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Abstract

A striking feature of US states convergence is the link between
the spatial speed of convergence and the aggregate growth rate: fast
aggregate growth induces a reduction in regional inequalities. This pa-
per uses a neoclassical growth framework with integrated economies in
order to capture this phenomena. As it has been stressed by Ventura
[1997], the interdependence between regional economies through the
access to common markets generates a link between aggregate evo-
lution and spatial convergence dynamics. The paper has two mains
results. First, we show how deep parameters of the economy deter-
mines quantitatively the magnitude of this link. Second, we propose
two directions for testing the model and we provide some empirical
evidence using US states data on personal income. These results are
mixed, only a part of the convergence pattern is well captured by the
model.

1 Introduction

Regional convergence appears to be time varying, and, in most cases, grad-
ually slowing down. In the USA, Sherwood-Call [1996] has documented the
divergence in state incomes that took place in the 80’s, after decades of
convergence. Martin [1997] reports that the speed of convergence among Eu-
ropean regions fell from 2% to 1.3%, also in the 80’s. Barro and Sala-I-Martin
[1995, chap. 11] have evidenced a significant fall in the speed of convergence
among Japanese prefectures after 1955. De La Fuente [1998] reports that
convergence in Spanish regional incomes also shows a marked tendency to
decelerate.
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In figure 1, the solid line stands for the speed of convergence among US
states’ relative incomes1. Without performing formal tests, the instability of
the spatial speed of convergence seems to be a crucial feature of US regional
growth dynamics. In the same figure a dashed line represents the annual
average, over ten years intervals, growth rate of US national income. It
appears that the series are strongly correlated (the correlation is 0.8055),
highlighting the link between aggregate growth and regional convergence.

< Insert figure 1. around here >

This paper examines how a neoclassical growth model of integrated economies
may explain such stylized fact. Using US states income data, we estimate an
extended system of growth regression, which make explicit the link between
spatial convergence and aggregate growth. Our results are mixed, only a part
of the convergence pattern is well captured by the model.

We use the neoclassical model that has been constructed by Caselli and
Ventura [2000] to study distributive dynamics among infinitely lived individ-
uals in a particular economy. We follow Bliss [1995] and Ventura [1997], who
have applied the model to study inequality among regions/countries. Our
basic framework is a general equilibrium growth model, as this is a simple
and natural way to deal with interactions among regional economies. Fac-
tor price equalization is achieved without any restrictions and the optimal
behavior of Ramsey savers determines the dynamics of wealth and income.

Bliss [1995] has shown that in this setting, globalization promotes long-
run income inequality. More precisely, factor price equalization deters con-
vergence so that initial differences in income persist forever. However, Caselli
and Ventura [2000] and Ventura [1997] have shown that convergence may ex-
ist during the transition of the aggregate economy toward its steady-state. In
contrast with the closed model, conditional convergence is due to the prop-
erties of intertemporal demand – not diminishing returns. These articles do
not indicate exactly how these theoretical results can be confronted with em-
pirical evidence on the distribution of income across regions. There remains
an important gap to bridge between these theoretical criticisms and their
empirical counterparts. The paper provides an empirical strategy for testing
the effect of integration on convergence.

The findings of this paper are as follows. First, the model provides one
explanation for the deceleration of convergence reported above, as we simul-
taneously have a model that can display convergence during the transition
and long-run persistence. The relationship between the dynamics of cross-
section inequality and aggregate growth is made explicit by a linearization
around the steady-state. This local characterization makes it possible to
relate the magnitude of the convergence or divergence effect to the param-
eters describing the fundamentals of economies. Second, we develop testing

1These estimates are obtained by estimating a cross-region growth equation (See Barro
and Sala-I-Martin [1995]) with regional dummies over moving ten years intervals, on the
period 1939-1997
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strategies that are based on the linearized version of the model. A panel
data study, which consists in estimating an “extended” system of growth
rate regressions with fixed effect, can potentially discriminate between the
model of the integrated economy presented below and the traditional model
of autarchic economies. Third, we provide empirical evidence using US states
data on personal income.

The paper is organized as follows. In the second section, we present the
basic setup borrowed from Caselli and Ventura [2000]. The third section
contains the core theoretical results of the article. We detail how the dis-
tribution dynamics displays both persistence and conditional convergence or
divergence. Section 4 provides a testing strategy and section 5 the estimation
results. We conclude in the last section

2 Basic framework

2.1 Structure of the economy and technology

2.1.1 Static structure

The aggregate economy consists of a collection of regions indexed by their
relative labor productivity θ ∈]0, θmax]. In per capita terms, the regional
technology is given by:

Y (θ) = f [K(θ), Aθ] + Aφ(θ), (1)

where Y (θ) and K(θ) are respectively the domestic product and the domestic
capital stock of region θ, both in per capita terms. A is the aggregate level
of technological efficiency growing at a constant exogenous rate x and f(·)
is a neoclassical production function. φ(θ) is a constant parameter, either
positive or negative. φ(θ) < 0 means that a subsistence consumption level
absorbs part of the output. φ(θ) > 0 can be viewed as a fixed rent increasing
output, for example some production using only specific factors that region
θ alone possesses.

(θ, φ(θ)) is therefore time-invariant and characterizes the technology used
by region θ. To do away with certain technical difficulties, these quantities
are specified in intensive terms2. We will use lower-case letters to denote
intensive variables: for all per capita variable Z, z = Z/A.

We therefore have three sources of region heterogeneity: capital stock
K(θ), labor productivity θ and the parameter φ(θ). We note q(B) the number
of regions with productivity index θ ∈ B. We normalize θ and the size of
the aggregate economy so that

∫ θmax
0 θq(dθ) =

∫ θmax
0 q(dθ) = 1. It is assumed

that the population grows at the exogenous rate n and that the population is

2Ben-David [1998] studies the case in which the subsistence level is not indexed on
technological change. Interestingly, endogenous formation of clubs may arise.
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identical in any region3. In this context, A is the average labor productivity
in the aggregate economy. We note the average value of the φ(θ)′s as φ ≡∫ θmax

0 φ(θ)q(dθ). Under the condition φ 6= 0, we then define the relative value
of φ(θ) as φR(θ) ≡ φ(θ)/φ.

Before we proceed to integrate the economy, let us first recall that in
regional autarchy the quantity f [K(θ), θA] + φ(θ)A is both the GNP and
the GDP of region θ. From this point on, we assume that the economy is
integrated through perfect capital mobility. It is now necessary to distinguish
between the capital owned by a given region, noted k(θ), and the capital
used by that region, noted k̂(θ). The quantity k(θ)− k̂(θ) is accordingly the
portion of region θ′s capital installed abroad. The gross rental rate of capital
is noted r + δ, with δ > 0 the capital depreciation rate. With an integrated
market for capital, r + δ must be identical across regions. In each country,
competitive firms equate the gross marginal productivity of capital to the
gross rental rate:

f1

[
k̂(θ), θ

]
= r + δ. (2)

With f(·) homogeneous of degree one, equation (2) implies k̂(θ) = θk̂(1).
With our normalization, national and average quantities are equal:

k̂ ≡
∫
k̂(θ)q(dθ) =

∫
k(θ)q(dθ) ≡ k. (3)

k is the national capital stock, the average installed capital stock as well as
the capital stock installed in the average region. The capital stock installed
in θ therefore satisfies:

k̂(θ) = θk̂ = θk. (4)

We can now write the GNP of region θ as

y(θ) = θf(k) + φ(θ) + (r + δ)(k(θ)− θk), (5)

where f(k) ≡ f(k, 1).
The real wage in country θ satisfies:

w(θ) = θf2(k̂, θ) = θf2(k, 1) = θw. (6)

Hence, in the integrated economy, factor prices (r(t) and w(t)) are identical
in any region, for all t.

The world output is:

y =
∫ (

f
[
k̂(θ), θ

]
+ φ(θ)

)
q(dθ) = f(k) + φ.

As is well known, the complete integration of the national economy im-
plies instantaneous conditional convergence (at the precise moment when

3This does not imply any loss of generality, while it simplifies the notation. Our results
obtain with any distribution of the total population.
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the world economy is integrated) of the gross domestic product (adjusted for
φ(θ)):

ŷ(θ)− φ(θ) = θ(y − φ), for all θ. (7)

In contrast, there is no instantaneous convergence effect affecting the GNP
y(θ). This quantity depends on region θ′s wealth, as is shown in equation (5).

2.1.2 Dynamic structure

Time is continuous. The capital of region θ is driven by:

k̇(θ) = θw + rk(θ) + φ(θ)− c(θ)− (n+ x)k(θ), k(θ, 0) given, (8)

with c(θ) the consumption level of region θ.
We rule out Ponzi games by assuming:

lim
t→∞

e−R(0,t)e(x+n)tk(θ, t) ≥ 0, (9)

where R(0, t) ≡
∫ t

0 r(s)ds.
Aggregating these equations over regions yields the law of motion of the

national capital stock:

k̇ = f(k) + φ− (δ + x+ n)k − c, k(0) given. (10)

2.2 Households

The representative household of region θ maximizes:

U(θ) =
∫ ∞

0

C1−σ(θ, t)− 1

1− σ
ente−ρtdt, (11)

subject to constraints (8-9) and taking the time paths of prices as given.
C(θ, t) is per capita consumption in region θ at time t, σ > 0 the inverse of
the constant intertemporal elasticity of substitution, and ρ > 0 the utility
discount rate. In contrast with autarchy, the assumption that households
maximize intertemporal utility – as opposed to the choice of some exogenous
saving rates – is central to the convergence results of the integrated model.
This point will become clearer later.

With these preferences, it is possible to interpret φ(θ) as a measure of
intertemporal flexibility: the larger φ(θ), the more flexible is region θ in its
intertemporal allocation of consumption. With a negative φ(θ), region θ will
not be able to substitute consumption through time above a certain level.
Conversely, a positive φ(θ) means that there is at any time a constant source
of output which is by definition completely independent of region θ′s time
allocation problem and therefore raises its ability to substitute consumption
intertemporally.

Note that by simply defining Csg(θ) = C(θ) − φ(θ)ext together with
technology y(θ) = f [k(θ), θ], it is possible to rewrite the maximization prob-
lem above with a standard Stone-Geary intertemporal utility function. This
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setting is fully equivalent to the one used here, but makes the economic
interpretation of a positive φ(θ) more difficult.

As pointed out by Caselli and Ventura [2000], these preferences thus make
it possible to describe the aggregate economy as a hypothetical representative
region endowed with exactly average characteristics. Aggregate paths are
found by solving the usual autarchy problem, which leads to:

ċ = c
[
σ−1 (f ′(k)− δ − ρ)− x

]
, (12)

k̇ = f(k) + φ− c− (n+ δ + x)k, k(0) > 0 given. (13)

This system is appended with the transversality condition, that is, inequality
(9) taken as an equality. As is well known, we need the following condition
on parameters so that this condition always holds in equilibrium:

ρ > n+ (1− σ)x. (14)

In the rest of the paper we will find convenient to note the discounted flow
of any variable x as: x̃(t) ≡

∫∞
t x(τ)e−R(t,τ)e(τ−t)(x+n)dτ .

Because of the homothetic properties of preferences, the consumption of
any region θ can be written as a linear function of its total wealth, for all t4:

c(θ, t) = ν(t)a(θ, t), (15)

where
a(θ, t) = k(θ, t) + θw̃(t) + φ(θ)1̃(t), (16)

and

ν(t) =
[∫ ∞
t

eR(t,τ)(1−σ)/σ−(τ−t)(ρ/σ−n)dτ
]−1

. (17)

The key point in (15) is that ν(t), the propensity to consume out of
total wealth, is the same for any region θ, depending only on the aggregate
behavior of the national economy. This fact implies that the total wealth of
any region grows at a rate given by the aggregate economy alone. A simple
expression for that growth rate can be found by taking the time derivative
of (16)5 and substituting from (8):

ȧ(θ, t)

a(θ, t)
= r(t)− ν(t)− n− x. (18)

This is a crucial feature of the model. In an economy where factor prices
are equated across regions by factor mobility and/or interregional trade, and
where preferences are homothetic (in total wealth), all regions accumulate
total wealth at precisely the same rate – regardless of relative levels at any

4Combine the intertemporal budget constraint c̃(t) = a(t) with the integral version of
(12).

5Notice that ˙̃x = (r − n− x)x̃− x.
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time. Remember that a(θ, t) is regional wealth, which is the sort of wealth
that matters in an economy where regions may export capital – if we want to
be able to interpret regional integration as capital mobility. This obviously
is an important departure from the vision of the national economy as a
collection of neoclassical closed regional economies. In that sort of economy,
poor regions always grow faster that rich ones, both in terms of total wealth
and in terms of capital. We will now turn to the growth rates of regional
stocks of capital in the integrated economy.

3 Transitional convergence and long-run per-

sistence

3.1 Transitional convergence

An interesting form of the law of motion of region θ′s capital obtains by
substituting (15) into (8):

k̇(θ, t) = [r(t)− ν(t)− x− n] k(θ, t)+[w(t)− ν(t)w̃(t)] θ+
[
1− ν(t)1̃(t)

]
φ(θ).

(19)
Let h(θ, t) ≡ k(θ, t)/k(t) denote the relative capital of region θ. Equa-

tion (19) and its aggregate version then imply:

ḣ(θ, t) = −(ψ1(t) + ψ2(t))h(θ, t) + ψ1(t)θ + ψ2(t)φR(θ), (20)

where ψ1(t) and ψ2(t) are two measures of convergence defined as

ψ1(t) ≡ w(t)− ν(t)w̃(t)

k(t)
and ψ2(t) ≡ φ

1− ν(t)1̃(t)

k(t)
.

Note that both ψ1(t) and ψ2(t) are invariant across regions (but not across
time). Relationship (20) shows how the distribution of financial wealth
changes over time. This expression, which has been emphasized by Caselli
and Ventura [2000], is interesting because the three sources of heterogene-
ity are clearly isolated. What do we learn? First, note that the value of
ψ(t) ≡ ψ1(t) + ψ2(t) determines the extent of the conditional convergence
effect. Imagine that regions do not differ in their fundamentals θ and φ(θ).
Then, from (20), it can be seen that the distribution of financial wealth will
shrink if ψ(t) is positive and will expand if ψ(t) is negative. ψ(t) is thus the
instantaneous speed of conditional convergence. This speed applies to any
region of the national economy.

Second, absolute convergence can also be analyzed through equation (20).
One can see that the distributions of θ and φR(θ) are repulsive or attractive
depending on the sign of ψ1(t) and ψ2(t). For a particular region, the occur-
rence of absolute catching-up depends on both the sign of ψ1(t) and ψ2(t).
Knowing the time paths of the aggregate values ψ1(t) and ψ2(t), one will
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know how regions move toward their long-run position. In subsection 3.3,
we study how these coefficients change in the neighborhood of the aggregate
steady-state. The occurrence of local conditional convergence or divergence
depends on the parameters describing the fundamentals of the economies.
Caselli and Ventura [2000] have shown that the model with a CES produc-
tion function can display transitional divergence or even successive periods of
convergence and divergence, a phenomenon reminiscent of a Kuznets curve.

In fact, in this economy, a key determinant of transitional convergence is
the elasticity of substitution between factors. Consider (16) and (18): regard-
less of the share of financial wealth in its total wealth, any region will find it
optimal to accumulate the latter at the same rate. Think of a high elasticity
of substitution. As the aggregate economy accumulates capital, the demand
for labor will tend to be relatively low because the economy will increas-
ingly substitute capital for labor. So will be the discounted flow of wages,
a component of total wealth (”human” wealth). Finally, one sees that to
keep total wealth on an optimal path, regions poorly endowed with financial
wealth will need to accumulate it at a quicker rate than the financially rich.
An alternative expression for ψ illustrates this point. From (18):

ψ(t) =
k̇(t)

k(t)
− ȧ(t)

a(t)
. (21)

This relationship shows that if, in aggregate terms, the growth rate of
capital is higher than that of total wealth, there will be transitional condi-
tional convergence.

Another point is worth emphasizing here. The important underlying mech-
anism for transitional convergence is the homothetic property of household
preferences, not diminishing returns to capital like in the autarchic model.
In this economy, transitional divergence in capital stocks is plausible even
though technology is one with diminishing returns.

3.2 Long-run persistence of the cross-section distribu-
tion

Integrating (20) yields:

h(θ, t) = λ1(0, t)h(θ, 0) + λ2(0, t)θ + λ3(0, t)φR(θ), (22)

where

λ1(0, t) = exp[−
∫ t

0
ψ(s)ds], (23)

λ2(0, t) =
∫ t

0
ψ1(s)λ1(s, t)ds, (24)

λ3(0, t) =
∫ t

0
ψ2(s)λ1(s, t)ds. (25)
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This result has been provided by Caselli and Ventura [2000]. What is
interesting in this relationship is that, again, λ1(0, t), λ2(0, t) and λ3(0, t)
are independent of θ. This equation therefore provides a very transparent
decomposition of the distribution of financial wealth at any point in time,
making explicit the respective contributions of the initial financial wealth
distribution, the distribution of labor productivity and the distribution of
the φ(θ)′s. Not surprisingly, given the construction of (22), the λ′is sum up
to unity, for all (t, t′)6:

λ1(t, t′) + λ2(t, t′) + λ3(t, t′) = 1. (26)

The variable λ1(t, t′) is a measure of cumulated conditional convergence be-
tween t and t′, as opposed to ψ(t′), which may be viewed as the instantaneous
conditional convergence at instant t′. It can be seen by direct examination
of (22) taken between t and t′ that if λ1(t, t′) is less that unity, then there
will be cumulated conditional convergence over that period of time.

What does (22) tell us on the asymptotic distribution of financial wealth?
In the long run the distribution reads:

h(θ,∞) = λ1(0,∞)h(θ, 0) + λ2(0,∞)θ + λ3(0,∞)φR(θ). (27)

There are no particular reasons why λ1(0,∞) should be equal to zero. Ev-
idently, the distribution of long-run financial wealth will be also influenced
by the other two sources of heterogeneity, respectively in θ and φ(θ). But
the important fact is that we have a situation of long-run persistence of the
financial wealth distribution. In other words, there may well be transitional
convergence – or divergence –, as was shown in section 3.1, but in all cases
these dynamics will come to an halt as the aggregate economy proceeds to-
wards a steady-state. This result is in line with the one obtained by Bliss
[1995].

Note that long-run persistence of initial distributions applies in exactly
the same way to consumption: just consider (15) and (16). Income distribu-
tion dynamics are slightly more complex because the shares of respectively
capital and labor incomes in total income may vary over time. It is nonethe-
less not difficult to show that long-run persistence also applies. Defining the
share of capital income in total income α(t) ≡ r(t)k(t)/y(t) and the share
of labor income as β(t) ≡ w(t)/y(t), an expression for the relative income of
country θ, yR(θ, t) ≡ y(θ, t)/y(t), can be found by substitution into (22):

yR(θ, t′) = γ1(t, t′)yR(θ, t) + γ2(t, t′)θ + γ3(t, t′)φR(θ), (28)

where

γ1(t, t′) =
α(t′)

α(t)
λ1(t, t′), (29)

γ2(t, t′) = β(t′) + α(t′)λ2(t, t′)− α(t′)

α(t)
β(t)λ1(t, t′), (30)

γ3(t, t′) = 1− γ1(t, t′)− γ2(t, t′). (31)
6One way to do this is to sum (22) over the θ′s.
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A different way of writing equation (28) is to make explicit the income
“target” of region θ:

yR(θ, t′) = γ1(t, t′)yR(θ, t) + (1− γ1(t, t′))y?R(θ, [t, t′]), (32)

where the income target y?R(θ, [t, t′]) is defined as:

y?R(θ, [t, t′]) =
γ2(t, t′)

γ2(t, t′) + γ3(t, t′)
θ +

γ3(t, t′)

γ2(t, t′) + γ3(t, t′)
φR(θ). (33)

On the one hand, these results are reminiscent of the autarchic model,
in the sense that the dynamics is still guided by a gap between the current
value of the variables (e.g. relative income yR(t)) and some long run “tar-
get”. On the other hand, observe that in the integrated economy, this target
is time-varying and, more importantly, can never be attained. The model
contrasts sharply with the long-run behavior of economies in the autarchic
model. One key result of that setting is that any regional economy converges
to a unique steady-state level of wealth and income – conditional on struc-
tural parameters such the labor productivity and preferences. This process
will eventually iron out initial income differences. Here, on the contrary, the
effects of initial wealth will be felt forever. Each region will reach its own par-
ticular steady-state level of financial wealth and income – even if conditioned
on structural parameters. Put differently, there are no stationary wealth and
income distributions.

3.3 Characterization around the aggregate steady-state

One way to understand how the distribution of financial wealth changes as
the aggregate economy grows towards its steady-state is to linearize equa-
tion (22) around the aggregate steady-state. To do this, we need to study the
coefficients λi(t, t

′), i = 1, 2, 3, or alternatively ψ(t), ψ1(t) and ψ2(t), around
the steady-state.

Note that for this purpose it is easiest “to eliminate time” and to work
with aggregate quantities as functions of the capital stock k, not t. A well-
known example of this are the policy rules c(k), a(k), w(k),etc. Similarly, we
define λ1(k, k′) as the value taken by the coefficient λ1 when the aggregate
economy starting from k moves to k′. In the same fashion, we can define
λi(k, k

′), i = 2, 3, ψi(k), i = 1, 2 and ψ(k). Let k? denote the steady state
aggregate level of capital.

First, these functions satisfy: λ1(k?, k?) = 1, λ2(k?, k?) = λ3(k?, k?) = 0,
and ψ1(k?) = ψ2(k?) = ψ(k?) = 0. Second, we define η?i , i = 1, 2, 3 as
the semi-elasticities of the function λi(k, k

?), i = 1, 2, 3 with respect to k,
evaluated at k = k?:

η?i ≡ k?
(
∂λi(k, k

?)

∂k

)
k=k?

, i = 1, 2, 3. (34)
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Taking the first order Taylor expansion of λi(k, k
′) near the steady-state

yields:

λi(k, k
?) ≈ λi(k

?, k?) + η?i

[
k − k?

k?

]
, i = 1, 2, 3. (35)

Moreover, since the coefficients λi, i = 1, 2, 3 sum up to unity, we have:

η?1 + η?2 + η?3 = 0. (36)

Assuming that the initial aggregate capital stock k(0) is not too far off
k?, and neglecting second order terms, the long-run distribution of relative
financial wealth is given by:

h(θ,∞) =

[
1− η?1

(
k?

k(0)
− 1

)]
h(θ, 0)−η?2

(
k?

k(0)
− 1

)
θ−η?3

(
k?

k(0)
− 1

)
φR(θ).

(37)
This equation can be interpreted as follows. Imagine that the aggregate

economy is below its steady-state (k(0) < k?), so that the economy experi-
ences an episode of growth at a cumulated rate k?/k(0)−1. Then, the initial
distribution of the h(θ, 0)′s shrinks or expands – depending on the sign of
η?1. If η?1 > 0, aggregate growth implies a phenomenon of conditional con-
vergence. Relative productivity level θ has a positive influence on long-run
relative wealth as long as η?2 < 0. The influence of φ(θ) depends on the sign
of η?3.

In Appendices B and C, we show that the coefficients η?i , i = 1, 2, 3 can
be expressed as functions of the deep parameters of the model:

η?1 = 1− k?

c?
[ρ+ σ(x+ µ)− (n+ x)] , (38)

η?2 =
k?

c?
σµ− w?

c?
, (39)

η?3 = − φ
c?
, (40)

where µ > 0 is the speed of convergence of the aggregate economy toward its
steady-state (see Appendix A).

Moreover, we show in the appendices that:

ψ′(k?) = −µη
?
1

k?
, ψ′1(k?) = µ

η?2
k?
, ψ′2(k?) = µ

η?3
k?
. (41)

These equations provide a full characterization of the cross-section dynamics
around the steady-state. In particular, we see how the parameters describing
preferences and technology influence the distribution of wealth across regions.

One of the most interesting results is the negative relationship between
µ, the aggregate speed of convergence, and η?1, a measure of the conditional
convergence effect. We see that a slow adjustment of the world economy
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translates into a low long-run persistence of the distribution of financial
wealth. Ventura [1997] already identified this property of the model, but
without quantifying it. Knowing that ε, the elasticity of substitution of the
production function, and σ, the inverse of the intertemporal elasticity of sub-
stitution, both impact negatively on µ, one can conclude that the size of the
long-run persistence effect decreases with these parameters. By contrast, this
size increases with φ, the average level of the φ(θ)’s.

From (38), one can see that the most realistic configuration of the pa-
rameters leads to a conditional convergence effect7. A conditional divergence
effect would take place only for high values of µ and σ. Also, the influence of
φ(θ) on the long-run wealth is always positive. The influence of the relative
productivity level θ depends on the sign of η?2. Some kind of substitution
effect between financial and human wealths cannot be ruled out. Indeed,
η?2 > 0 would mean that regions poorly endowed in terms of θ make up for
their low labor productivity by accumulating financial wealth at a faster rate.
It could be the case for high values of σ and µ8.

Starting from (28), we can use the same analysis to study the behavior of
the distribution of relative gross income yR(θ). Appendix D focuses on the
determination of the semi-elasticities ωi, i = 1, 2, 3 of the coefficients γi. The
results obtained for the distribution of relative wealth h(θ) must be amended
so as to take into account the fact that respective factor shares in total income
may be variable around the aggregate steady state. This exercise clarifies
the influence of a high elasticity of substitution on the income distribution.
First, a high value of ε tends to depress the growth of wages and hence favors
conditional convergence of relative wealth, as was noted above. But we have
a second effect here. A high value of ε also implies a strong decrease of the
share of wage in total income when the aggregate economy converges toward
its steady-state. This second effect weakens conditional convergence.

4 Strategies for empirical testing

In this section, we give directions along which the above results could be
tested. A key preoccupation is to focus on the discriminating predictions of
the model – particularly, on what distinguishes the integrated national econ-
omy from a collection of autarchic regions. A prediction of the model which
clearly possesses this discriminating property is the long-run persistence of
initial conditions, in other words, that convergence, when it exists, will never
be complete. To simplify our exposition in this section, we assume that
θ is the only source of heterogeneity in the fundamentals. More precisely:
φ(θ) = 0 for all θ.

7It is important to remember that ρ+ σx is the net rate of interest.
8Remember that the η?i relate to one another by (36). Consequently, conditional di-

vergence implies some substitution effect.
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4.1 Integrated economy vs autarchic economies

A natural route to explore the difference between autarchic and integrated
economies is to express the distribution of relative incomes as a function of
past relative incomes and relative fundamentals. In the integrated economy,
relationship (32) is available. By contrast, such expression does not exist
in the autarchic case as the dynamics of aggregate income depends on the
distribution of capital across regions.

A way to solve this difficulty is to linearize the autarchic dynamics around
the steady state, as the distribution of capital among regions is uniquely
determined near the steady state. For any country θ, we have:

y(θ, t′)− y?(θ) = e−µ(t′−t) (y(θ, t)− y?(θ)) , (42)

with µ the speed of convergence of a region toward its steady-state and
y?(θ) = θy? the steady-state income of country θ. Note that we used the same
symbol µ for the speed of convergence because such speed is exactly equal
to the µ characterizing the aggregate dynamics of the integrated economy.

¿From this, we obtain:

yR(θ, t′) = e−µ(t′−t)yR(θ, t) +
(
1− e−µ(t′−t)

)
θ. (43)

The integrated-economy analogue to this expression, with φ(θ) = 0,
comes directly from (32):

yR(θ, t′) = γ1(t, t′)yR(θ, t) + (1− γ1(t, t′))θ. (44)

The comparison (43) and (44) is straightforward. The term e−µ(t′−t)

will tend to zero as t′ grows, whereas its integrated-economy counterpart,
the quantity γ1(t, t′), will not. Initial conditions have a persistent effect
in the integrated economy. This persistence phenomenon does not exist in
the autarchic economy and convergence will always translate into complete
catching-up.

Another way of comparing the respective predictions of the two models is
to look at growth rates. To do this, we now have to use the linearized expres-
sion of γ1(t, t′) (see Appendix D). We therefore assume that the aggregate
economy is not too far from a steady state. Let us define :

gR(θ, t, t′) ≡ yR(θ, t′)− yR(θ, t)

yR(θ, t)

as the growth rate of relative income. From (43), an approximate expression
for this growth rate in the autarchic model is:

gR(θ, t, t′) =
(
1− e−µ(t′−t)

) [ θ

yR(θ, t)
− 1

]
. (45)
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In the integrated economy, one can use the fact that9 1 − γ1(t, t′) ≈
ω?1
(
y(t′)
y(t)
− 1

)
, together with (44), results into:

gR(θ, t, t′) = ω?1

(
y(t′)

y(t)
− 1

)[
θ

yR(θ, t)
− 1

]
. (46)

The comparison between (45) and (46) is again transparent. The behavior
of an integrated economy differs from its autarchic counterpart in one key
aspect: the intensity of convergence effect depends on the aggregate dynamics.
As the aggregate economy proceeds toward its steady state, the convergence
effect dies out.

4.2 A system of modified growth rate regressions

Let us assume that t′ − t = 1 so as to use yearly data and let gR(θ, t) be
the growth rate of relative income between t− 1 and t. From this point on,
y will no longer be the intensive level of income per head but will stand for
the level of actual (“extensive”) income per head. The two equations (45)
and (46) lead to the following reduced form of the relative income dynamics:

gR(θ, t) = a1+a2
y(t)

y(t− 1)
+a3(θ)

y(t)

y(θ, t− 1)
+a4(θ)

1

yR(θ, t− 1)
+u(θ, t). (47)

In each underlying model, the coefficients a1, a2(θ), a3(θ) and a4 are related
to structural parameters in the following way:

Autarchic economy Integrated economy
a1 = −(1− e−µ) a1 = ω∗1
a2 = 0 a2 = ω∗1
a3(θ) = 0 a3(θ) = θω∗1e

−x

a4(θ) = θ(1− e−µ) a4(θ) = −θω∗1

u(θ, t) is an error term10. We allow for some spatial heteroskedasticity.
In addition to (47), one can estimate the following structural form:

gR(θ, t) =

(
b1 + b2

y(t)

y(t− 1)

)[
θ

yR(θ, t− 1)
− 1

]
+ u(θ, t). (48)

with the following restrictions on parameters:

9Alternatively, it is possible to use the log specification 1− γ1(t, t′) ≈ ω?1 log
(
y(t′)
y(t)

)
.

10We prefer not to refer to “shocks”, as the introduction of uncertainty at the agent level
would raise complex theoretical issues related to the desire for some insurance against
idiosyncratic shocs. The term u(θ, t) should be viewed as the sum of whatever is not
explained by the model in the actual trajectories of the variables. It may account for
example for variations known to the agents over their horizon of prevision, which are not
modeled and are unobservable to the econometrician (see for example Altug and Labadie
[1994, chap. 7]).
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Autarchic economy Integrated economy
b1 = 1− e−µ b1 = −ω∗1
b2 = 0 b2 = ω∗1e

−x

Note that structural parameters in both regimes are exactly identified. These
equations may be complemented with the dynamics of the aggregate economy
which is identical in the two models:

g(t) =
(
1− e−µ

) [ ex(t−1)y∗

yR(θ, t− 1)
− 1

]
.

4.3 σ-convergence

Another approach to testing the model relies on studying the changes over
time of the cross-section variance of relative incomes. Since we will study an
univariate time series, panel techniques for controlling possible heterogeneity
in underlying parameters will not be available any longer. Taking into ac-
count heterogeneity in this setting is in theory still possible, but analytically
overly complex. What we will analyze in this subsection is therefore absolute
convergence, as opposed to conditional convergence. Most authors study-
ing convergence in regional data sets have plausibly assumed homogeneity in
structural parameters (see for example Barro and Sala-I-Martin [1995, chap.
11]). Formally, applying the variance operator to both sides of equation (44)
and assuming that all regions have an identical level of labor productivity
θ = 1, we have the following law of motion for the cross-region variance of
relatives incomes:

σ2(t) = σ2
u + γ2

1(t− 1, t)σ2(t− 1) (49)

where σ2(t) = V (yr(θ, t)). We used the fact that the error term u(θ, t)
appended to (48) is not correlated with yR(θ, t − 1) and assumed that the
variance of u(θ, t), σ2

u, is time-invariant.
The autarchic equivalent of this expression is:11

σ2(t) = σ2
u + e−2µσ2(t− 1) (50)

There is, again, a crucial difference between the two equations. In the
autarchic model, the multiplicative coefficient e−2µ is time-invariant. Its coun-
terpart in the integrated economy, γ2

1(t−1, t), will grow monotonically and is
asymptotically equal to unity. Using the fact that γ1 is not far from a steady
state, one gets the approximation:

γ2
1(t− 1, t) ' 2γ1(t− 1, t)− 1 ' 1− 2ω∗1

(
y(t)

y(t− 1)
− 1

)
. (51)

11See for example Barro and Sala-I-Martin [1995], page 384.
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By substituting (51) into (50), by introducing the exogenous technical progress
x and adding an error term similar to u(θ, t), we finally get the regression to
be tested:

σ2(t) = σ2
u + (1 + 2ω∗1)σ2(t− 1)− 2ω∗1e

−x y(t)

y(t− 1)
σ2(t− 1) + ε(t). (52)

5 Some evidence from the US states

The US states data seem to be an most ideal starting point for several reasons.
First, as we noted above, there is substantial evidence of the convergence in
state incomes slowing down. Second, data on per capital personal income
have been compiled by the Bureau of Economic Analysis (BEA) every year
from 1929. These are the longest existing series used in the literature on
convergence: 69 years (1929-1997), for the 48 contiguous states. Third, as
Kim [1997] reports, factors and goods are highly mobile across the US states.
The assumption of perfect integration may be plausible in this economy.

The data has been obtained from the BEA’s web page. Personal income
is provided in nominal terms and it is not possible to deflate the data since
state-specific deflators are not available. Consequently, relative income per
capita are based on nominal levels while the federal consumer price index
has been used to deflate aggregate nominal income per capita.

We follow the strategy described in the previous section. First, we use
panel data techniques to estimate a system of modified growth rates regres-
sions. Second, we study σ−convergence.

5.1 Growth regressions

We begin by an estimation of the reduced form (47) using weighted least-
squares with White’s correction to account for both spatial and temporal
heteroskedasticities. The detailed results are shown in Tables (1 and 2).
Most of the estimated coefficients differ significantly from zero. Moreover,
the signs of these coefficients are consistent with the model of integration in
which ω∗1 > 0. Several tests are derived from this estimation:

• We test the restrictions on the parameters implied by the autarchic
model. The null hypothesis is H0 : a1 = a3(θ) = 0, ∀θ and the asso-
ciated Wald statistics is 803,31 which indicates a very strong rejection
of the autarchic model.

• We test the restrictions on the parameters imposed by the integrated
model. The null hypothesis is H0 : a1/a4 = a2(θ)/a3(θ) = 0, ∀θ and
leads to the structural form (48). The Wald statistics is 78.09 with an
associated P-value of 0.0045. This means that the null hypothesis is
also rejected. However, this rejection is not so strong as that of the
autarchic model. Moreover, the result of this test is very sensitive to
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the method of estimation. For instance, without White’s correction
against temporal heteroskedasticity, the Wald statistics is 66.93 with a
P-value of 0.045.

Second, we estimate the structural form (48) by weighted iterative least-
squares. The estimated coefficients are shown in Table (2). Note that the
table in the appendix provides estimates for both the coefficients b1, b2 and
the structural parameters ω∗1 and x. The estimated values of b1 and b2 confirm
that integration matters in the sense that the speed of convergence between
regions appear to depend on aggregate dynamics. The structural parameter
ω∗1 is 0.62 with a standard error of 0.053. This means that aggregate growth
leads to a reduction of disparities between regions. However, the estimated
value of the long-run growth rate x is disappointing. The counterfactual
negative sign of this coefficient implies that a conditional convergence effect is
possible when per capita aggregate income actually falls. An interpretation of
this is that part of the convergence behavior arises independently of aggregate
dynamics.

On balance, these results suggest that the convergence patterns of the US
States may be best represented by a model lying in between the integrated
and the autarchic models.

5.2 σ-convergence

Before we proceed to estimate the model expressed in terms of variances,
equation (52), we need to take care of a problem in the data. When it comes
to computing cross-section variances, the respective weights of regions mat-
ter. It would be misleading to count each region as one observation in the
total population. To make this point clearer, consider the following thought
experiment: split California into two states, each with half of California’s
population and income. The weight of the Californian growth behavior in
the cross-section variance of relative incomes would suddenly be twice what
it was before – while the economy has not changed a bit. Nor would a simple
weighing by populations result in an accurate calculation of variances, be-
cause of the quadratic nature of variance. Appendix E details the procedure
we propose to handle population weights. Given that the variance is basi-
cally a sum of squares, the trick is to weigh each state’s relative income with
the square root of its population. Figure 2 gives the variances adjusted for
population over time.

< Insert figure 2. around here >

An eye examination of the graph does suggest some tendency for the
cross-section variance to stabilize at a strictly positive value. But, without
any further qualification, this is perfectly compatible with autarchic equation
(50). If σ2

u, the variance of the stochastic innovations of relative incomes, is
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significantly above zero, the autarchic model will display this sort of behav-
ior12.

As can be seen from the results of the estimation of (52) in Table1, the
data on US states provide some indication that integration matters. Just like
in the β-convergence analysis, the model applied to σ-convergence succeeds
in reproducing the data quite well. In particular, the coefficient on Y (t)

Y (t−1)
σ2
t−1

is statistically significant. Ljung-Box tests performed on the first three lags
do not reject the null hypothesis of no autocorrelation up to the specified
lags. The same tests performed on the residuals of equation (51) decisively
reject the same null hypotheses.

On the other hand, the values of the estimated structural parameters give
more ambiguous information. These values are as follows (standard errors
are shown between brackets): ω∗1 = 0.379 [0.0721] and x = −0.0415 [0.027].
While ω∗1 = 0.379 is plausible, the value x = −0.0415, like in our analysis of
β-convergence, suggests that the convergence behavior of the US States may
be best represented by some sort of cross of the two models.

Table 1: estimation of (52)

Variable Coefficient Std. Error t-Statistic p-Value
Intercept 0.000223 0.000541 0.412670 0.6812

σ2
t−1 1.758222 0.144274 12.18669 0.0000

y(t)
y(t−1)

σ2
t−1 -0.790381 0.145032 -5.449707 0.0000

R-squared: 0.990571 Akaike info criterion: -7.953222
Adjusted R-squared: 0.990276 Schwarz criterion: -7.854505

Lag Q′LB statistic p-Value
1 0.3398 0.560
2 1.6840 0.431
3 4.0986 0.251

6 Conclusion

This model provides a theoretical explanation for the deceleration of con-
vergence among integrated, i.e. regional economies. When interactions are
taken into account in a Ramsey model of economic growth, a link between
aggregate growth and regional speed of convergence appears. Our charac-
terization makes it possible to confront the model with empirical evidence.
The results using US states data are mixed. On the one hand, integration
appears to matter: there are indications that aggregate dynamics contribute
to shaping the pattern of convergence among US states. On the other, part
of conditional convergence seems not to be connected with the aggregate
economy.

This analysis highlights the importance of interactions among economies
for understanding patterns of convergence. We have shown that, in the

12The steady state value for σ2
t given by equation (50) is σ2

∞ = σ2
u/(1− e−2µ).
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long run, the influence of integration may run contrary to the traditional
notion of “equalizing exchange”. Again, it is important to remember that
in this intertemporal utility setting and without any sort of externality, the
counterpart of the long-run persistence result is an improvement of dynamic
utility for all regions.

Two promising directions for further research on integration and growth
can be thought of. First, our empirical results suggest that less than per-
fect integration should be analyzed, for example through the introduction of
non-tradables, adjustment costs or investment irreversibility, as in Vellutini
[1997]. In the same direction, liquidity constraints as introduced by Huggett
[1997] may potentially affect the persistence result. These extensions could
obviously bring additional realism to the model, especially if it is applied to
the world economy. Second, the result of long-run GNP persistence could
also be modified by mechanisms of technology diffusion. This is clearly a
very important extension of the model, as shown by the recent literature on
the subject, for example Basu and Weil [1996] who explore the idea of grad-
ual technology diffusion through a mechanisms of “appropriate technology”,
or Eeckhout and Jovanovic [1998] who show how non-trivial external effects
give rise to inequality in productivity.
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Technical appendices

A The aggregate economy around its steady-

state

Around the steady-state (c?, k?), the aggregate economy dynamics is charac-
terized by the Jacobian matrix:

J =

[
0 c?σ−1f ′′(k?)
−1 f ′(k?)− (δ + n+ x)

]
. (53)

The characteristic polynomial associated to J is:

P (µ) = µ2 − (ρ+ σx− (n+ x))µ+ c?σ−1f ′′(k?). (54)

It is well known that P (µ) has two roots of opposite signs µ1 > 0 and µ2 < 0.
Moreover, we know that µ1 + µ2 = Tr(J) = ρ + σx − (n + x). µ = |µ2| > 0
is the speed of convergence of the world economy toward its steady-state. As
µ1 × µ2 = Det(J) = c?σ−1f ′′(k?), we obtain:

µ(µ+ ρ+ σx− (n+ x)) = −c?σ−1f ′′(k?). (55)

µ can be expressed as a function of the parameters of preferences and
technology. Define ε and α as representing respectively the elasticity of sub-
stitution between factors of the technology and the share of capital income
in total income13:

ε ≡ −f
′(k)(f(k) + φ− kf ′(k))

k(f(k) + φ)f ′′(k)
, α ≡ kf ′(k)

f(k) + φ
. (56)

Let r? = ρ+ σx be the (net) interest rate in he steady-state. The aggregate
speed of adjustment is then given by:

µ =
1

2

−(r? − (n+ x)) +

√
(r? − (n+ x))2 +

4

εσ
(r? + δ)(1− α)

c?

k?

 . (57)

Moreover, with our definitions, the ratio c?/k? satisfies:

c?

k?
=
r? + δ

α
− (δ + n+ x).

It is useful to study the local properties of the policy rule c(k) associated to
the competitive aggregate dynamics. We eliminate time in the differential
system (12,13) so that:

c′(k) =
σ−1(f ′(k)− δ − ρ)c(k)− xc(k)

f(k) + φ− c(k)− (δ + x+ n)k
. (58)

13Including φ in these expressions facilitates the algebrical manipulations below.
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Since 0/0 is indeterminate, (58) is uninformative on the value of c′(k?).
However, by applying L’Hôpital’s rule, it is easy to show that c′(k?) solves
P (µ) = 0. Consequently, there are two candidates for c′(k?): the two eigen-
values µ1 and µ2, corresponding respectively to the stable and unstable arms
of the phase diagram. It is easy to see that the stable arm has a positive
slope in the (k, c) plan so that:

c′(k?) = µ1 = µ+ ρ+ σx− (n+ x), (59)

is the solution of interest.

B Properties of λ1(k, k?) and ψ(k) around the

steady-state

λ1(t, t′) can alternatively be expressed in terms of the aggregate capital stocks
k(t) and k(t′). Substituting (21) into (23) provides a convenient expression:

λ1(k, k′) =
a(k′)/a(k)

k′/k
. (60)

¿From this, we have
η?1 = 1− (k?/a?)a′(k?). (61)

We need to characterize the policy rule a(k) near the steady-state k?. Know-
ing that ȧ = (r − n − x)a − c and using the expression of the aggregate
dynamic system, we have:

a′(k) =
(f ′(k)− δ − n− x)a(k)− c(k)

f(k) + φ− c(k)− (δ + n+ x)k
.

Again, by applying L’Hôpital’s rule to this ratio of functions, we see that
a′(k?) satisfies:

−c′(k?)a′(k?)− a?f ′′(k?) + c′(k?) = 0,

so that:

a′(k?) = 1− a?f
′′(k?)

c′(k?)
.

Further, knowing that c?/a? = ρ+ σx− (n+ x) = ν?, we get:

a′(k?) = 1 +
σµ

ρ+ σx− (n+ x)
. (62)

¿From this last expression, we conclude that:

η?1 = 1− k?

c?
[ρ+ σ(x+ µ)− (n+ x)] . (63)

22



The instantaneous speed of conditional convergence ψ(k) relates to the func-
tion λ1(k, k′) through the expression:

∂ log λ1(k, k′)

∂k
=

ψ(k)

f(k) + φ− c(k)− (n+ δ + x)k
.

At k = k?, we apply the L’Hôpital’s rule once more, using (59) to show:(
∂ log λ1(k, k?)

∂k

)
k=k?

=
η1(k?)

k?
=
ψ′(k?)

−µ
.

Finally:

ψ′(k?) = −µη1(k?)

k?
. (64)

C Properties of λ3(k, k?) and ψ2(k) around the

steady-state

Remember that:

λ3(t, t′) =
∫ t′

t
ψ2(s)λ1(s, t′)ds.

Making the change of variable t→ k, we obtain:

λ3(k, k′) =
∫ k′

k

ψ2(u)λ1(u, k′)

f(u) + φ− c(u)− (δ + n+ x)u
du.

By differentiating this equality with respect to k:

λ′3(k) ≡ ∂λ3(k, k?)

∂k
=

−ψ2(k)λ1(k, k?)

f(k) + φ− c(k)− (δ + n+ x)k
.

Knowing that λ1(k?, k?) = 1 and ψ2(k?) = 0, we apply the L’Hôpital rule to
show that:

λ′3(k?) =
ψ′2(k?)

µ
. (65)

We now turn to the evaluation of the derivative ψ′2(k?). The function ψ2(k)
satisfies ψ2(k) = φ[1 − ν(k)1̃(k)]/k. Differentiating this expression with re-
spect to k yields:

ψ′2(k) = −φ
k
[
ν ′(k)1̃(k) + ν(k)1̃′(k)

]
+ (1− ν(k)1̃(k))

k2
.

This expression has to be evaluated at k = k?. First, we need ν ′(k?). By
definition, ν(k) = c(k)/a(k) so that:

ν ′(k)

ν(k)
=
c′(k)

c(k)
− a′(k)

a(k)
.
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It is easy to check that ν? = ν(k?) = ρ+ σx− (x+ n). Using (59) and (62),
one gets:

ν ′(k?) = − 1

a?
µ(1− σ), (66)

Second, we need 1̃′(k?). Using the expression:

1̃(t) =
∫ ∞
t

e−
∫ τ
t

(r(s)−n−x)dsdτ,

By making the change of variable t→ k:

1̃′(k) =
(f ′(k)− n− x− δ)1̃(k)− 1

f(k) + φ− c(k)− (δ + x+ n)k)
.

For k = k?, we apply the L’Hôpital rule so that:

1̃′(k?) =
f ′′(k?)1̃(k?) + 1̃′(k?)(f ′(k?)− δ − x− n)

f ′(k?)− c′(k?)− (δ + x+ n)k)
.

Knowing that 1̃(k?) = (ρ+σx−(x+n))−1 and that the denominator is equal
to µ, one can see that:

1̃′(k?) =
σµ

c?(ρ+ σx− (n+ x))
. (67)

Using equations (65) (66) and (67), we see that:

ψ′2(k?) = − µφ

k?c?
. (68)

Knowing that λ′3(k?) = ψ′2(k?)/µ and η?3 = k?λ′3(k?), we finally obtain:

η?3 = −φ/c?. (69)

D Properties of γi(k, k
′)

Let γ1(k, k′), γ2(k, k′) and γ3(k, k′) be functions of capital stock, correspond-
ing to the coefficients γi, i = 1, 2, 3 of equation (28). The objective of this ap-
pendix is to find closed-form expressions for the semi-elasticities ω?i , i = 1, 2, 3
of these functions around the aggregate steady-state.

From (29) we have:

ω?1 = η?1 −
k?α′(k?)

α?
, (70)

with α(k) = kf ′(k)/(f(k) + φ). The elasticity of α around the steady-state
can be computed using definitions (56). We obtain:

k?α′(k?)

α?
= (1− α?)(1− 1/ε?).
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This equation, together with (63), implies:

ω?1 = 1− k?

c?
[ρ+ σ(x+ µ)− (n+ x)]− (1− α?)(1− (1/ε?)). (71)

Note that when ε? = 1, which corresponds to the Cobb-Douglas case with
φ = 0, ω?1 is equal to η?1.

Despite its simplicity, an inconvenient of equation (71) is that it is not
homogeneous in the parameters describing the aggregate fundamentals. For
instance, µ depends on ε?. One way to circumvent this difficulty is to use (55)
to show that:

k?α′(k?)

α?
= 1− k?(ρ+ σx+ δ)

c? + (n+ x+ δ)k?
− k?

c?
σµ(µ+ ρ+ σx− (n+ x))

ρ+ σx+ δ
.

By combining this expression with (63), we obtain a homogenous expression
for ω?1. However, this expression is complex. It simplifies in the case δ = n =
x = 0:

ω?1 =
k?

c?
σµ2

ρ
, (72)

which is always positive. This means that in the absence of depreciation,
demographic growth and technological progress there is always conditional
convergence in gross income around the steady state.

The expression of ω?3 can be obtained from (31). It is easy to show that:

ω?3 = α?
φ

c?
− (1− α? − β?) [ω?1 − α?] , (73)

where β? = w?/y? is the share of wages in total income.
Knowing that the γ′is sum up to unity, we have ω?2 = −ω?1 − ω?3. Hence:

ω?2 = −α? φ
c?

+ (α? + β?)ω?1 − α?(1− α? − β?). (74)

For φ = 0, this reduces to ω?2 = −ω?1.

E Adjusting for population size

The model assumes that all regions have identical populations, although
this is grossly untrue in reality. When computing the cross-section variance
of relative per capita incomes, we need to adjust for population size. The
following explains how to do this with the data at hand.

Suppose that the country consists of P regions indexed by i = 1, ..., P ,
each being populated with a single inhabitant. Define Y as the country total
income, y(i) as i′s per capita income (also equal to its total income), Y (i) ≡
Y (i)/Y as i′s relative income and yR(i) ≡ Y (i)/(Y/P ) its relative per capita
income. Symmetric notation is used for regions. Suppose that there exists
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a partition of the country population into n regions indexed by j = 1, ..., n
such that

for all j and for all i ∈ Ij, Y (i) = Y (j)/P (j), (75)

where Ij is the set of P (j) regions belonging to region j and Y (i) is i′s total
income.

Let us compute the variance of the yR(i), which is the variable we are
primarily interested in:

V (yR(i)) =
1

P

P∑
i=0

y2
R(i)−

(
1

P

P∑
i=0

yR(i)

)2

=
1

P

P∑
i=0

y2
R(i)− 1 (76)

We leave it to the reader to verify that the variance of per capita income
across regions, V (yR(j)), will usually give a very different result.

Let us now compute the quantity
∑n
j=1

(
Y (j)
Y
P−1/2(j)

)2
, which will prove

useful to solve our problem. First note that (75) implies: Y 2(j) = P (j)
∑
i∈Ij Y

2(i).
Substituting:

n∑
j=1

(
Y (j)

Y
P−1/2(j)

)2

=
1

Y 2

n∑
j=1

∑
i∈Ij

Y 2(i) =
1

Y 2

P∑
i=0

Y 2(i) =
1

P 2

P∑
i=0

y2
R(i)

Finally:

V (yR(i)) = P
n∑
j=1

(
Y (j)

Y
P−1/2(j)

)2

− 1 (77)

Variances of relative per capita income have been calculated using this
formula.
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Figure 1: Aggregate annual growth rate (over decades) and associated speed
of regional convergence for US states (solid line), from 1939 to 1997.
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Figure 2: Evolution of cross section variance among US states
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Method: GLS (Cross Section Weights)
White Heteroskedasticity-Consistent Standard Errors & Covariance
Sample: 1930 1997

Coefficient estimated t-Statistic Coefficient estimated t-Statistic
a1  0.597619  5.440780
a2 -0.643826 -5.902049
a3(ALA)  0.480879  7.581268 a4(ALA) -0.447988 -7.054486
a3(ARI)  0.632111  5.609858 a4(ARI) -0.590856 -5.218866
a3(ARK)  0.435637  4.664617 a4(ARK) -0.403794 -4.182896
a3(CAL)  0.770569  5.037655 a4(CAL) -0.719198 -4.662324
a3(COL)  0.519441  3.917197 a4(COL) -0.467334 -3.505049
a3(CON)  0.846989  5.112692 a4(CON) -0.785355 -4.705064
a3(DEL)  0.836341  3.833641 a4(DEL) -0.783921 -3.553896
a3(DCO) -0.061751 -0.271465 a4(DCO)  0.141642  0.612222
a3(FLO)  0.573614  5.674636 a4(FLO) -0.527241 -5.167499
a3(GEO)  0.443211  6.627201 a4(GEO) -0.402323 -5.986030
a3(IDA)  0.855205  1.513705 a4(IDA) -0.815726 -1.446400
a3(ILL)  0.848975  6.135464 a4(ILL) -0.800868 -5.736485
a3(IND)  0.899161  8.794022 a4(IND) -0.860037 -8.354711
a3(IOW)  0.720656  1.717696 a4(IOW) -0.675108 -1.619606
a3(KAN)  0.756320  4.566151 a4(KAN) -0.714863 -4.279037
a3(KEN)  0.463233  6.291491 a4(KEN) -0.428204 -5.749152
a3(LOU)  0.421534  5.305934 a4(LOU) -0.382810 -4.767320
a3(MAI)  0.530411  4.468744 a4(MAI) -0.489463 -4.084849
a3(MAR)  0.569608  4.341993 a4(MAR) -0.513922 -3.886095
a3(MAS)  0.495153  3.523578 a4(MAS) -0.437127 -3.084803
a3(MIC)  1.125598  7.962658 a4(MIC) -1.086419 -7.609309
a3(MIN)  0.494765  4.338739 a4(MIN) -0.444537 -3.868579
a3(MIS)  0.465977  4.943786 a4(MIS) -0.438873 -4.563622
a3(MI)  0.536703  5.351204 a4(MI) -0.491624 -4.863741
a3(MON)  0.513169  1.646378 a4(MON) -0.468880 -1.468911
a3(NEB)  0.679113  1.770262 a4(NEB) -0.634911 -1.674038
a3(NEV)  0.695879  1.262192 a4(NEV) -0.637716 -1.144664
a3(NHA)  0.413882  3.675984 a4(NHA) -0.361636 -3.186787
a3(NJ)  0.713879  4.882395 a4(NJ) -0.655028 -4.442119
a3(NEM)  0.504533  6.705502 a4(NEM) -0.467290 -6.141164
a3(NYO)  0.633524  4.037920 a4(NYO) -0.577869 -3.649714
a3(NCA)  0.413758  5.807360 a4(NCA) -0.372635 -5.166459
a3(NDA)  0.509475  0.617782 a4(NDA) -0.460926 -0.541863
a3(OHI)  0.922230  7.708824 a4(OHI) -0.881892 -7.315065
a3(OKL)  0.494265  4.443157 a4(OKL) -0.455509 -4.059441
a3(ORE)  0.806509  5.854084 a4(ORE) -0.762698 -5.496431
a3(PEN)  0.676252  5.716457 a4(PEN) -0.630460 -5.287191
a3(RHO)  0.454663  3.044060 a4(RHO) -0.403836 -2.680050
a3(SCA)  0.374609  6.162632 a4(SCA) -0.336340 -5.492981
a3(SDA)  0.728954  1.270689 a4(SDA) -0.688271 -1.185450
a3(TEN)  0.525486  7.577217 a4(TEN) -0.489085 -7.000460
a3(TEX)  0.499744  5.759757 a4(TEX) -0.455048 -5.216213
a3(UTA)  0.548159  2.801829 a4(UTA) -0.508277 -2.561244
a3(VER)  0.496641  5.039425 a4(VER) -0.455141 -4.582686
a3(VIR)  0.411776  4.108234 a4(VIR) -0.361119 -3.560310
a3(WAS)  0.858042  6.423250 a4(WAS) -0.810976 -6.020307
a3(WVI)  0.435207  5.151321 a4(WVI) -0.398825 -4.665768
a3(WIS)  0.658965  6.256072 a4(WIS) -0.615231 -5.798839
a3(WYO)  0.542769  4.097084 a4(WYO) -0.494519 -3.700324

Weighted Statistics
R-squared  0.186944     Mean dependent var  0.002811
Adjusted R-squared  0.162039     S.D. dependent var  0.045047
S.E. of regression  0.041236     Sum squared resid  5.495713
Log likelihood  11151.98 Durbin-Watson stat  2.096958

Unweighted Statistics
R-squared  0.151211     Mean dependent var  0.002783
Adjusted R-squared  0.125212     S.D. dependent var  0.044437
S.E. of regression  0.041562     Sum squared resid  5.582945
Durbin-Watson stat  2.556498

Table 1: This Table reports estimates associated with the following equation
gR(θ, t) = a1 + a2

y(t)
y(t−1)

+ a3(θ) y(t)
y(θ,t−1)

+ a4(θ) 1
yR(θ,t−1)

+ u(θ, t)
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Estimation Method: Iterative Weighted Least Squares
Sample: 1929 1997  
Sequential weighting matrix & coefficient iteration
Coefficient Estimated Std. Error t-Statistic
omega  0.628980  0.053699  11.71318
x -0.049842  0.006502 -7.665259
b(1) -0.627522  0.0535291 -11.72300
b(2)  0.659912  0.054494  12.11031
theta(ALA)  0.745964  0.035904  20.77634
theta(ARI)  0.939660  0.054036  17.38947
theta(ARK)  0.696278  0.049065  14.19091
theta(CAL)  1.133195  0.048407  23.40986
theta(COL)  0.973826  0.068613  14.19303
theta(CON)  1.326624  0.067555  19.63770
theta(DEL)  1.196326  0.105938  11.29268
theta(DCO)  0.955052  0.128860  7.411556
theta(FLO)  0.956919  0.043825  21.83508
theta(GEO)  0.789708  0.035235  22.41231
theta(IDA)  1.114787  0.141607  7.872404
theta(ILL)  1.163701  0.048402  24.04221
theta(IND)  1.126427  0.050746  22.19747
theta(IOW)  1.075787  0.147798  7.278771
theta(KAN)  1.058404  0.077064  13.73414
theta(KEN)  0.747560  0.035162  21.26027
theta(LOU)  0.749997  0.044007  17.04275
theta(MAI)  0.859514  0.053845  15.96271
theta(MAR)  1.055838  0.047313  22.31596
theta(MAS)  1.031795  0.052770  19.55276
theta(MIC)  1.278563  0.076761  16.65636
theta(MIN)  0.934110  0.062768  14.88187
theta(MIS)  0.680818  0.052642  12.93287
theta(MI)  0.907625  0.031133  29.15323
theta(MON)  0.882066  0.103000  8.563761
theta(NEB)  1.025329  0.127441  8.045517
theta(NEV)  1.180946  0.162857  7.251444
theta(NHA)  0.898854  0.047512  18.91846
theta(NJ)  1.196127  0.046304  25.83219
theta(NEM)  0.802558  0.035964  22.31568
theta(NYO)  1.092052  0.046771  23.34914
theta(NCA)  0.767834  0.044970  17.07440
theta(NDA)  0.932230  0.170901  5.454803
theta(OHI)  1.131824  0.043125  26.24505
theta(OKL)  0.808585  0.058339  13.86013
theta(ORE)  1.096303  0.063764  17.19308
theta(PEN)  1.016283  0.029109  34.91335
theta(RHO)  0.919784  0.063503  14.48419
theta(SCA)  0.704040  0.042756  16.46641
theta(SDA)  1.059616  0.152036  6.969522
theta(TEN)  0.817900  0.035764  22.86950
theta(TEX)  0.875644  0.043313  20.21687
theta(UTA)  0.862385  0.078632  10.96737
theta(VER)  0.838074  0.037344  22.44230
theta(VIR)  0.870980  0.052967  16.44373
theta(WAS)  1.171933  0.061373  19.09537
theta(WVI)  0.736010  0.039444  18.65950
theta(WIS)  0.985408  0.035972  27.39378
theta(WYO)  0.945191  0.069298  13.63957

Table 2: This table reports Estimates associated with the following equation
gR(θ, t) =

(
b1 + b2

y(t)
y(t−1)

) [
θ

yR(θ,t−1)
− 1

]
+ u(θ, t), for t = 2, ..., T
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