy

Theorem 2, PCp3 is less robust than PCp1 and PCp2 when N or T is small. The term
NT

N+T
provides a small sample correction to the asymptotic convergence rate of C2

NT and has

the effect of adjusting the penalty upwards. The simulations show this adjustment to be

desirable. For all cases, the maximum of number factors, kmax, is set to 8.

Of the three criteria that do not satisfy all aspects of Theorem 1, Test1 evidently performs

very well. The reason, as explained earlier, is that Test1 fails if N is at least of order exp(T ),

but such a data combination is not considered in the simulations. Although this is also an

unlikely case in practice, it is preferable to consider PCp1 and PCp2 since they have the same

empirical properties and are preferred on theoretical grounds. Test2 fails miserably because

C2
NT · g(N, T ) does not diverge. Test3 fairs better when T < N , but fails when N < T , as

11



theory predicts.

Table 4 relaxes the assumption of homokedasticity. Instead, we let eit = e1
it for t odd, and

eit = e1
it+e2

it for t even, where e
1
it and e2

it are independent N(0, 1). Thus, in even periods, the

variance in the even periods is twice as large as the odd periods. Without loss of generality,

we only report results for r = 3. PCp1 and PCp2 continue to select the true number of

factors very accurately, and dominates the remaining criteria considered.

We also consider θ = 2r and θ = r/2 to assess the robustness of the results to θ,

the variance of the idiosyncratic errors. When θ > r, the variance of the idiosyncratic

component is larger than the common component. It is conceivable that the common factors

are estimated with less precision. Nonetheless, PCp1 and PCp2 still gives the correct estimate

of r. When θ < r, the common component has larger variance. In such a case, all three

proposed criteria give a precise estimate of r.

The preferred criteria, from both theoretical and empirical grounds, are thus PCp1 and

PCp2. It should be emphasized that the results reported in Tables 1-6 are the average of k̂

over 1000 simulations. This average can equal r only if k̂ = r in every replication, and our

preferred criteria accomplishes this precision.

6 Concluding Remarks

A characteristic of a panel of data that has a r factor representation is that the first r

largest population eigenvalues of the N × N covariance of Xt diverge as N increases to

infinity, but the (r + 1)th eigenvalue is bounded, see Chamberlain and Rothschild (1983).

This would seem to suggest that a test based on the sample eigenvalues of the matrix

Σ̂ = 1
T

∑T
t=1(Xt − X̄)(Xt − X̄)′ can be used to test for the number of factors. But it can

be shown that all non-zero sample eigenvalues (not just the first r) of the matrix Σ̂ increase

with N , and a test based on the sample eigenvalues is thus not feasible. For this reason, our

test is based directly on the factor model. The main appeal of our results is that they are

developed under the assumption that N, T → ∞ and thus appropriate for many datasets

typically used in macroeconomic analysis. The test should be useful in applications in which

the number of factors has traditionally been assumed rather than determined by the data.

The foregoing analysis has assumed a static relationship between the observed data and

the factors. Sargent and Sims (1977) and Geweke (1977) extended the static strict factor

model to allow for dynamics. Stock and Watson (1998) suggest how dynamics can be in-

troduced into factor models, although their empirical applications assume a static factor

structure. Forni et al. (1999) allowed Xit to also depend on the leads of the factors. When

12



the method developed in this paper applied to a dynamic model, the estimated number of

factors gives an upper bound of the true number of factors. Consider the data generating

process Xit = aft + bft−1 + eit. From the dynamic point of view, there is only one factor.

The static approach treats the model as having two factors. While this may not have much

practical consequence, it illustrates the theoretical restriction of the static approach. A more

intriguing example is Xit = aXit−1 + bft + eit (|a| �= 1, otherwise use ∆Xit) so that Xit is

an infinite moving average of a single factor. Depending on how fast the moving average

coefficients decay to zero, the model may be approximated by a finite number of factors.

Still, the limitation of the static approach is apparent. That is, the static approach applied

to true dynamic model will only give an upper bound on the true number of factors. Never-

theless, this paper takes an important step toward a solution to dynamic models. Developing

a factor selection rule in a dynamic setting is a non-trivial task and will continue to be the

subject of investigation.

In summary, this paper has made some contribution to the analysis of factor models of

large dimensions. We show that the common factors as well as the number of factors can

be consistently estimated. Although serial correlations are allowed, the model is static in

nature. The study of the dynamic model is a subject of ongoing research. THIS SUMMARY

NEED TO BE REWRITTEN.
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Appendix

To prove the main results we need the following lemma.

Lemma 1 Under assumptions A-C, we have for some M < ∞, and for all N and T ,

(i) T−1
T∑

s=1

T∑
t=1

γN(s, t)
2 ≤ M,

(ii) E
(
T−1

T∑
t=1

‖N−1/2e′tΛ
0‖

)
= E

(
T−1

T∑
t=1

‖N−1/2
N∑

i=1

eitλ
0
i ‖

)
≤ M

(iii) E
(
T−2

T∑
t=1

T∑
s=1

(N−1
N∑

i=1

XitXis)
2
)
≤ M,

(iv) E
∥∥∥(NT )−1/2

N∑
i=1

T∑
t=1

eitλ
0
i

∥∥∥ ≤ M.

Proof: Consider (i). Let ρ(s, t) = γN(s, t)/[γN(s, s)γN(t, t)]
1/2. Then |ρ(s, t)| ≤ 1. From

γN(s, s) ≤ M ,

T−1
T∑

s=1

T∑
t=1

γN(s, t)
2 = T−1

T∑
s=1

T∑
t=1

γN(s, s)γN(t, t)ρ(s, t)
2

≤ MT−1
T∑

s=1

T∑
t=1

|γN(s, s)γN(t, t)|1/2|ρ(s, t)|

= MT−1
T∑

s=1

T∑
t=1

|γN(s, t)| ≤ M2

by Assumption C2. Consider (ii).

E‖N−1/2
N∑

i=1

eitλ
0
i ‖2 =

1

N

N∑
i=1

N∑
j=1

E(eitejt)λ
0
iλ

0
j ≤ λ̄2 1

N

N∑
i=1

N∑
j=1

|τij| ≤ λ̄2M

by Assumptions B and C3. For (iii), it is sufficient to prove E|Xit|4 ≤ M for all (i, t). Now

E|Xit|4 ≤ 8E(λ0
i
′
F 0

t )
4 + 8E|eit|4 ≤ 8λ̄4E‖F 0

t ‖4 + 8E|eit|4 ≤ M for some M by Assumptions

A, B and C1. Finally for (iv),

E‖(NT )−1/2
N∑

i=1

T∑
t=1

eitλ
0
i ‖2 =

1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

E(eitejs)λ
0
i
′
λ0

j

≤ λ̄2 1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

|τij,ts| ≤ λ̄2M

by Assumption C4.
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Proof of Theorem 1 We use the mathematical identity F̂ k = N−1XΛ̃k, and Λ̃k =

T−1X ′F̃ k. From the normalization F̃ k′F̃ k/T = Ik, we also have T−1 ∑T
t=1 ||F̃ k

t ||2 = Op(1).

For Hk = (F̃ k′F 0/T )(Λ0′Λ0/N), we have:

F̂ k
t −Hk′F 0

t = T−1
T∑

s=1

F̃ k
s γN(s, t) + T−1

T∑
s=1

F̃ k
s ζst + T−1

T∑
s=1

F̃sηst + T−1
T∑

s=1

F̃sξst

where ζst =
e′set

N
− γN(s, t),

ηst = F 0′
s Λ′et/N,

ξst = F 0′
t Λ′es/N

Note that Hk depends on N and T . Throughout, we will suppress this dependence to

simplify the notation. We also note that ‖Hk‖ is bounded. Because (x + y + z + u)2 ≤
4(x2 + y2 + z2 + u2), ||F̂ k

t −Hk′F 0
t ||2 ≤ 4(at + bt + ct + dt), where

at = T−2||
T∑

s=1

F̃ k
s γN(s, t)||2,

bt = T−2||
T∑

s=1

F̃ k
s ζst||2,

ct = T−2||
T∑

s=1

F̃ k
s ηst||2,

dt = T−2||
T∑

s=1

F̃ k
s ξst||2.

Now ||∑T
s=1 F̃

k
s γN(s, t)||2 ≤ (

∑T
s=1 ||F̃ k

s ||2) · (
∑T

s=1 γ
2
N(s, t)). Thus,

T−1
T∑

t=1

at ≤ T−1
(
T−1

T∑
s=1

||F̃ k
s ||2

)
· T−1

( T∑
t=1

T∑
s=1

γN(s, t)
2
)

= Op(T
−1)

by Lemma 1(i).

For bt, we have that

T∑
t=1

bt = T−2
T∑

t=1

||
T∑

s=1

F̃ k
s ζst||2

= T−2
T∑

t=1

T∑
s=1

T∑
u=1

F̃ k′
s F̃ k

u ζstζut

≤
(
T−2

T∑
s=1

T∑
u=1

(F̃ k′
s F̃ k

u )
2

)1/2 [
T−2

T∑
s=1

T∑
u=1

(
T∑

t=1

ζstζut)
2

]1/2
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≤ (T−1
T∑

s=1

||F̃ k
s ||2) ·

[
T−2

T∑
s=1

T∑
u=1

(
T∑

t=1

ζstζut)
2

]1/2

.

Since E(
∑T

t=1 ζstζut)
2 = E(

∑T
t=1

∑T
v=1 ζstζutζsvζuv) ≤ T 2 maxs,t E|ζst|4. But

E|ζst|4 = 1

N2
E|N−1/2

N∑
i=1

(eiteis − E(eiteis)|4 ≤ N−2M

by Assumption C5. We have

T∑
t=1

bt ≤ Op(1) ·
√

T 2

N2
= Op(

T

N
),

T−1 ∑T
t=1 bt = Op(N

−1). For ct, we have

ct = T−2||
T∑

s=1

F̃ k
s ηst||2 = T−2||

T∑
s=1

F̃ k
s F

0′
s Λ0′et/N ||2

≤ N−2‖e′tΛ0‖(T−1
T∑

s=1

‖F̃ k
s ‖2)(T−1

T∑
s=1

‖F 0
s ‖2)

= N−2||e′tΛ0||2OP (1).

It follows that

T−1
T∑

t=1

ct = Op(1)N
−1T−1

T∑
t=1

||e
′
tΛ

0

√
N

||2 = Op(N
−1).

by Lemma 1 (ii). The term dt = Op(N
−1) can be proved similarly. Combining these results,

we have T−1 ∑T
t=1(at + bt + ct + dt) = Op(N

−1) +Op(T
−1).

To prove Theorem 2, we need additional results.

Lemma 2 For any k, 1 ≤ k ≤ r, and Hk be the matrix defined in Theorem 1,

V (k, F̂ k)− V (k, F 0Hk) = Op(C
−1
NT ).

Proof For the true factor matrix with r factors and Hk defined in Theorem 1, let M0
FH

denote the projection matrix spanned by null space of F 0Hk. Correspondingly, let Mk
F̂
=

IT − F̂ k(F̂ k′F̂ k)−1F̂ k. Then

V (k, F̂ k) = N−1T−1
N∑

i=1

X i′Mk
F̂
X i,

V (k, F 0Hk) = N−1T−1
N∑

t=1

X ′
iM

0
FHX i,

V (k, F̂ k)− V (k, F 0Hk) = N−1T−1
N∑

i=1

X ′
i(P

0
FH − P k

F̂
)X i.
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Let Dk = F̂ k′F̂ k/T and D0 = HkF 0′F 0Hk′/T . Then

P k
F̂
− P 0

FH = T−1F̂ k

(
F̂ k′F̂ k

T

)−1

F̂ k − T−1F 0Hk

(
HkF 0′F 0Hk′

T

)−1

Hk′F 0′

≡ T−1
[
F̂ kD−1

k F̂ k − F 0HkD−1
0 H ′F 0′] ,

= T−1
[
F̂ k − F 0Hk + F 0Hk)D−1

k (F̂ k − F 0Hk + F 0Hk)− F 0HkD0H
k′F 0′] ,

= T−1
[
(F̂ k − F 0Hk)D−1

k (F̂ k − F 0Hk)′ + (F̂ k − F 0Hk)D−1
k HkF 0′

+F 0HkD−1
k (F̂ k − F 0Hk)′ + F 0Hk(D−1

k −D−1
0 )Hk′F 0′] .

Thus, N−1T−1 ∑N
i=1 X

′
i(P

k
F̂
− P 0

FH)X i = I + II + II + IV . We consider each term in turn.

I = N−1T−2
N∑

i=1

T∑
t=1

T∑
s=1

(F̂ k
t −Hk′F 0

t )
′D−1

k (F̂ k
s −Hk′F 0

s )XitXit

≤
(
T−2

T∑
t=1

T∑
s=1

[
(F̂ k

t −Hk′F 0
t )

′D−1
k (F̂ k

s −Hk′F 0
s )

]2
)1/2

·
[
T−2

T∑
t=1

T∑
s=1

(N−1
N∑

i=1

XitXis)
2

]1/2

≤
(
T−1

T∑
t=1

||F k
t −Hk′F 0

t ||2
)
· ||D−1

k || ·Op(1) = Op(C
−2
NT ).

by Theorem 1 and Lemma 1(iii).

II = N−1T−2
N∑

i=1

T∑
t=1

T∑
s=1

(F̂ k
t −Hk′F 0

t )
′D−1

k Hk′F 0
s XitXis

≤
(
T−2

T∑
t=1

T∑
s=1

||F̂ k
t −Hk′F 0

t ||2 · ||Hk′F 0
s ||2 · ||D−1

k ||2
)1/2

·
[
T−2

T∑
t=1

T∑
s=1

(N−1
N∑

i=1

XitXis)
2

]1/2

≤
(
T−1

T∑
t=1

||F̂ k
t −Hk′F 0

t ||2
)1/2

· ||D−1
k || ·

(
T−1

T∑
t=1

||Hk′F 0
s ||2

)1/2

·Op(1)

=

(
T−1

T∑
t=1

||F̂ k
t −Hk′F 0

t ||2
)1/2

·Op(1) = Op(C
−1
NT ).

It can be verified that III is also Op(C
−1
NT ).

IV = N−1T−2
N∑

i=1

T∑
t=1

T∑
s=1

F 0′
t Hk(D−1

k −D−1
0 )Hk′F 0

s XitXis

≤ ||D−1
k −D−1

0 ||N−1
N∑

i=1

(
T−1

T∑
t=1

||Hk′F 0
t || · |Xit|

)2

= ||D−1
k −D−1

0 || ·Op(1).
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Next, we prove that ‖D1
k −D0‖ = Op(CNT ).

Dk −D0 =
F̂ k′F̂ k

T
− Hk′F 0′F 0Hk

T

= T−1
T∑

t=1

[
F̂ k

t F̂
k′
t −Hk′F 0

t F
0
t H

k
]

= T−1
T∑

t=1

(F̂ k
t −Hk′F 0

t )(F̂
k
t −Hk′F 0

t )
′

+T−1
T∑

t=1

(F̂ k
t −Hk′F 0

t )F
0
t H

k + T−1
T∑

t=1

HkF 0
t (F̂

k
t −Hk′F 0

t )
′,

||Dk −D0|| ≤ T−1
T∑

t=1

||F̂ k
t −Hk′F 0

t ||2 +

2

(
T−1

T∑
t=1

||F̂ k
t −Hk′F 0

t ||2
)1/2

·
(
T−1

T∑
t=1

||Hk′F 0
t ||2

)1/2

= Op(C
−2
NT ) +Op(C

−1
NT ) = Op(C

−1
NT ).

Because F 0′F 0/T converges to a positive definite matrix, and because rank(Hk) = k ≤ r,

D0 converges to a positive definite matrix. From Dk −D0 = Op(C
−1
NT ), Dk also converges to

a positive definite matrix. This in turn implies that D−1
K −D−1

0 = Op(C
−1
NT ).

Lemma 3 For the matrix Hk defined in Theorem 1, and for each k with k < r, there exists

a τk > 0 such that

plim infN,T→∞ V (k, F 0Hk)− V (r, F 0) = τk.

Proof

V (k, F 0Hk)− V (r, F 0) = N−1T−1
N∑
i

X ′
i(P

0
F − P 0

FH)X i

= N−1T−1
N∑

i−1

(F 0λ0
i + ei)

′(P 0
F − P 0

FH)(F
0λ0

i + ei)

= N−1T−1
N∑

i=1

λ0
iF

0′(P 0
F − P 0

FH)F
0λ0

i

+2N−1T−1
N∑

i=1

e′i(P
0
F − P 0

FH)F
0λ0

i

+N−1T−1
N∑

i=1

e′i(P
0
F − P 0

FH)ei

= I + II + III.
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First, note that P 0
F − P 0

FH ≥ 0. Hence, III ≥ 0. For the first two terms,

I = tr

[
T−1F 0′(P 0

F − P 0
FH)F

0N−1
N∑

i=1

λ0
iλ

0′
i

]

= tr

F 0′F 0

T
− F 0′F 0Hk

T

(
Hk′F 0′F 0Hk

T

)−1
Hk′F 0′F 0

T

 ·N−1
N∑

i=1

λ0
iλ

0′
i


→ tr

([
ΣF − ΣFH

k
0 (H

k′
0 ΣFH

k
0 )

−1Hk′
0 ΣF

]
·D

)
= tr(A ·D),

where A = ΣF −ΣFH
k
0 (H

k′
0 ΣFH

k
0 )

−1Hk′
0 ΣF and Hk

0 is the limit of Hk with rank(Hk
0 ) = k < r

[see, Stock and Watson (1998)]. Now A �= 0 because rank(ΣF ) = r (Assumption A). Also,

A is semipositive and D > 0 (Assumption B). This implies that tr(A ·D) > 0.

Now II = 2N−1T−1 ∑N
i=1 e

′
iP

0
FF

0λ0
i −2N−1T−1 ∑N

i=1 e
′
iP

0
FHF

0λ0
i . Consider the first term.

|N−1T−1
N∑

i=1

e′iP
0
FF

0λ0
i | = |N−1T−1

N∑
i=1

T∑
t=1

eitF
0′
t λ0

i |

≤ (T−1
T∑

t=1

||F 0
t ||2)1/2 · 1√

N
(T−1

T∑
t=1

|| 1√
N

N∑
i=1

eitλ
0
i ||2)1/2

= Op(
1√
N
).

The last equality follows from Lemma 1 (ii). The second term is also Op(
1√
N
), and hence

II = Op(
1√
N
) → 0.

Lemma 4 For any fixed k with k ≥ r, V (k, F̂ k)− V (r, F̂ r) = Op(
1
N
+ 1

T
).

Proof:

|V (k, F̂ k)− V (r, F̂ r)| ≤ |V (k, F̂ k)− V (r, F 0)|+ |V (r, F 0)− V (r, F̂ r)|
≤ 2 max

r≤k≤kmax
|V (k, F̂ k)− V (r, F 0)|.

Thus, it is sufficient to prove for each k with k ≥ r,

V (k, F̂ k)− V (r, F 0) = Op(
1

N
+

1

T
).

Let Hk be as defined in Theorem 1, now with rank r because k ≥ r. Let Hk+ be the

generalized inverse of Hk such that HkHk+ = Ir. From X i = F 0λ0
i + ei, we have X i =

F 0HkHk+λ0
i + ei. This implies
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X i = F̂ kHk+λ0
i + ei − (F̂ k − F 0Hk)Hk+λ0

i

= F̂ kHk+λ0
i + ui,

where ui = ei − (F̂ k − F 0Hk)Hk+λ0
i .

Note that

V (k, F̂ k) = N−1T−1
N∑

i=1

u′
iM

k
F̂
ui,

V (r, F̂ 0) = N−1T−1
N∑

i=1

e′iM
0
F ei.

V (k, F̂ k) = N−1T−1
N∑

i=1

(
ei − (F̂ k − F 0Hk)Hk+λ0

i

)′
Mk

F̂

(
ei − (F̂ k − F 0Hk)Hk+λ0

i

)

= N−1T−1
N∑

i=1

e′iM
k
F̂
ei − 2N−1T−1

N∑
i=1

λ0′
i H

k+′(F̂ k − F 0Hk)′Mk
F̂
ei

+N−1T−1
N∑

i=1

λ0′
i H

k+′(F̂ k − F 0Hk)′Mk
F̂
(F̂ k − F 0Hk)Hk+λ0

i

≡ a+ b+ c.

Because Mk
F̂
is a projection matrix, x′Mk

F̂
x ≤ x′x. Thus,

c ≤ N−1T−1
N∑

i=1

λ0′
i H

k+′(F̂ k − F 0Hk)′(F̂ k − F 0Hk)Hk+λ0
i

≤ T−1
T∑

t=1

||F̂ k
t −Hk′F 0

t ||2 ·
(
N−1

N∑
i=1

||λ0
i ||2||Hk+||2

)
= Op(C

−2
NT ) ·Op(1)

by Theorem 1. For the term b, we use the fact that |tr(A)| ≤ r‖A‖ for any r × r matrix A.

Thus

b = 2T−1tr
(
Hk+(F̂ k − F 0Hk)′Mk

F̂
(N−1

N∑
i=1

eiλ
0
i )

)

≤ 2r||Hk+|| · || F̂
k − F 0Hk

√
T

|| · || 1√
TN

N∑
i=1

eiλ
0
i ||

≤ 2r||Hk+|| ·
(
T−1

T∑
t=1

||F̂ k
t −Hk′F 0

t ||2
)1/2

· 1√
N
|| 1√

NT

N∑
i=1

T∑
t=1

eitλ
0
i ||

= Op(C
−1
NT ) ·

1√
N

= Op(C
−2
NT )
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by Theorem 1 and Lemma 1(iv). Therefore,

V (k, F̂ k) = N−1T−1
N∑

i=1

e′iM
k
F̂
ei +Op(C

−2
NT )

Using the fact that V (k, F̂ k)− V (r, F 0) ≤ 0 for k ≥ r,

0 ≥ V (k, F̂ k)− V (r, F 0) = N−1T−1
N∑

i=1

e′i(P
k
F̂
− P 0

F )ei +Op(C
−2
NT )

= N−1T−1
N∑

i=1

e′iP
k
F̂
ei −N−1T−1

N∑
i=1

e′iP
0
F ei +Op(C

−2
NT ).

Note that

N−1T−1
N∑

i=1

e′iP
0
F ei ≤ ‖(F 0′F 0/T )−1‖ ·N−1T−2

N∑
i=1

e′iF
0F 0′ei

= Op(1)T
−1N−1

N∑
i=1

‖T−1/2
T∑

t=1

F 0
t eit‖2 = Op(T

−1) ≤ Op(C
−2
NT )

by Assumption D. Thus

0 ≥ N−1T−1
N∑

i=1

e′iP
k
F̂
ei +Op(C

−2
NT ).

This implies that N−1T−1 ∑N
i=1 e

′
iP

k
F̂
ei = Op(C

−2
NT ). In summary

V (k, F̂ k)− V (r, F 0) = Op(C
−2
NT ) = Op(

1

N
+

1

T
) = Op(

N + T

NT
).

Proof of Theorem 2 We shall prove that limN,T→∞ P (IC(k) < IC(r)) = 0 for all k �= r

and k ≤ kmax. Consider k < r. Since

IC(k)− IC(r) = V (k, F̂ k)− V (r, F̂ r)− (r − k)g(N, T ),

the required condition when k < r is Prob[V (k, F̂ k) − V (r, F̂ r) < (r − k)g(N, T )] = 0 as

N, T → ∞. Now

V (k, F̂ k)− V (r, F̂ r) = [V (k, F̂ k)− V (k, F 0Hk)] +

[V (k, F 0Hk)− V (r, F 0Hr)] + [V (r, F 0Hr)− V (r, F̂ r)].

Lemma 2 mplies that the first and the third terms are both Op(C
−1
NT ). Next, consider the

second term. Because F 0Hr and F 0 span the same column space, V (r, F 0Hr) = V (r, F 0).
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Thus the second term can be rewritten as V (k, F 0Hk)−V (r, F 0), which has a positive limit

by Lemma 3. Hence, Prob[IC(k) < IC(r)] → 0 if g(N, T ) → 0 as N, T → ∞. Next, for

k ≥ r,

Prob[IC(k)− IC(r) < 0] = Prob[V (r, F̂ r)− V (k, F̂ k) > (k − r)g(N, T )].

By Lemma 4, V (r, F̂ r)− V (k, F̂ k) = Op(C
−2
NT ). For k > r, (k − r)g(N, T ) ≥ g(N, T ), which

converges to zero at a slower rate that C−2
NT . Thus for k > r, Prob[IC(k) < IC(r)] → 0 as

N, T → ∞.

22



Table 1: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

r = 1; θ = 1.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 1.000 1.000 2.407 1.000 8.000 2.407
200 60 1.000 1.000 1.000 1.000 8.000 1.000
500 60 1.000 1.000 1.000 1.000 5.213 1.000
1000 60 1.000 1.000 1.000 1.000 1.004 1.000
2000 60 1.000 1.000 1.000 1.000 1.000 1.000
100 100 1.000 1.000 3.209 1.000 8.000 3.209
200 100 1.000 1.000 1.000 1.000 8.000 1.000
500 100 1.000 1.000 1.000 1.000 8.000 1.000
1000 100 1.000 1.000 1.000 1.000 1.079 1.000
2000 100 1.000 1.000 1.000 1.000 1.000 1.000
60 100 1.000 1.000 2.284 1.000 8.000 8.000
60 200 1.000 1.000 1.000 1.000 8.000 8.000
60 500 1.000 1.000 1.000 1.000 8.000 8.000
60 1000 1.000 1.000 1.000 1.000 8.000 8.000
60 2000 1.000 1.000 1.000 1.000 8.000 8.000

Table 2: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

r = 3; θ = 3.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 3.000 3.000 3.543 3.000 8.000 3.543
200 60 3.000 3.000 3.000 3.000 8.000 3.000
500 60 3.000 3.000 3.000 3.000 5.961 3.000
1000 60 3.000 3.000 3.000 3.000 3.000 3.000
2000 60 3.000 3.000 3.000 3.000 3.000 3.000
100 100 3.000 3.000 4.217 3.000 8.000 4.217
200 100 3.000 3.000 3.000 3.000 8.000 3.000
500 100 3.000 3.000 3.000 3.000 8.000 3.000
1000 100 3.000 3.000 3.000 3.000 3.014 3.000
2000 100 3.000 3.000 3.000 3.000 3.000 3.000
60 100 3.000 3.000 3.501 3.000 8.000 8.000
60 200 3.000 3.000 3.000 3.000 8.000 8.000
60 500 3.000 3.000 3.000 3.000 8.000 8.000
60 1000 3.000 3.000 3.000 3.000 8.000 8.000
60 2000 3.000 3.000 3.000 3.000 8.000 8.000

Table 1–Table 6 report the estimated number of factors averaged over 1000 simulations. The true
number of factors is r and kmax = 8.
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Table 3: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

r = 5; θ = 5.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 5.000 4.998 5.065 4.942 8.000 5.065
200 60 5.000 5.000 5.000 4.987 8.000 5.000
500 60 5.000 5.000 5.000 4.988 6.883 5.000
1000 60 5.000 5.000 5.000 4.975 5.000 5.000
2000 60 5.000 5.000 5.000 4.940 5.000 5.000
100 100 5.000 5.000 5.443 4.999 8.000 5.443
200 100 5.000 5.000 5.000 5.000 8.000 5.000
500 100 5.000 5.000 5.000 5.000 8.000 5.000
1000 100 5.000 5.000 5.000 5.000 5.000 5.000
2000 100 5.000 5.000 5.000 5.000 5.000 5.000
60 100 5.000 4.999 5.055 4.940 8.000 8.000
60 200 5.000 5.000 5.000 4.984 8.000 8.000
60 500 5.000 5.000 5.000 4.995 8.000 8.000
60 1000 5.000 5.000 5.000 4.969 8.000 8.000
60 2000 5.000 5.000 5.000 4.934 8.000 8.000

Table 4: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

eit = e1
it + δte

2
it (δt = 1 for t even, δt = 0 for t odd)

r = 3; θ = 3.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 3.000 3.000 4.931 3.000 8.000 4.931
200 60 3.000 3.000 3.000 3.000 8.000 3.000
500 60 3.000 3.000 3.000 3.000 8.000 3.000
1000 60 3.000 3.000 3.000 3.000 7.929 3.000
2000 60 3.000 3.000 3.000 2.998 4.686 3.000
100 100 3.000 3.000 5.772 3.000 8.000 5.772
200 100 3.000 3.000 3.000 3.000 8.000 3.000
500 100 3.000 3.000 3.000 3.000 8.000 3.000
1000 100 3.000 3.000 3.000 3.000 8.000 3.000
2000 100 3.000 3.000 3.000 3.000 4.110 3.000
60 100 3.000 3.000 4.305 2.999 8.000 8.000
60 200 3.000 3.000 3.000 3.000 8.000 8.000
60 500 3.000 3.000 3.000 3.000 8.000 8.000
60 1000 3.000 3.000 3.000 2.998 8.000 8.000
60 2000 3.000 3.000 3.000 2.999 8.000 8.000
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Table 5: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

r = 5; θ = r × 2.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 4.781 4.408 5.060 3.500 8.000 5.060
200 60 4.899 4.787 4.996 3.614 8.000 4.996
500 60 4.963 4.947 4.991 3.386 6.874 4.991
1000 60 4.979 4.975 4.991 3.133 5.000 4.991
2000 60 4.985 4.981 4.989 2.651 5.000 4.989
100 100 4.957 4.677 5.430 4.128 8.000 5.430
200 100 5.000 4.994 5.000 4.681 8.000 5.000
500 100 5.000 5.000 5.000 4.900 8.000 5.000
1000 100 5.000 5.000 5.000 4.904 5.000 5.000
2000 100 5.000 5.000 5.000 4.789 5.000 5.000
60 100 4.749 4.394 5.052 3.456 8.000 8.000
60 200 4.908 4.809 4.997 3.575 8.000 8.000
60 500 4.973 4.957 4.999 3.419 8.000 8.000
60 1000 4.969 4.960 4.987 3.073 8.000 8.000
60 2000 4.975 4.974 4.983 2.637 8.000 8.000

Table 6: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit

r = 5; θ = r/2.
N T PCp1 PCp2 PCp3 Test1 Test2 Test3

(AIC) (BIC)
100 60 5.000 5.000 5.066 5.000 8.000 5.066
200 60 5.000 5.000 5.000 5.000 8.000 5.000
500 60 5.000 5.000 5.000 5.000 6.877 5.000
1000 60 5.000 5.000 5.000 5.000 5.000 5.000
2000 60 5.000 5.000 5.000 5.000 5.000 5.000
100 100 5.000 5.000 5.444 5.000 8.000 5.444
200 100 5.000 5.000 5.000 5.000 8.000 5.000
500 100 5.000 5.000 5.000 5.000 8.000 5.000
1000 100 5.000 5.000 5.000 5.000 5.000 5.000
2000 100 5.000 5.000 5.000 5.000 5.000 5.000
60 100 5.000 5.000 5.058 5.000 8.000 8.000
60 200 5.000 5.000 5.000 5.000 8.000 8.000
60 500 5.000 5.000 5.000 5.000 8.000 8.000
60 1000 5.000 5.000 5.000 5.000 8.000 8.000
60 2000 5.000 5.000 5.000 5.000 8.000 8.000

25



References

Backus, D., Forsei, S., Mozumdar, A. and Wu, L. (1997), Predictable Changes in Yields and
Forward Rates, mimeo, Stern School of Business.

Chamberlain, G. and Rothschild, M. (1983), Arbitrage, Factor Structure and Mean-Variance Anal-
ysis in Large Asset Markets, Econometrica 51, 1305–1324.

Cochrane, J. (1999), New Facts in Finance, and Portfolio Advice for a Multifactor World, NBER
Working Paper 7170.

Connor, G. and Korajcyk, R. (1986), Performance Measurement with the Arbitrage Pricing Theory:
A New Framework for Analysis, Journal of Financial Economics 15, 373–394.

Connor, G. and Korajcyk, R. (1988), Risk and Return in an Equilibrium APT: Application to a
New Test Methodology, Journal of Financial Economics 21, 255–289.

Connor, G. and Korajcyk, R. (1993), A Test for the Number of Factors in an Approximate Factor
Model, Journal of Finance XLVIII:4, 1263–1291.

Cragg, J. and Donald, S. (1997), Inferring the Rank of a Matrix, Journal of Econometrics 76, 223–
250.

Donald, S. (1997), Inference Concerning the Number of Factors in a Multivariate Nonparameteric
Relationship, Econometrica 65:1, 103–132.

Forni, M. and Lippi, M. (1997), Aggregation and the Microfoundations of Dynamic Macroeconomics,
Oxford University Press, Oxford, U.K.

Forni, M. and Reichlin, L. (1998), Let’s Get Real: a Factor-Analytic Approach to Disaggregated
Business Cycle Dynamics, Review of Economic Studies 65, 453–473.

Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (1999), The Generalized Dynamic Factor Model:
Identification and Estimation, mimeo, Université Libre de Bruxelles.
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