
N-CONSISTENT SEMIPARAMETRIC REGRESSION:
UNIT ROOT TESTS WITH NONLINEARITIES

TED JUHL AND ZHIJIE XIAO

Abstract. We develop unit root tests using additional time series as suggested in
Hansen (1995). However, we allow for the covariate to enter the model in a nonlinear
fashion, so that our model is an extension of the semiparametric model analyzed
in Robinson (1988). It is proven that the autoregressive parameter is estimated at
rate N even though part of the model is estimated nonparametrically. The limiting
distribution is a mixture of a standard normal and the Dickey-Fuller distribution. A
Monte Carlo experiment is used to evaluate the performance of the tests for various
linear and nonlinear specifications.

1. Introduction

Increasing power in unit root tests has become an important research topic in

recent years. Elliot, Rothenberg, and Stock (1996) propose an estimation strategy

which focuses on estimating potential trends under the alternative hypothesis in order

to effectively reach the Gaussian power envelope for unit root tests. Another branch

of the unit root literature focuses on using some other features of the time series data.

For example, Lucas (1995) uses M-estimators to take advantage of non-Gaussian er-

rors in unit root tests. His results show that power gains are possible, even if the

M-estimator does not coincide with the true likelihood. Using rank based tests, Hasan

and Koenker (1997) are also able to realize increased power under certain error distri-

butions while experiencing a small loss in power if the errors are actually Gaussian.

Seo (1999) simultaneously estimates GARCH effects along with the autoregressive

coefficients to increase power. Shin and So (1999) and Beelders (1999) use adaptive

estimation to nonparametrically estimate the density of errors, and again obtain large
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2 Unit Root Tests

power gains, particularly if the error terms are heavy-tailed. Hansen (1995) shows

that inclusion of stationary covariates can generate more precise estimates of the

autoregressive parameter, translating into higher power for unit root tests.

The extension of these methods to the multivariate case in models of cointegration

has been explored as well. The multivariate treatment of estimating trends is pro-

vided in Xiao and Phillips (1998). Lucas (1997) and Boswijk and Lucas (1999) use

likelihood-ratio type tests and adaptive estimation to test for the number of cointe-

grating vectors in a multivariate system. Seo (1998) extends Hansen’s (1995) result

to incorporate additional stationary time series in a multivariate system. Phillips

(1995) proposes estimating cointegrating relationships using least absolute deviations

or M-estimation and illustrates the improved performance of the estimators.

In all of the papers listed above, some additional information is used to improve

“efficiency” in the estimation of autoregressive parameters. In this way, the goal is to

improve power against linear alternatives. To treat potential nonlinearities, Phillips

and Park (1999) propose an even more general framework in which they allow for a

nonlinear autoregressive structure. The convergence of the nonparametric estimator

of the autoregressive function in the unit root case is at rate N1/4.

In this paper, we allow for an unknown nonlinear function of covariates to influence

the time series while still retaining a partially linear model. In allowing such a general

structure, we hope to further increase the power gains from using covariates, partic-

ularly if there is a nonlinear relationship with the chosen covariate. Since the form

of the nonlinearity is unknown, we estimate this part of the model nonparametrically

while retaining the linear specification for the autoregressive component.

There are several findings in this paper. First, by using the compromise of a

partial linear model, the convergence for the autoregressive component remains at rate

N . This is an important extension of Robinson’s (1988) result to the nonstationary

case. In addition, the limiting distribution of the unit root test is identical to the

distribution found in Hansen (1995) where covariates are used in a linear fashion.
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This implies that, asymptotically, there is no loss from our general framework using

an unknown nonlinear component rather than assuming a linear structure and using

OLS. Finally, in the course of proving our theorem, we show that nonparametrically

regressing an I(1) series on an I(0) series is asymptotcially equivalent to an OLS

regression of the I(1) series on a constant.

The outline of the paper is as follows. In Section 2, we develop the model and

provide a brief description of the estimation procedure. Section 3 provides the as-

sumptions and asymptotic distribution of the test. A small Monte Carlo experiment

is given in Section 4 and Section 5 concludes.

Notation is standard with weak convergence denoted by ⇒ and convergence in

probability by
p→.

2. The Model

We begin with a simple time series model with deterministic component di

yi = di + si

∆si = δsi−1 + vi

where the error term vi has mean zero. However, there are additional stationary

covariates which help explain vi, so that

vi = g(xi) + εi

with εi and xi iid random variables. Let g : Rq → R and E(g(xi)) = µg. Following

Hansen (1995), we define σ2
vε = E(viεi), σ

2
v = E(v2

i ), σ
2
ε = E(ε2i ), and

ρ2 =
σ2
vε

σ2
vσ

2
ε

.

First, consider the case where di = µ so that the model becomes

∆yi = µ∗ + δyi−1 + g(xi) + εi,(2.1)
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where µ∗ = −δµ− µg. Following Robinson (1988), we obtain an estimate of δ in two

steps. First, we regress ∆yi and yi−1 nonparametrically on xi. The nonparametric

estimation uses a Nadaraya-Watson kernel estimator which we illustrate below. Let

k(u) be the univariate kernel and we denote K(u) =
∏q

p=1 k(up) if u is q dimensional.

In addition, let

Kij = K

(
xi − xj
a

)
where a is a bandwidth parameter. Then we have

f̂i = (Naq)−1

N∑
j=1

Kij ŷi =

∑N
j=1 Kijyj∑N
j=1 Kij

∆̂yi =

∑N
j=1 Kij∆yj∑N
j=1 Kij

.

We “trim” out small values of f̂i which will appear in the denominator of our

nonparamteric estimates. Hence, we define Ii = I(|f̂i| > b) for some b > 0. The

residuals from regressing ∆yi and yi−1 on xi are denoted êd and êy respectively. Next,

we regress êd on êy using OLS and incorporating the trimming to obtain

δ̂ =

(
N∑
i=1

ê2
yiIi

)−1 N∑
i=1

êyiêdiIi.

Now consider the case where di = µ+ θi so that the model becomes

∆yi = µ∗ + θ∗i+ δyi−1 + g(xi) + εi,(2.2)

where µ∗ = θ − δµ − µg and θ∗ = −δθ. We introduce another term which accounts

for the estimated trend,

î =

∑N
j=1 Kijj∑N
j=1 Kij

.

Let the residual from regressing the trend on xi be denoted êti = i − î. In order to

get an estimate of δ, we regress êd on êy and êt using OLS and incorporating the

trimming procedure. Then δ̂ is the estimated coefficient on êy.
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3. Limiting Distribution

We derive the limiting distribution of our estimator in this section. For purposes

of determining asymptotic distributions, we use local to unity asymptotics so that

δ = −c/N . Under the null hypothesis of a unit root, c = 0, while under c 6= 0,

the alternative hypothesis becomes increasingly difficult to detect as the sample size

increases. We follow convention and denote W c(r) the solution to the stochastic

differential equation

dW c(r) = −cW c(r) + dW (r),

where W (r) is a continuous stochastic process.

The following definitions are given in Robinson (1988).

Definition 1: Kl, l > 1, is the class of even functions k : R→ R satisfying∫
R

uik(u)du = δi0 (i = 0, 1, . . . , l − 1)

k(u) = O
(
(1 + |u|l+1+ε)−1

)
for some ε > 0.

Definition 2: Gαµ , α > 0, µ > 0, is the class of functions g : Rq → R satisfying:

g is (m − 1) times partially differentiable, for (m − 1) ≤ µ ≤ m; for some η > 0,

supy∈φzη |g(y)−g(z)−Qg(y, z)|/|y−z|µ ≤ hg(z) for all z, where φzη = {y : |y−z| < η};

Qg = 0 when m = 1, Qg is an (m−1)th degree homogeneous polynomial in y−z with

coefficients the partial derivatives of g at z of orders 1 through m − 1 when m > 1;

and g(z), its partial derivatives of order m − 1 and less, and hg(z), have finite αth

moments.

These definitions are used to put conditions on the number of zero moments of the

kernel and to provide moment and smoothness conditions for the nonlinear function

and the density of the covariate.

We begin by stating a Lemma which is used throughout the proof of the main

theorem.
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Lemma 3.1. Let f(x) be the density of xi. If supx f(x) < ∞, E|g(X)| < ∞, and

supu |k(u)|+
∫
|k(u)|du <∞, then

1√
N

(ŷi − ȳ)Ii = op(1).(3.1)

The above result indicates that if one nonparametrically regresses yi on xi, the pre-

dicted value behaves asymptotically as if we used the sample mean. This is intuitive

because we are attempting to explain a nonstationary series with a stationary series.

Since such a regression is inconsistent, the sample mean is the default result. The

lemma can be generalized to cases where yi is generated independently of xi rather

than in the manner suggested in (2.1).

Theorem 3.2. Suppose the following conditions hold: (i) xi and εi are independent

and identically distributed; (ii) E|ε|4 < ∞; (iii) x has pdf f ∈ G∞λ , for some λ > 0;

(iv) g ∈ G4
ν , for some ν > 0; (v) as N →∞, N−1a−2qb−4 → 0, a2 min(λ+1,ν)−qb−4 → 0;

(v) k ∈ Kl+n−1 for integers l and n such that l−1 < λ ≤ l,n−1 < ν ≤ n; (vi) σ2
v > 0

and ρ2 > 0; (vii) µg = 0. Then

N(δ̂ − δ)⇒
(∫

(W τ
1 )2

)−1(
ρ2

∫
W τ

1 dW1 +
√
ρ2 − ρ4

∫
W τ

1 dW2

)
,(3.2)

where W2 and W1 are independent standard Brownian motions, W τ
1 = W c

1 (r) −∫
W c

1 (s)ds for model (2.1) and W τ
1 = W c

1 (r)+(6r−4)
∫
W c

1 (s)ds−(12r−6)
∫
W c

1 (s)s ds

for model (2.2). The t-statistic based on δ̂ has limiting distrubution

t(δ̂)⇒ − c
ρ

(∫
(W τ

1 )2

) 1
2

+

(∫
(W τ

1 )2

)− 1
2
(
ρ

∫
W τ

1 dW1

)
+
√

1− ρ2N(0, 1).(3.3)

Assumptions (i)-(v) are similar to Robinson (1988). The limiting distribution given

in Theorem 3.2 is identical to Theorem 2 in Hansen (1995). However, unlike Hansen,

we are unable to estimate a third model, one without a constant term. The reason

is the well known fact that in this form of semiparametric estimation, the intercept
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term is not idenitifed. The apparent lack of identification arises because we have

already implicitly estimated an intercept in the nonparametric regression, and no

such effect remains. That we cannot estimate a model without an intercept is not

a drawback in the nonstationary case since one would at least estimate an intercept

even in the simplest unit root test and even if an intercept is not present under the

null hypothesis.1 As further evidence that this effect is indeed accounted for, notice

the presence of demeaned Ornstein-Uhlenbeck processes in the limiting distribution

of the proposed estimator, as expected from estimating an intercept.

The limiting distribution in Theorem 3.2 also appears in various other related

unit root tests. In particular, similiar (or identical) limiting distributions arise in

Hasan and Koenker (1997) for their unmodified statistic ST based on ranks, in Lucas

(1995) for unit root tests based on M-estimators, and in Seo (1999) for unit root tests

allowing for GARCH effects. Beelders (1999) and Shin and So (1999) also obtained

the same limiting distribution for unit root tests when adaptive estimation is used.

The distribution has the disadvantage that ρ is a remaining nuisance parameter.

There have been various approaches for dealing with the nuisance parameter, ranging

from simulating critical values for each value of the parameter to using conservative

critical values to cover the range of possible ρ. We use the simulated critical values

from Hansen (1995) in a limited Monte Carlo experiment given in the next section.

4. Monte Carlo

We consider several specifications of g(x), both linear and nonlinear to compare

the standard Dickey-Fuller test, Hansen’s (1995) CADF test, and the new tests using

the partial linear model which we denote PLMUR. The data generating process is

∆yi = δyi−1 + gj(xi) + εi, j = 1, . . . , 5.

1See Hamilton (1994), chapter 17 for a discussion on inclusion of deterministic terms in tests for

unit roots. The case with an estimated intercept when no intercept is present corresponds to case 2

in chapter 17 of Hamilton.
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The different functions are listed below.

g1(x) = 0

g2(x) = 2x

g3(x) = log(x)

g4(x) = x2 − 1

g5(x) = x3 − x

The x variables are all standard normal except in g3(x) where x is log-normally

distributed. When g1(x) is used, we expect the Dickey-Fuller test to perform the

best as there is no x effect to detect. The function g2(x) gives the CADF test of

Hansen the advantage since the covariate enter linearly. The other specifications are

nonlinear, so that the PLMUR tests should be more powerful if the nonlinearity is

estimated reasonably.

Smaller values of ρ are indicative of the effectiveness of covariates in explaining

variation in vi = g(xi) + εi. Therefore, we expect more powerful tests if ρ is small.

Straightforward calculations show that

ρ2
1 = 1

ρ2
2 = 0.20

ρ2
3 = 0.50

ρ2
4 = 0.25

ρ2
5 = 0.10

where ρ2
j is associated with gj(x).
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For the PLMUR test, we need to select a kernel and a bandwidth. In our experi-

ment, we chose the Epanechnikov kernel given by

k(u) =

.75(1− u2) if u ∈ [−1, 1],

0 otherwise.

The bandwidth was set to N−
1
5 for all specifications and sample sizes.

The PLMUR test and the CADF test both require estimates of ρ. We compute

these using the residuals from each of the regressions and then use the resulting

estimate to select a critical value from Table 1 in Hansen (1995). We explore size

and power by changing the value of c in δ = − c
N

. For each specification, we generate

sample sizes of 100 and 200 and compute 10,000 replications.2 The results appear in

Table 1.

For c = 0, we have a unit root and we compare the size for each of the tests. The DF

test has size close to the nominal 5% for all choices of g(x) but the CADF is actually

undersized for the linear, log, and cubic cases. The PLMUR test is slightly oversized

when there are no covariates in the data generating process, yet this distortion is

mitigated by the increase in sample size. The size result for the PLMUR test indicates

that the asymptotic theory provides an accurate approximation for the distribution

of the statistic.

For c = 3, the departure from the unit root becomes apparent in the increased

rejection frequencies. All of the tests perform similarly when there is no covariate

effect, indicating that little is lost when estimating a partial linear model even when

it is not warranted. Moreover, for g2, the linear effect, the PLMUR test competes

favorably with the CADF test, suggesting that when there is a linear effect, the loss in

using the more general PLMUR test is small as well. The advantage of the PLMUR

test becomes apparent when the log specification is considered. Power is roughly

2The computations took around 10 days on a Pentium 600 computer. The programs were written

in Ox 2.0, see Doornik (1998).
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double the competing tests here as the covariate is successfully used to reduce the

variance of the estimator of δ. For the quadratic function, the difference is more

pronounced with the PLMUR test generating triple the power of the competing tests.

Finally, using the cubic function, power is six times that of the other tests since the

true value of ρ is .10 in this case. Similar results are obtained for the other local

alternatives of c = 6 and c = 9 with all tests increasing in power as the alternative

becomes more obvious. In all cases where covariates are correctly chosen, both the

CADF and the PLMUR test dominate the standard Dickey-Fuller tests. In all cases

where there is a nonlinear effect, the PLMUR test is the most powerful, with power

increasing as ρ decreases.

5. Conclusions

We have proposed a unit root test based on estimating a partial linear model where

a covariate enters the model nonlinearly. The relevant asymptotic theory was devel-

oped and we provided a limited Monte Carlo experiment to examine the performance

of the test. The results indicate that the test effectively exploits the nonlinear effect

to increase power substantially. In addition, it appears that in our simple case, es-

timating a partial linear model is benign even in cases where the covariates do not

have a nonlinear effect.

There are several issues which remain. First, an extension to allow non iid settings

is necessary. An extension to an augmented Dickey-Fuller test is straightforward

since the coefficients of the lagged ∆yi terms will converge at a slower rate than

the nonstationary components. A more ambitious project is to allow dependence

in xi. The complication arises because the kernels will be evaluated at values of

xi − xj which will depend on the difference i− j. As a practical matter, the issue of

bandwidth selection needs to be treated carefully, with the development of some type

of cross-validation procedure. Finally, an obvious extension to the multivariate case

of cointegration is possible. This is currently being undertaken by the authors.



Ted Juhl and Zhijie Xiao 11

Table 1: Size and Power

N=100 N=200

DF CADF PLMUR DF CADF PLMUR

g1 0.0457 0.0478 0.0810 0.0484 0.0495 0.0670

g2 0.0487 0.0263 0.0540 0.0484 0.0213 0.0479

c = 0 g3 0.0464 0.0339 0.0660 0.0482 0.0362 0.0594

g4 0.0498 0.0493 0.0568 0.0512 0.0510 0.0507

g5 0.0530 0.0391 0.0400 0.0531 0.0371 0.0410

g1 0.0940 0.0950 0.1260 0.0894 0.0916 0.1130

g2 0.0894 0.3639 0.4638 0.0856 0.3368 0.4661

c = 3 g3 0.0872 0.1071 0.2245 0.0886 0.1021 0.2039

g4 0.0857 0.0878 0.3056 0.0812 0.0832 0.2978

g5 0.0702 0.1036 0.6382 0.0693 0.0949 0.6822

g1 0.1671 0.1707 0.1998 0.1505 0.1530 0.1734

g2 0.1589 0.7897 0.8460 0.1537 0.7789 0.8547

c = 6 g3 0.1640 0.2594 0.4692 0.1525 0.2365 0.4424

g4 0.1620 0.1679 0.6457 0.1456 0.1517 0.6496

g5 0.1431 0.2777 0.9140 0.1365 0.2605 0.9480

g1 0.2956 0.2970 0.3366 0.2707 0.2720 0.2910

g2 0.3043 0.9569 0.9780 0.2760 0.9559 0.9747

c = 9 g3 0.3019 0.4812 0.7052 0.2745 0.4532 0.7046

g4 0.2866 0.3039 0.8667 0.2725 0.2822 0.8714

g5 0.2673 0.5282 0.9800 0.2602 0.4907 0.9923

Appendix A.

To begin, use yi =
∑i

l=0(1 − c/N)i−l(g(xl) + εl). Without loss of generality, we

find the convergence rates for c = 0, the case of a unit root. Notice that we also are

assuming that the initial value is y0 = 0.
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Proof of Lemma 3.1: The proof is given in a technical appendix available from the

authors upon request.

Appendix B.

We prove Theorem 3.2 for model (2.1) in this appendix. Note that N(δ̂ − δ) =

D−1 (E + F )) where

D =
1

N2

N∑
i=1

(yi−1 − ŷi−1)2 Ii

E =
1

N

∑
i−1

(yi−1 − ŷi−1) (g(xi)− ĝ(xi) + ε̂i) Ii

F =
1

N

∑
i−1

(yi−1 − ŷi−1) εiIi

The theorem holds if we can show that

D ⇒ σ2
v

∫
(W τ

1 (s))2 ds,

E
p→ 0,

F ⇒ σvσε

(
ρ

∫
W τ

1 dW1 +
√

1− ρ2

∫
W τ

1 dW2

)
We prove these results in a series of six propositions.

Proposition 1.

1

N

N∑
i=1

(yi − ŷi)εiIi ⇒ σvσε

(
ρ

∫
W τ

1 dW1 +
√

1− ρ2

∫
W τ

1 dW2

)
(B.1)

Proof of Proposition 1: The proof follows if

1

N

N∑
i=1

(ŷi − ȳ)εiIi
p→ 0,

which we show by

E

(
1

N

N∑
i=1

(ŷi − ȳ)εiIi

)2

→ 0.
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E

(
1

N

N∑
i=1

(ŷi − ȳ)εiIi

)2

= E

 1

N2

∑
i=1

(ŷi − ȳ)2ε2i Ii︸ ︷︷ ︸
A

+
1

N2

∑∑
i6=j

(ŷi − ȳ)(ŷj − ȳ)εiεjIiIj︸ ︷︷ ︸
B


We have E 1

N
(ŷi − ȳ)2Ii = O(N−1a−qb−2) so that E(A) = O(N−1a−qb−2).

For part B, we find the order of the N2 terms of the form

E(ŷi − ȳ)(ŷj − ȳ)εiεj

= E

(
1

N

N∑
k=1

(
NKik −

∑N
l=1 Kil∑N

l=1 Kil

)
yk

)(
1

N

N∑
m=1

(
NKjm −

∑N
l=1 Kjl∑N

l=1 Kjl

)
ym

)
εiεj

Conditioning on XN = (x0, . . . , xN) and taking expectations, we find that the order

is the same as the order of

E
1

N

N∑
k=1

(
NKik −

∑N
l=1 Kil∑N

l=1 Kil

)
1

N

N∑
m=1

(
NKjm −

∑N
l=1 Kjl∑N

l=1 Kjl

)
.(B.2)

By identity of distribution, (B.2) has N2 terms of the form

1

N2
E

(
−2NKikKjm − 2NKikKjk∑N

l=1 Kil

∑N
l=1 Kjl

)
.

Taking the expected value of the absolute value the above term is O(N−3a−qb−2),

implying that E(B) = O(N−1a−qb−2). 2

Proposition 2.

1

N2

N∑
i=1

(yi − ȳ)(ȳ − ŷi)Ii
p→ 0.

Proof of Proposition 2:

1

N4
E

(
N∑
i=1

(yi − ȳ)(ȳ − ŷi)Ii

)2

≤ 1

N2

N∑
i=1

E(yi − ȳ)2E
1

N
(ȳ − ŷi)2Ii(B.3)

by Loève’s cr inequality and Cauchy-Schwartz. Since E 1
N

(ȳ− ŷi)2Ii = O(N−1a−qb−2)

and E(yi − ȳ)2 = O(N), then (B.3) is O(N−1a−qb−2). 2
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Proposition 3.

1

N2

N∑
i=1

(ȳ − ŷi)2Ii
p→ 0

Proof of Proposition 3: The proof is given in a technical appendix available from

the authors upon request.

Proposition 4.

1

N2

N∑
i=1

(yi−1 − ŷi−1)2Ii ⇒
∫

(W1 − W̄1)2

Proof of Proposition 4:

1

N2

N∑
i=1

(yi−1 − ŷi−1)2Ii =
1

N2

N∑
i=1

(yi−1 − ȳ)2 + 2
1

N2

N∑
i=1

(yi−1 − ȳ)(ȳ − ŷi)Ii

+
1

N2

∑
i=1

(ȳ − ŷi)2Ii

The second and third terms on the right hand side converge to zero by Propositions

2 and 3. 2

Proposition 5.

1

N

N∑
i=1

(yi − ŷi)ε̂iIi
p→ 0.

Proof of Proposition 5: The proof appears in a technical appendix available from

the authors upon request.

Proposition 6.

1

N

N∑
i=1

(yi − ŷi)(g(xi)− ĝ(xi))Ii
p→ 0.

Proof of Proposition 6: The proof appears in a technical appendix available from

the authors upon request.
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Appendix C.

We prove Theorem 3.2 for model (2.2). We define

wi = θi+ yi

so that the relationship between the previous propositions and those given in this

appendix is more transparent. The joint estimators for (δ, β) are given by δ̂
β̂

 =

ê>w êw ê>w êt

ê>t êw ê>t êt

−1ê>w ê∆w

ê>i ê∆w

 ,

where êw, ê∆w, and êt are the residuals from nonparametrically regressing w, ∆w,

and a trend on xi. A rotation of the type in Fuller (1976) is applied to facilitate the

proof.

 N 0

−θN 3
2 N

3
2

 δ̂
β̂

 =


(êw − θêt)>(êw − θêt)

N2

(êw − θêt)>êt
N

5
2

ê>t (êw − θêt)
N

5
2

ê>t êt
N3


(êw − θêt)>ê∆w

N
ê>t ê∆w

N
3
2


We show the (joint) convergence of the above terms in a series of propositions. Notice

that using the rotation above, we generate

êwi − θêti = wi − ŵi − θ(i− î)

= θi+ yi − θî− ŷi − θi+ θî

= yi − ŷi.

(C.1)

This allows us to use some of the results in Appendix B in the remaining proofs.

Proposition 7.

1

N2

N∑
i=1

(êwi − θêti)2Ii
d→
∫ (

W1 − W̄1

)2
(C.2)

Proof of Proposition 7 The result follows by Proposition 4.
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Proposition 8.

E

(
î

N
− 1

2

)2

Ii = Op(N
−1a−qb−2)(C.3)

Proof of Proposition 8

E

(∑
jKij

(
j
N

)∑
jKij

− 1

2

)2

Ii ≤ (Naqb)−2E

(∑
j

Kij(
j

N
− 1

2
)

)2

.

Then

E

(∑
j

Kij(
j

N
− 1

2
)

)2

=
∑
j

EK2
ij

(
j

N
− 1

2

)2

︸ ︷︷ ︸
A

+
∑∑

j 6=l

EKijKil

(
j

N
− 1

2

)(
l

N
− 1

2

)
︸ ︷︷ ︸

B

Part A is O(Naq). Notice that we can pull out EKijKil by identity of distribution

and note∑∑
j 6=l

(
j

N
− 1

2

)(
l

N
− 1

2

)
=

(∑
j

j

N
− 1

2

)2

−
∑
j

(
j

N
− 1

2

)2

=
1

4N2
−
(
N

3
− N + 1

2
+
N

4

)
= O(N),

so that part B is O(Naq). 2

Proposition 9.

N−
5
2

N∑
i=1

(êwi − θêti)êtiIi
d→
∫ (

W1 − W̄1

)
sds(C.4)

Proof of Proposition 9

N−
5
2

N∑
i=1

(êyi − θêti)êtiIi = N−
5
2

N∑
i=1

(yi − ŷi)iIi −N−
5
2

N∑
i=1

(yi − ŷi)̂iIi.

We first write

N−
5
2

N∑
i=1

(yi − ŷi)i = N−
5
2

N∑
i=1

(yi − ȳ)i+N−
5
2

N∑
i=1

(ȳ − ŷi)i.
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Then

E

(
N−

5
2

N∑
i=1

(ȳ − ŷi)i

)2

= N−5E
N∑
i=1

(ȳ − ŷi)2i2Ii +N−5E
∑∑

i6=j

(ȳ − ŷi)(ȳ − ŷj)ijIiIj

Using the Cauchy-Schwartz inequality and the fact that E(ȳ − ŷi)2Ii = O(a−qb−2),

the above term is O(N−1a−qb−2). It is well known that

N−
5
2

N∑
i=1

(yi − ȳ)i⇒
∫

(W1 − W̄1)sds,

so it remains to show that

N−
5
2

N∑
i=1

(yi − ŷi)̂iIi
p→ 0.(C.5)

It is easy to see that

N−
3
2

N∑
i=1

(yi − ŷi)
1

2
Ii

p→ 0

using Lemma 3.1 so it is enough to show that

N−
3
2

N∑
i=1

(yi − ŷi)(
î

N
− 1

2
)Ii

p→ 0.

N−
3
2

N∑
i=1

(yi − ŷi)(
î

N
− 1

2
)Ii = N−

3
2

N∑
i=1

(yi − ȳ)(
î

N
− 1

2
)Ii︸ ︷︷ ︸

A

+N−
3
2

N∑
i=1

(ȳ − ŷi)(
î

N
− 1

2
)Ii︸ ︷︷ ︸

B

The expectation of part A squared is

N−3

N∑
i=1

E(yi − ȳ)2(
î

N
− 1

2
)2Ii +N−3

∑∑
i6=j

E(yi − ȳ)(yj − ȳ)(
î

N
− 1

2
)(
ĵ

N
− 1

2
)IiIj

This term is clearly O(N−1a−qb−2) from Proposition 8. The expectation of part B

squared is

N−3

N∑
i=1

E(ȳ − ŷi)2(
î

N
− 1

2
)2Ii +N−3

∑∑
i6=j

E(ȳ − ŷi)(ȳ − ŷj)(
î

N
− 1

2
)(
ĵ

N
− 1

2
)IiIj

which is seen to be O(N−2a−2qb−4). 2
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Proposition 10.

N−3

N∑
i=1

ê2
tiIi

p→ 1

12

Proof of Proposition 10

N−3

N∑
i=1

ê2
ti = N−2

N∑
i=1

(
i

N
− 1

2
+

1

2
− î

N

)2

which can be written as

N−2

N∑
i=1

( i

N
− 1

2

)2

+

((
i

N
− 1

2

)(
1

2
− î

N

))
+

(
1

2
− î

N

)2


For the first term,

N−2

N∑
i=1

(
i

N
− 1

2

)2

→ 1

12

since N−2
∑N

i i→ 1/2 and N−3
∑N

i=1 i
2 → 1/3. Next,

E

(
N−2

N∑
i=1

(
i

N
− 1

2

)(
1

2
− î

N

))2

= N−4E
N∑
i=1

(
i

N
− 1

2

)2
(

1

2
− î

N

)2

+N−4E
∑∑

i6=j

(
i

N
− 1

2

)(
1

2
− î

N

)(
j

N
− 1

2

)(
1

2
− ĵ

N

)

which is O(N−1a−qb−2) by Proposition 8 and Cauchy-Schwartz. Then

E

 N∑
i=1

(
1

2
− î

N

)2
2

= N−4E

N∑
i=1

(
1

2
− î

N

)4

︸ ︷︷ ︸
A

+N−4E
∑∑

i6=l

(
1

2
− î

N

)2(
1

2
− l̂

N

)2

︸ ︷︷ ︸
B

For part A, consider(
1

2
− î

N

)4

≤ (Naqb)−4E

(
N∑
j=1

Kij(
j

N
− 1

2
)

)4

.
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Using Loève’s cr inequality, we have

E

(
N∑
j=1

Kij(
i

N
− 1

2
)

)4

≤ N3

N∑
j=1

K4
ij(

j

N
− 1

2
)4,

so that part A is O(N−3a−3qb−4). By Cauchy-Schwartz and Proposition 8, part B is

O(N−4a−2qb−4). 2

Proposition 11.

N−
3
2

N∑
i=1

(i− î)εiIi
d→
∫

(s− 1

2
)dW2(s)

Proof of Proposition 11: The proof is completed by showing that

N−
1
2

N∑
i=1

(
î

N
− 1

2

)
εi

p→ 0.

Conditioning on XN and using the independence of εi gives

E

(
N−

1
2

N∑
i=1

(
î

N
− 1

2

)
εi

)2

= N−1E
N∑
i=1

(
î

N
− 1

2

)2

ε2i

which is O(N−1a−qb−2). 2

Proposition 12.

N−
3
2

N∑
i=1

(i− î)ε̂iIi
p→ 0

Proof of Proposition 12: Again, we break this term into two parts:

N−
3
2

N∑
i=1

(i− î)ε̂iIi = N−
1
2

N∑
i=1

(
i

N
− 1

2
)ε̂iIi︸ ︷︷ ︸

A

+N−
1
2

N∑
i=1

(
1

2
− î

N
)ε̂iIi︸ ︷︷ ︸

B

.

For the part A,

E

(
N−

1
2

N∑
i=1

(
i

N
− 1

2
)ε̂iIi

)2

= N−1E
N∑
i=1

(
i

N
− 1

2
)2ε̂2i Ii

+N−1E
∑∑

i6=l

(
i

N
− 1

2
)(
i

N
− 1

2
)ε̂iε̂lIiIl
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The first part of the above term is O(N−1a−qb−2). Using the fact that Eε̂iε̂lIiIl is

identical for i 6= l and the fact that
∑∑

i6=l(i/N − 1/2)(l/N − 1/2) = O(N), part A

is Op(N
−1/2a−q/2b−1).

For part B,

E

(
N−

1
2

N∑
i=1

(
1

2
− î

N
)ε̂iIi

)2

= N−1E

N∑
i=1

(
1

2
− î

N
)2ε̂2i Ii

+N−1E
∑∑

i6=l

(
1

2
− î

N
)(

1

2
− l̂

N
)ε̂iε̂lIiIl

Using Cauchy-Schwartz, (??), and Proposition 8, part B is Op(N
−1/2a−qb−2). 2

Proposition 13.

N−
3
2

N∑
i=1

(i− î)(g(xi)− ĝ(xi))Ii
p→ 0

Proof of Proposition 13: The proof is identical to the proof of Proposition 12 with

the exception that Proposition 1 of Robinson is applied to g(xi)− ĝ(xi) as (??) was

applied to ε̂i. The order is Op(N
−1/2a−q/2b−1 + aζb−1) where ζ = min(λ + 1, ν) as in

Proposition 6. 2
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