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Abstract

This paper shows that in a dynamic context, under weak assumptions, the
presence of payoff shocks can shrink the equilibrium set to a singleton. We study
a model with a continuum of fully rational agents who switch between two actions
or states over time (e.g., working in different sectors, employment vs. unemploy-
ment, etc.). An agent’s incentive to pick a given action is greater if others do
the same. Agents receive chances to change actions at random times and may
influence the rate at which these chances arrive. Payoff shocks may follow any of a
large class of stochastic processes that includes both seasonal and mean-reverting
processes. In this general setting, payoff shocks give rise to a unique equilibrium.
One implication is that the introduction of aggregate shocks leads to a unique equi-
librium in two well-known macroeconomic search models with multiple equilibria

(Diamond and Fudenberg, Howitt and McAfee).

J.E.L. No.: C73. Field: Game Theory.



E pluribus unum. [Out of many, one.] — Motto on U.S. dollar.

1 Introduction

The problem of multiple equilibria is one of the most fundamental of modern economic
theory. Models with multiple equilibria lead to ambiguous predictions and are harder
to test and refute than models with unique outcomes. The assumption of equilibrium
play is also harder to justify: one has to explain why all agents expect the same equi-
librium. Finally, multiplicity distorts research: since the conclusion that “anything
can happen” is seen as uninteresting and the use of equilibrium refinements is regarded
with skepticism, ad-hoc assumptions are often made in order to guarantee a unique
equilibrium.

Recently, economists have attacked this problem by looking for omitted features that
have the potential to lead players to select one outcome in particular. One such factor
is aggregate payoff shocks.? Payoff shocks have been shown to lead to uniqueness in
models in which a continuum of fully rational players play over time a static game with
strategic complementarities and frictions in changing actions. Without shocks, there
are multiple equilibria. When payoff shocks are introduced, in the form of a payoff
parameter that changes stochastically, a unique equilibrium emerges.?

This paper generalizes these results in two important ways. Prior work has assumed
that the payoff parameter follows either a random walk or its continuous-time counter-
part, a Brownian motion. FEach process has a crucial property: the distribution of its
future changes does not vary over time or depend on the current value of the process.
This rules out features such as mean-reversion and seasonality, which characterize many

real-world variables that affect economic activity. Early work relied heavily on this

2Another factor that can lead to a unique equilibrium is asymmetric information: when agents
receive noisy signals of a game’s true payolls (see Carlsson and van Damme [6], Morris, Rob, and Shin

[16], Morris and Shin [17], and Frankel, Morris, and Pauzner [9]).
3See Burdzy, Frankel, and Pauzner [3, 5] and Frankel and Pauzner [10, 11].

“If a variable is mean-reverting, its future changes depend on its current value: when it is high, it



property; mean reversion and seasonality could be tolerated only in the limit as the
shocks or frictions vanish (Burdzy, Frankel, and Pauzner [3, 5|; Frankel and Pauzner
10]).

We prove that a unique equilibrium is obtained for a general class of both mean-
reverting and seasonal processes, without taking any limits. The argument has two
parts. We first show the existence of a transformation of space and time that removes
any mean reversion or seasonality. The resulting process still does not have to be a
Brownian motion since its variance may fluctuate over time. But we show that the
original uniqueness proof can be generalized in a natural way to cover processes with
time-varying variances. Together, these arguments let us prove uniqueness for processes
that are either mean-reverting or seasonal or both.

Prior uniqueness arguments have also relied on another strong assumption: that
agents receive chances to switch actions at a common, fixed rate. This assumption is
usually unrealistic. For example, a worker can lower her expected waiting time to change
jobs, either through searching more intensively or being less selective about accepting
job offers. A firm can lower the time needed to fill a vacancy by advertising more heavily
or by lowering its job requirements. We show that this sort of “endogenous switching”
does not upset the uniqueness result. As an application, we show that the introduction
of aggregate shocks leads to a unique equilibrium in two well-known models that study
the multiplicity of equilibria arising from costly search: Diamond [7] and Diamond and
Fudenberg [8]; and Howitt and McAfee [13].

The rest of the paper is as follows. The model is described in section 2. Section 3
presents the main result. In section 4, we discuss the models of Diamond, Diamond and
Fudenberg, and Howitt and McAfee. An intuition for the main result is then presented

in section 5. Proofs are collected in an appendix.

is more likely to fall. A seasonal variable changes in a way that depends on time: e.g., the maximum

daily temperature tends to fall in the autumn months and to rise in the spring.



2 The Model

The game is played in continuous time ¢t € [0,00). There is a continuum of players
of measure 1. At any time ¢, each player is locked into one of two actions, R or L.
Players change actions from time to time, according to independent Poisson processes.®
A player who is playing the action a = R, L and maintains the switching rate k* during
the period [t,t + dt] will change actions with probability k%dt during that period. She
also incurs the cost c*(k* X;)dt > 0 where X, is the proportion of R players in the
population. In addition to paying switching costs, a player also derives utility directly
from playing a given action. This utility flow is u(a, Wi, X;), where a = R, L is the
player’s action and W, is an exogenous parameter that changes randomly over time.® A

player’s time-t continuation payoff is thus

E / e "D [u(ay,, Wy, X)) — ™ (k™ X,)] dv

v=t
where a, € {R, L} is the action the player is locked into at time v, k% is her switching
rate, and 7 > 0 is her pure rate of time preference.

Prior work in this area has assumed that the payoff parameter W follows a Brownian
motion. In this paper we show that W can follow a more general stochastic process.

We assume that

th = (atWt —I— bt)dt —I— O_tdBt (1)

where B is a Brownian motion with zero drift and unit variance.” This equation
means that as dt — 0, the increment Wy 4 — W, is asymptotically normal with mean

(agW; + b;)dt and variance o2dt. If a; < 0, for example, W is mean-reverting.

5The model has a continuum of independent Poisson processes. We assume that there is no aggregate
uncertainty. See Judd [14], Boylan [2], and Gilboa and Matsui [12] for a discussion of the technical

problems underlying this assumption, as well as some solutions.

8Pairwise random matching is a special case: if players are randomly matched to play a game with
payofl function v(a,a’,W;) (where a is the player’s action and a’ is her opponent’s), then u(a, Wy, X;) =

Xﬂ)(a7 R, Wt) —+ (1 — Xt)U(a7L7 Wt)

"This means that for any ¢ > ', B; — By is normally distributed with mean zero and variance ¢ — ¢’



Some technical assumptions on W are necessary: there are constants 0 < Ny < N,
such that, for all ¢, |a¢|, |b)] < Na, f;:o las| ds < Ny, 0, € [Ny, Ny, and 6, < Ny. The
assumption that f;:o las| ds < Ny means, e.g., that if W is mean reverting, the mean-
reversion coeflicient a; must eventually converge to zero. Although this is somewhat
restrictive, a; can be arbitrarily large for an arbitrarily long time.

We also assume that the function ¢ is weakly increasing and left-continuous in the
switching rate k%% The switching rate k% is constrained to come from some interval
[K* K] where oo > K > K%>0. K°%and K may be Lipschitz functions of X; if
so, we assume they are bounded by some constant K.’

It is important to note that this framework generalizes the earlier models of Burdzy,
Frankel, and Pauzner [3, 5] and Frankel and Pauzner [10, 11|, in which players costlessly
receive chances to change actions at some fixed, exogenous rate 6. We can capture this
in our model by constraining k% and k% to be in [0, §] and letting ¢f! = ¢ = 0 in this
range. Choosing a switching rate of k in our model is then equivalent to switching
actions with probability k/6 should an opportunity arise in the earlier models.

Let A(Wy, X;, k' kL) be the difference in static utilities from being locked into R
and choosing switching rate k! as opposed to being locked into L and choosing switching

rate kl:
A(Wt, Xt7 k‘f, k‘tL) = [U(R, Wt7 Xt) - CR<lff, Xt)i| - |:’U,<L, Wt7 Xt) - CL<lftL, Xt)i| (2)

We assume that A is nondecreasing and Lipschitz in X;: there is a > 0 such that for
any w and z > 2’ and for any update rates k' and k% that are feasible at both states

(w,z) and (w,z'),

Aw, z, K% k") — A(w, 2/, kT k") € 10, Bz — )] (3)

8Without left continuity an optimum might not exist. Suppose, e.g., that the cost is zero for
switching rates below K and ¢ > 0 for rates K and above. If the benefit of switching is only ¢/2, the
agent has no optimal switching rate: any rate below K is too low while any rate greater than or equal

to K is too high.

°Tt appears to be difficult to apply our approach to the case in which ¢?, ?a, and K* are also

functions of W;. Whether this can be done is an interesting question.
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This implies that there are strategic complementarities in the static game: the static
relative payoff from playing a given action is increasing in the proportion who play that
action.

A is also strictly increasing and Lipschitz in Wy: there is an @ > 0 such that for any
w > w' and x and for any update rates k' and k” that are feasible at both states (w, )
and (', x),

Alw, z, kB kY — Al 2, k% kY) € (0,a (w — w')] (4)

We assume the existence of dominance regions: for W sufficiently high, it is strictly
dominant in the dynamic game for R players to pick their lowest feasible update rate
and for L players to pick their highest feasible update rate; and analogously for low
enough W,. More precisely, there are constants W > w such that if W, > @, then it is
strictly dominant in the dynamic game to set k[ = K" and kE = K" for W, < w, it is
strictly dominant to choose kFf = K* and k} = KE10 We give some examples of how
to check these conditions in the proofs of Propositions 1 and 2.

A player’s information set at time ¢ comprises the public history (W, X,)sc(os) and
her private history (the actions she has played and the switching rates she has selected
through time ¢). A (possibly mixed) strategy for a player specifies, at any information

set, the distribution of switching rates that she will choose.

3 Showing Uniqueness

The game is solved using iterative conditional dominance. First we eliminate strategy
profiles in which any player, after any history, plays a strictly dominated action; then
we eliminated profiles in which any player, after any history, plays an action that is
strictly dominated in the set of remaining strategy profiles; and so on. We show that
the game has an essentially unique outcome: for almost any sequence of shocks (i.e.,
with probability one), iterative conditional dominance isolates a unique path of X.

Importantly, every Nash equilibrium outcome survives the iterative procedure, so this

10 As noted, these bounds may be functions of X.



path of X is also the unique equilibrium path.

THEOREM 1 There is an essentially unique strateqy profile that survives iterative
conditional dominance: for almost any path (Wi)i>o, there is a unique path (Xy)¢>o that

must occur.

Proof: appendix (p. 18).

An intuition appears in section 5.

4 Application: Search Models

Some well-known search models with multiple equilibria are special cases of our model.
Our results show that the indeterminacy in these models is sensitive to the introduction

of payoff shocks.

4.1 Diamond [7] and Diamond and Fudenberg [8]

Diamond [7] presents a model in which unemployed agents receive production oppor-
tunities with random production costs. An agent who takes a production opportunity
carries the resulting inventory until she finds a trading partner, at which time she trades,
consumes, and becomes unemployed once again. The rate at which agents find trading
partners is increasing in the proportion of agents with inventories because of increasing
returns in the matching technology. Diamond and Fudenberg [8] show that this strategic
complementarity gives rise to multiple equilibrium paths: the expectation that agents
will have a low cost threshold, thus accepting only a few productive opportunities, is
self-fulfilling since it implies that inventory will be hard to sell. They also use the model
to study “endogenous business cycles”: expectations-driven fluctuations in which agents
alternate between optimistic expansions and pessimistic recessions.

We show, as an application of our findings, that when inventory costs are stochastic,
the equilibrium is unique. Economic fluctuations are driven by cost shocks alone; agents’

expectations no longer play an autonomous role.



Diamond’s model has a continuum of identical agents who, at any given time, are
either employed or unemployed. An unemployed agent receives production opportunities
according to a Poisson process with arrival rate a. Each opportunity has a fixed output
y > 0 and a random cost ¢, which is drawn from the continuous distribution G(c¢) with
support on (¢, ¢) where u > ¢ > ¢ > 0. If the agent accepts the production opportunity,
she becomes employed and begins to search for a trading partner. If the proportion
of employed agents is e;, then an agent meets trading partners according to a Poisson
process with arrival rate b(e;) where ¥ € (0,00) and b < 0. When an agent trades,
she consumes, getting the consumption utility u, and becomes unemployed once again.
Agents cannot consume their own output.

We modify Diamond’s model by assuming a stochastic cost of holding an inventory.
Changes in inventory costs might be due, e.g., to fluctuations in warehouse rents or short
term interest rates.!! The cost of holding an inventory is assumed to be a function h(W;),
where W, is a stochastic process that satisfies (1). The function h is strictly increasing
and Lipschitz.

The assumption of dominance regions requires that if inventory costs are low enough,
it becomes strictly dominant to accept all productive opportunities.  This raises a
problem: since agents must trade in order to consume, if they expect all other agents
to decline all productive opportunities, they will also choose not to produce, regardless
of how low inventory costs are. To apply our results, the model must be modified so
that this autarkic outcome is not an equilibrium for low enough inventory costs.

Wherever human beings have lived together, they have traded. One reason may
be that people initially produced for their own consumption; since production and con-
sumption opportunities did not perfectly coincide, they had to hold inventories. Trade
began soon after, when people noticed that their inventories differed from those of their
neighbors. We model this by assuming that agents sometimes receive opportunities

to consumer their own production: b5(0) > 0. (Diamond assumed b(0) = 0.) This

" One could also imagine production cost shocks - shocks to the distribution G. This is equivalent in
our model to letting one of the switching cost functions (CR or c” ) depend on the stochastic parameter

W. We have not proved uniqueness in this case; whether it can be done is an interesting open question.



possibility of own-consumption eliminates the autarkic equilibrium for low enough inven-
tory costs. The dominance region assumptions then become limw, 1o H{(W;) > b(1)u
and limw, ., h(W;) < b(0)u —¢(r + b(0) + a). These conditions guarantee that for
sufficiently high (low) values of W, it is strictly dominant to take no (all) productive

opportunities. Finally, we assume that b is Lipschitz.

PROPOSITION 1 The search model analyzed by Diamond [7] and Diamond and Fu-
denberq [8], with stochastic inventory costs and the aforementioned changes, has a unique

equilibrium.

Proof: appendix (p. 50).

4.2 Howitt and McAfee [13]

Howitt and McAfee [13] study a model with many identical firms that advertise to hire
workers, who quit or “die” at a fixed rate. A firm’s marginal revenue from hiring a
worker is increasing in the aggregate employment rate since higher employment raises
the number of customers. Moreover, the cost of attracting a job applicant with a given
probability is decreasing in the employment rate since higher employment leads to a
smaller pool of potential job applicants. These assumptions give rise to multiple equi-
libria: if firms expect high employment in the future, they will advertise intensely for
workers in the present since they expect both marginal revenue and advertising costs to
increase later. There are also “sunspot equilibria” in which economic fluctuations are
driven by an extraneous variable (e.g., sunspots) that has no direct effect on agents’ pay-
offs. Changes in this variable lead firms to alternate between optimism and pessimism,
giving rise to expectations-driven business cycles or “animal spirits.”

We show that when productivity shocks are introduced, the equilibrium becomes
unique. Expectations do fluctuate, but in a unique way, as determined by the outcome
of the productivity shocks. This implies that there can be no sunspot equilibria.

The model is as follows. Workers are either employed or unemployed. Unemployed

workers search costlessly until they find a job. Employed workers become unemployed



according to a Poisson process with arrival rate 6. While employed, a worker produces
a flow of output at the rate fG(n;), where n; is the proportion of employed workers,
G(ny) € [0,1], and G’ > 0. G(n) is the fraction of output f that is not spent on
marketing. It is an increasing function of n; because buyers are easier to find when
employment is high. A worker’s employer receives the fixed fraction 1 — w of the
worker’s output, fG(n).

In a period [t,t+dt], a firm meets an unemployed worker with probability 0,(1—n,)dt
and incurs an advertising cost of cf,dt, where 0; represents advertising intensity. Firms
are restricted to choose #; € [0, h], where h > 0; thus, there is an upper bound hdt on
the percentage of workers (employed or unemployed) who can be reached in a period of
length dt. The firms’ discount rate is 3; firms choose advertising intensities to maximize
the integral of expected discounted future profits.

We introduce payoff shocks into the model by assuming that a worker’s productivity
is an increasing function G (ny, W;) of a stochastic parameter W, which satisfies (1). We
assume that (7 is increasing and Lipschitz in n; and Wy, and that limy, . o, G(ny, W;) =0
and limw, o0 G(n¢, W) = oo for all ng.

The original model of Howitt and McAfee is set in discrete time. We have recast
their model in continuous time in order to be able to apply our results. Our uniqueness
argument relies on time being continuous or nearly so: this guarantees that while W
remains at a particular value, only a negligible fraction of players (firms in the current
case) can change their actions (vacancy status). If this were not so, one player’s optimal
switching (advertising) intensity might depend on the intensities chosen by others at the
same value of W, and there could be multiple equilibria in parts of the state space.
Burdzy, Frankel, and Pauzner [5] show, in a simpler model, that uniqueness is obtained
in the limit of discrete models as the period length goes to zero.

We also assume a continuum of firms, while Howitt and McAfee specify only a “large
number.”  With a finite number of firms, one firm’s actions might be observed and
punished by other firms. This would lead to multiple equilibria. Howitt and McAfee
implicitly assume a continuum as they rule out equilibria that utilize punishment: firms

do not think that their decisions will affect other firms’ future behavior [13, equation



(1), p. 496]. Accordingly, the multiplicity of equilibria that they find is not due to

having a finite number of firms (if that is indeed what they intended).

PROPOSITION 2 The search model analyzed by Howitt and McAfee [13], with the

above modifications, has a unique equilibrium.

Proof: appendix (p. 52).

5 Intuition for Main Result

In the first part we will assume that the payoff parameter W follows a Brownian motion.
Afterwards we will explain why the results still hold if W comes from a more general
class of stochastic processes.

For simplicity, let us assume that players choose between only two positive update
rates. The cost of choosing an update rate at or below k > 0 is zero, the cost of choosing
an update rate in (k, K| is some ¢ > 0, and the cost of choosing an update rate above
K is infinite.  Clearly, if a player wants to change actions, it doesn’t make sense to
choose an update rate k € (0,k) or k € (k, K) since increasing the update rate would
be costless. Thus, if a player strictly prefers one action over the other, she will choose
among three update rates: 0 (if she is already playing her preferred action), x (if she
has a slight preference for switching), and K (if she strongly prefers the other action).

We iterate first by computing a declining sequence of upper bounds on X at any
state (W, X). (Time subscripts are omitted.) Then we will compute an increasing
sequence of lower bounds on X. The final step is to explain why these two sequences
must converge to each other, so that X is uniquely determined at any state.

Suppose all R players at some state choose the same switching rate k% while all L
players choose k~. The rate of change of X must be X = k'(1—X)— k%X, since there
are 1 — X players of L and X players of R. This means that the fastest feasible rate of
increase of X is X = K(1 — X): when k¥ = K and k" = 0. Let X° = K(1 — X) be
this highest upper bound.

We next compute another upper bound, X* < X° This is the rate of change that

results from optimal behavior if players expect that, in the future, X will always equal
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XO  Since there are strategic complementarities, the belief that X will always equal
X0 is the most favorable for R, so it maximizes the rate at which L players switch to R
and minimizes the rate at which R players switch to L. Thus, X cannot exceed X1 if

players know that X will never be higher than X° and behave rationally.

X=1
X'=-kx \ X=X \X =x(1-X) X'=K1-X)
X=0

w F! G H! W

Figure 1: The Upper Bound X1

Figure 1 depicts the bound X1 The payoff parameter W appears on the horizontal
axis, while the proportion X; of R players is on the vertical axis. In the region to the
left of the curve F', the low W makes R so unappealing, even under the belief that X
will equal X 0 that R players must switch to L at the maximum possible rate, K, while
L players will never switch to R. Thus, in this region, X' = —KX. Sucha region
must exist by the assumption of dominance regions: if W < w, these update rates are
strictly dominant for any X. (w is shown in the figure.)

Between I'' and G, players still prefer L under the belief that X will equal X O but
less so than in the first region since W is higher. Consequently, R players choose the
lower switching rate x: X' = —kX. In the region between G! and H', R is slightly
preferred to L under the belief that X will equal X° R players do not switch and L
players choose the switching rate k, so X! = k(1—X). To the right of H', R is strongly
preferred over L. L players now choose the highest switching rate, K, so X! = K (1-X).

We proceed to compute upper bounds XQ, X3, ..., where X" is the rate of change

that results from optimizing behavior if players expect X to equal X"1in the future.
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Strategic complementarities imply that if X" 1 < X" 2 then X" < X" ! Since
X< XO, this is a weakly decreasing sequence of upper bounds: X" < X" for all n.

Let ", G", and H™ be the boundaries of the different regions of X", in analogy to
F',G', and H' in Figure 1. Since X" < X" !, each curve F",G", and H" lies weakly
to the right of the corresponding curve £ 1.G" ! and H"!. Eventually we will reach
a limiting upper bound on X with regions separated by curves F'*°, G* ,and H>*. This
limit is depicted in Figure 2.

X:1 T < A

X =—kxX\ (X7 ==x| \ X" =x(1-0)[\ |[X*=K(1-X)

v N\ v

1=

Figure 2: Limit of Iterations of Upper Bounds on X.

By construction, for any n, if players expect X to equal X"fl, they will choose
update rates that make X equal X", Since one more iteration from X yields X e
if players expect X to equal X, they must choose update rates that make this come
true. That is, X = X* is an eguilibrium in addition to being an upper bound on X.

The next step is to find an increasing sequence of lower bounds on X at each state.
However, the procedure is different: we iterate using translations of the limiting upper
bound, X*°. The reason will soon be apparent. We first shift the curves F>, G, and
H® in parallel far enough to the right that all three curves lie to the right of w. Let
this translation be (ﬁ, (A;, [:T) (Figure 3).

For any curves (F,G, H), let the X given by (F,G,H) be —KX to the left of F,
—kX between F' and G, k(1 — X) between (G and H, and K(1 — X) to the right of H.
The curves (ﬁ, (A;, [:T) give an X that is a lower bound on the rate of change that can

12
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Figure 3: The Translation (ﬁ, (A}, ﬁ)
come from optimizing behavior. This is because (ﬁ, (A}, [:T) gives X = —KX to the left
of W, but no lower X is feasible; (ﬁ, (A;, [:T) gives higher values of to X the right of w,
but this is a region in which it is dominant for R players to stay in R and for L players
to pick K, so the only optimal X is K(1—-X).

We now proceed to find an increasing sequence of lower bounds on X by iterating
with translations of (ﬁ , (A;, H ). If players expect the rate of change of X always to be
that given by (ﬁ , G , H ), their optimal switching rates imply, at every state, some “best
response” X ; the next translation in the sequence is the leftmost translation of (ﬁ , G , H )
that never gives an X above this best response. This means that the new translation
is a new lower bound on X. We iterate in this way ad infinitum. Let the limit be
(ﬁo", (A}o", [:700) Let the X given by this limit be )’200‘ Since )A.(oo is a lower bound on
X while X is an upper bound, it must be that )A'(OO < Xo", and thus ﬁo", (A}o", and
H> each lies weakly to the right of F'*°, G, and H>, respectively. We will show that
in fact F>™ = > G® = G, and H>* = H> , so that )A'(OO = X°: the rate of change
of X is uniquely determined by the current state (W, X).

The curves (ﬁo",éo",ﬁo") are depicted in Figure 4. The dotted curves are the
boundaries for XP%, the rate of change that comes from optimizing behavior when
players expect X to equal )’200‘ By construction, X BB g never less than )’200‘ Moreover,
since (ﬁo", (A}o", [:700) is the limit of the iterative process, any further translation must

give an X that sometimes exceeds XP%. The only way this can be true is if one of

the boundaries of the different regions of XP% touches the corresponding boundary of
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X=0

Figure 4: The Limit (ﬁo", (A}o", [:700)

=00

X . Let us suppose that the boundary P of )A'(OO is touched, as depicted in Figure 4.
The point of contact is P. To the right of the dotted best response curve through ]3, R
players prefer to switch to L at rate k, while to the left they switch at rate K. Thus,
at P , R players must be indifferent between the switching rates x and K if they expect

X always to equal X in the future.

X=1

X=0 _

Figure 5: Comparison of P with P.

Let us now compare P to the point PP on F'* that is at the same vertical height as
P (Figure 5). Recall that X, the X given by (F°,G>, H*), is an equilibrium. This
means that R players are indifferent between the update rates x and K at P if they

14



expect X to equal X, But at P , R players are indifferent between the update rates s
and K if they expect X to equal )’200‘ Since (ﬁo", (A}o", [:700) is a rightwards translation of
([, G, H*>) and P and P are at the same vertical height on corresponding curves, a
player at P who expects X to equal X anticipates the same joint distribution of changes
in W and X as a player at P who expects X to equal )’200‘ That is, at any time ¢ they
expect the same distribution of relative continuation paths, (W, —W;, X, — X¢)y>¢. Since
X, is the same at both points, the only difference is that W is expected to be uniformly
higher at P than at P. But then if R players are indifferent between the update rates
k and K at P, they must sitrictly prefer K at P — unless P = P! This shows that
P =P: F> coincides with F'>. Hence, the upper and lower bounds on X coincide: a
unique strategy profile survives iterative conditional dominance.

We have glossed over a subtle point in the above argument. Players at P and
P might expect different distributions of relative continuation paths if the dynamical
system at P or P had more than one solution. In fact, the solution is unique, for the
following reasons. First, our assumption that A, the relative static utility of playing
R, is strictly increasing in W guarantees that in the compact region W € [w, W], the
rate of change of A as a function of W is bounded below by a strictly positive constant.
Since the rate of change of A as a function of X is bounded above, this guarantees that
the curves F'>°, G*, and H*°, where some players are indifferent between two update
rates, have slopes that are bounded away from zero: these curves have no horizontal
or near-horizontal segments. (Since each is a curve of indifference between two update
rates, it could be horizontal only if the effect of W on the relative payoff from playing
R vs. L were negligible relative to the effect of X; the above properties of A imply that
this is not the case.) This implies that, if the state lies on one of these curves at some
time ¢, its location at time ¢ + dt is governed by changes in W rather than by changes

in X.'2 But from standard results on differential equations we know that the only time

12The reason is that over a short time interval [t,¢ 4 dt], changes in X are of order df while the
standard deviation of changes in W are proportional to the square root of the time interval, v/ dt >> dt.
This is due to the central limit theorem: the variance of the sum of changes in W over many small time

intervals of length dt equals the sum of the variances of these changes, so the variance of each change
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at which there might be multiplicity is at a state where X is a non-Lipschitz function of
X. This is true only on curves such as F'*°, where X changes discontinuously. Since
changes in W govern the behavior of the system around these curves, multiplicity cannot
creep in.

We have explained, for a simple cost structure, why a unique outcome survives the
iterative procedure when W follows a Brownian motion. The same argument might
appear to break down when W follows a more general stochastic process with such
features as mean reversion and seasonality. The problem is in the last step: if P does
not equal p , the distribution of changes in W will not, in general, be the same at P as at
P , 80 the distribution of changes in X may differ as well. This means that a player might
well be indifferent between two update rates at both points even if the points do not
coincide. For example, suppose W reverts to a mean value that lies somewhere between
the two curves F™° and . A player at P would expect W to trend upwards, making
it likely that the state will move into the region where (under the beliefs corresponding
to F'>) X will equal —xX. A player at P would expect W to trend downwards, moving
the state into the region where (under the beliefs corresponding to P ) X will equal
—KX. 8o aplayer at P would expect X to tend to be higher than would a player at P.
On the other hand, in the near future W will tend to be lower for a player at P than
for a player at P , since it starts lower. These two differences go in opposite directions:
one makes R more appealing and one less. Thus, R players at the two points may well
both be indifferent between the update rates x and K.

How do we overcome this problem? We show the existence of a transformation of
space and time that removes any mean reversion or seasonality from the process. The
resulting process has no drift: its expected change is always zero. Its variance may
change over time, but does not depend on the current value of the process. This means
that the distribution of future changes in the transformed process does not depend on
the process’s current value. Thus, we can perform the iterations on the transformed

process. One modification is necessary: since the transformed process has a time-

must remain proportional to df as dt — 0.
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varying variance, players’ optimal switching rates at a given state may change over
time. This is addressed by letting the bounds on X depend on time as well as the
current state. The rest of the intuition is essentially the same.

For example, suppose dW; = —aWdt + dB,;, where a is a constant and B is a
standard Brownian motion with no drift and unit variance. W has unit variance but
is mean-reverting with a mean of zero. It has the same distribution of sample paths
as the transformed process V/Vt = e ®Boa. Since B, has no drift, neither does Bz,

at

but by multiplying by e~ * we create a drift towards zero - mimicking W. Since this

requires us to progressively compress space, time must also be compressed to preserve
the constant variance of the process. Hence, Wt is based on the value of B at time 2%,
which grows exponentially. Together, these transformations of space and time give 1%
a unit variance and a drift towards zero.

The next step is to redefine the utility function so that we can work in the trans-
formed space units: the instantaneous utility difference A(W;, Xy, k5, k[) is rewritten
as Ay(Bezat, Xy, kIt kL) where Ay(b, z, k% k™) = A(e” b, z, kT k). We then compute a
declining sequence of upper bounds on X at each state and time, (£, Bezat, X¢). Accord-
ingly, players’ switching rates can depend not only on the current state (Bgzat, X;), but
also on time, in response to the fluctuating variance of B.2«:. The limiting upper bound
X is then shifted over in the B,2u dimension far enough that it becomes a lower bound
on X. We iterate using this translation, obtaining a limiting lower bound, and then
show that the upper and lower bounds must coincide as in the prior argument. Here the
stationarity argument does work: at any time ¢, the distribution of continuation paths
(Bezaw — Bem)@t is independent of the current value of B, since B is a Brownian
motion and the time transformation is the same for all values of the parameter, B za:.

Technically, we cannot actually prove uniqueness for processes that mean-revert for-
ever such as dW; = —aW,dt + dB; since if W; = ¢ B2, the nondominance region
W, € [w, W] corresponds to Bea € [¢w, ew|, which continually expands. Thus, once
we obtain the limiting upper bound X, there may be no finite amount by which we

can translate X in the B2« dimension so that at all times ¢, the shifted X> equals
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— KX at every point in the nondominance region.'® This means that the second round
of iterations (in which translations are used) cannot get started: there may be no finite
translation of X* that is a lower bound on X. To overcome this, we restrict to pro-
cesses whose mean reversion coefficients a; eventually die out, so that the analogue of

e~ does not go to zero as t grows.

A  Proofs

Proof of THEOREM 1. We first show that we can write W in terms of a Brownian

motion by simultaneously transforming space and time:

LEMMA 1 Consider the diffusion given by dW, = (a/W; + b,)dt + 0, dB; where B
is a Brownian motion with zero drift and unit variance. Assume there are constants

0 < Ny < Ny such that, for all t, |a|, |b] < Na, [T, ]as|ds < Ny, 0, € [Ny, N,], and

s=0

¢ < Ny.  For the following functions g and h, the process g(t, Bpw) has the same

distribution as the process W:

t t t
g(t,2) = exp </ asds> z —I—/ bs exp </ avdv> ds (5)
s=0 s=0 V=8
t s
h(t) = / exp <—2/ avdv> olds
5=0 v=0

where By = Wy, h is strictly increasing and h(0) = 0. Moreover:

1. There are constants y > v > 0 such that for allt and z > 2/, g(t,2) —g(t,2') €
[y (z=2) 7 (z = 2] and |g(t, 2)] <7 (2] +1).

2. There are constanls o > p > 0 such that for allt > t', h(t)—=h(l') € [p(t — '), p(t — )]
and [N (t) — ()| <Pt —1t|. (I is the derivative of h.)

3More precisely, the translation by A > 0 at state (t, Bezat, X;) equals the original X at state
(t, Be2at — X\, X3); for large ¢, the nondominance region B,z.: € [e*'w, e ] is large relative to any given
A, so we cannot pick X large enough to guarantee that, at all times ¢, the translation equals —K X (the

absolute lower bound on X ) in the nondominance region.
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As of timet’ <t, W, is normal with mean exp (fst:t, asds) Wt/—l—fst:t, bs exp (fvt:s avdv) ds
and variance fst:t, exp (2 fvt:s avdv) o2ds.

Our assumptions imply that A has an important property. Since A(w,z, kf k) is

strictly increasing in w, there must be a constant a > 0 such that if w > w/,

A<w7 x, kR? kL) - A<w/7 x, kR? kL) S [g(UJ - U/),@(U) - w/>] (6)
for all

w € [w,w],x € [0,1],
(w, 2, k" k"), (W, 2, k7 k) € < (w2, k5 k) 0 kR e [KR(x), K (2)),

()]

ke [KM(x), K"

(a compact set).

In the remainder of the proof, we normalize the cost of choosing the lowest possible
switching rate to zero, by letting u(a, w,z) = u(a,w,z) — c*(K*(z),z) and ¢*(k,z) =
c*(k,x) — c*(K*(z),z). We then relabel & and ¢ to u and ¢%, respectively.

Fix a state and a player’s beliefs of how other players will respond to changes in
W. Part 1 of the following Lemma gives an expression for the difference in the player’s
continuation payoffs from being locked into R vs. L. Part 2 proves some useful bounds
on this difference. Part 3 gives the optimality condition that the update rates must
satisfy.

LEMMA 2 At state (W, Xy), fix a player’s beliefs over the path (X,)y>¢ that will result
from any path (W,)y>e. (These beliefs will be generated by her beliefs about other players’
strategies, but that is not important for the lemma.) Let V,* = V4(Wy, X,) be the player’s
continuation payoff if the player is locked into action a € {R, L}. Let k® be the player’s

optimal switching rate conditional on being locked into a. Then

1.
%R — V;L = F / exp <— f (7" + k‘f + kfﬁ)d3> A<WU7XU7 ]{;57 k‘f)dv (7)
s=t
v=t
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2. For all states (W, Xy) and for any beliefs over the path (X,)y>¢ that will result

from any path (W,)y>t,

Ve—VT < E/ e ") (Ju(a, Wy, Xg) — ula', Wy, X,)| + O) ds

§=v
for any a,a’ € {R,L}. Moreover, there are positive constants cq and c¢q such that

‘V;R — V;L‘ < co | W] + 1.

3. Fora € {R, L}, k% € argmax,., (k(V¥ — V%) — ¢*(k, X)), where ' = R ifa= L

and vice-versa.

Let Z, = By). We now redefine the state space to be the set of triplets (t, Z¢, Xy)
rather than (W, X;) = (g(¢t, Z:), X;). Since players know ¢, by (5) they can invert
g(t, Z;) to discover Z,. Let A,(Z,, X,,kE kL) represent the static relative payoff to

yitu o Tt

playing R vs. L at time v:

Ay (Zy, Xy, KE KR 2 Alg(v, Z,), Xy, kE KLY = AW, X, kE kL)

CRRACIEV A Uy Tty o Ty Uy Tty 0 Ty

The iterative procedure begins by computing, at each state (¢, 7;, X;), an upper
bound ®° = ®°(¢, 7,, X;) on V! — VI the difference between the values of playing
R and L. We compute this bound using a belief that maximizes the relative appeal
of playing R: that all players will immediately switch to R and continue to play R

forever.'* By Lemma 2,

O, 7, X)) = F / exp <— [(r+kF+ k;f)ds> A,(Z,, 1, KR kRYdo
s=t
v=t

where kX, k' kI and k! are optimal given these beliefs.

By part 3 of Lemma 2, BR(y, z) = argmaxyso[—ky — c¢®(k, z)] (resp., BR*(y,z) =
argmaxysqlky — ¢’ (k, x)]) is the set of optimal switching rates for an R (resp., L) player
when the relative payoff to R is y. These best response correspondences have the closed

graph property and satisfy a single crossing property:

The model restricts players to arrival rates below K. The belief that players will all immediately
jump to R thus gives an (unattainable) upper bound on the difference between the expected payoffs

from being in R and L.
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LEMMA 3 1. (Closed Graph.) BR(y,z) and BR%(y,z) are upper hemicontinu-

ous Y.

2. (Single Crossing.) Supposey <y'. Ifk € BR*(y,x), and k' € BR*(y/,x), then
k<kK. Ifk € BRE(y,z), and k' € BRR(y ,x), then k > k.

Since there are 1 — X; L players, who switch to R at a rate no greater than the
maximum of BR*(®°(¢, Z,, X)), and X; R players, who switch out of R at a rate no less
than the minimum of BRE(®°(¢, Z;, X;)),"

X: < max BR*(®°(t, Z;, X1), X1) - (1 — X;) — min BRE(®°(t, Z, Xy), Xy) - X,

£ 7@t 7, Xy), Xy) (8)

where we define 7(y, ) to be max BR*(y, z)- (1 —xz) —min BR"(y, z) -z, the highest rate
of change of X that is consistent with rational behavior when X; = x and the relative
payoff to R is .

Equation (8) implies, for any state (¢, Z;, X;), a new upper bound ®!(¢, Z;, X;) on
the relative payoff from being locked into R vs. L. ®! is computed using the belief that
is the most favorable for R: that for all v > ¢, X, will equal its the old upper bound,
m(P%v, Z,, X,),X,). For all n > 1, let ®"(¢, Z;, X;) be the relative payoff to R on the
belief that, at all times v > ¢,

Xv = 7T<q)n71<U7ZU7XU)7XU) (9)

Let ®>(t, z, ) = limy, o "(¢, 2, ).
A central fact used in our proof is that the dynamical system (9) has a unique solution
for any n, including n = co.  We prove this in a sequence of lemmas. For any ¢, ¢/, and

v > t, define ¢(v,t,t') implicitly by
h(t" + ¢(v,t,t")) — h(t") = h(t +v) — h(t) (10)
where h is defined in Lemma 1. Let

7(t,t') = max|t' + ¢(v,t,t') — t = v| (11)

5 The min and max of the respective sets exist since the cost functions are left continuous.
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Lemma 4 proves four important properties of these functions.
LEMMA 4 For anyt andt', letdt =t —t. For all v:
/ 2
1or(tt) € []dt],ﬂ ydty]
2. (v, t, 1) —v] < 25 \dt| and |dt + ¢(v,t, 1) —v] < gydty.
N2
3. Joa(v,1.¢) =1 < (B) " Jat].
4. T+t + o(v,t,t) < 7(t,t).

For any y, let f¥(y,z) = max BR"(y,z): the highest switching rate L players may
choose if the relative payoff to R is y and X; = z. Let ff(y,z) = —min BR%(y, z):
the negative of the lowest switching rate R players may choose in the same situation.

Equation (9) implies that
X, = L@ (v, Z, X)), Xo) (1 — X)) + fR(" v, Z,, X)), X)X,

The following lemma will be used to show that this system has a unique solution. In
reading it, one should interpret the function F%(v, z,z) fora = R, L as f%(®" (v, 2z, z), z).
Later we will show that this function indeed has the properties assumed in Lemma 5.
Equation (12), which appears in the lemma, is just the integral version of (9) for these

functions F'® and F.
LEMMA 5 Assume that FR(t,z,x) and F*(t,z, ) have the following properties:

1. They are weakly increasing in z.

2. There is a constant K such that |F*(t,z,z)| < K for a = R, L and for all t, z,

and x.

3. Fora = R, L, there are constants cy and c3 such that if
Zd=z>(atallF+2]) (2" —2[+ (1))
N2
and |z’ — x| > (ﬁ) T(t,t') then Fo(t', 2/, 2') > F*(t,z,x).
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Then for any xo € [0,1], T > 0, and almost every path (Z;)c0.1) there exists a unique

Lipschitz path (X¢)iep.r such that'®
¢
X, = 20 + / (F*(s, Zs, Xs)(1 — Xs) + F'(s, Zs, X,) X,) ds (12)
s=0

One implication of Lemma 5 is that there is a unique solution to (12) if F® and F*
satisfy assumptions 1 and 2 and if z has a sufficiently large effect on these functions
relative to x and t. To see this, suppose that if 2/ — 2z > (co + 3 [|2/| +|2]]) - (|J2/ — x| +
7(t, 1)), then F*(¢',2 2') > F(t,z,z) for a = R, L. Then clearly, F'® and F'" also
satisfy assumption 3 of the lemma, and so there is a unique solution to (12).

The following two lemmas prove important comparative statics properties of the

solution to (12).

LEMMA 6 1. Suppose that (X})icpr and (X2)iepr are Lipschilz solutions to
equation (12) corresponding to pairs of functions (FIt, L) and (FfF, FF) that sal-
isfy the properties of (F{It, ) in Lemma 5 and such that F{(t,z,x) > F$(t,z,x)
fora = R, L and for all (t,z,x). Suppose the solutions (X})icjor and (X7)icjo.m
are defined relative to the same Brownian motion sample path, (Z;)icjor. Assume

also that X§ > X3. Then X! > X2 for allt € [0,T] almost surely.

2. Suppose, in addition, that for any (t,z) and a = R, L, F{(t,z,x) = F§(t,z,x) at
all but a measure zero set of z’s. If X§ = XZ, then X} = X2 for all t € [0,T],

almost surely.

LEMMA 7 Suppose that (X)) @5 the unique Lipschitz solution of (12), where
FR FL satisfy the assumptions of Lemma 5. Let X2 be the solution to (12) start-
ing from )N((‘)” = 29+ x and corresponding to Z = Z;+z. (FE F* remain the same in

parts 1 and 2 of the lemma).

16One implication of this is that there is a unique solution if z has a sufficiently large effect on F
relative to x and t. To see this, suppose that if 2" — 2 > (ca + c3 [|2| + |2]]) - (|#' — 2| + 7(¢,%")), then
F(t',2',z") > F(t,2,2). Then clearly, F satisfies assumption 3 of the lemma, and so there is a unique

solution to (12) for such an F'.
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1. If 2,z > 0 then X7° > X, and X" > X, for all t € [0,T] almost surely.

2. As z and x go to 0, the processes )N(fm converge almost surely to Xy, uniformly

on [0,T].

3. Suppose that forn =1,2,..., (Ff, FnL) have the properties of (FR, FL) in Lemma
5, for the same constants ¢y and c3. Fiz some xg and zy. For each n, let )@" be
the solution to (12) ont € [0,T) with (FF, FF) appearing in place of (F®, F*). If
lim,, o, F¥ = F® for a = R, L, then the solutions )?t" converge to Xy, the solution

of (12) corresponding to (FE, FL).

The following two lemmas imply that if F(v, z,z) = f*(®" (v, 2,z),z) fora = R, L,
then (FR,FL> satisfies the assumptions of Lemma 5, so there is a unique solution to

(9).

LEMMA 8 The functions ff(y,x), f'(y,z), and 7 (y,x) are weakly increasing in y

and right-continuous in y.
LEMMA 9 For each n > 0, including n = oo, and for all (t,z,z), and (', 2, 2),
(i) ®"(t, z,x) is strictly increasing in z;

(ii) there are constants co and cz, independent of n, such that if g(t,2) and g(t',z") are

both in [w, @] and 2’ — z > (o + c3 [|Z| + |2]]) - (|J&' — x| + 7(¢, 1))

N2
and |z’ — x| > (ﬁ) T(t,t') then @ (¥, 2/, ') > ®"(¢t, 2, z);
113) O™ (t, 2, x) 1s weakly decreasing in n:
) %, Y g ;

(iv) for any A > 0, ®"(t, z,x) is a uniformly continuous function of t, z, and x on the

set g(t,z) € [w— N\ w4+ Al
By Lemma 8 and part (iii) of Lemma 9,

X, < lim 7(®" (v, Z,, X,), X,) = 7(2%(v, Z,, X)), X)) (13)

n—o0
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Moreover, X, = T(d*(v, Z,, X,),X,) is an equilibrium: if X, is expected to equal
(P> (v, Z,, Xy), X,) for all v > ¢, it is a best response for X, to equal T(D(t, Zy, Xt), Xi).

The reasoning is as follows. Let

Xn = (@ (v, Z,,X,), X,)
= fR@" Y, Z,, X)(1 = X,) + fE@" (v, Z,, X)X,

By Lemmas 8 and 9, for all n and for a = R, L, f*(®" (v, Z,,X,)) has the prop-
erties of F'* assumed in Lemmas 5-7, so for any path (ZU)UZt there is a unique Lip-

17

schitz solution (X]'), ., to this dynamical system. By Lemmas 8 and part (iii) of 9,

limy, oo (O™ (0, Zy, X,)) = fHU@® (0, Zo, X,)) for a = R, L. Let X2 = lim, . X"
By part 3 of Lemma 7, (X;°),, is the unique solution to X, = (D (v, Zy, Xu), Xy).

This implies that (Xf)UZt is a best response when the relative payoff to R for any
(v, Zy, Xy) 1s (v, Z,, X,)). It remains to show that ®>(¢, Z;, X;) is the relative payoff
to R if for any (7,),,, players expect (X°),,. By the envelope theorem and (?7), the
relative payoff to R is a continuous function of the path of X. But X2° = lim,_,. X,
so D°(t, Zy, Xy) = lim,, oo P™(t, Z;, X;) must be the relative payoff to R when X follows
(X

This proves that X, = (P> (¢, Zi, Xt), X¢) 1s both an upper bound on X, and the
equilibrium with the highest path of X for any path of Z. We now iterate from
below: we construct a growing sequence of lower bounds on X;. Each lower bound in
the sequence is now some translation of w(®>(t, Z;, X;), X;), the upper bound on X,
We will show that the limit of this sequence of lower bounds coincides with the upper
bound. This will imply that the equilibrium X, = 7(®>*(t, Z,, X;), X,) is in fact the
unique equilibrium of the model.

Since 7(y,x) is right continuous in y (Lemma 8) and ®>(¢,z,z) is nondecreasing
and continuous in z (Lemma 9), the upper bound on X, w(P(t, Zt, Xt), Xy), 1s right

continuous in Z;. Let T(y,z) = lim. o 7(y—¢, x) be the the left continuous (in y) version

of . By part (iv) of Lemma 9, 7(®>(t, Z;, X;), X;) is left continuous in Z; it is the

1"Property 3 of lemma 5 holds by part (ii) of Lemma 9 since if (¢, 2) ¢ [w, W], then f¢(®" (¢, 2,2))

is locally constant.
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left continuous version of the upper bound on X;.

We iterate with translations of this 7(®> (¢, Z;, X;), X¢). Let Ao > 0 be large enough
that regardless of their expectations for (X,),>¢, players at state (¢, Z;, X;) must choose
switching rates that yield a rate of change of X, that is at least 7(®> (¢, Z, — Ao, X¢), X¢).
There must be such a A\g by the existence of dominance regions and the assumption that
the integral of the absolute drift terms is finite (f;:o las| ds < N3). To see this, consider

the following three cases:

1. Wiy =g(t, Z;) > w: then players must choose switching rates that yield the highest
feasible X, (which is K" (X¢)(1 — X;)), so the result is trivial;

2. Wy =g(t,Z;) <w: then players must choose switching rates that yield the lowest
feasible X, (which is —FR(Xt)Xt); but g(t, Z: — Xo) < W, so at (t, Z; — A9, X;) they

must also do so as well;

3. Wy = ¢g(t,7) € [w,w|: then by equation (5) and since f;:olas]ds < Ny, if
Ao > (W — w) e then g(t, Z; — Xo) < w, so players at (£, Z; — Ao, X¢) must choose
switching rates that yield the lowest feasible X, (= —FR(Xt)Xt); thus, the prop-

erty holds here as well.

Let A, be the infimum of constants A such that if players believe that X, will be at
least 7(9>(v, Z, — An_1,Xy), Xy) for all v > ¢, they must choose switching rates that
vield an X, that is at least T(D(t, Zy — N\, Xy), Xy).

More precisely, let (¢, Z;, X;) be the relative payoff to R on the belief that, for all
v > t, X, will equal the translation of the left continuous (LC) version of the upper bound
on X, by A, T(2®(v, Z, — A\, X)), X,y). (Note that & (t, 7, Xy) = D°(t, Z¢, X¢).) Let
x(y, ) = min BR*(y, z)(1 — 2) — max BR®(y, z)x: the lowest possible X; when X, =z
and the relative payoff to R is y. When the relative payoff to R is & (¢, Z;, X), the rate
of change X; must be at least w(D(t, 2y, Xy), X;). Forn > 1, let A, be the infimum of
numbers A such that, for all states (¢, z, ), =(® (¢, 2, ), ) (the lowest possible rate of
change when others are expected to play according to the translation of the LC version

of the upper bound downward by A, 1) is at least T(®>(¢,z — A, z), z), the translation
of the LC version of the upper bound downward by .

26



By construction, Ag > A;. By Lemma 6, for any path (Z,),>¢, the solution (X, ),>¢ to
the equation X, = T(D*(v, Z, — A\, Xy), Xy) is weakly decreasing in A; thus, by Lemma
2, A1 > Xo. Continuing by induction, A\, 1 > A, for all n. Let A =lim, .o A\p. We
know that X, cannot lie above T(D(t, Zy, X¢), X¢) nor below T(D>(t, Z; — Ao, Xi), Xo).

We now show that A\, = 0. For any (¢,2,7) and any ), let S*(¢, 2, z) stand for the
situation in which players choose switching rates at state (¢, 7;, X;) = (t,2 + A\, z) and
believe that X, will equal #(®>(v, Z, — A\, X,),X,) for all v > t. The initial rate of
change of X in situation S*(¢, 2, z) is (P> (¢, z,7), x), independent of A\. The relative
payoff to R in situation S*(¢, 2, x) is just (¢, 2 + A, z).

For any A\, X' € [0, Ay ], the distribution of continuation paths (Z,—Z;),> in situations
S t,z,x) and SN (t, z,x) is the same since Z, = Bjy) where h is a fixed function and B
is a Brownian motion. And given a continuation path of 7, the continuation path of X
is determined by the same dynamical system: X; = x and X, equals 7(P> (v, Z, — Zy +
z,X,),X,), independent of A. By Lemmas 8 and parts (i) and (ii) of 9, for a = R, L,
F(v, Z,,X,) = fY(9>*(v,Z, — Zy + z,X,)) has the properties assumed in Lemma 5, so
this dynamical system has a unique solution for each A. So for any A, X' € [0, A\,.], players
in situations S*(¢,z,z) and SN (t,z,2) expect the same distribution of continuation
paths of the state, (7, — Z;, X, — X;)y>;- Fix any sample path (2,,x,),>¢; since X is
independent of A, this sample path in situation A has the same probability as the sample
path (z, + N — A, ) y>¢ In situation SN (t,z,z). Hence, by Lemma 2 and the envelope
theorem,

o0

d[BT(t, 2 + A v DA, (Zy, X, K R
| A<’di+ ) :E/exp <— f(?"+l<:fk+k‘fk)ds> ( o D (1)
s=t v

v=t
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where k7" and kI* are the optimal update rates in situation S*(¢, 2, x)."® By Lemma 1
and equation (6), OA,(Z,, X,, k2 kL) /07, > ae ™ whenever g(v, Z,) € [w,@]. Since
kI kA < 2K,

> ae M F / e PO (g(v, Z,) € [w,W]) dv > ae MT(c) (15)

v=t

d[PX(t 2 + A x)]
dA

where ¢ > 0 is is any constant such that g(¢,z + \) € [w — ¢, W+ ¢] and T'(¢) > 0 is the
minimum expected discounted (at rate r + 2K) amount of time v > ¢ that g(v, Z,) is
expected to spend in the non-dominance region [w, W], given that g(t, Z;) is within ¢ of
this region (i.e., that g(¢,7;) € [w—c,w+¢]). T(c) is positive because the variance
and drift of W are bounded in absolute value. Importantly, ae V2T (c) is independent
of (t,\, z,x), as long as g(t, 2+ A\) € [w — ¢, T+ .

By definition, A, is the infimum of numbers A such that for all states (t,z,x),
(P (L, 2,x), ) (the lowest possible rate of change at (¢, z, 2) when others are expected
to play according to the translation of the left continuous version of the upper bound
on X; downward by Aso) 1s at least T(P>(t,z2 — A, z),z) (the translation of the left
continuous version of the upper bound on X, downward by A). Hence, for any ¢ > 0

there must be a state (¢°, 2%, 2°) such that
m(DF° (17, 2°,207),2%) < T(DP(t°, 2° — Ao + £, 27), 7). (16)

Otherwise, the infimum could be no greater than than A — £, a contradiction. Since

(16) implies that players at (¢°, 2, 2°) may choose switching rates that differ from those

8By the envelope theorem, equation (14) holds path-by-path (i.e., if (Z, — Z¢),>; is held constant as

A is varied); but the distribution of these paths is the same in all situations Sy, so the equality holds in

expectation as well. The envelope theorem applies even though 4#* and k2 need not be continuous in

A. By construction, k%" and kX are left continuous and monotonically increasing in \; hence, either
A is a point of continuity of kf/\ and kSL/\, in which case d\ can be chosen small enough that kf“”‘g and
kLAte are close to k%Y and kL for € € [0,d)\], or else A is a point of right-discontinuity of either &2
or kX, in which case dA can be chosen small enough that &2+ and k2= are close to lim. o kA=

and lim. o k27, respectively, for € € [0,d\]. Since the sample path (Z),, changes continuously as

R, A+¢ L, A+e¢
ks ks

A is varied, lim, g and lim, g must give the same payofls to R and L as kf/\ and kSLA do

at A. Thus, (14) holds at points of discontinuity in A if we reinterpret kBN and kI as lim, o ElA+e

L, A+e
ks

and lim, o , respectively, which suffices for equation (15).
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chosen at (1, 2° — A\, + £,2%), either 2° or 2° — A\, + ¢ must lie in the non-dominance
region, so each can be no further than \g > A, —& away from the non-dominance region.

We now show by contradiction (16) cannot hold for all £ > 0 unless A, = 0. By part
(iv) of Lemma 9, there is a constant ¢ > 0 such that for all £, (%, 2° — A +2,2°) <

D>(1°,2° — Ao, %) + . By (15),
DY (1%, 25, 2%) = B (17, (2° — Ax) + Ao, 2°)
> D15, (2° — Ao) +0,2°) + gefNQT()\O))\OO

= (15, 2° — Ao, 2°) + ae T (No) Ao

v

PO, 2° — Ao +£,7%) — e+ ae M T(Ao) Ao

For ¢ < ae MT(Ao) Ao, DY (1°,2°,2°) > B>(1°,2° — A\ + £,2°). By part 2 of Lemma
3, this contradicts (16). This shows that A, = 0.

Consequently, the equilibrium is unique wherever 7(®> (¢, Z;, X;), X;) is continuous
in Z;. By Lemma 8, n(®>(t,2,z),z) is weakly increasing in z and bounded, so for
any (t,z), 7(®>(t,z,xz),z) is almost everywhere continuous in z. Hence, by part 2 of
Lemma 6, with probability one the path of X that results from any path of 7 does
not depend on whether players play according to the right or left continuous version of
T(®(t, Zy, Xt), X¢).  (Intuitively, X, is almost always the same and it is bounded, so
X = Xo+ fUt:O X,dv is the same in the two cases.) Thus, for almost any path of 7,

there is a unique equilibrium path of X. This completes the proof. Q.E.D.

Proof of LEMMA 1. We first verify that g(¢, Bp)) has the same infinitesimal drift
and variance as W;. Since both processes have continuous paths a.s., this will imply

that they are identically distributed. By definition,

¢ ¢ ¢
g(t, Bh(t)) = exp </ asds> B —I—/ bs exp </ avdv> ds
s=0 s=0 v=8

t
= d [g(t, Brw)] = exp < / asds> dBnw + [awg(t, Buw) + be] dt
s=0

so that Ed [g(t, Brw)] = (a:9(t, Brw) + be) dt and

E [dg(t, Buw)?] = exp <2 / to asds> B | (dBu)’|
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~ e <2 / to asds> (L +dt) — h(0)]

t t
exp <2/ asds> exp <—2/ avdv> oldt = oldt
5=0 v=0

proving that the two processes have the same distributions.

Since W is a Markov process,

¢ ¢ ¢
W, = exp </ asds> Bﬁ(t) —I—/ bs exp </ avdv> ds
s=t' s=t’ v=8

where ﬁ(t) = fst:t, exp (—2 f;:t, avdv> o2ds, “f” denotes equality in law (distribution),
and B is another Brownian motion with zero drift and unit variance, satisfying EO = Wy.

The only stochastic term is Bﬁ(t)’ which is normal since B is a Brownian motion. Hence,

W, is normal with mean Fy W, = exp (fst:t, asds) Wy + fst:t, by exp (fvtzs avdv) ds

and variance

¢
VaryW; = exp <2/ asds> Var( ﬁ(t))
s=t'
¢ N ¢ ¢
= exp <2/ asds> h(t) :/ exp <2/ avdv> olds
s=t' s=t' V=8

For property 1, note that

g(t,2) — gt #) = exp < / to asds> (e efe™(zm ) e (z— )]

t t t
exp </ ]as’ds> ]Z] —I—/ ]bslexp </ avdy> ds
s=0 s=0 V=8

< N2 ’Z’ +tN2€N2 S N2<1 —I— €N2)<’Z’ —I—t)

Moreover,

IA

lg(t, 2)|

For property 2,

t ]
h(t) = h(t) = / exp <—2 avdv> olds

—t/ v=0

e [Nfe?™M(t—1t),Nje®™ (t —1)]
and

|P'(t) = W) =

t t/
exp <—2/ avdv> o2 — exp (—2/ avdv> ol
v=0 v=0
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2Ny 2

o; +

IA

€

t t
exp <—2/ avdv> -1 exp <—2/ avdv> (03 — 03)
v=t/ v=0

€2N2N22<€2N2(t7t’) _ 1) + €2N2N2<t _ t/)

IA

< EMNZ(BNy(t — 1) + 22Ny (t — 1)
for sufficiently small £ — #. By the triangle inequality, this generalizes to any t — ¢/,
so |[W(t)—NW({)| < plt —t] for any p > €™ Ny(3N2 + 1). This proves property 2.
Q-E-D-Lemma 1
Proof of LEMMA 2. For a,d € {R, L}, a # o/, the Bellman equation for V,* is
[u(a, W,, X,) — c*(k% X,)|dv
v +k¢-dv- BV, (17)
+[1 = kidv — rdv] EV® .

Q

This becomes exact as dv — 0, proving part 3. Rearranging (17), we obtain
BV = |=ula, Wo, X,) + c(k8, X,) = KV + (K + )V | do

where dV' = V%, — V*. Therefore,

v

_AU ZU7 XU7 ]{:R’ kjL

E(dVt—av}) = ( v ) dv (18)
+(kE+kE+r) (VE-VE)

This expectation is as of time v. Now multiply both sides by exp [— fZ:t(T + kB + /{:SL)ds} ,

integrate, and take the expectation as of time ¢, yielding (by iterated expectations)

=t

E / exp <— [(r+EE+ kf)ds> [dV,F —aV)]

v=t

7 v —A(W,, X, kE kL
= E/exp<— f(?"—l—k:f—l—k‘f)dS) ( v k) dv
= (kS + kg ) (V= V)

v=t

Integrating by parts,

E / exp <— [(r+kF+ kf)ds> [dV,} —dV}]
s=t
s=t

= (o (- foene a0 )

" / exp <_ [k + k;g)ds> (kF 4+ kL 41) (VE = V) do

s=t
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But | B (limy oo exp (= [, (r + £ + k{)ds) (V= V)| < limyoe e OBV = VE.
We will now show that
lim ¢ " OBV -V =0 (19)

This will establish part 1.

For a = R, L, V" is no greater than the payoff from always being in the “right”
action and paying the lowest possible switching cost of zero:

Ve < E/ e " max {u(R, Wy, X,), u(L, Wy, X,)} ds
If one chooses the lowest switching cost, the worst that can happen is that one is always
in the wrong action; hence, V* > Ef;:v e ") min {u(R, W, X,), u(L, Wy, X,)} ds.
Thus,
VE-V < E / e T | Au(Wy, X,)| ds

=v

maXgeo,1) |Au(0, )|

r

+5 / e " Au(Wy, X,) — Au(0, X,)| ds

where Au(Ws, X5) = u(R, W, Xs) — u(L, Wy, Xs). (This proves the first formula in
part 2.) Since ¢*(K%(z),z) =0 for a = R, L and for all z, (4) implies that Au(w,x) =
A(w, z, K*(z), K"(x)) is Lipschitz in w with constant @, so |Au(W, X,) — Au(0, X;)| <
@ |W,|. But

BW) = B[V2] < VBT = \[BW.J + Var (W)
< A\ [EW)? + /Var (W,) = |EW,| + /Var (W)

where all expectations are conditioned on W,. Thus, by Lemma 1,

/ by exp </ av/dv’> ds’
—l—\// exp <2/ av/dv’> o2ds'

< MW, |+ (s — v)Noe™ + e Nyy/s — v (20)

EW, < exp </ as/ds’> W, +

I—y
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Hence, there are positive constants cg, ¢1, and ¢y such that

V;R . V;L < e ‘I‘/ efr(sfv)a <€N2 ’Wv’ € (S _ U)NQGNQ € €N2N2\/s — U) ds

e |[W,|  aNye™  alNye™ /1
r + r? + 2y3/2

:C()’WU’ —I—Cl (21)

= 62 —I—
establishing the second bound in part 2) so
g p

lim e " OE |V - V| < ¢ lim e 7070 |0,

V—00

but by Chebyschev’s inequality, for any ¢; > 0,

E W, (o —

—r(v—t)
Pre " W, | > er) £ — ot <

which goes to 0 as v — oo, establishing (19). Q.E.D.

Proof of LEMMA 3.

1. Fix z. Let c(k) be shorthand for c®(k,z) or ¢*(k,z). We will show that if the
function c is left-continuous, then ((y) = argmax; o(ky —c(k)) is upper hemicontinuous.
A similar argument holds for the function argmax;so(—ky — c¢(k)). Suppose there is
a sequence (y" k"), such that k> = lim, . k" and y>* = lim, . y" both exist
and k" € ((y") for all n. Upper hemicontinuity means that k> € ((y>°) for all such
sequences. We first show that lim, ., c(k") = ¢(k>). This is trivial if ¢ is continuous
at k. If not, we claim that there is an I < oo such that if n > [, then k" <
k>. By assumption, ¢ is left continuous, so it must not be right continuous at k.
So let limy gz c(k) = (k™) + & where ¢ > 0. For any k™ > k™, since ¢ is weakly
increasing, k"y" — c(k™) < k"y" — c¢(k>) —e. Let I be large enough that n > I implies
|k"y" — k>y"| < /2. Then k"y" —c(k™) < k>®y" —c(k>™) —</2, so k" ¢ ((y") after all.
Therefore, if n > I, then k" < k. Since ¢ is left continuous, ¢(k>) = lim,, ., ¢(k"), so
lim,, o [K"Y" — c(k™)] = k®y>® — (k™).

Now suppose k™ ¢ ((y>°). Then there is a k' and an &’ > 0 such that k'y> — (k') >
k>y> — c(k>) + &'.  We claim this implies k" ¢ ((y") for large enough n. Since
lim,, o [K"Y" — c(k™)] = Ky — c(k>), for any £” > 0 there is an I’ such that if n > I,
K"y — (k™) — [k®y> — c(k™)]] <&”. So K'y™ —c(k') > k"y" — c(k") + &' — " for all
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n > I'. But there is also an " such that if n > I", |K'y> — k'y"| < £’ (as k' is bounded
by K). So k'y" —c(k') > k"y™ — c(k") + &' — 2", So setting £’ = £//3, we know that
if n > max{Il',I"}, then k'y" — c(k') > k"y"™ — c(k"), so k™ ¢ ((y") - a contradiction.

2. Supposey <y, k € BRY(y,x),and k' € BR*(y/,x). Then k't —ct(k',z) > ki —
c(k,z) while ky — c*(k,z) > k'y—c(k',z). Subtracting, we obtain (k' —k)(y' —y) > 0,
so k' > k.Y The proof for BR! is analogous. Q.E.D.

Proof of LEMMA 4. By (10), ¢(0,¢,t') =0, so 7(¢,t') > |dt|. By equation (10),
|h(t 4+ v+ dt + [p(v,t,t) —v]) = h(t +v)| = [t + dt) — h(t)] (22)

The left hand side of (22) is at least p|dt 4+ ¢(v,t, ') — v| while the right hand side is
no greater than 7 |dt| by assumption A3. So |dt + ¢(v,t,t') —v| < g |dt|, which shows
parts 1 and 2. Differentiating (10) with respect to v,

Wt + ¢(v,t, 1) — R (t+v)
Wt + ¢(v,t, 1))

’¢1<U7t7t/) - 1’ =

_ —\ 2
< Pl 4 g(o,0,0) — o] < <B> ] (23)
p P

by part 2 of Lemma 1 and the prior computation. This shows part 3.
For part 4,let t/ =t + v and t” =t + ¢(v,t,t'). Suppose that

S = argmaXysg [t" + ¢(s,t" 1) — 1" — 5]

We will show that

"+ P(so, " 1) — 1" —so =t + Pp(so +v,t,t") —t — (s +v) (24)
implying
T ") = |t + p(so, t", ") — 1" — s
= |t +d(so+v,t,t')—t—(so+v)| <7(tt)
Substituting,

oy ¢<80,t”,tw) T S0

= t'+o(v,t, 1)+ d(so,t +v,t' + (v, t,t') —t —v— 59

9This relies on the fact that if 2’ = 2, then &' = k.
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This equals t' + ¢(so + v,6,1') —t — (s + v) if
(v, 1,t") + d(s0,t +v,t' + ¢(v,1,1)) = P(s0 +v,t,1) (25)
By repeatedly applying (10), we obtain
(" + ¢(so0,t",t")) — h(t" + so) = h(t") — h(t")
= h(t'+ ¢(v,t,1")) — h(t +v) = h(t") — h(1)
= h(t'+ ¢(so+v,t,t")) — h(t + so +v)
But ¢ =t 4 v. Thus, equating the first and last expressions,
h(t' + ¢(so +v,t,t")) = h(t" + ¢(s0,1",t"))
Since h is strictly increasing by part 2 of Lemma 1,

t/—|—¢<80—|—1},t,t/) _ tw—l—¢<80,t”,tw)

= '+ (v, t, 1)+ P(so,t +v,t' + ¢(v,t,1))
establishing (25). Q.E.D.Lcmma 4

Proof of LEMMA 5. For any N > 0 let Ty be the first time ¢ at which |Z;] > N. We
will prove that almost surely, for £ < 1/2 and for any N, there exists a unique solution
to the version of (12) that is killed when |7| reaches N:
tATN
Xe =m0+ /50 I'(s, Zs, Xs|F)ds (26)

where t ATy = min{t, Ty}, F = (F% F¥), and
[(s,z,z|F) = F¥(s,2,2)(1 — ) + F¥(s,z,2)x (27)

Since the same argument can be repeated for ¢ € [1/2,1] etc. and taking N — oo, this
will prove the existence of a unique solution for all ¢. For brevity, we will write ¢ in
place of t A Ty.

We first prove existence. For any § > 0, define X} = xy + fst:o Ids, where I} =
1%  T(v, 2y, X°|F)dv. (For v € [—6,0), let Z, = Zy and X = 2y.) Note that

& Ju=s5—4§
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Xf =17 ['(v, Z,, X8| F)dv; the right hand side is absolutely bounded by K and

& Ju=t—§

independent of X, so this equation has a unique solution that is Lipschitz with constant
K. Let X; = limsup,,_, ., Ytl/n where Ytl/n = SUPpn th/m. The supremum of an
arbitrary family of Lipshitz functions with constant K is a Lipshitz function with the
same constant, and the same is true for the limit of a sequence of such functions. Hence,
for every n, the function ;" = sup,,,-, th/m is Lipschitz with constant K, and so is Xj.
Moreover, for fixed ¢, there exists a subsequence (mj);-";l such that lim;_, th/mj = X;.

By extracting further subsequences and then using the diagonal method we can obtain

1/m/,

a subsequence (m;);";l of the original sequence (mj);-";l such that lim; ,.. X;" 7 = X;
for every rational ¢ > 0 (and hence for every ¢t > 0). The convergence is uniform on
i

1
compact intervals because all functions X, m are Lipschitz with constant K.

To finish the proof of existence, it remains only to show that (26) holds for X; =
1/m;

lim; ,oo X;" 7. For any j,
t
‘Xt— <a:0—|—/ r<s,zs,XSyF>ds>‘ <A A A (28)
s=0
where
Al = Xt—<a:0—|—/ T, jds>‘
s=0
t , t -
A = / ri/mf‘ds—/ (s, Zs, X/ J]F)ds‘
s=0 s=0
. ¢ 1/m/; ¢
AL = / T(s, Zs, Xs ]]F)ds—/ T(s, Zs, Xs| F)ds
s=0 5=0

, lim; o, A] = 0. Moreover,

t , t ] '
/ Y ™ds = ] / / T(v, Zy, Xo' ™| F)dvds
5=0 5=0 U:sfl/m;

t !
_ / T(v, Zy, X" |F)dv + o(1/m))

=0

Since A} = ‘Xt — th/mj

(reversing the order of integration), so that lim; ., Ag =0.

We now prove that lim; . Aé =0. Fora=R,L allt € R, y € [0,K| and
x € [0,1], let H(t,y,x) =inf{z € [-N,N]: F'*(t,z,z) > y}; if this set is empty, define
H(t,y,z) = N. Let ey =3 (5)4 (cy + 2c3N) and define FEL(s 2 2) = FB(s,2,x) +
F(s,z,z). i
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CLAIM 1 Fora=R,L:
1. For any t,t',z,x,2" such that max {|z|,|z + cs (|t = ¥'| + |z — 2'|)|} < N,
Fo(t' z4ca (|t —t| + |2/ —z|] ,2") > Ft, 2, 2).
2. H%t,y,x) is Lipschitz in t and x with constant c,.

3. For any two states (t,z,x) and (t',2',2), let |dt| = |t —¥|, |dz| = |z — 7|, and
|dz| = |x — 2/| and a = |dz| + ¢4 (|dt| + |dx|). Then

Lt z,z|F) -T2, 2| F)

IA

‘FL(t,z,a:) — FL(t’,z’,a:’)‘ + ‘FR(t,z,a:) — FR(t’,Z’,aﬁ/)‘ + 2K |z — 2| (29)

< |FMtz+a,z) = Fitz—o,z)| 4+ |[FR(t 2z 4+ o,x) — FR( 2 — o, 1) | 4 2K |2 — &

Moreover, if x > x/, then

C(t,z,z|F) =T, 2, 2'|F) < FRY(t2,2)— FRE(U 2 o)

< FR(t,z,x) — F*™(,2 — a, )
4. For any processes Y >0 and X' € [0,1],

t
/ [F(s,Z,+ Y5, X)) — F* (5,25, X.)] ds

s=0

K t
< / / L(H(s,y, X)) — 7, € [0, Y2))dsdy
y=—K Js=0

5. Suppose that ﬁ“(t,z,a:) satisfies the assumptions of Lemma 5 and for any (t,z),
ﬁ“(t,z,a:) = F%(t,z,x) at all but a measure zero set of z’s. Let ﬁ“(t,y,a:) =
inf{z € [-N,N]|: ﬁ“(t,z,a:) >y}. Then H® and He coincide everywhere.

\2 2
Proof of Claim. Part1: Letz” = a:—l—(%) T(t,1), 2" = z4+(co+2c3N) l(%) + 1] T(t, 1),

\2
and 2/ = 2" 4 (e3 + 2¢3N) l(%) T(t, ') + |2’ — a:]} > 2"+ (ca + 2¢3N) [|2" — 2']]. (The
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inequality follows from |z — x| + |2/ — z| > |2” — 2/|.) By assumption 3 of this lemma

and part 1 of Lemma 4,

Fet,z,z) < P 2" 2" < FY, 2 )

_\2
z+ (ca + 2¢3N) (%) + 11 T(t, 1)
= |7 -

I

+(es + 25N) l(E)QT(t,t’) o — a:]}

—\ 4
< pe (t’,z+3 <§> (c2 4+ 2¢3N) Ht’—t!Jr!a?/—a?H,a?’)

as claimed.
Part 2: Consider any ¢, ¢/, z, and z/;
inf{z € [-N,N|: F'*(t',z,2') >
’Ha<t/,y,a')/)—Ha<t7y7a'))’ — { [ ] ( ) y}
—inf{z € [-N,N]: F*(t,z,z) > y}

By part 1,

inf{z € [-N,N]:Ft z,x) >y}
> inf{z € [-N,N|: FY{t', z+ cs(Jx — 2|+ [t = ¥|),2") > y}

> inf{z € [-N,N|: FY ', z,2) >y} —cs(Jo — 2| + |t = t'])

Hence, |[H*(t',y,2') — H*(t,y,x)| < ca|x — 2| + |t = ']).
Part 3: Fora= R, L,let F'* = F%(t,z,x) and F'Y = F¥(t,z,z). We have
I(t, z,z|F) = T'(t, z,2'| F)

= -+ PR x—FY . (1-2)—-F%.a (30)

= (FF—F"YQ—2)+FY (2 —2) + (FF = F*e + P . (z — 1)
implying [D(t, 2, | F) = T(t, z,2/|F)| < |F* = FY|+|Ff — F?| 42K |z — /| as claimed.
By part 1, fora = R, L, F'¥ € [F'*(t,z — o, x), F'*(t, 2 + «, x)]; clearly, F'® is in the same
interval, so |F'* — F¥| < |F*(t,z + o, x) — F(t, 2 — o, x)|, which proves (29). If 2/ < z,
then since F/ > 0 and F® <0, FV . (&' —2)+ F¥ . (z —2/) = (FY — F*)(2' —z) <0,
so (30) implies

C(t,z,z|F) =T, 2, 2|F) < (FF—=F"Y1—2)+(FF-F%)x
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IA

(FF—Fr(tz—a,n)(l—a)+ (FE = FR(t,2 — a,2))z

< FRMt 2z 2) — FRY(E 2 — o, 2)

proving part 3.
Part 4: Since F%(s,z,z) = K — fﬁf 1(F(s, z,z) < y)dy,

t
/ [ (5, 2y + Yo, X1) — F* (s, Z,, X1)] ds
s=0

K ¢
= / [L(F(s, Zo, X;) S y) — L(F(s, Zs + Yy, X,) < y))] dsdy
y=——K J s

Part 5. Since both F® and F® are monotonic in z, the sets {z € [-N,N] :
Fe(t,z,x) > y} and {z € [-N,N] : ﬁ“(t,z,a:) > y} are each intervals of the form
(¢,N] or [(,N]. Since F'* and [ agree almost everywhere, these intervals must also

agree almost everywhere; hence, their infima must coincide. Q.E.D.c1aim 1

By part 3 of Claim 1,

| PR (s, Ty + 4 ‘Xi/ ™ x| min{x)™, XS}) C

Al < / Ut ds—|—2K/ X, —X,|ds
5=0 — RE (S,Zs,min{Xs ],XS}) s
By part 4,
HE(s y,mln{X j,XS}) — 7
/ / 1/m dsdy
W\ eloaeix)

H"(s,y, min X XS — Z t m

/ / 4, min{ 1 ) dsdy+2K/ X" x| ds
5=0 [0 ey | Xs XSD 5=0
Since X, m converges uniformly to X on [0, ¢], lim; 2Kf Sl/m} — X

Since Brownian motion has a jointly continuous local time ([?, p. 310]),

5))ds:0

t
lim [ 1 (—ZS e [0,c4
0

j—o0

X,/ —

S§—=

39



almost surely. But by part 2 of Claim 1, for a = R, L, H“(s,y,min{X;/m;,Xs}) is
Lipschitz in s with constant c = c4(1 4+ K). Thus, by the Girsanov Theorem [18], the
law of H*(s,y, min{Xsl/m},Xs}) — Z, is mutually absolutely continuous with the law of
—Zs. Consequently, lim;_, Aé = 0 almost surely. This proves existence.

We now prove uniqueness. Let X, and X, be the maximal and minimal solutions

to (26). Define Y; = X,} — X, . By part 3 of Claim 1,

t
YtS/ [F (s, Zs + eaYs, X)) — F™(s, 25, X, )] ds (31)

5=0

so that by part 4,

K t
Vs [0 [ X0 - 2 D) + 1 sy X, ) - Zi € [0.ca0i))] dy
y=—K Js=0

Since Z has zero drift, the probability distribution over (H%(s,y, X, ) — ZS)SZO is the

same as the probability distribution over (Zs + H*(s,y, X)) Hence, if there is a

s>0°
positive probability that ¥; > 0, then this also occurs with positive probability if Y,

instead satisfies

Vs [0 [ A X € DY) 41+ B,y ) € 0. dy

y=—K J5=0 (32)

We will show that if (32) holds, Y; is identically zero for all t € [0,1/2 A Ty] almost
surely.

Let (Q, F,P?) be the probability space associated with Z when Zy = z, and let

(F w)u>o0 be the filtration generated by Z.2° Since each H%(s,y, X, ) has paths that are

Lipschitz-continuous in § with constant ¢}, by the Girsanov theorem (@ksendal [18]), for

any u € [0,t], and for any positive A and «,
t
B [ / 1(Z, € [0, As™))ds | Fe (33)

t
= E[/ 1(Zs 4+ H(s,y, X, ) €[0,AsY))- MYds | F,

200 is the set of possible sample paths (Z;);>0; F is the o-algebra of measurable subsets of (2; for
any S € F and constant z, P?(S) is the probability, conditional on Zy = z, that the sample path will
be in S. F, is the g-algebra that contains information about Z, for v < u but no information about

Zy for v > u.
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where

s [dHe@wy, Xy
_fU:u |: (d;)/ )i| dZU § dH“(U,y,XJ)
MY = exp A, > cyexp | — — v\ dZ,
_ 178 |:dHa(U:y:Xv ):| dU v=1u dU
2 Ju=u dv

where ¢; = exp (—1 [cﬁf) (as s < 1 and =c4(14 K)). But

S [dHY(v,y, X, ) dH*(v y o)
——\dZ, = ’ d B,
T o Y A e e 28
/h(s) (U)uan;—l(U))
= dB,
h(u) dh=1(v)
Hence, for any A > 0,
S [dH® X,
Pr<min {—/ lwl dZU} <A Fu>
s€(u,t] v—u dv
nis) | dH® (hﬂ(y),y,X,;l(U))
= Pr| min { — dB, » < =X | Fu
s€(u,t] /Uh(u) dh71<1}) ’

ns) |dH® (h’l(v),y,X;,l(U))
< Pr max/ T dB,| > X | Fu
s€(u,t] v=h(u) dh~ (U)

The integral in the last line is a martingale and B, is a Brownian motion with zero drift
and unit variance. Hence, by Doob’s martingale inequality (@ksendal [18, p. 33]), the
last line is no greater than

2
fh(S) [dHa< 1(U)th 1(v)>1 dU ’ Fu

v=h(u) dh—1(v)

E

_(h(s) _ e
A2 - A2 — A2

where ¢g = 3h(1/2) (as s < % and i > 0). Thus, for any sufficiently small m € (0, c5),

Pr(min MY < m | F.)

s€[u,t]
* [dH® X,
< Pr <min {exp <—/ lwl dZv> < @} | Fu>
s€(u,f] V=1 dv Cs

s dH® X
< Pr<min {/ l—M]dZv}<—ln(c—5) ] Fu>
s€(u,t] v—u dv m
¢
< ——2p(m)
In ()
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where p(m) is independent of y and u and lim,, .o p(m) = 0. Thus, for any m > 0,
K t
B U / U(Z, + H*(s,y, X, ) € [0, As™)) MY dsdy | Fu]
> l/ / 1(Zs+ H(s,y,X, ) €[0,As%))dsdy | Ful
= m(l—p(m Cu | Ful
where C; = fyli,K fst:() 1(Zs+ H*(s,y, X, ) € [0, As*)) dsdy. Hence, by (33), there is a
positive constant ¢, independent of A, «, and u, such that
t
ElC;—C, | Fu<er E [/ 1(Z, € [0, As®))ds | Ful

Let <F5> 50 be the filtration generated by B where Z; = Bj. Since B is a Brownian

motion, there is a constant cg such that

e CS/Bl/2
e — () = T

Pr(Z€dy | Fs) =Pr(Buyy €dy | Fs) <

Using this fact, the argument of Lemma 2.14 in Bass and Burdzy [1] implies that there

exist constants ¢q and ¢g, independent of A and a, such that
Pr(Cr > A) < egexp(—ciohal/® /(AL 1)

Using this fact, the argument of Lemma 2.15 of Bass and Burdzy implies that given
¢ > 0 there exist constants ¢y and c¢jp such that if « > 1, A, Ay > 0, Ag/A > (, and
Ay = a +1/8, then Pr(C, > Agt™ for some t < 1/2) < ey exp(—012A0a1/8/A). Armed
with this result, it is straightforward to adapt the argument in Lemma 2.17 of Bass and
Burdzy to show that Pr(Y; # 0 for some t € [0,1/2 A Ty]) = 0. By induction on ¢ and

letting N — oo, we then have Y; = 0 for all ¢ almost surely. This proves uniqueness.

Q'E'D-LEMMA 5

Proof of LEMMA 6. Part 1: Let Y; = max{0,X? — X!} and F{¥(s,z,2) =
FE(s,z,2) + Fl(s,z,x). Then

Yo = [T, 2, X2Fy) - T(t, Z, X2 )] 1(X2 > X))
< [Tt Ze, X2 FY) = T(t, Ze, XHFD] 1(XE > X))
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< [BFE (4 2+ X7 = X)), X)) = P (2 2, XD 12 > X))
= [Ff" (4, 2+ eaYy, X)) — FY (4, 2, XD 1(XE > X))

= FI" (4 Zi+ oYy, XU) — B (8 24, XU

(The second inequality follows from part 3 of Claim 1.) This implies that equation
(31) holds for this V;, with X! substituted for X, and F{** substituted for FL. The
argument following equation (31) now applies verbatim to show that Y; is identically
zero.

Part 2: we will prove that

t t
/ P(s,ZS,XsllFl)ds—/ T(s, Zy, X! Fy)ds| = 0 (34)
s=0 s=0

This implies that X} is a solution to (12) defined relative to Fy; by uniqueness, X! = X2.
To see (34), consider any (s,z,z); for a = R, L, and n = 1,2, let F%(z) represent
F(s,z,z). We have

0 S P(‘S?Zuaj’Fl) - P(S,Z,Q?’FQ)
= F(2)1-2)+ 1)z - Fy@)(1 —2) - F(2)»
< B (@) = By (o) + F(2) — Fy' ()
Thus,
t t
0< [ Tz xR - [Tz X B)ds
5=0 s=0
t t
< / [F1L<37Z57X51) _F2L<37ZS7X51)} ds—l—/ [F1R<37 Zqusl) _F2R<37Z57X51>} ds
5=0 s=0
As in the proof of part 4 of Claim 1, for a = R, L,
t
/ (Fe (5, 20, X1) — FS (s, 2, X1)] ds
5=0
t K
= / [L(F5(s, Zs, X;) S y) — L(IV(s, Zs, X;) < y)] dyds
s=0Jy=—K
Let H{(t,y,xz) = inf{z € [-N,N]: F}t,z,2) >y} for j = 1,2. By part 5 of Lemma ?7?,

Hi and H§ coincide everywhere. Moreover, F;‘(s, Zy, X1 < y implies H;(s,y,Xg) >
Zy and F{(s, Z,,X]) > y implies H{(s,y,X]) < Z,. So 1(Fy(s,Zs,X]) < y) —

43



L(F(s, Zs, X;) < y) # 0 only if H5(s,y,X;) = Z, > Hi(s,y,X,). Since H} = Hj,
this implies 75 = H{(s,y, X1). As H{(s,y, X!) has paths that are Lipschitz-continuous

in s with constant ¢,
K t
[ ] s 20 X0 < ) - 15, 2, XD < ) dsdy
y=—K Js=0

K t K
< / / 1(Z, = H{(s,y, X}))dsdy = / 0dy = 0 a.s.
y=—K Js=0 y=—K
by the Girsanov theorem (Q@ksendal [18]). Q.E.Digmuma 6

Proof of Lemma 7. We will deduce part 1 from Lemma 6. For a = R, L, define Fa
by ﬁ“(t, T, X)) = F(t, Ze + 2, Xy) = F(t, Z,Xt). Since F'* > F* Lemma 6 implies
that )N(f’o > X;. The assertion )N(toa: > X, follows directly from Lemma 6.

For part 2, take any sequence {(z,z,)} such that z, — 0 and z,, — 0 as n goes
to infinity. For a fixed ¢, there exists a subsequence {(zn,;,un,;)} such that )N(:n] o
converges. By extracting further subsequences and then using the diagonal method we
can obtain a subsequence {(z], . )} of the original sequence {(z,,z,)} such that XZnn
converges to a limit X} for every rational s > 0. The convergence is uniform on compact
sets because all functions )N(‘f’/“m’/l are Lipschitz with constant K. We see that X} must

be a solution to (12) by the following argument. Let ﬁf(t, 24 zp,x) = Ft, z,2) and
let X' = )N(‘f’/“m’/l. For any n,

¢
‘Xt* = <a:0 + / T(s, ZS,X;“]F)ds> ‘ < AV + A + Ay
5=0

where
t
A = X;‘—<a:0+/ P(S,ZS,X?!Fn)dS>‘
s=0
t t
Ay = / (s, Zs, X|F)ds — / (s, Zs, X]|F)ds
s=0 5=0
t t
4 = || rezxipis- [ vz,
5=0 s=0

Since A} = | X} — X}, limp 0o A} = 0. Since F,, — F, lim,, .o A = 0. One can
prove that lim,, ., A% = 0 by the same argument used to prove that Ag — (0 in Lemma

5. By uniqueness, X} = X, for all s. Since the same is true for any initial sequence
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{(zn, )}, we conclude that Xf " converges to X; almost surely, uniformly on compact
time intervals.

The proof of part 3 is completely analogous to that for part 2. One can show that for
every subsequence of Xt", there is a further subsequence which converges and, moreover,
it converges to a solution of (12). The argument is finished by invoking the uniqueness

of the solution. Q.E.Dygmma 7
Proof of LEMMA 8. This is an easy consequence of parts 1 and 2 of Lemma 3.

Proof of LEMMA 9. We prove (i-iii) by induction. (iii) holds for n = 0 if we
define ®” for n = —1 to be co. For given t and 7Z; and any N > 0, let Ty be either
N or the smallest v for which g(t + v, Z44,) ¢ (w— N,w+ N), whichever is least.
Let g(N) = max{|lw— N|,|w+ N|}. Then by Lemma 2, for any n, ®"(¢,z,z) =
limy 00 O (¢, 2, ), where

TN
v

(2 7) = / exp <— kR + kf+5)ds> (Dess(Zurs Xoyos kKL Y] dos
5=0
=0

(35)
conditioned on Z; = z and X; = x.

Let (by)y>0 be a fixed Brownian sample path with by = 0. We compare ®%,(t', 2/, 2/)
to % (¢, z, x) path by path, so that the continuation path of Z from time ¢ (') on begins
at z (2') and its changes are given by (b,),>0 with time suitably transformed. For the
path starting at (¢, 2, ), let Zyyy = 2+ byptv)-n(; for the path starting at (¢, 2/, 2'), let
Ly = 7+ bigrv)-nw)-

Letde =o' —x,dz =2 —z,and dt =1 — 1. Let

Zt//+¢(v,t,tf)a Xt/’+¢(v,t,t/)u

Ry L
Rt gty Bily oo )

AL = Apy o)

Using the change of variables v = ¢(7,t,t'), and then replacing ¥ by v (noting ¢(0,¢,t') =

0), we obtain

O (t, 2, 2)
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/
TN
v

= U / €Xp <_ f (T + k‘iﬁis + k‘itl’lg»s)ds> [At/+U<Z£/+U7Xt//+U7 k‘iﬁ;w k‘itl’lg»v)} dv

=0
v=0
T/
Y B,
_ B / exp (= [ (kB .+ kY, )ds | Abgy (D1, ¢)dD
$(B,L,t1)—0 =0
“1(ri .t
¢~ (Tstst!) S )
— B[ e S ks | Aot e
s=0
v=0

where we define ¢! by ¢(¢p 1 (Ty,¢t,t'),t,t') = Ty. By Lemma 4,
[Ty = 67 (T, 4] = [o(67 (i, t,0),1,8) = 67 (T, 18] < ]
P

and we can take /N as high as we like, so we can approximate T}, by 7. Moreover,
for small (dt,dz,dzx), the choices (/{:ﬁﬁrs, k:tL,Lr5>5>0 and (/{:5’+¢(Stt,), k‘itl’lg»¢(stt’))520 must give
approximately the same expected payoffs to playing R and L as (k,‘ﬁs, l{:tLJrS) >0 P the

envelope theorem. Thus, letting k., = (k,‘ﬁv, k:tLJrU),

PRt 2 2') — DY (1, 2, %)

TN (ZS(U,t,t/) Z// ,
— E / eXp <_ f (T ‘I‘ kﬁs ‘I‘ k:tL+S)dS> At’+¢(v,t,t’) / t +¢(U,t,t )7 ¢1 (U, t, t/)dl}
v=0 =0 Xt/+¢(v,t,t’)7 kt+v
TN
—B / exp <— f (7" + k‘ﬁs + ktL+s)d3> AV (Zt+vaXt+U7 k‘t+v) dv
s=0
v=0

to first order, by (35). By definition,

Zy s gy = 2 bnwag(ueen-ney = 2+ buero)-ne) = Zero + d2

Hence, ®%,(t', 2", ') — PR (¢, 2, ) = Ag + Ay + Ay where

T, vt Z v + dZ,
e (< S (o R ) d) "
A() = F / B v R . At’+¢(v,t,t’) Xz/t’+¢(v,t,t’)7 ¢1 (Uu L t/)dl}
v=0 — eXp <_ fs:O <T + kt+s + kt+s> dS) k
t+ov
Tn Zt+U + dZ?
Al = F / exp <— f0<7" + k‘iﬁs + kftL+S)d8> At’+¢(v,t,t’) X£’+¢(U,t,t’)7 [¢1 (’U, t, t’) — 1] dv
v=0 B

kt+v
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Ay = E / exp <— [(r+kE + kf+5)ds> [As + Ay + As] dv

A3 = At+v (Zt+v + dZ, Xt+v; kt+v) - At+v (ZH»U; Xt+v; kt+v)
A = At+v <Zt+v +dz, X£/+¢(U,t,t/)7 k’t+v> - At+v (Zt+v +dz, Xy, k?t+v)

A5 = At’+¢(v,t,t’) <Zt+v + dZ, X£’+¢(U,t,t’)7 l{ft+v> — At+v <Zt+v + dZ, X£’+¢(U,t,t’)7 kt+v>

By Lemmas 1 and 4, part 2 of Lemma 2, and equations (3) and (6),

Aol < (1= TE) B < AR Yt] < A (g (N) )

—\ 2
4= (2) @rn) +e il
A3 > 0 ;nd for g(t +v, Zi10) € [w, @], A3 > aydz
Ay > Pmin {07 15121{)1 (Xt poey — Xt+v>}
4] < Tt

Let T'(N) be a (strictly positive) lower bound on E [ e~ 2KV (gt + v, Ziyo) € [w,@]) dv
over all starting points g(t, Z;) € [w — N, W+ N]. By the above inequalities,
PP

R (1, 2 2"y — DY (¢t z,2) > ayT(N)dz — = <— + 47"> (cog (N) + 1) |dt|
- PP

1 : : P
‘|‘; <ﬂ min {07 15121(1)1 <X1/t’+¢(v,t,t’) - Xt+v> } - OZ’Y; ’dt’>
For n =0, X and X’ are identically zero for any dz, so ®°(¢, z, ) is strictly increasing
in z and independent of x (part i). Moreover, since |dt| < 7(t,t),
(PN (2 2") = QR (L, 2, )]

5[
ray ) i O (Xiaguery — Xeve) 1(36)

ayT'(N)

> dz— (y+esg(N)) -7t 1) +

where



Let ¢y = ¢, + To prove (ii), it remains to show that if dz > (co + 35 (IV)) -

_ B
rayT(N)" )
(1(t,t') + |dz|) and |dx| > (g) 7(t,t') then min {O,minvzo (Xt’,ﬂs(vyt’t,) — XHU)} is not

less than — ]da:] since then

1 n / / / n
ng(N) [q)NO/L ) & 7'17) - @N<tuzu$)]
b : p

> dz— (ca+c3g(N)) - [7(t,t") + |dz|] > 0

This is trivial for the case n = 0 since X and X’ are identically zero for any dx. Let

dXypy = X/

(o tt!) — Xty For small enough ¢ > 0, we will show that d (dX;,) /dv > 0

whenever dX,;,, € [—|dz| — ,—|dz|]. Since X has continuous paths, this will imply
dXi1p > —|dz|, so d X4y A0 > —|dz|, proving (ii).

To see why d(dX;;,) /dv > 0 in this range, recall that by Lemma 4, 7(t + v,t’ +
o(u, t, 1)) < 7(t,t), so dz > (ea+czN) - (|dx| + 7(t + v, + ¢(v,t,¢))). Thus, if
dXi1y € [|dx|—e,|dz|] for small enough e, dz > (co + csN)-(dXeyo+7(t+0, ' +P(v, 1, 1))
and (%)QT(t—I-U,t/ + (v, 1, 1) < (§)2T<t,t/) < |dX4y0|. By the induction hypothesis,

0<a, =" "+ (v, t, 1), Ziyo + dZ7X£’+¢(U,t,t’)> — " (t+ v, Ziyw, Xero)
But

d(dXy,,) Jdv

= (D" (t 4V, Zito, Xero) + v, Xopo +dXiy0)o1(v, 8, 8) — 1( D" (40, Ziyo, Xevo) , Xeto)

_ max BRY(®™ 1 (t + v, Zyw, Xego) + ay) - (1 — Xy — d X)) (a1 ) — 1)
—min BRE(®" ' (t + v, Zyp, Xigo) + a0) - (Xig + dX 10
+max BRY(®" 1 (t + v, Zyyo, Xegw) + as) - (1 — Xy — d X1 40)
—max BRY(®" 1 (t + v, Ziyo, Xeyw)) - (1 — Xy
—min BRH®" 1 (t + v, Zi 1, Xeyo) + a0) - (Xeqo +d X o)
+min BRE(®" 1 (t + v, Ziyo, Xeto)) - Xigo

max BRL(@nfl (t + v, Zt+v; Xt+v) + CLU) . (1 - Xt+v — dXt+U)

> <¢1<U7t7t/) - 1)
— min BRR(@H*I (t —I— v, Zt+U7Xt+U) —I— CLU) . (Xt+v —I— dXt+U)
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max BRL((I)"fl (t + v, Zit, Xivo) + ay)
— dXt+v

+min BRE(®" 1 (t + v, Zypy, Xigo) + ay)

By Lemma 3, this is nonnegative if |¢1(v,t,t') — 1| < |dz| since by hypothesis dX¢,, <
—|dz|. By Lemma 4, |¢y(v,t,t') — 1| < (5)2 |dt| < (E)QT(t,t’) < |dz|. This proves
that d (dX;,,) /dv > 0 and hence (ii) holds_for finite n ; 0.

Now consider (i) for finite n > 0. The relative payoff ®%,(¢,z,z) is computed
assuming players believe that, in the future, X, will equal fH@% (v, Zy, X)) (1—X,) +
@Y (v, Zy, X)) X, (equation (9)). By induction and Lemma 8, for a = R, L,
S®% (¢, 2, 7)) has the properties of F(t, 2, z) assumed in Lemma 7. Hence, if dt = 0

and both dx and dz are nonnegative, then X/ X[,y > X¢po. By (36) and the

tp(u,tit) —
envelope theorem (and taking N large enough), ®% (¢, z, x) is strictly increasing in 2z and
weakly increasing in z, proving (i) for finite n > 0.

For (iii) with finite n > 0, we know by induction that ®} (¢, 2, 2) < &% (¢, 2,z) and
that for a = R, L, both f4(®% '(t, z,x)) and f*(D% (¢, 2, 7)) satisfy the assumptions of
Fe(t,z,x) in Lemma 5. Hence, % (¢, 2,7) < &% (¢, 2,2) by Lemma 6.2}

For the case n = oo, fY(DX(¢, 2, x)) = f*(limy, o PR (¢, 2, x)) satisfies the properties
of ' in Lemma 5 as each f*(®%(t,z,x)) does for n < oo, and these properties clearly

hold in the limit. In particular, ¢s and c3 are independent of n, so if
d—z>(a+all+2l)- (2" -2 +7(t 1)

\2

and |2/ —z| > (ﬁ) 7(t,t') then @ (¢, 2/, 2") > (¢, z,z), whence f*(dF (1,7, z")) >

f4®X(t, z,2)). Thus, by Lemma 7, if dt = 0 and both dz and dz are nonnegative, then

dXiyy > 0forallv > 0. This shows (i). For (ii),if 2'—z > (ca + csN)-(|J2' — z|+7(¢, 1))
\2

and |2 — x| > (%) 7(t,t') then there is an £ > 0 such that (' —¢) — 2 > (co + c3N) -

(|#" — x| +7(t,1')), whence ®N (¥, 2/ —e,2') > D (¢, 2, z) for all n, so DY (¢, 2/ —e,2') >

DX (t, z,x); by part (1), DX (¢, 2, o) > X (¢, 2, ).

We now show (iv) for n =0,1,.... [STILL TO WRITE UP]. Q.E.D.Lemma 9

2IEvaluate them path-by-path in Z and use the envelope theorem to show that a lower X must lower

the relative payoff to playing R; then apply Lemma 6.
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Proof of PROPOSITION 1. For the proof, it is more convenient to let h be a
declining function of W;. (Let Wt = —W; and ﬁ(ﬁ\/t) = h(—V/[Z) = h(W); ﬁ(Wt) is a
declining function. Now rename N and Wt to be h and W, respectively. ) Let V. and
V* be the values of being employed and unemployed at time v, respectively. Ignoring
second order terms:
bley) (u+ EVY ) dv — h(W,)dv

+ (1 = b(ey)dv — rdv) BV 4,

Vi =

Let dVi =V, 5, — V,; then

h(Wy) —bley)(u + V!
Bave — (W) = blew)( ) (37)
+(bey) + )V
where I/ [dV] is the expectation of V7, — V7 as of time v.

If an agent accepts a proportion ki € [0, 1] of productive opportunities, her average

cost for an accepted opportunity is c¢*(k}') = Lfic cdG(c), where the threshold ¢}

U
ki Je

is defined implicitly by k' = G(cf). An agent chooses k¥ to maximize the value of

unemployment:
V= [ak}do(—c*(k)) + Vi) + [1 — aklydv — rdv] BV}, ] (38)
Thus, k! maximizes
kY (V, — (k) = K"V, — / " edGc) (39)

*

where where V;, = V¢ — V}* is the relative value of being employed. Since k¥ = G/(c}),
the derivative of the right hand side of (39) with respect to k¥ is V; — ¢ so the optimal

k' satisfies

0 if V,<c
optimal k;, = ¢ G(V,) if V, € [c,d (40)
1 if V,>¢

By (38),
EdV)] = [aky (c"(k,) — V) + V)] dv

Combining this with (37),

(b(ey) + 7+ ak) V,
EdV, = dv

+h(W,) — b(e,)u — aklc*(kY)
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As in the proof of Lemma 2, this implies

T v ble,)u — h(W,
V, = E/exp <— [ [r+b(e,) + ak?] ds> (€) () dv (41)
S Fakct (k)
v=t
and if all agents choose the same k', ¢, = —b(e;)e; + ak(1 — e;). The comparable

equations in our model are

s u(R, Wy, X)) — u(L, Wy, X,)
A A :E/exp <— f [r+ K+ KL ds> el (kE W, X,) dv
ot a —cR(kE, W, X,)

(by Lemma 2) and X, = —klX;+kF(1—X;). Tomake these equivalent, we associate R
with employment and L with unemployment and associate X, with e;, k' with ak?, k[t
with b(X,); we let KR(X;) = K (X;) = b(X;) and [K*(X,), K (X;)] = [0,a]. Further-
more, let u(R, Wy, X;) equal b(X;)u—h(W;) and u(L, Wy, X;) = 0. Let c®(kE, W, X)) =
0 as searching for a trading partner is costless; and (kI Wy, X;) = kfFct(kE/a).

We now verify that the assumptions of our model hold (section ??). K% and K" are
nondecreasing since b > 0; K and K" are constant. These functions are all bounded
by K = max{b(1),a}. The derivative of c"(k} W}, X;) = afcigch(c) w.r.t. ¢f is
crG'(e}); since kf = aG(c}), the derivative of ¢* w.r.t. ki is ¢} /a, which proves that c*
is continuous in k*. c” clearly takes values in [0, oo, and satisfies ¢*(0, X;) = 0.

The static payoff difference A = b(X,)u — h(W) + kFc*(kl/a) is nondecreasing and
Lipschitz in X; since b() has these properties. A is also increasing and Lipschitz in W,
as —h(WW;) has these features.

We now show that k' = 0 is dominant if W is low enough. By part 2 of Lemma 2,
V.<E / e "D (X, )u — h(W,)] dv (42)
v=t
Since limyy, .o h(W}) > b(1)u, for low enough W, the right hand expression is less than
¢, so k' = 0 is dominant by (40).>2 By (41),

8?76;) = exp <— /jt(r + b(ey) + al{:?)ds) (u—V35) >0

22This uses the fact from lemma 1 that as of time ¢, W, is normal with mean exp (fsvzt asds) W, +

f;}:tbs exp (f;zs as/ds’) ds, which for W; < 0 is no greater than e YW, + Noe ™2(v —¢). The
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since immediate consumption maximizes an employed agent’s continuation payoff be-

cause of discounting and inventory costs. Thus,

V> F / e OO [h(0)y, — W(W,)] dv

v=t
Since limy,—, 400 h(W3) < b(0)u — €(r 4+ b(0) + a), the right hand side is strictly greater
than ¢ for high enough W;, so k* = 1 is dominant by (41).

Since this model is payoff-equivalent to a particular instance our model, Theorem 1

applies- Q-E-D-Proposition 1

Proof of PROPOSITION 2. Let V/ and V}* be the value to a firm of a filled and
unfilled vacancy, respectively. In the period [t,t + dt] a filled vacancy produces profits
f(1 —w)G(ny, Wy)dt; with probability édt it is vacated. Thus,

V/ = f(1 — w)G(ne, Wy)dt + 8V dt + (1 — 8dt — Bdt) BV,
implying that the expected change in this value must be
EdV] £ E(V/] V) = |=f(1 = w)G(n, Wy) + 6V, + BV | dt

+dt

where V; = th — V¥ is the relative value of a filled vacancy. Define QAt = 0,(1 — ny);

in the period [t,1 + dt], a firm with an unfilled vacancy pays the advertising cost 1@“ dt

and fills its vacancy with probability atdt; thus,

~

) —~ ~
Vi=— e dt + QtVt'fdt + (1 — 0ydt — ﬂdt) EViia (43)
so that ~
uw A " " Cet o u
EdV, :Ea/gdt_‘/;): 1 n_etvt_‘_ﬂ% dt
-y
Hence,

c@t

BV, = |=f(1 = w)Glne, W) = = +(5+ﬂ+9§)vt] dt

variance of W, given W; is f;}:t exp (2 f:,zs as/ds’) des which is no greater than N22€N2 (v —1). Thus,
by choosing low enough W;, we can guarantee that W, will be below any given threshold with arbitrarily

high probability for an arbitrarily long (finite) time.
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As in the proof of Lemma 2, this implies

Vt:E/eXp <— I [5+ﬂ+§s} ds> [f(l—w)G(nU,Wv)+ 1C_Qn dv  (44)

and if all firms choose the same @, n, = —oén; + 81(1 —ny¢). The comparable equations

in our model are

fo's) u<R7WU7XU) _u<L7WU7XU)
Ry :E/exp <_ T [r+ kR + k2 ds> (kW X,) "
s=t
v=t —c(kE W, X,)

(by Lemma 2) and X, = —kBX, + kF(1 — X;). To make these equivalent, we associate
R with a filled vacancy, L with an unfilled vacancy, X; with n;, u(R, W, X;) with
f(1 — w)G(n, W) (the profit flow from a filled vacancy), u(L, Wy, X;) with zero, kJ
with 8§, kI with QAt, c® with zero, and cf(kl', W;, X;) with 1(ik§(t (: %) We let
KR(X) =K"(X,) =6 and KX(X;) =0, and K (X)) = (1 — X,)h.

We now verify that the assumptions of our model are satisfied. K and K" are
clearly nondecreasing functions while K and K" are nonincreasing. They are all
bounded by K = max{h,§}. For X; < 1, c¥ is left-continuous in k} and takes values in
[0, 00], and satisfies ¢*(K(X;), Wy, X;) = 0. We must also address the case in which X,
is close to or equal to 1, which makes ¢ non-Lipschitz in X, and discontinuous at zero
in kF. Since kP < h, X; < —6X; + h(1 — X,), so

X, < hLM 1 <X0 _ hL_|_5> ¢ (Ot < = (h o)t | hL_I_(S (1 _ e—(h+5)t>
The right hand side equals 1 when ¢ = 0 and is strictly decreasing. Thus, for small
£ > 0 consider the subgame from time £ onwards. In this subgame X; < ¥ for T < 0.
Our results will imply that the equilibrium is unique from time £ onwards. By letting
€ — 0 this implies uniqueness at all times ¢ > 0.

The function A = f(1 — w)G(X,, Wy) + ;%Lf(—t is increasing and Lipschitz in both W,
and X, (for t > £) as G has this property. By (43), a rational firm will choose k! to
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e LL c
maximize k; [Vt — m} , SO

0 if Vi< i5
optimal k = { anything in 0,1 if V.= T, (45)
1 if V> 1*CXt

We first show that k' = 0 is dominant if W, is low enough. By part 2 of Lemma 2,
V.<E / e "D (1 — w)G(ET, W,)dv (46)
v=t
Since limw,, oo G(Z, W;) = 0, for low enough W, the right hand expression is less than
¢, so kI =0 is dominant.?® By (44),

Vi> E / e CHIME=D £(1 — )G (ny, W, )dv

v=t
Since limw, o G(Z,W,;) = oo, the right hand side is greater than ¢/(1 — ) for high
enough W;, so k' =1 is dominant.
Since this model is payoff-equivalent to a particular instance our model, Theorem 1

applies- Q-E-D-Proposition 2.

23See footnote 22.
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