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Abstract

We propose a multi-agents adverse selection version of Townsend’s
[16] model of costly audits where the agents’ types are correlated. Au-
dits are used because agents have a limited ability to bear risk so that
the Full Surplus Extraction (FSE) scheme la Crmer and McLean [6, 7]
and McAfee and Reny [11] would be suboptimal here. It is shown that
Townsend’s result of an optimal marginal arbitrage between rent ex-
traction and efficiency does not hold in the case of perfect correlation:
FSE is feasible — even in dominant strategies — by devising a contract
that put the agents in a prisoner’s dilemma. A numerical simulation
of the model is performed which suggests that the single agent model
is not a good approximation of the multi-agents case.

JEL Classification: C63, D82.
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1 Introduction

Audits and various forms of costly monitoring are routinely performed in
organizations to gather information that is usually available at no cost to
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some of its members. These practices are usually rationalized by invoking
that the organization performs better this way since revelation of information
reduces adverse rent-seeking behavior by its members. Another argument is
that revelation of information allows the Principal to secure for himself the
economic surplus created in the organization.

Yet, it is well known today from the works of Crmer and McLean [6, 7]
and McAfee and Reny [11]' that, when the agents’ information is correlated,
efficient production and complete surplus extraction is achievable by the
Principal using only sophisticated transfer schemes. If the Principal is only
interested in maximizing the sum of the agents utilities or if all parties can
contract before any agent actually learned their private information, another
older result by d’Aspremont and Grard-Varet [9] shows that this is possible
even if all information is disseminated independently across agents.

The question is then why is costly monitoring so pervasive? The cited
results relies heavily on two assumptions:

e all parties are risk neutral;
e all parties have no limited liability.

Basically, the transfer schemes required to achieve efficiency with budget
balance or total surplus extraction are highly variable and generally involve
large positive and negative transfers. This would be socially costly with risk-
averse parties and downright impossible (not credible) if parties have limited
liability.

The moment when either one of these two assumptions is relaxed, in-
formation about private types becomes valuable so that one may optimally
consider spending resources to gather it through costly audits. In this pa-
per, we relax both assumptions; Robert [13] and Demougin & Gatvie [10]
have shown that the efficient arrangement is then no longer implementable.
We expect then the Principal to economize on cost by implementing costly
audits.

The aim of the paper is to determine

e who should be audited;

e when specific audits should be performed;

1See Aoyagi [1] and Brusco [3] for recent references.



e how transfers should be conditioned on the agents voluntary announce-
ments and on the results of performed audits.

We assume throughout that the organization is able to commit firmly to
an audit policy procedure to avoid the renegotiation issue.

The rest of this paper is divided as follows. In the next section, we present
a multi-agents version of Townsend’s (1979) model of audits. In section 3,
we consider first the polar cases of completely independent and of perfectly
dependent types. In section 3.1, we develop an argument about symmetrical
types spaces to get a tractable version of the model. The general case of
imperfectly correlated types is explored with a numerical example in section
3.2. Section 4 concludes.

2 The Model

Consider an organization composed of N + 1 players. There is a Principal
(player 0) facing a set I = {1,...,N} of N agents where each ¢ € I is the
“name” of some agent. Let P(I) be the power set of agents. Each agent
1 performs a task for the Principal from which he entails a private random
cost (a type) of §° = 6. € ©" where the type value strictly increases with
k. We let © = x;c; O be the set of |©| = J types profiles where | - | is the
cardinal operator. We note p(#) the probability that profile 6 is realized. For
simplicity, we assume that each agent has the same number 7" of possible
types so that J = TV. The type set is indexed with modulo 7', that is if
T = 8, then 615 = ;. Given a subset n of agents, the vector ,, denotes their
types profile; hence 8; = 6. To compensate him for this action, each agent
shall be given a a wage w’ that may be contingent on the messages sent to
the Principal about the agents’ types and on the result of performed audits.

We assume that there is a constant return to scale technology in auditing.
Auditing an agent then costs ¢ to the Principal and reveals the agent’s type.
The Principal introduces audits by committing herself to an audit policy. An
audit policy specifies how audits are to be carried on conditionally on the
agents’ reports. We will consider the case of simultaneous audits® and we
define here an audit policy for that case.

2A readily extension to this model is to consider the case of sequential audits where
the decision to audit an agent may depend of the result of auditing another agent.



By the Revelation Principle, a message from agent i to the Principal
can be restricted to an element m' € ©°. We let m denote a profile of
messages. With simultaneous audits, an audit policy is a mapping from ©
into a distribution ¢ over P(I); that is, with some probability g,, only the
subset n of agents, 0 < |n| < N, will be audited. The set of audit policies
(distributions) is the the unit simplex S¥ in RY where K = |P(I)| -1 =
2V — 1. Given an audit policy and a profile of messages m, the Principal
audits agent ¢ with marginal probability

> awun(m). (1)

neP(I\i)

The objective of the Principal is to minimize the expected cost of com-
pensating the agents and of pursuing a given audit policy. Given the wages
w* and the number |n| of agents audited, that cost is

Z w' + c|n|.
iel

Agent ’s ex post payoff is simply u;(w® — 6) where all u; are strictly
concave Von Neumann-Morgenstern utility functions with lim,_,o u}(x) = co
to insure interior solutions.

Auditing the subset n of agents reveals surely their type profile 6,,. Given
their messages m,,, we define an audit result to be a |n|-tuple a where each
ordered element a; of a is an integer from 0 to 7" — 1 that specifies by how
many indexes the agent in n with the jth name overstated his cost. A |n|-
tuple of zeroes is then equivalent to say that all audited agents told the
truth; when |n| is large or unspecified, we note that result a?n|. If T'=28 and
Myi245) = (03,05, 0], then a = (0,2,7) is an audit result that says that agent
2 told the truth, agent 4 lied by over-reporting his true cost by 2 and agent 5
lied by underreporting his true cost by 1 (that is, over-reporting by 7), since
both agents 4 and 5 are of type f5. The set of possible audit results for any
subset n # () of agent is Ap, and has |Ap, | = T" elements. If n = (), |Ao| is
defined to be 1 in the sense that the only new piece of information brought
by performing the random audit policy was that no audits were actually
performed.?

3That degree of formalization is made here for the sake of completeness. In section
3.1, we will invoke the classical argument that Nash implementation necessitates only to
specify what happen in a truth-telling equilibrium and in single-agent defection from this
equilibrium.



A wage to agent ¢ contingent on the profile of messages m and on the
information a produced by the audits is noted wfb7a(m). When no audit are
performed, we note the wage wj(m). Contingently on that event, that wage
depends only the message m sent by the agents and their name 3.

The organization is ruled by a contract that specifies the wages to be paid
and the audit policy to be performed. We model the contracting process with
a very standard sequential game:

1. The Principal hires the agents by offering them a contract; an agent
that refuses the contract exit the game with a reservation payoff of
u;(0) all normalized to zero and the Principal gets to make another
take-it-or-leave-it offer to the remaining subset of agents (there is no
discounting of the players’ payoffs).

2. The agents learn their private costs #° that they will born by executing
the task for the Principal.

3. All agents send simultaneously and privately a messages m; about their
private cost to the Principal.

4. According to the audit policy induced by m, random audits are per-
formed upon a subset n of agents which reveal information a about
n.

5. Each agent 7 accomplishes his task for which he receives a wage of
w}, ,(m). The agent’s payoff is then u;(w} ,(m) — 6").

In the first stage, we assume that it is common knowledge that all agents
always accept any contract that yields their reservation payoff. We assume
that the social surplus associated to the accomplishment of the task is always
positive ex post, whatever the agents’ profile of types so that, even if an

audit has been performed, the ex post production decision is never an issue.*

4A variant would be for each agent to execute his task in stage 3, that is prior the
audits are performed. With non risk neutral agent, we would then have to specify agent
i’s payoff as v(#%, w?). What matters, with respect to the equilibrium of the game, is how
the agent’s type affects his reporting behavior. With our formulation, wages and costs are
perfect substitutes and an increase in the type always increases the marginal utility of a
dollar in wage. In the variant, the wages and the costs will not be perfect substitutes and
an increase in the type will have no effect on the marginal utility of a dollar if the function
v is separable.



Refusing to execute the task in the last stage is never an option for any agent
once he has accepted the contract. On the other hand, we assume that all
agents have a limited liability so that their wage must be non negative (see
Sappington, 1983). Hence, the lowest payoff an agent may get is u;(—6%).
This formulation would fit a situation where the task is fully contractible
(so that no compliance may entail an arbitrarily large penalty) while the
messages are imperfectly contractible: unless it is proven that he lied about
his costs, an agent can always enforce the contractual wage. Wages are
paid at the end of the game so that contracts randomizing the wage policy,
contingent on the history of the game, will be dominated for risk averse
agents.

Let us count the number of wages that must be specified following the
announce of a message profile m by the agents. For each subset n of audited
agents, there are |Aj,| possible results. The number of subsets in P([)
that have k = |n| elements is (7). It follows that, given any m, there are
1+ ZkN:1 (M)T* = (T + 1)¥ = L possible contingencies we must take into
account.” Let F be the set of these contingencies with typical element n, a.
A contract is typically then composed on one hand of a function that maps
© into S and, on the other hand, of N non negative wages functions w'(-)
that each maps © x E into a non negative number wj, ,(m) in R, (the wage
set).

We identify a contract with simultaneous audits by the vector of numbers
it must specify which we note §. We then let D = (S x (R;.)V¥)? be the set
of contracts with simultaneous audits. A contract must specifies J(K + NL)
numbers. In the simplest many agents case (the 2x 2-case ), that of two
agents (N = 2) with two types (7' = 2), to which we will often refer, we have
J =4, K =3 and L = 9 so that each contract must specify 4(3+2-9) = 84
variables.

The final outcome of a contract depends on the agents’ reporting behavior,
the realization of the random variable # and of the (unspecified) random
variable governing the audit decision. In stage two though, the temporary
outcome of a contract only depends on the realization of 8, or more precisely,
on the announce m made by the agents about #. We note that temporary

5 Another way to get that result is to augment the type set of each agent by a “null”
type which represents the ex post type of an agent that has not been audited. Then, either
the agent is audited, with T possible outcomes, or he is not audited and we say that he
has the null type. There are then (T + 1)V possible outcomes to the audits.



outcome §(f) which is then a vector of K + NL numbers that identify the
distribution (K) of the random audit policy to be performed and the NL
wages that may potentially be paid from that point on.

Assume that the agents report truthfully their types. The expected cost
C of a contract 0 to the Principal is then

=2 Z (Z wh (6 +c|n|> (2)

0€0 neP(I 1€l

In the 2x2-case, this becomes

> 2Ol (0) (why ) (0) + why ) (6) + )
gco

+ ‘1{2}(9)(“&2} ©0(8) + w%Q},(O) 0) +¢) (3)
+ q1(0) (wr 1,00)(0) + w%,(o,o) () + 2¢) + qo(8) (wy (0) + w5 (6))],

where ¢4(0) = 1 — q(13(0) — ¢q23(0) — ¢:(0) > 0 so that ¢ belongs to S*.
Under the same assumption, that is if m = 6, the expected benefit of a
contract 0 to an agent 7 is

E(U*(8,m)) = E(U*(5,0) =Y Y pl ui(w 0 1 (0) = 0%). (4)

0€0 neP(I)

2.1 Implementability

The fact that each agent’s type is a private information to him, raises the issue
of implementability of a contract. We will focus mainly on Bayesian-Nash
implementation although our main result applies also in dominant strategy
implementation. By the Revelation Principle, implementability is feasible if
the contract satisfies the incentive compatibility constraints (/C) that induce
an honest reporting behavior. With the usual notation, for any profile of type
0, let ©_; denotes the set of vector of types #_; where 6 .= 07 for all j # 1.
Let

BU (5,00 =" 3" p(016")¢a(0)ui(w, ,(0) — 67),

0€O neP(I)

denotes the expected utility of agent ¢, conditional on his type and given that
he announces his true type m’ = #° and that he expect agent j to do the

7



same, that is, m/ = 67. With that notation, the expected utility of agent i if
he lies while all other agents tell the truth so that, for any profile of type 8,
some _; € ©_; shall be reported is

E(U(8,0-)16") =Y > p(016")an(0—s)ui(w}, ,(0—;) — 67).

9€0 neP(I)

The IC constraints are then

E(U(5,0) —U'(6,0_:)|#") >0 VA, €0 _;,¥0€O,Vicl. (IC)
The IR ex ante constraint is
E(U'(5,6)) >0, Vel. (IR)

An implicit IR constraint is also assumed for the Principal; that is, the
contract has a bounded value.

The set of optimal implementable contracts A, that minimizes the ex-
pected cost of the Principal is then given by

A, = argming E(C(J)) s.t. (IC) and (IR).

We parameterize it by the cost ¢ of performing a single audit. It is straight-
forward to show that A, is a non-empty compact set.® When auditing is
cost-less (¢ = 0) we are in effect in a case of complete information: we can
assume that the Principal always commit to always audit both agents since
that entails no loss of efficiency. Hence, ¢(#) = 1 and incentive compatibility
is assured by giving a zero wage to all agents that lied. It is straightforward
to see that first-best contracts in Ay all set a wage w’ at, |(19) = 6" as to keep

utility constant across states.

6The weak inequalities (IC) and (IR) describe a closed set of implementable contracts.
We assume that g, (m)w}, ,(m) = 0 for any event n of measure zero: since g, (m)ws, ,(m)
is bounded, this implies that wages have an upper bound; hence, the set of implementable
contracts is a compact set. Let °, such that w}, , = m’ and gy = 1 be the contract that
maximize the agents surplus (they all announce §7). That contract satisfies (IC) and (IR)

so that the set of implementable contracts is never empty.



3 Contracting with Costly Audits

When ¢ > 0, auditing with certainty is generally inefficient because agents
are risk averse: a sufficiently high probability that they will be audited can
deter them from misreporting their type. Townsend (1979) made that point
clear in the case of a single agent”. We first reproduce his result here in the
case where there are many agents whose types are completely independent.

When types are independent, the information the Principal receives from
one agent provides no information on any other agent. In this case, the
optimal contract is such that there exist a cutoff cost § such that all agents
that announced 6, < 0 are never audited while all that announced 6, > 6
are audited with some positive probability.

Because types are independent and the Principal is risk-neutral, there is
no loss of generality in assuming that one agent’s wage, or probability of being
audited, depends only on his message and actual type (if he is audited); that
is, the optimal contract will be separable in many independent contracts, one
for each agent.

In such contract, an agent # might be tempted to misreport his type in
order to get, with probability 1 — @), a higher wage w than the wage w'
he would get by telling the truth. If the agent is audited (with probability
@) and lied, though, he gets zero. His IC constraint with respect to such
deviation is thus:

u(w' —6) > Qu(—0) + (1 — Q)u(w — ) > 0.

Setting that inequality to zero and solving for () we can define the following

function:

u(w —6) —u(w' —0) (5)
u(w—0) —u(—0)

Qw,w',0) =
The following lemma characterizes the derivatives of () which we note @,

Q2 and Q3. The derivative of (); with respect to w is noted (Q11.

Lemma 1. i) Qy < 0. i) When w > w' > 0, @1 > 0 and Q11 < 0. iii)
When w > w' > 0, Q3 < 0.

"See Gale and Hellwig (1985), or Bond and Crocker [2] for a recent treatment.



Proof. The sign of the second derivative is obvious. To prove point ii), we
derive the function

twice where f(w) = u(w —0), g = u(w’ — ) and h = u(—60). Note that
f(w) > h and g > h. Then sign(¢'(w)) = sign((g — h)f'(w)) > 0 and
sign(¢” (w)) = sign((f — h)f"(w) — 2(f'(w))*) < 0.

iii) The case is trivial when w = w’. When w > v/, rewrite Q(w, w', 0) as
a function ®,, of # parameterized by w':

f(e) — Guw’ (9)
f(6) = h(6) ’

where f(0) = u(w — ), g (0) = u(w' — @) and h(f) = u(—0) and let ¢, be
the derivative of that function:

Dy (0) =

b (0) = B (6) - (f'(a) —w(6) _ [(6) - h'(‘”) |

f(0) = 9w (0)  f(0) = h(0)

We want to show that ¢, (6) is non-positive; this will be true if we can show
that the term in the brackets is negative. For any given value of 6, the first
ratio in the brackets decreases as w' is increased on [0, w]. Hence, we check
the value of the difference in the brackets at its highest value as w’ approaches
zero: there the bracketed term takes the value zero. We conclude that ¢, (6)
is bounded above by zero. O

We now characterize the optimal contract when types are independent.

Proposition 1. The optimal contract specifies to audit an agent that an-
nounces 0y with probability q(0x) = Q(w(6k), w(61),6:1) where w(f;) = K+6;
s the optimal wage for k = 2,...,T. Hence q is a non decreasing function
of 6 with q(6;) = 0.

Proof. Fix the wages w(f) so that they are non-decreasing in 6. Agents
always consider misreporting their type in the hope of getting a higher wage.
It follows that, for any agent of type 6;, we must check the IC' constraints
only for types 6, > 6;. An agent of type 6, will not misreport his type for
0, as long as the probability of being audited when announcing type 6y is
no less than Q(w(6x),w(6;),60;). By lemma 1 and because w(6;) > w(6,),

10



that number is less than g(fy) so the proposed contract does satisfy incentive
compatibility. Clearly, once the w(@) are fixed, the Principal will wish to set
these probabilities as low as possible. The maximum value Q(w(6), w(6;), 6;)
may take is at 0y; it follows that the principal sets ¢(6;) = Q(w(0x), w(61),601)
for all 6.

For any fixed value of w(#,), the Principal then solves

v(w(f1)) = min ZP Q(w(8), w(61),01)c)

w(82),w(83),. " oco
subject to Zp(&)u(w(&) —6) > IR.
fco

This is a convex program because () was shown to be concave in its first
argument in lemma 1. The necessary and sufficient first-order conditions
yield

, u(w(6) — 6) — u(=6))
L= u'w(®) -6) ((u<w<e) —0) —u(=01))?

—)\) =0 VoeOo\b,

where ) is the Lagrange multiplier of the participation constraint. It follows
that w(@) — @ must be equal to some constant x(w(f;)) = K at the optimum.

In a second step, the principal minimizes v(w(6;)) which is a convex
function by the properties of minimum functions. By the theorem of the
maximum, its derivative with respect to w(1) is

p(01) (1 = X' (w(01) — 01)) — Y p(0k) Qa2 (w(0r), w(6y), 01 )c. (6)

By lemma 1, the second term of (6) is always positive; we assume that the
first term is such that (6) is positive.® In that case, w(f;) should be set at
its lowest possible value 0. It follows that wages are non decreasing in 6 as
it was assumed in the beginning of the proof.

O

8The multiplier must be positive since strengthening the IR constraint should increase
the Principal’s cost. If (6) take negative values, then the optimal w(6:1) should be greater
than zero. One must then check that the IC constraints of the higher types are not
reversed toward that wage. We plan to refine that part of the proof in a future version of
the paper.

11



In this setup where agent types are independent, the Principal is not able
to use the message sent by one player to determine her strategy concerning
the other player since such message has no informational value. Consider
now the other extreme case where types are perfectly correlated. It is then
easy to built a contract that yields an efficient outcome and that gives all
the surplus to the Principal.

The idea is that if true, one agent’s message about his type reveals the
whole type profile. It follows that a profile of messages is either “consistent”,
in which case it implies a type profile with non-zero probability of occurrence;
or “inconsistent”, in which case we can be sure that at least one agents is
lying. It suffices to commit to pay a zero wage whenever an inconsistent
profile of messages is observed. Given our Bayesian-Nash assumptions about
all agents’ equilibrium expectations; that is, all agents choose their optimal
report while expecting all other agents to tell the truth; the best thing any
agent can do is to tell the truth.

Although audits are not even used in the previous set-up, they can be
very effective when one is looking for dominant strategy implementation.
Consider the case where agents may communicate among themselves prior to
sending their message to the Principal; they may even verify each other type
but we assume that they cannot sign binding colluding agreement. Clearly,
the previous contract could miserably fail if we relax the assumption that all
agents expect others to tell the truth: if an agent expect all other agents to lie,
he might be better off to lie himself too. For instance, if types are perfectly
positively correlated, a low-cost agent knows that the other agents have also
a low cost and if he thinks that all other agents will lie by announcing a high
cost, he would be better off to announce a high cost too to prevent getting
zero. Dominant strategy implementation would require that each agent’s
payoff be independent of his message. For instance, with a pooling wage,
each agent would tell the truth about his cost whatever his expectations
about the other agents strategies. But a pooling wage is not efficient because
the agents are risk averse to their cost.

We now show how audits can be used to get dominant strategy implemen-
tation with budget balance (the IR constraints are binding) and efficiency:
the agents get their first-best payoft and audits are never used in equilibrium.
Given a message profile m, let C'(m) be the partition of I such that all agents
in x € C(m) sent consistent messages and all agents in I'\ x sent inconsistent
messages to those sent by x. We have a colluding equilibrium whenever the
agents sent a profile of messages such that I € C(m). Note that C(m) is

12



unique otherwise we would have at least two agents that belong to the same
x in the first partition and to a different y’ in another partition: but their
messages must either be consistent or not. We then get the following result.

Proposition 2. With perfectly dependent types and if an audit reveals whether
an agent has lied or not, contracts that yield the first-best outcome (with no
audit) 6*(m) if |C(m)| =1 and, otherwise, audit at least one individual per
x € C(m) and pays

i, (m) = {0 if mi € C(6,);

reward else.

implement the first-best allocation in dominant strategy if the reward > 0 is
sufficiently high.

These contracts simply say that the Principal should pay the first-best
wage if all messages are consistent, without any audit, and, otherwise, should
perform a sufficient number of audits (enough to insure the truthfulness of
all agents), at least one agent per subset ¢ € C(m); pay all agents that
lied zero and reward sufficiently those who told the truth as to make their IC
constraints not binding. The idea is that, when type are perfectly dependent,
any profile of messages in a colluding equilibrium that is altered by single
message, that is, by one agent changing his announce, would result in a non-
consistent profile of messages (note that telling the truth for all agents is one
of these colluding equilibria). The contract then makes a strictly dominant
strategy out of changing one’s announce for the truth whatever the current
colluding equilibrium: if some agents lie, I will be rewarded beyond whatever
I would have got by participating in a colluding strategy; if all agents are
telling the truth, I would be exposed and would get zero if I should lie because
I would then create an inconsistent profile of messages.

The most striking feature of this contract is that its outcome does not
depend on the audit cost ¢ as long as this cost is finite because audits are
never used in equilibrium.

3.1 Complexity

As it was illustrated in section 2, a contract quickly becomes a fairly complex
object even for small values of the parameters 7" and N. This is of some
concern because, we could always address the complexity issue with respect

13



to T by choosing a coarser measure of the type space: instead of having
very high, high, low and very low cost, we could simply relabel types as high
or low. No such relabeling seems natural for an increase in the number of
agents. In this section, we run a series of argument to rationalize a much
simplified model.

A way to simplify a contract is to simplify the probability space. We
assume that all agents have the same preferences u, the same type set ©! and
by restricting the probability distribution over © to be symmetric in the sense
that the probability of any state can be written as a function of the number of
agents that are of each possible type in ©'. With such distribution, all agents
are exactly all alike ex ante and differ only by their type ex post. We then
restrict our search for an optimal contract to contracts that are symmetric
with respects to the symmetries induced by our construction (that goal is
rationalized in proposition 3 below).

By De Moivre’s theorem?, the number of T-tuples of non negative integers
that sum to N is S(N,T) = (""N ). The state space is then built as
follows. Let p : © — NT be the function that maps any type profile into
the 1 x T vector that specifies the number of agents that have type 1, 2,
etc. Clearly, the image of p has S(N,T) elements. We specify a distribution
f over the image 1;(0). Then we independently draw an element in the
set of permutations of I which gives us a ranking r of the N agents and an
element p of 1;(©) according to the distribution f. ;From p we build an urn
(a set) B(u) where we put p; balls labeled 6, uy balls labeled 65, etc. By
construction, there are N balls in B(u). Finally, we draw successively the N
balls out of B(u) without replacement and we assign 7, the type labeled on
the nth ball drawn. That is, if r3 = 7 and the third ball is labeled 6, then
agent 7 has type 0 (07 = 0,).

The probability of observing a given type profile € is then

f(1:(0))
(y;zfa)) ,

where the denominator is the multinomial coefficient

( N ) _N!
14 (0) HtT:1 !

9The references for the uncommented combinatorial arguments are [5] and [14].

p(0) =

14



That probability distribution function depends on # through p; it follows
that if p;(6) = p;(0"), then p(#) = p(€'). This implies that all agents are com-
pletely symmetrical: like for the type for profile, the probability distribution
of any vector 6, conditional on the realization of some vector 6, depends
only on p;(6,). It is then straightforward to show that all agents have the
same marginal type distribution. Under that construction, we say that all
agents are symmetric ex ante.

Not only do we get a simplified state space with symmetry but a contract
is likely to be simplified as well; that is, an optimal contract will pool many
agents that are of an indistinguishable nature to the Principal. There are
now only S(N,T) < J distinct profiles of messages'® that can be sent to the
Principal since each message profile m information content is resumed by the
reduced message profile u;(m). Beside, all agents that share the same type
ex post are still identical with respect to their information set. We argue
that there exists an optimal contract that treats all agents equally ex ante
and all (announced) types equally at the interim stage, that is, before audits
are performed.

Let Iy, be the subset of agents that declare being of type ) at the interim
stage. We say that a contract is symmetric if the following conditions are
satisfied: Vi,j € I,,,V0, € ©4Vn,n' € P(I) and m,m' € O such that
a(m) = (') and p1i(m,)) = pii(mly); and Va € A(n),

n,a

Note that this implies that two agents 7+ and j that have declared the same
type have the same marginal probability of being audited. If 7, j € Iy, , then
pi(myipon) = pi(mypon), Yn € P(I\ 1, 7). Hence, quyun(m) = gqjyun(m) for
these n. Consider any n such that j € n but i ¢ n; permuting j by 4 in
n yields n' such that p;(mgun) = t(mguw) and gaun(m) = quw (m).

10That account can be also be obtained as a special case of Polya’s theorem: there are
N identical agents that form a symmetric group Sy and each is to be painted of one of T’
colors. We distinguish colors (types) but not names. The total number of combinations is

given by |[Snx|71(32 9ESn T%°9)) where cyc(g) is the number of cycles in permutation g.
That total amounts to S(N,T).
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These subsets come by pairs and exhaust the set of subsets to which 7 and j
might respectively be joined to. Thus equation (1) yields the same sum.

The following proposition established that we can restrict our search of
an optimal contract to the class of symmetrical contracts in that case.

Proposition 3. If all agents are symmetric ex ante, then A, includes a
symmetric contract.

Proof. Let § € A,; we want to build a symmetrical contract 0’ € A, from
0. Consider agents ¢ and j where agent 7 generates the less expected cost
to the Principal (expected wage plus expected cost of monitoring). Let j’s
part of the contract be copied from i’s part. That is, whenever m! = m/, let
Giun(m) = qjup(m),Vn € P(I'\ 4,j) and let w;, ,(m) = wj ,(m),Yn € P(I)
whenever n and a imply either that ¢ and j were not audited or that they
overstated their costs in the same fashion. Implementability is unaffected
by this change and the value of the contract cannot decrease since j now
cost the same amount as ¢. Repeat that operation for the other agents to
complete o'. O

Let i be a reduced message profile; two agents that have sent the same
message should have the same probability of being audited. An audit policy
can be expressed as the probability that, for example, half of all agents that
have declared type 1 and half of those that have declared type 3 will be
audited.

Now, for two reduced profile p' and p? that are permutations to one
another, we have to specify the same number of numbers for the audit policy.
We can associate all these permuted profiles to a single partition n of NV into
T or less integers 1y + 72 + ... + 1, = N which we represent as a |n|-tuple
n=(1m,n,-..,ny) such that 1 <|n| < T. Let N(N,T) be the set of these
partitions; there are [N (N, T)| of them'!. A partition 7 is an event that says
that there were |n| kinds of types announced: 7; agents announced a type
of the first kind, 7, agents announced a type of the second kind; etc. If all
agents send the same message then n = (NV), whatever that message was.

For each partition 7, we must compute the number of reduced profiles of
messages that are associated to it. This amounts to compute the number of
distinct ways we can assign the elements of n to T types. Suppose first that

""That number is the coefficient of zV in the series expansion of II]_, (1 —z)~*. Beside,
if T is large, |N(IV, T)| does not increase as T' increases
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Me # M, V1 < k, k" < |n|. Then there T" ways to assign a type to n;, T — 1
ways to assign a type to 1, ..., T+1—n| ways to assign a type to n,,; for a

total of Hz(znl (T — k) ways to assign types to . But that formula will lead to
double counting if some elements of 7 are repeated. For instance, if n = (1,1)
and 7" = 3 then there are only three ways to having two agents spread into 2
equal formations of 1: one type must not be announced and there are three
such candidates. We have T types that we must assign to the elements of
1. Clearly, if there are repetition in the elements of 1, e.g. 17, = 1y like in
the preceding example, we should not count assignment of #; to n; and 6,
to 7 as a distinct assignment than that of 6; to 7, and 6, to 7. For each
repeated number of 7, we need to divide by the number of indistinguishable
permutations it generates. For instance, if 8 appears three times in 7, than
we must divide the permutations associated to 8 by 3!. Furthermore, T — ||
are left out of #; the same reasoning implies that the total should be pondered
by (T — |n|)!. Suppose there are r; 1’s into 7, ry 2’s, etc; and let r(n) be
the vector of the ry’s. There are thus 7' — d(¢) types that are left out which
we count as a last element of r. Then, the total number of reduced message
profiles associated to 7 is the multinomial coefficient (r:’;’ )

Let 7 denotes the product of the elements of a ¢-tuple and let 7+ 1 be the
t-tuple such that one was added to each element of 7. For each n we must
specify 7(n) — 1 numbers for an audit policy; that is, we can audit from 0
to n, > 0 of the agents that have announced the ktt kind of type of 7, times
those of the £'th kind of type, etc. For instance, if N = 8 and p; = (0,4, 1, 3]
and uy = [1, 3,4, 0]; then both are permutation of the partition 8 =4+3+1
that we note n = (4,3,1) and 7(n+1) = 40. So there are 40 configurations of
types we must consider to audit and that requires an audit policy composed
of 40 — 1 = 39 numbers.

Hence, to compute the total number of numbers that must be specified by
a symmetric audit policy, we first list all the partitions  of N and, for each
of them, we count the number (T(j;)) (m(n+1) —1). Summing these products
gives us the true complexity of the symmetric audit policy:

S (5 Em+1) 1), (1)
neEN(N,T)

For instance, if N = 2 and T = 2, the possible partitions are n* = (2) and
n* = (1,1). We then compute

o) @0+ D) =D+ () @+ 1) = 1) =2-B=1)+1-(4=1) = 7.
We get a more complex case with N =5 and 1" = 3. The possible partitions
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are N(N,T) = {(5), (4,1),(3,2), (3,1,1), (2,2,1)}. This yields

Z (rg;)) (r(n+1)—1)=3(4-1)+6(10-1)
neEN(N,T)

+6(12—1)+6(16 — 1) 4+ 3(18 — 1) = 234,

numbers to be specified.

We now attempt to reduce the number of wages to be explicitly specified
in a contract. Again, two permuted profiles ' and p? must specify the same
number of wages so that we can work from 7 and sum over N'(N,T). We
will resume the contingency n,a with a single (7' + 1) x |n| matrix a. The
first row is the number of agents of each type that where not audited. The
T subsequent rows £k = 2,...,7T 4+ 1 are the number of audited agents of
each announced kind of type that have overstated their cost by k£ indexes. A
matrix that has only zeros in the 7" lowest rows implies that no agent was
audited. If there are some strictly positive integers only in the second row,
then all audited agents told the truth. If the first row is zero, then all agents
were audited. The sum of all elements of that matrix is V.

For example, if N =18 and T = 5, we could have n = (10,5, 3) and

W~ N
O O O ot
O = N O

This would read that five of the nine agents in the first kind of type of n
were audited: 2 were telling the truth, one was overstating his cost by 1 and
three by 2. The five agents in the second kind of type in 1 were not audited.
All agents in the third kind of type of n were audited and 1 was lying by
overstating his cost by 1. Given any partition 7, there is a set .A(n) of such
matrices.

We can divide the agents into classes according to:

1. Thoses that declared being the kth kind of type in 1 and were not
audited; there are o, j of them per column £.

2. Thoses that declared being of the £t kind of type in 7, were audited
and had their message confirmed; there are oy of them per kind &.
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3. Thoses that were audited and that lied; there are ZtT;;l oy, of them
per column k.

Consider any optimal /C contract. Because the contract is IC, agents
always tell the truth and these contingent wages are never paid since no
agents ever find himself belonging to that class. It follows that these wages
have no bearing neither on the Principal program nor on the (/R) constraints
of any agents. Besides, if some of these wages are strictly positive, setting
them all to zero only relaxes the (IC) constraints. Hence, without loss of
generality, we can assume that agents in the third class always get zero.

It follows that we only need to specify a number of wages equal to the
number of non zeros entries there are in the first two rows of «. Let k(«)
be that number. For all possible a given 7 We count x(«) non-zero entries.
There are (T(z;’)) distinct reduced message profiles that yield . Summing over

N(N,T), we need to specify

s (1) (8w)

neEN(N,T) Jj=1

wages.!? The difficult part is to compute the second term in each product.
We do the following. Given 7, the total number of configurations of column &
of « that can be made by partitioning 7, within 7+ 1 rows is S(ng, T+1). Let
o(n) be the vector of these numbers. The total number of distinct matrices
« that can be made from 7 is w(o(n)). A first approximation of x(n) would
then be 2|n|m(o(n)) but many of these o have zeros in their first two rows for
which no wage need to be specified. Now, if we knew how many zeros appears
in all these matrices o, then we would know that a proportion 2(7 + 1)~ of
them appear in the first two rows and we could subtract these zeros. Let’s
first count how many times zero might appear if we rearrange column £ in
all possible fashions:

1. We may have from max(0,7 + 1 — n) to T zeros in column k; pick z
of them.

12Note that two distinct matrices a, o’ € A(n) that have the same first two rows must
nevertheless specify different wages since they represent different events (the same number
of agents of each kind of type lied but in a different fashion). Below, we argue that we
can disregard these distinct events when we consider Bayesian-Nash implementation as all
agents expect nothing but the other agents to tell the truth in these equilibria.
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T+1) ways in column k.

2. These z zeros may be disposed in ( .

3. Once the z zeros have been disposed, there are (’%“:21) ways of disposing

the m; unlabeled units into the remaining 7'+ 1 — z labeled locations.

4. It follows that the number of zeros that will appear in column k£ is

ET: Z<T+1><nk—1>
2 T—-z2)
z=max(0,7+1—ng)
Now, each of these configurations of column £ is to be matched with

many different configurations of the other columns. If we do the exercise
for all columns at once, then we find that there will be

T T

ZURSED SR N D SR O SRS | N GO [Est

z1=max(0,74+1-n1) 2|, =max(0,7+1-n,)
zeros in all « € A(n).

The total number of wages that must be specified for a symmetric con-
tracts is thus

ot X () Gl Do) - Z). ®

+ nEN(N,T)

In figure 1, we tabulated some of these totals for values of N and T up
to 6. In each cell, the numerator is the sum of the total numbers of numbers
needed for the optimal audit policy, equation (7), and that of those needed
for the wages, equation (8). The denominator gives the same sum in the
general case where the symmetric assumption is relaxed.

Finally, there is a another line of argument we can pursue to further
tackle the curse of dimensionality. Because we focus on Nash implementation
- all agents rationally expect the other agents to tell the truth in Bayesian-
Nash equilibria - we do not need to specify wages for all contingencies that
follows an audit. The only wages that matter are those that may happen in
equilibrium or off-equilibrium given one-sided defection; that is, those where
at least N — 1 agents are telling the truth.

Within a symmetric contract, this implies that for each reduced message
profile p (with associated partition 7), and given that any audited agent

20



2 3 4 5 6
2 36.90% 27.62% 21.93% 18.13% 15.43%
7+24 15472 264160 404300 574504
12472 274288 484800 7541 800 10843 528
3 14.21% 9.57% 7.28% 5.91% 4.98%
16484 46+468 10041 680 18544 650 308410 836
564648 18945184 448+24 000 875+81 000 15124222264
4 4.68% 2.73% 1.96% 1.55% 1.28%
30+224 11142184 295+12 320 645449 600 12394158 928
240+5 184 1215+82944 3840+64x 104 9375+324x104 19440+12 446 784
5 1.39% 0.67% 0.45% 0.34% 0.27%
504504 23148190 736470 840 1876+409 200 411641787 940
992438 880 7533+1 244160 31 744+16x 106 96 875+1 215% 105 241 056+653 456 160
6 0.38% 0.15% 0.09% 0.06% 0.05%
7741008 434426 208 16324340 032 479542782 560 11914416 449 048

40324279 936 45927417915 904 258 048+348 x 106

084 375+4 374x 106 2939 3284-32 934 190 464

Figure 1: Reduced complexity of an optimal symmetric contract.
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2 3 4 ) 6 7 8

2123 31 90 140 201 273 356
3156 172 388 735 1244 1946 2872
41110 447 1255 2845 5607 10010 16602
N 51190 987 3376 9026 20496 41426 76728
61301 1946 7968 24815 64330 146160 300612
71448 3528 17040 61160 179544 455652 1035336

81636 5994 33726 138215 456183 1285767 3212583

Figure 2: Reduced complexity of an optimal Bayesian-Nash symmetric con-
tract.
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that lied gets zero, we only need to specify a different sent of wages for each
configuration of audits: audit results do not matter since all agents expect
nothing but the truth in the equilibria we are interested in. More precisely,
we only need o matrices composed of two rows: those that were audited
those that were not. There are 7, + 1 ways of auditing agents that have
declared being of the kth kind of type. If this was the only reported type, we
would only need to specify 2(n, — 1) wages but if there is a second kind of
type k' that can be audited in 7 + 1 ways, we need 2(n; — 1) (e + 1) wages
for kind k£ and 2(ny — 1)(nx + 1) wages for kind %’. Hence, the number of
wages to be specified for 7 is

e — 1

2rin+1 .
(n )k:1nk+_1

This reduces the total number of numbers to be specified for a symmetric
contract in Bayesian-Nash implementation to

oo () [Em+n) (142 e~ -

neEN(N,T) k=1

(9)

Some of these numbers are tabulated in figure 2. Hence, there are only 23
variables to specify in the 2x2-case. In the next section, we proceed to a
numerical resolution of that case in the space of probability matrices. Those
23 variables are:

1. the probability of auditing 7. the probability of auditing 12. the wage to be paid when
both agents when both report only the high cost agent when both agents report a high cost
a low cost; agents report different costs; and are audited;

2. the probability of auditing a 8. the wage to be paid when 13. the wage to be paid when
single agent when both report both agents report a low cost both agents report a high cost
a low cost; and are audited; and are not audited;

3. the probability of auditing 9 th b id wh 14. the wage to be paid to the au-
both agents when both report - the wage to be paid when dited agent when both agents
a high cost; both agents report a low cost report a high cost and only

and are not audited; one of them is audited;

4. the probability of auditing a

single agent when both report 10. t}}e wage to be paid to the au- 15. the wage to be paid to the a-
a high cost; dited agent when both agents gent who is not audited when
report a low cost and only one both agents report a high cost
5. the probability of auditing of them is audited; and only one of them is audit-
both agents when agents re- ed;
port different costs; 11. the wage to be paid to the a-
gent who is not audited when 16. the wage to be paid to the
6. the probability of auditing both agents report a low cost low cost agent when agents
only the low cost agent when and only one of them is au- reports different costs and are
agents report different costs; dited; both audited;
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17. the wage to be paid to the when agents reports differen- costs and only the high cost
high cost agent when agents t costs and only the low cost agent is audited;
reports different costs and are agent is audited;

both audited;
’ 22. the wage to be paid to the

20. the wage to be paid to the low cost agent when agents

18. the wage to be paid to (not audited) low cost agent .
A . reports different costs and are
the (audited) low cost agent when agents reports different not audited:
when agents reports differen- costs and only the high cost ’
t costs and only the low cost agent is audited;
agent is audited; 23. the wage to be paid to the
21. the wage to be paid to the high cost agent when agents
19. the wage to be paid to the (audited) high cost agent reports different costs and are
(not audited) high cost agent when agents reports different not audited.

3.2 Contracting with imperfectly correlated types

The dominant strategy contract described in proposition 2 will also work
with imperfectly correlated types: all that is needed is to commit to audit
whenever some “suspect” profile of types is announced and to reward the
whistle blower if some fraud is revealed afterward with a bonus at least as
high as what he would have gain by participating to the conspiracy. Such a
contract will be IC but then all profiles of types will have a positive prob-
ability of occurrence so that there will be a positive probability of auditing.
At the margin, the Principal might want to economize on the expected cost
of auditing by reducing the probability of auditing.

To make sense of the case of imperfectly correlated types, we need a good
parameterization of probability space. We propose such parameterization for
the 2x2-case in figure 3. For any given ©!, we need to specify the probability
distribution f over

1i (1) = {(2 types 61), (1 type 6; and 1 type 6,), (2 types 6)}.

We represent that distribution in the projection of the simplex S* in the
X x Y space where each point (z,y) corresponds to a probability matrix

l—z—-y
N 2
P(.’L‘,y): 1—$—y
9 Y

In figure 3, the three vertex matches the subset of matrices for which types
are perfectly dependent is the hypotenuse plus the origin (in thick lines). We
have already established that one can achieve the FSE allocation in these
cases. The set of matrices for which Townsend’s result shall apply is given
by the dotted downward slopping curve going from (0,1) to (1,0). We will
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[( q/2 (1—q)/2]

1-q)/2 q/2

|: ’ lgy :|
1—
2?1 0

L e
q<1//2 :
. . 00
[ 0 1/2} 1/4 (891
1/2 0
[ 0 (1-@/2]
(1-z)/2 =z

Figure 3: Space of symmetric probability matrices in the 2x2-case.
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refer to that curve as Townsend’s ridge for geometrical reasons that will
appear clear below. These are the matrices for which agent ¢’s knowledge of
his own type does not inform him in any way on agent j’s type; that is,
l—z—y Y
Y+ 5 = jpr—t
VT

Solving this implicit relation for z 4+ y < 1 yields the equation of that curve

y=1+z—2x.

These matrices can also be represented by the parametric form | (iﬂ T(il(:)?
where 7 runs from 0 to 1.
At this stage, we present a numerical experiment we did with the following

parameterization:

u(z) = log(11 + z),
IR =log(11)
o' ={1,10},

We have computed the optimal contract § on a triangular grid

z from 0.025 to 0.975,
y from 0.025 to 1-x.

over the projection of S3. Not surprisingly, when both agents report a low
cost, no audit is ever performed. In fact, no audit is ever performed on an
agent that declares low cost. Yet, as the probability of facing a high cost agent
is increased, the rise in the low cost’s wage one can expect in Townsend’s
model seems to be a local feature, or a “ridge” (see figure 4). An almost
identical pattern emerges for the wage to be paid to the low cost agent when
messages are mixed and the high cost agent is audited (we observe small
differences along the z-axis next to the origin).

When both agents report a high cost, they are usually both audited when
(x,y) is on the left side of the ridge although there is a mixed result when
y is very low (see figure 5). No single audit is ever performed in that case
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Figure 4: Wage when both agents report low cost (Townsend’s ridge).
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Figure 5: Probability of a dual audit when both agents report high cost.
That probability goes from 1 to zero along the Townsend’s ridge.
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neither. When reported types are mixed, we obtain the opposite solution:
the high cost agent seems to be only audited when we are on the right side
of the ridge (see figure 6). There seems to be a transition along the ridge as
the probability of no audit (instead of a single audit of the high cost agent)
increases when the probability of getting a high cost increases.

4 Conclusion

We developed a multi-agents representation of Townsend’s (1979) model of
optimal audits. All our results tend to show that the results one can gather
with the single agent representation are absolutely not typical.

In our understanding, the limit result of proposition 2 of a contract that
implements the first-best allocation in dominant strategy with budget bal-
ance when types are perfectly dependent is a clear indication that the as-
sumption that states are not verifiable is not a good approximation of a
world where states are difficult and costly to verify.
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