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Abstract

This paper examines incentives of poor agents to escape poverty by saving. Owing
to limited liability, low wealth creates borrowing constraints, preventing the poor from
being able to finance productive projects. Future wealth increases resulting from current
saving would relax these borrowing constraints, raising future productivity and incomes,
thus providing a possible channel of upward mobility. However, the extent to which
these benefits accrue to the agents themselves depends on the allocation of bargaining
power with their lenders (or landlords). If agents have no bargaining power, the returns
to saving of poor agents are appropriated entirely by lenders, resulting in poverty traps.
In this case the long run wealth distribution becomes polarized into two classes, with
no middle class and no interclass mobility. If on the other hand the agents have all
the bargaining power then the returns to saving accrue to them entirely, and agents

accumulate wealth indefinitely irrespective of initial conditions.
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1 Introduction

It is well known that one of the unfortunate consequences of poverty is that it inhibits the
poor from engaging in productive work, owing to their inability to finance such projects
themselves or borrow the necessary funds. It is also well understood how the allocation
of bargaining power in financial contracts between poor agents and lenders (or landlords)
can significantly affect their effort incentives and productivity. In the development eco-
nomics literature, this has formed the theoretical basis for the productivity-enhancing role
of institutional reforms such as land reforms, contract regulations, subsidized credit and
public employment programs (Eswaran and Kotwal (1986), Shetty (1988), Dutta, Ray and
Sengupta (1989), Mookherjee (1997a, 1997b), Banerjee, Gertler and Ghatak (1997), and
Hoff and Lyon (1995)). In the literature on macroeconomics and finance, such models
have been used to explain the presence of borrowing constraints, why external finance is
frequently more expensive than internal finance and why distribution may have a role in
explaining output fluctuations (Bernanke and Gertler (1989), Galor and Zeira (1993), Hoff
(1994), Holmstrom and Tirole (1994), Aghion and Bolton (1997) and Piketty (1997)). Sim-
ilar models have been used to explain why forms of industrial organization may depend
on wealth inequality, and why worker cooperatives may occasionally perform superior to
capitalist firms (Banerjee and Newman (1993), Bowles and Gintis (1994, 1995) and Legros
and Newman (1996)). In these settings, reducing the inequality of wealth or power can
give rise to increased productivity and per capita output, reversing traditional notions of
equality-efficiency tradeoffs. They provide instances where the Coase Theorem concerning
the independence of efficiency from inequality does not apply, owing to the presence of

‘transaction costs’ such as moral hazard and wealth constraints.

Given the central importance of wealth constraints in these models, it is important to
understand their implications for saving incentives which affect the evolution of wealth over
time. If agents are restricted in their access to credit, tenancy or employment owing to
limited current wealth, one would expect such agents to be motivated to save aggressively
in order to ease such constraints in the future. To the extent that this is true, the economy

would be characterized by substantial wealth mobility, and wealth constraints would matter



only temporarily in any given agent’s lifetime. The convergence predictions of the neoclas-
sical growth model would then continue to be valid. Yet most economies are characterized
by the presence of some agents that remain persistently poor over their lifetime. Why does
poverty tend to persist for some and not others? Why do some societies tend to be char-
acterized by more upward mobility than others? When is it the case that nonconvexities
inherent in credit constraints create divergence between agents with different levels of initial
wealth? These questions motivate the study of dynamic models in which wealth levels of
agents evolve endogenously, depending on outcomes of current projects, current financial
contracts and subsequent consumption/saving decisions made by agents. Particularly inter-
esting are the implications of institutional characteristics such as allocation of bargaining

power or historical wealth inequality on the dynamics of wealth accumulation.

The existing literature on dynamic interactions between contracting and wealth typically
focuses on overlapping generations models where savings take the form of ‘warm glow’
bequests constituting a constant fraction of lifetime income (Banerjee and Newman (1991,
1993), Galor and Zeira (1993), Aghion and Bolton (1997), Piketty (1997)). While this
greatly simplifies the dynamic analysis, it is tantamount to assuming that all agents save
an exogenously fixed fraction of their income, as in Solow’s neoclassical growth model.
Moreover, the indifference of agents to the future fortunes of their descendants inherent
in this formulation is somewhat troubling when the model generates poverty traps that
might be avoided by small doses of (nonpaternalistic) altruism.* It does not throw light
on the nature of saving incentives generated for any generation within its own lifetime
where savings decisions are likely to affect one’s own future well-being. And analyzing the
determinants of savings propensities of the poor is obviously fundamental to understanding

to the patterns of wealth mobility that will emerge in any given society.

This motivates our interest in a model in which savings incentives are endogenously
determined, as the outcome of dynamic optimization of intertemporal welfare by households,
given their expectations concerning how their future access to credit or employment will

thereby be affected. To keep the model tractable we abstract from interactions across the

“For instance, the model of Loury (1981) shows how such an approach would generate patterns of long

run convergence despite the complete absence of any capital markets.



decisions of different agents at any point in time (that have been studied in many of the
above cited papers). Our principal focus is on the effect of the allocation of contractual
bargaining power between a representative agent and financiers or asset owners (hereafter
referred to as principals) that she contracts with. In any given period there is an exogenous
matching process pairing agents with principals who subsequently bargain over a short
period financial contract. The wealth of the agent is verifiable by the principal; consequently
the contract they negotiate is conditioned on this wealth. Agents subsequently make effort
decisions that affect the (random) returns from the project financed, and consumption

saving decisions that affect their future wealth (with a constant lending interest rate).

We study two polar settings, one in which the agent has all the bargaining power (akin to
a ‘competitive’ market with free entry of principals), and another in which the principal has
all the bargaining power (akin to a ‘monopoly’ market). We do not model how the allocation
of bargaining power may be endogeneously determined by deeper institutional parameters
(such as asset ownership patterns, frictions in search and bargaining processes, legal rules
and contractual regulations, relative degrees of impatience, or number of transacting parties

on either side of the market).

Our principal result is that qualitative patterns of wealth mobility depend importantly
on the allocation of bargaining power. When the principals have all the bargaining power,
poverty traps emerge, as poor agents have no incentives to save at all.’ Sufficiently wealthy
agents maintain wealth over time. The long run wealth distribution is completely polarized,
and exhibits zero mobility. In contrast, when agents have all the bargaining power, strong
incentives to save are generated. No poverty trap can exist; agents accumulate wealth
indefinitely irrespective of initial conditions. While the extreme situations where one side
has all the bargaining power are admittedly unrealistic, our results suggest that institutional
characteristics of real economies that affect relative bargaining power will be an important

determinant of savings and upward mobility.

Section 2 discusses related literature. Section 3 introduces the model. Section 4 considers

5This result can be viewed as a formalization of the idea of Bhaduri (1973) wherein rent extraction

motives of landlords precipitate poverty traps for their tenants.



the case where principals have all the bargaining power, while Section 5 considers the reverse

situation. The Appendix includes the more technical proofs.

2 Related Literature

Loury (1981) — the pioneering paper on wealth dynamics with imperfect capital markets
— constructed a model with a neoclassical investment technology and endogenous savings
based on dynamic optimization. He demonstrated that the wealth process is ergodic, result-
ing in a unique long run wealth distribution, independent of initial conditions. In his model,
therefore, there are no poverty traps: the neoclassical convergence results extend. A similar
conclusion was obtained by Banerjee and Newman (1991) in a model where wealth con-
strained agents were subject to moral hazard, owing to the absence of any limited liability

problems.

More recent literature has presented a variety of models with poverty traps, where long
run inequality and per capita output depend on initial inequality, via effects on capacity-
building such as nutrition (Ray and Streufert (1993)), or exogenous investment thresholds
(Banerjee and Newman (1993), Galor and Zeira (1993), Mani (1997)). The investment
thresholds arise from nonconvexities in the technology. The poor cannot escape from poverty
traps by additional borrowing (owing to capital market imperfections), saving (precluded by
the assumption of constant savings rate), or gradual accumulation of capital stock (owing
to the technological nonconvexities). Piketty (1997) considers a model with a convex tech-
nology and a constant savings rate. This model has no poverty traps, but there are multiple
steady states and long run output can depend on initial inequality. The model of Aghion
and Bolton (1997) has a nonconvex technology and a constant savings rate high enough
to ensure that wealth is ergodic; they focus on inequality dynamics in the intermediate
term. Ghatak, Morelli and Sjéstrom (1997) analyse a model with an exogenous investment
threshold and endogenous savings in a two period setting. They focus on the effects of
credit market imperfections on effort and saving incentives of young agents in a competitive
setting where agents have all the bargaining power. The model studied in this paper is con-

trasted to this literature in that it has a convex technology, endogenous savings decisions in



an infinite horizon framework, and examines the implications of unequal bargaining power.
Whether or not poverty traps arise depends on the endogenous emergence of investment

thresholds, determined exclusively by institutional characteristics of the economy.

Other literature on the dynamics of inequality in a asymmetric information contracting
framework includes Green (1987), Thomas and Worrall (1990), Atkeson and Lucas (1992),
Wang (1995), and Phelan (1998). All of these papers study efficient insurance where agent
endowments are private information and follow an i.i.d. process. They differ from our model

in a variety of respects:

(a) the incentive problem arises from private information (unobservable endowments)

rather than moral hazard (unobservable effort);
(b) agents are assumed unable to save;

(c) they use a mechanism-design approach, i.e., where a social planner devises an effi-
cient long-term mechanism, whereas we study a sequence of equilibrium short-period

contracts;

(d) they consider the case in which the planner seeks to maximize the payoff of the agents,
which corresponds to the case in our model where the agents have all the bargaining

power.

The results also differ markedly: the insurance model tends to generate (almost) all agents
drifting down into poverty. In the corresponding ‘competitive’ case, our model produces
a diametrically opposite conclusion: agents’ wealth drift upwards indefinitely, irrespective
of initial conditions. The upward drift arises owing to the strong saving incentives in our
model. Another reason for the difference in results is the limited liability aspect of our

model, which ensures that the incentive problem remains nonnegligible for poor agents.”

6The arguments employed in our model in the competitive case are, however, closely connected to those

used in the dynamic insurance literature in some respects. This is discussed further in Section 5.



3 The Model

3.1 Projects and Payoffs

There are two types of agents: A and P. Time runs 0,1,2,.... At any date, a P is matched
with an A with wealth w; the latter is an entrepreneur operating a productive project for
which P provides finance, or leases relevant assets. A can engage in a project at a scale «
lying between 0 and 1. At scale « the project involves an upfront cost of af, and yields a
return aR, where R > f. With probability 1 — e;, the project fails to generate any return,
where e; € [0, 1] is noncontractible effort of the agent at ¢. Hence there are constant returns
to scale, and a capacity constraint on the scale of the project, possibly arising from limits

on the time or attention of the entrepreneur. But the production technology is convex.

A’s date t payoff is u(¢;) — D(es), where ¢, > 0 is A’s consumption at ¢. w is strictly
increasing and concave, with u(0) = 0; so linear utility is possible. Note also that no
assumption has been made concerning marginal utility at zero consumption. Effort disutility
D is strictly increasing, strictly convex, satisfying D(0) = D'(0) = 0, lim._,; D(e) = oo,
and D"'(e) > 0 for all e > 0.

Once matched at a given date, P and A enter into a short-term contract, where P
pays for setup cost af and receives payments ¢, 7 from A in the event of failure and
success respectively. The resulting wealth of A at the end of date t is then x;y = wy — ¢; in
failure state, and y¢ = wy + @R — 7 in the success state. Equivalently, the contract can be
represented by z;,y:, with resulting transfers to P being w; — af — x; in failure state, and
wy — af + aR — y¢ in the success state. The contract has to respect the limited liability
constraint x;,y; > 0. Combined with the assumption that utility of zero consumption is
finite, this limited liability constraint has bite for agents with negligible wealth, necessitating

payment of informational rents to induce effort incentives.



3.2 Consumption-Saving Decisions

Let z; € {xt,y:} denote A’s wealth at end of period ¢. A then decides consumption ¢; €
[0, z;]. The resulting saving z; — ¢; is invested at an exogenous rate of return > 0, resulting
in a level of wealth wy11 = (147)(2:—¢) at the beginning of date ¢4 1, whence A is matched

again with a P.

A’s objective is to maximize 352, 6 1u(c;) — D(e;), with discount rate § = ﬁ The
assumption on the discount rate ensures that in autarky A would maintain his wealth,
so that the wealth dynamics in our model result entirely from the effects of contractual
structure. On the other hand, P’s objective at ¢ is to maximize expected profit at ¢, given
by w; — af + e;(a«R — y) — (1 — et)x;. This corresponds to the assumption that A and P
enter into a short period contract, and the nature of the market is such that A is very likely
to be matched with other P’s at succeeding dates that it does not pay P to incorporate
effects of the current contract on the same A’s wealth at future dates. A of course knows
that his future wealth will affect the nature of contracts in the future, so will incorporate

these effects when making current decisions.

3.3 The Static Benchmark

It is useful to quickly review the case where there is a single date (so we drop the ¢ subscript
in this section), studied in more detail in Mookherjee (1997a,1997b). Then A must consume
the entire end-of-period wealth, resulting in the following expression for expected utility
eu(y) + (1 — e)u(x) — D(e).

The set of feasible contracts for A with given wealth w is «, x, y, e satisfying the following

four constraints:
(i) Incentive Constraint (IC): D'(e) = max{0,u(y) — u(z)}
(ii) A’s Participation Constraint (APC): u(z) + eD'(e) — D(e) > u(w)
(iii) P’s Participation Constraint (PPC): w —af +e(aR—y) — (1 —e)z >0

(iv) Limited Liability (LL): 2,y > 0



Note that there is always a feasible contract & = 0, = y = w, e = 0, which we hereafter
call the null contract. The set of feasible contracts maps into the set of feasible payoffs
Up =w—af+e(aR—y)—(1—e)x,Us = u(x)+eD’(e)—D(e), allowing us to generate a utility
possibility frontier. Constrained efficient contracts generate maximal (Pareto undominated)

payoffs within the feasible set.

LEMMA 1 Every nonnull feasible contract with o € (0,1) is weakly Pareto dominated by

one with either o« =1 or a = 0.

Proof: If eR — f > 0 then putting o = 1 and keeping x,y, e unchanged preserves feasibility,
and increases the lenders payoff, while leaving the borrower’s payoff unchanged. On the
other hand if eR — f < 0 then the same is true if « is set at 0 and z, y, e are left unchanged.

Hence without loss of generality we can ignore interior values of project scale a. Note
also that since u is concave, any contract with a = 0 is weakly dominated by one involving
e =0 and y = z. The two participation constraints imply that the only contract satisfying
e = a = 0 is the null contract. Hence the concavity of w implies that if there exists
a feasible non-null contract, we can focus entirely on contracts involving & = 1 when

describing constrained efficient contracts.

P and A bargain over the set of constrained efficient contracts. If P has all the bargaining
power, the contract a(w), z(w),y(w), e(w) maximizes Up subject to IC, APC, PPC and LL.
In contrast, if A has all the bargaining power, a(w), z(w), y(w), e(w) maximizes U, subject

to IC, APC, PPC and LL

Let us first consider the properties of the contract resulting when P has all the bargaining
power, and w = 0. Then APC is implied by LL and IC, so it is optimal for P to set « = 0,
and the problem reduces to selecting y(w), e(w) to maximize e[R — y], with D'(e) = u(y).
Note that it is optimal for P to set e > 0,y > 0, since a small increase in y from 0 would

increase P’s profit. Let the optimal e be denoted e*.



Assumption [A] e*[R —u~Y(D'(e*))] > f.

[A] implies that with w = 0 there exists a non-null feasible contract; hence the optimal
contract from P’s point of view generates positive surplus to both. A earns a positive infor-
mational rent because only the carrot (positive y) can be used to provide effort incentives,
and assumption [A] ensures that this is in the interest of P. This is where the limited liability

assumption plays a crucial role.

If [A] is not satisfied, there is no non-null feasible contract for an agent with zero wealth.
In that case defining w* = e*[R—u~1(D’(e*))] — f > 0, there is no non-null feasible contract
for all agents with wealth between 0 and w*. Such agents will therefore be excluded from
the market altogether. If e*D’(e*) — D(e*) > u(w*) there is a non-null feasible contract for
a w* agent. If the inequality is strict, then the optimal contract for P for such an agent
will award a strictly positive surplus to both parties: this corresponds to a phenomenon
analogous to a tenancy ladder, where agents must accumulate a certain minimal level of
wealth before they can gain access to the market. In what follows we shall exclude this

interesting case.

Previous literature shows how the allocation of bargaining power or A’s wealth affects
the contract and the induced effort. For instance when U is linear then ep(w) < eq(w) <
et = D'"Y(R), and both ep(w), e4(w) are nondecreasing (Mookherjee (1997a)). Increased
wealth permits agents to post larger collateral, and thus credibly commit to accepting larger
punishments in case the project fails. This induces higher effort levels. Moreover, given
assumption [A], poor agents must be offered informational rents that are increasing in the
level of effort that has to be induced. So the allocation of bargaining power matters: these
rents are counted as a benefit by A but a cost by P. Shifting bargaining power to P thus
reduces the level of effort induced. How these results are modified in the case where A is

risk-averse is analysed in Mookherjee (1997b).

10



3.4 Infinite Horizon Markov Equilibria

We now move to the infinite horizon setting, and focus on Markov equilibrium, where
contracts are conditioned on the wealth of agents: a(w),z(w),y(w),e(w), combined with
A’s consumption strategy ¢(z). Let V(w) denote the resulting present value utility for A at

the beginning of any date when he has wealth w.

Then A’s consumption strategy is as follows. Let w’ denote his target initial wealth
for the next date. This corresponds to saving dw’. The target wealth solves the following

problem.

B(z) = max u(z —éuw') + 6V (w'). (1)

0<éw’' <z
Here B(z) denotes A’s present value utility at any date where he attains end-of-period
wealth z following realization of the project return and payment of transfers to P in line:
call this the ex post value function. This incorporates A’s subsequent consumption-saving
decision at this date, and what A expects to attain from the following date. This ex post

value function helps define A’s savings and effort incentives, to which we now turn.

The saving incentive constraint can be written as
(SIC): For all z > 0: ¢(z) = z — dw(z), where w(z) solves (1).

while A’s effort incentive under any given contract (z,y): e will be chosen to maximize

eB(y) + (1 — e)B(z) — D(e), yielding

(EIC): D'(e) = max{B(y) — B(x),0}

Finally, the relation between ez ante and ex post value functions is as follows:
V(w) = e(w)B(y(w)) + (1 — e(w)) B(z(w)) — D(e(w)) 2)

The corresponding sequence of events is depicted in Figure 1.

11
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Figure 1: SEQUENCE OF EVENTS

3.5 Feasible Contracts; Equilibrium

Given equilibrium a(w), z(w),y(w), e(w), c¢(z) and associated value functions B,V a con-

tract (a,z,y,e) is feasible for A with wealth w if it satisfies (1C), (LL), (PPC) and
(APC): eB(y) + (1 — e)B(z) — D(e) > B(w)

As in the static case, this helps define the set of feasible contracts, and thereafter the set of

constrained efficient contracts between this A and the P he is currently matched with.
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In the case where principals have all the bargaining power, the appropriate notion of

Markov equilibrium is the following.

Definition (a(.),z(.),y(.),e(.),¢(.)) is a P-equilibrium if (a) c(z) satisfies (SIC) for every z,
and (b) for every w: a(w),z(w),y(w), e(w) maximizes w — af + e[aR —y] — (1 — e)x over

the set of contracts feasible relative to this equilibrium.

When the allocation of bargaining power is reversed, this is modified as follows.

Definition {z(.),y(.),e(.),c(.)} is an A-equilibrium if (a) c¢(z) satisfies (SIC) for every z, and
(b) for every w: a(w), z(w),y(w), e(w) maximizes eB(y) + (1 — e)B(x) — D(e) over the set

of contracts feasible relative to this equilibrium.

Note that Lemma 0 also applies to this setting. Hence we may confine our attention to
contracts involving o = 0 or 1. Note however that B, unlike u, may not be concave. So
there may exist feasible contracts involving no production: o = 0, but which are non-null,
with y # x. If y < & then of course this is equivalent to the null contract since it will elicit
e = 0. But the case with y > z,e > 0, = 0 still remains. We however shall not consider
the possibility of such contracts. There are two reasons for this. First, if & = 0 then there is
no project financed, and hence no project outcomes on which transfers can be conditioned.
Then y = x and we are back to a null contract. Second, a non-null contract with a« = 0
may arise only owing to the nonconavity of B: A would optimally like to bear some risk,
and so effectively purchases a lottery from P. But it an expensive way of buying risk, since
it necessitates the application of costly effort by A. Such a contract would be dominated by
a randomized contract with e = 0. Given that we do not consider randomized contracts, it

does not make any sense to consider these contracts either.

Hence it what follows, either no non-null feasible contract exists at w, in which case the
equilibrium must be associated with z(w) = y(w),e(w) = 0 = a(w), or (without loss of

generality) the equilibrium involves a constrained efficient contract in which o = 1.

13



4 Where P has all the Bargaining Power

4.1 The ‘Floor’ Contract

The floor contract is the one offered to A with w = 0. In what follows, remember that
'A] continues to be assumed. The next proposition describes some properties of contracts
offered to agents with zero wealth: specifically these are similar to optimal contracts in the

static setting in that A will receive informational rents.

PROPOSITION 1 In any P-equilibrium:

(a) e(0) > 0,y(0) > 0,z(0) = 0.

(b) V(0) = e(o)D'(e(loz)é—D(e(O)) >0

(¢) There exists w* such that V(w) = V(0) > B(w) for all w € [0,w*), and V(w) > V(0)

for all w > w*.

Proof: Note that ¢(0) = 0 = w(0), so
B(0) = «(0) + 6V(0) = 6V (0)
while
V(0) = e(0)B(y(0)) + (1 = ¢(0)) B(x(0)) — D(e(0)),

where 2(0),y(0), e(0) maximize e[R — y] — (1 — e)x — f subject to (IC), (LL), (PPC) and
(APC) corresponding to w = 0.

Note that at w = 0, (APC) is implied by (LL) and (IC): eB(y) + (1 — e)B(z) — D(e) =
B(x) + eD'(e) — D(e) > B(z) > B(0)

So y(0),2(0), e(0) maximizes e[R—y]— (1 —e)x subject to D'(e) = max{B(y)—B(x),0},
y,x > 0.

We now claim that z(0) = 0. If this is false, then P can lower z(0) slightly and realize

an improvement as long as R — y(0) + 2(0) > 0. On the other hand if R — y(0) 4+ x(0) <0,

we have y(0) > 0 and a slight lowering of y(0) will realize an improvement.

14



implying
e(0)D'(e(0)) — D(e(0))

V(0) = T3

Finally we show that y(0) > 0, which implies V'(0) > 0. If this is untrue, y(0) = 0 = e(0)
and (PPC) is violated, so there cannot exist a feasible contract at w = 0 generating positive
profit. But P can select y = y*(> 0) from the static optimal contract, in response to which
A will respond with e > e*, since B(y) — B(0) > u(y) — u(0) for all y. This will generate
a profit for P no smaller than the static optimal contract, so assumption [A] implies that

there does exist a feasible and profitable contract at w = 0.

Now note that B is a strictly increasing function, and B(0) = 6§V (0) < V(0). Define w*
as sup,,{w|V(0) > B(w)}. And note that for any w > w*, V(w) > B(w) > B(w*) > V(0).
]

The implication of Proposition 1 is that A’s value function V' must be nonconvex. This
is evident if B is continuous it must be flat (i.e., no saving incentives) over a range of
low wealth levels, whereas it must be rising later on. And if B is discontinuous at 0,
this necessitates a discontinuity of V' at 0. Poor agents must be offered a ‘floor’ contract
that awards them utility in excess of their outside option. This nonconvexity, which plays
a fundamental role in the analysis below, arises entirely from aspects of the contractual

structure, rather than the technology.

4.2 A Simple P-Equilibrium

We shall try to explicitly construct a P-equilibrium with continuous value functions (here-

after referred to as a simple P-equilibrium (SPE)), where

V(0), ifw<w*
w) =
B(w), ifw > w*

15



B(w)

Vv (0)

Figure 2: THE FEx Ante VALUE FUNCTION V IN A SIMPLE P-EQUILIBRIUM.

and rents are generated only for poor agents. See Figure 2. To this end we impose the
following assumption (e* denotes the optimal P-equilibrium effort for w = 0 in the static

setting):

Assumption [B]
(1+6)u (%) —u(R) < §(1 — 8)[e*D'(e*) — D(e*)]. (3)

[B] can be viewed as a restriction on the curvature of u (given all other parameters),
stating that the agent is not “too risk-averse” (it is always satisfied when U is linear). Given

concave u, it can also be interpreted as saying that 6 cannot be close to 1, given u and R.

16



4.3 Consumption-Saving Decisions in a Simple P-equilibrium

Note that an SPE satisfies

V(w) = max{V(0), B(w)} (4)
implying
B(z) = Og%g)éz[u(z —bw) + d max{V(0), B(w)}] (5)

Contrast this with the standard Ramsey optimal saving problem, where the value func-
tion W (w) satisfies:
W(w) = max [u(w — éw) + 6W ()]

0<éw<w

and W(0) = u(0) + 6W(0), so that

_ u(0)
1-96

W (0) =0.

The contrasting feature of a P-equilibrium is that A has access to the floor contract at
w = 0, which offers positive surplus V(0) > 0. Hence the consumption-saving decision of
A, described by (5), differs from a standard Ramsey problem, only insofar as A always has
available an exit option, i.e., of running down his wealth to 0 at any given date and exiting

with the payoff V' (0) > 0.

4.3.1 An Artificial Ramsey Problem with an Exit Option

We can pin down the ez post value function B of the agent in a SPE, using (5), which

corresponds to an artificial (deterministic) Ramsey problem with the exit option V* = V(0).

Definition u satisfies the Maintenance Condition (MC) relative to V* if

lim [u(c) —cu'(e)] > (1 — §)V*. (6)

c—00
PROPOSITION 2 Consider the (deterministic) Ramsey problem with exit option V*.
(1) If w does not satisfy MC relative to V*, then the solution is (for all z):
c(z) =z, B(z) = u(z) + 6V* (7)

17
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(ii) If u satisfies MC relative to V*, the solution is described as follows. Let T(z) equal
the optimal exit time for an agent with initial wealth z, with T(z) = oo if the agent
never exits. There exists an infinite sequence {zp}3 o, with 0 = 29 < 21 < 29 < -+,
and zoo = liMgoo 21 < 00, such that T'(z) = k for z € [zx—1,2k] (with indifference

holding for adjacent values of T at the endpoints), and T(z) = oo for all z > 2.

The associated value function in case (ii) is

16" ((1—6)2
1—6 "\ 1—¢k
1

= T—5u((1=6)2) forall z > 2. (8)

B(z) = > + 6PV for all z € [z_1, 2]

Proof: Consider the related problem of selecting a real number = € [1, ﬁ] to maximize

Y(ryz) =zu(2) +[1— (1 - 0)z]V™.
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(Here x corresponds to %, where the exit date k£ is treated as a continuous variable

in [1,00). Since it is optimal to smooth consumption perfectly until the exit date, A will
= —6(1:5;3; , thereby running down wealth
to 0 at k, and exiting with V*. This generates the value function B(z) = —111‘5;u(21(:,‘3)) +

5k )

consume uptil the exit date at the steady level of ¢(z)

Now note that

do= ul(E) —o(2)F - (- OV
— u(@) - 2@ - (1Y

so the concavity of w implies that ¢ is concave in z, for any z.

If w does not satisfy MC relative to V*, then 1 (x; z) < 0 for all z, so then the optimal

value of x = 1, i.e., k = 1. Then A consumes all current wealth and exits at the next date,
implying (i).
It is easily checked the same is the case when u satisfies MC relative to V* as an equality.

If u strictly satisfies MC relative to V*, there exists m such that u(m) — mu/(m) =
(1 =06)V*. Define z = 7%5. Then z > Z implies £ > 2(1 — ) = m for all z € [1,%].

Hence 9, (x;z) > 0 for all z, so optimal x = ﬁ, or k = oco. Conversely, z < Z implies
that 1/}90(11763 z) < 0, so it is optimal for the agent to exit at some finite date. In particular,
z < m implies that optimal z = 1 = k. And z € (m, %) implies that the agent must exit

at some date k > 1.

To calculate the exact exit date, the concavity of ¢ implies that it suffices to look at the
two integer solutions for k generating values of Z closest to m. Every finite k will therefore
be an optimal exit date for some z, and the exact switch points can be calculated by the

condition of indifference between adjacent exit dates. |

Proposition 2 identifies the value function B, given the floor utility V*, in any SPE.
The optimal saving strategy is characterized by an infinite sequence of thresholds z1, 2o, ...
converging to a finite threshold z.,, with the property that for any wealth below z; A

wishes to save nothing and run down his wealth to 0, while above zo, he seeks to maintain
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his wealth. For intermediate wealth levels he plans to consume at a rate which would run
down his wealth in a finite number of periods. The resulting ex post value function B is
continuous and strictly increasing. It is concave beyond z. in the wealth maintenance
region. Before this, however, every threshold constitutes a point where B is kinked and
locally nonconvex. Crossing one of the thresholds causes the agent to slow down the rate
at which the wealth is decumulated, by consuming less every period, which increases the

marginal utility of the next increment in wealth.

The ex post value function in the SPE is defined entirely by the utility corresponding
to the floor contract. To construct an SPE it suffices to check that the optimal contract
designed by P for zero wealth agents whose savings and effort incentives are defined by this
value function, generates exactly the same floor contract. Assumption [B] ensures this is

indeed the case.

PROPOSITION 3 Assume [B] holds. Then there exists a simple P-equilibrium with the fol-

lowing properties: there exists w* > 0 such that

(i) For allw < w*, the static (P) optimal contract is offered: e(w) = e*,y(0) = y*,2(0) =0

and the resulting floor utility is V(0) = V* = erDer)—D(e")

(ii) For any w > w*:

16 1-6)w ki«
V(w)=Bw)={ ¢ v (gﬁs’%) HOVE i w € [ap, 2]

1 . _

u (1 = 6w), if w > Z

(iii) there is a poverty trap below w*, i.e., wy < w* implies wp = 0 for all T > t with

probability one.

Proof: We first show that [B] implies that the floor contract must coincide with the static

optimal contract.

LEMMA 2 If [B] holds, then e(0) = e*,y(0) = y* maximizes e[R — y| subject to D'(e) =
max{B(y)—B(0),0} andy > 0, where B denotes the ex post value function with exit option
V.
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Proof: Note that we can restrict the range of feasible values of y to [0, R], since any y > R is
strictly dominated by y = R. [B] is equivalent to the condition that even with y = R, exiting
immediately is better than waiting one period, i.e., u(R) + 6V* > %u(%}?) + 82V,
Hence for all y € [0, R], A will exit at the very next date, and B(y) = u(y) + B(0). So
B(y) — B(0) = u(y), and the problem reduces to the static optimal contracting problem.

This proves Lemma 2.

The ex post value function B* corresponding to exit option V' = V* satisfies B*(0) =

SV* < V* =V(0). Since B* is continuous and strictly increasing, there exists w* such that

V* = B*(w*).

It remains to check that V(w) = max{V*, B*(w)} is the ez ante value function for A
generated by the optimal contract (z(w),y(w),e(w) for P, i.e., which for any w maximizes
w— f +e[R—y] — (1 — e)x subject to (EIC): D'(e) = max{B*(y) — B*(x),0}, (APC):
eB*(y)+(1—e)B*(x)—D(e) > B*(w), (LL): y,z > 0, and (PPC): w— f+e[R—y]—(1—e)x >
0.

We now claim that neither (APC) nor (PPC) binds in this problem if w < w*. If w < w*
and we drop these two constraints, then the problem reduces to that considered in Lemma 2
above, with = 0. It is then evident that the resulting solution satisfies both participation

constraints strictly.

On the other hand, at any w > w*, note that if there is no feasible non-null contract, then
V(w) = B(w). So without loss of generality suppose there is a feasible non-null contract:
we have to show that (APC) must bind in any optimal contract. Otherwise, we can drop
(APC). Then the problem is the same as when w < w*, and we have shown above that in
the solution to this problem the agent gets V* = B(w*) < B(w) and (APC) is violated, a

contradiction. This establishes (i) and (ii).

Part (iii) follows from the fact that below w*, A must receive the floor contract, which
generates end-of-period wealth of 0 or y*, both less than R, which in turn is less than 2z,

the threshold for immediate exit in the ex post value function B*. ]

The role of assumption [B] can now be explained. It ensures that R, the maximum
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return from the project is less than the first threshold z; required to induce A to save
anything. Since R exceeds the maximum payment that the principal might conceivably
make to A (with zero initial wealth) in the event of success, this implies that such an
agent will invariably consume his entire end-of-period wealth. This reduces the contracting
problem to a static one, so P will indeed offer such agents the same contract as in a one
period setting. In turn this is the floor contract used to construct the ez post value function,

so we have constructed an equilibrium.

4.4 Wealth Dynamics in the Simple P-Equilibrium

What are wealth dynamics when wgy > w™ in the SPE?

One obvious case, which includes the case where w is linear:

PROPOSITION 4 Suppose w does not satisfy MC' relative to V*. Then there is a global

poverty trap: wy = 0 for all t > 1 with probability one.

Proof: If u does not satisfy MC relative to V*, then ¢(z) = z for all z, so the wealth next

period is zero, irrespective of current wealth. ]

With linear utility A has no preference at all for smoothing consumption; in this case
the first threshold z; is infinite and A never saves at all, preferring instead to run down
his next period wealth to 0 in order to receive the floor contract. Let us consider instead
the case where there is enough preference for consumption smoothing that « satisfies MC
relative to V*, implying that for sufficiently large z, the agent will plan to maintain his

wealth. Use 2" > 0 to denote the maintenance threshold z;, s, in the SPE.

Note that if at a wealth level &0 > 2z*, there is no feasible non-null contract, then
z(w) = y(w) = w, and W is absorbing. The agent is affluent enough, deciding to ‘retire’ to
a stationary consumption, opting out of productive activity. In that case agents sufficiently
poor remain locked in poverty for ever, and those sufficiently affluent stay affluent. Initial
conditions thus matter at the extremes. What about those starting with intermediate

wealths? To analyse this, we make the following assumption.
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Assumption [C] W, the set of wealth levels for which a non-null feasible contract exists,
is an interval, of the form [0, W*], where W* exceeds z*, the maintenance threshold in the

SPE.

This assumption is satisfied in the following settings. If u'(co) is sufficiently large, a
feasible non-null contract exists at every w. Let u/(0co) be denoted by 3. Then since the
rate of increase of B is bounded below by 3, it suffices that there exists effort é such that
éR—f > %;(é), or 3 > %ﬁ? Then there is a feasible contract with o = 1,2 = w,e = é

for any w, and [C] is satisfied, with W* = co.

If v/(00) = 0 then it is plausible that for w sufficiently large no feasible non-null contract
exists.” If a feasible non-null contract exists for all w < z*, and if & is convex, then [C] is
satisfied with finite W™* (a standard argument used e.g. in Newman (1997) ensures that P’s

expected profit is decreasing in w). In this case every w > W* is absorbing.

Given [C], we now examine properties of the wealth dynamic for an agent starting with
initial wealth lying between the poverty trap threshold w* and the ‘retirement’ threshold
W,

PROPOSITION 5 Suppose [C] is satisfied, and W* is finite. Then there exists n > 0 such
that:

(1) given any initial wealth wy € [0, W*], the agent’s wealth w; will converge to 0 in finite

time with probability at least 7.

(ii) given any initial wealth wo € (2%, W*), w will converge to a level exceeding W* in

finite time with probability at least 7).

The proof of this result utilizes the following lemmas, proofs of which are provided in

the Appendix.

"This needs to be verified. The basis for the conjecture is the following. Above the maintenance threshold
B is concave in the SPE. Using reasoning analogous to part (i) of lemma 7 below, z(w) will lie above the
manitenance threshold for w sufficiently large. Also a = 1 requires that effort be bounded away from 0.

Then as w — infty, providing incentives become infinitely costly.
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LEMMA 3 For any wealth w € (w*, W*|, any contract (x(w),y(w)) optimal for P at w must

satisfy x(w) < w < y(w).

LEMMA 4 Consider a sequence of wealth levels w™ in [0, W*] converging to w, and the
corresponding contract sequence in the SPE (x™,y", ™) converging to (&,9,€). Then (Z,9,é)

is an optimal contract for P at w.

LEMMA 5 For any w € [0,W¥], there exists € > 0 such that (i) x(w) < w — €, and (ii)
y(w) > w + €.

LEMMA 6 For any w € [0, W*], e(w) is bounded away from 1.

Hence the probability of failure consequent on any w € [0, W*] is bounded away from
zero. So the probability of any finite number of successive failures is also bounded away
from 0, and part (i) of Proposition 5 follows. For part (ii), note that w > z* implies that
y(w) > z* + ¢, and the starting wealth at the next date following upon a success will be
higher than today by at least €. So (ii) follows as long as the success probability is bounded
away from zero. But this is ensured by the fact that y(w) — z(w) is bounded below by 2e.

This concludes the proof of Proposition 5. |

The preceding result establishes that all wealth levels between the poverty and retire-
ment thresholds must be transient. Hence the long run wealth distribution must be polarized
between 0 and wealths exceeding W*. The same result extends when W* = oo, though the

argument is somewhat more involved:

PROPOSITION 6 Suppose [C] is satisfied, and W* = co. Then from any initial wealth, w;
almost surely converges either to 0 or co. The probability of converging to 0 is positive from

any nitial wealth. The probability of converging to oo is positive for any initial wealth above

z*.

We outline the proof here. Define e by the condition eR = f. Then R > f implies
that e € (0,1). Next we establish the following Lemma, whose proof is presented in the

Appendix.
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LEMMA 7 Suppose W* = co. Then there exists W > 2* and a number np > 0 such that for
any w > W:

(i) z(w) > z*
(i) e(w) > ¢

(iit) e(w)y(w) + [1 = e(w)]z(w) = w + 1.

The proof of Proposition 6 then proceeds as follows. Conditional on the event that
wy > W for all ¢, the strong law of large numbers for Markov processes implies that w; will
almost surely converge to co. Moreover, if initial w is sufficiently high (e.g., higher than
some W > W), then with positive probability w; will stay above W for ever for all ¢. For
any w € [0, W], on the other hand, arguments similar to those used in Proposition 5 above
will ensure that the probability of converging to 0 is bounded away from zero. Hence for all
w the probability of either converging to 0 or co is bounded away from zero, so this event

must occur almost surely.

We conjecture that the properties established for the simple P-equilibrium are shared

by all P-equilibria with continuous value functions.

5 Where Agents Have All the Bargaining Power

We now study the ‘competitive’ case where agents have all the bargaining power. In what
follows, we characterize properties satisfied by any A-equilibrium, rather than construct a
specific A-equilibrium. Note that arbitrary A-equilibria may involve discontinuous value
functions, unlike the particular SPE we analyzed in the previous Section. In this sense the

characterization of equilibria in this Section is more general.

We start with a useful lemma, establishing that P’s cannot ever earn any positive rents
if they have no bargaining power. While the result is intuitive, possible discontinuities in
A’s value function complicate the argument, since rent extraction by A must be constructed
in a way to not result in discontinuous effort changes leading to downward jumps in P’s

expected profit (that threaten the feasibility of the contract).
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LEMMA 8 In any A-equilibrium, PPC binds at every wealth level w.

Proof: Suppose not, and there is a contract o = 1, e, y, z assigned to wealth w where PPC

does not bind.

First consider the case where B is continuous either at y or at x. Then we can re-
duce the transfer to P at whichever state happens to be a continuity point of B. For a
sufficiently small transfer, the corresponding effort change induced will be small, so the
breakeven constraint will be preserved. The variation will increase A’s present value utility,

a contradiction.

Next, suppose that B is not continuous at either y or . Then there are three possibili-
ties: (a) R>y—=x, (b) R=y—=x, and (¢) R < y— . If (a) holds, reduce the transfer to P
in the successful state slightly, so that the inequality R > y — « is maintained. The agent’s
effort cannot fall in response, so PPC will continue to be respected. Then A’s present value
utility increases, a contradiction. In case (c) the reverse argument works: the transfer in
the unsuccessful state can be reduced slightly to effect an improvement. In case (b), both
y and x can be raised in step, so as to preserve the equality of R with y — x. Then any

change in effort does not affect PPC, while A is rendered better off. |

An immediate implication of this result is that all the benefits of incremental initial
wealth must accrue to the agent, thus ensuring that the return to saving can never drop to

zero as in the case of poor agents in the SPE.

PROPOSITION 7 In any A-equilibrium V is strictly increasing.

Proof: From its definition it is evident that V' is nondecreasing. Suppose there exist w1, ws
with we > wy such that V(wa) = V(wy). Then e(wi),y(w1),z(w) is feasible at wq, and

hence must also be optimal at wy. But here PPC does not bind. |

The following proposition goes further and provides a lower bound to the rate of return
to saving for the agent. This bound is given by the marginal utility of the highest possible

level of consumption at the following date.
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PROPOSITION 8 Let ¢(y) =y — dw(y) denote the consumption strategy of the agent in any
equilibrium. Then at any wealth w:

lim Viw+¢) — V(w)
e—0+ €

> u'(max{e(y(w)), e(z(w))}). (9)

Two corollaries of the preceding result follow. First, in at least one state at the following
date consumption must be at least as high as today. Second, in the case where the agent

has linear utility, saving his entire end-of-period wealth is a best response.

PROPOSITION 9 (i) If w is strictly concave then in any A-equilibrium the consumption-

saving strateqy of the agent must satisfy at any z:

¢(2) < max{e(y(w(2))), e(z(w(2)))}

(ii) If u is linear, then it is a best response for the agent to accumulate wealth at the fastest

possible rate, i.e., set w(z) = (14 r)z.

Proof: If (i) is false, ¢(z) must be positive, so it is feasible for the agent to consume a little
€

bit (e > 0) less. This would cause wealth at the following date to be w(z) + § instead of

w(z). It must therefore be the case that for every small € > 0:

u(e(2)) —ule(z) —¢) = 6[V(w(z) + 5) = Vi(w(2))]
> e (max{c(y(w(2))), c(x(w(2)))}) (10)
using Proposition 8. Taking limits with respect to €, we obtain (i). When u(c) = ¢, then

Proposition 8 implies that the benefit of increasing next period’s wealth by £ is at least e,

the current cost in terms of foregone consumption. ]

The contrast with the saving strategy in the simple P-equilibrium is especially stark in
the case when w is linear: in that equilibrium A always wants to run down his wealth to 0.

Here it is always optimal for the agent to consume nothing (though in equilibrium he must
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be consuming somewhere, so must be indifferent between consuming and saving at all such
points). Note also that in a static setting the agent needs external finance only if w < f.
Otherwise if w > f, the agent has no need for either credit or insurance from any principal:
the first-best can be achieved (with y(w) = w+ R— f,x(w) = w— f). In a dynamic setting,
we might initially guess that the same is true for w sufficiently large, with A consuming to
ensure wealth maintenance from the end of one period to the beginning of the next. While
for lower values of w, A is either credit constrained, or faces the possibility of facing such
credit constraints in the foreseeable future (w falling below f), in which case he saves all
his wealth. However, notice that in even if currently w exceeds f, it may fall below f at
some future date following a string of failures. Anticipation of possible credit constraints
in the future may therefore motivate some additional saving even for wealthy self-financing
entrepreneurs. Such an equilibrium remains to be constructed (in finite horizon versions of
the problem analogues of these do appear). But this intuition suggests a tendency for a
perpetual upward drift in the wealth process, especially at low wealth levels. In particular

one might expect that the agent will never fall into a poverty trap.

The case of linear utility may be considered too extreme, with the agent have no pref-
erences at all for consumption smoothing. So it is relevant to consider the case where u is
strictly concave. Fortunately, we can prove some relevant properties of the wealth dynam-
ics for general concave utility functions, such as the the impossibility of any poverty trap

(defined by the property that zero wealth is an absorbing state, i.e., w(y(0)) = 0 = w(x(0))):

PROPOSITION 10 If u is strictly concave, there cannot be any A-equilibrium with a poverty

trap.

The proof of this relies upon the following extension of Proposition 8, which sharpens the
lower bound on the return to saving, to the expected marginal utility of consumption at the
following date. This result is of some interest in its own right, as it implies a submartingale

property for u,#(c), similar to that in the case of efficient long term insurance contracts.

PROPOSITION 11 (i) Consider any equilibrium and any initial wealth level w for which an

optimal contract exists which assigns end-of-period wealth levels y(w),z(w) that are
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both points of (right-)continuity of B(.). Then

li L+ = V() > [e(w); +(1- e(w));

e @) S

(ii) Consider any equilibrium and any end-of-period wealth level z which induces end-of-
period wealth levels at the following date that are both (right-)continuity points of B.
Then with e denoting e(w(z)):

(12)

We turn finally to the intuition concerning upward drift of wealth, as a result of strong
saving incentives generated in A-equilibria. This intuition is confirmed irrespective of agents’
preferences for consumption smoothing, provided the equilibrium satisfies a mild right-

continuity property.

PROPOSITION 12 Assume that u is strictly concave, u'(c0) > 0 and a feasible non-null
contract exists at all wealth levels. Then in any A-equilibrium with a right-continuous ex

post value function B, wealth converges almost surely to oo from any initial level.

The reasoning behind this result is somewhat involved, but the main idea is the following.
Given te concavity of u and u/(c0) > 0, the martingale convergence theorem implies that
consumption converges almost surely. If it converges to a finite limit then the agent must
eventually be left with no effort incentives, which would lead to a violation of feasibility as

the principals would fail to break even.

What can we say about the case where u/(00) = 0 and ‘retirement’ of sufficiently wealthy

agents?

PROPOSITION 13 Assume that a feasible non-null contract does not exist for wealth above
some threshold W*. Then from any initial wealth w € [0, W*), the wealth at some future

date will exceed W* with positive probability, in any right-continuous A-equilibrium.
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Hence irrespective of initial conditions every agent must ‘retire’ with positive probability
at some future date. However, it is difficult to ensure that ‘retirement’ is an absorbing state,
so one must entertain the possibility that agents retire for a finite number of periods and
then return to productive activity. In this case retirement is an event that will occur
infinitely often. Somewhat surprisingly, this last proposition is difficult to extend to its
almost sure version: this would require the probability of crossing the threshold at some

future date from any initial wealth to be bounded away from zero.
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APPENDIX

Proof of Lemma 3: Since w > w*, we know B(w) = V(w) = e(w)B(y(w)) + (1 —
e(w))B(z(w)) — D(e(w)).

We first claim that y(w) > z(w) and e(w) > 0. Otherwise e(w) = 0, and P’s expected
profit is w — f — z(w). Moreover, B(w) = B(z(w)), implying z(w) = w. So P earns a

negative expected profit, a contradiction.

Next we claim that y(w) > w. Otherwise z(w) < y(w) < w, implying V(w) =
e(w)B(y(w)) + (1 — e(w))B(xz(w)) — D(e(w)) < B(w), contradicting (APC).

Finally, suppose z(w) > w. Then y(w) > z(w) > w, and A would obtain an expected
present value utility of B(w) upon selecting e = 0. Since D(.) is strictly convex and e(w) > 0,
A must end up with a present value utility that strictly exceeds B(w), contradicting the
property that V(w) = B(w). [

LEMMA 9 Consider a sequence of wealth levels w™ in [0, W*] converging to w, and the
corresponding contract sequence in the SPE (x™,y", e™) converging to (&,9,€). Then (Z,9,¢é)

is an optimal contract for P at w.

Proof of Lemma 9: Feasibility of the limit contract at w follows from continuity of B
and D. If it is not optimal, there exists T, 7y, ¢ feasible at w which generates for P a higher
expected profit. Define #” by the condition B(z")+éD’(é) — D(¢é) = V(w"), and g™ by the
condition B(g"™) = B(&™)+ D'(é). Then (Z",§",¢€) is feasible at w™, and for large enough n
will be close enough to (Z,7, €) to generate a higher profit than (z”,y", e™), a contradiction.

This establishes Lemma 9.

LEMMA 10 For any w € [0, W?*], there exists € > 0 such that (i) x(w) < w — €, and (ii)
y(w) > w +e.

Proof of Lemma 10 If (i) is false, we can find a sequence w™ in [0, W] such that w™ —

x(w™) is converging to 0. Construct a subsequence along which (z(w™),y(w"), e(w™),w™)
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converges, say, to (Z,9,é,w). Then by Lemma 9, the contract (#,9,é) is optimal for P at

w, and & = W, contradicting Lemma 3. A similar argument establishes (ii). [ |

LEMMA 11 For any w € [0, W*], e(w) is bounded away from 1.

Proof of Lemma 11 Otherwise, we can find a sequence of wealth levels w™ in [0, W*] for
which the corresponding effort levels €™ converge to 1. Since D'(e™) = B(y"™) — B(z"), y"

must converge to oo, and P’s profit wy, — f + e"[R — y"] — (1 — €")z™ converges to —co. W

Proof of Lemma 7 If (i) is false, we can construct a sequence w” — oo such that z" =

z(w") < z*. Then y" — oo, otherwise (APC) will be violated for large enough n. So

D'(e™) = B(y™) — B(z"™) — o0, and " — 1. Let 2™ = e™y™ + (1 — €™)z™. Then for large n,

2" > z* and

(1 =e")[B(z") = B(")] +e"[B(z") = B(y")] = (1—e")[B(z") = B(z")] +e*[B(z") — B(y")]
> (1— ) BI(2")(2" — ) + "B (=) (27 — y)

= B/(z")[(L = e")(2" = 27) + (2" —y")]
the second inequality utilising the fact that B is concave above z*. Now note that
Im[(1 —e")(2" — 2") + " (2" —y")] = —lim(1 — ")(Z" —2") =0
n n

since e — 1. So

lim(1 - ") [B(z") - B(a")] + ¢"[B(=") - B(y™)] > 0.

Since (1 —e™)B(z") + ")B(y"™) = B(w") + D(e"), it follows that
m[B(2") — B(w") — D(e")] = 0.
Moreover, lim,, D(e") = o0, so

lim[B(z") — B(w")] = o0,

implying



Then P’s expected profit which is bounded above by w, — 2™ — f + €" R, must converge to

—o0, a contradiction.
To establish (ii), utilize (i) and the strict concavity of B above 2* to infer that
Ble(w)y(w) + (1 — e(w))z(w)) > e(w)B(y(w)) + (1 — e(w))B(x(w))
= B(w) + D(e(w))
> B(w)
so that
e(wy(w) + (1 — e(w))z(w) > w.

Hence e(w) < e implies that P’s profit
w —e(w)y(w) — (1 — e(w))z(w) — f + e(w)R < 0.
Finally, (iii) follows from the fact that
Ble(w)y(w) + (1 — e(w))x(w)) = B(w) + D(e)

which completes the proof. ]

Proof of Proposition 8: We divide the proof into three cases: (a) R > y—=x; (b) R < y—u;
(c) R=y—u.

Case (a): Take any positive € < e[R — (y —x)], where e denotes the effort assigned at w.
Construct a contract (g7 =y + g,g]? = x), and let é” denote the associated effort response.
Then by construction PPC is satisfied at wealth w + € by the new contract (§y,97%), if the
agent were to continue to select effort e. Since B is strictly increasing, the agent’s optimal
effort response €” > e. Given R > gy — ¢, PPC must continue to be satisfied at ¢”. Hence

the new contract is feasible at wealth w + e. Since the effort e is still available to the agent,
V(w+e€) 2 eB(gg) + (1 — e)B(gF) — D(e) (13)

Note that B(gy) — B(y) > u(cs + £) — u(c,) if ¢s = ¢(y) since it is always feasible for the

agent to entirely consume any increment in end-of-period wealth. Hence

Viw+e) = V(w) > efues+ =) —uley)]

35



€
eu'(cs + E)

v

> eu'(max{cs,Cf}+ 2) (14)

where (¢, c¢) denotes (¢(y), ¢(x)). The result then follows upon dividing through and taking

limits with respect to e.

Case (b): Reverse the argument of the preceding case, and distribute a wealth increase

entirely to the unsuccessful rather than successful state to obtain the same conclusion.

Case (c): For arbitrary positive €, construct the new contract (§y =y +€,§} = = +€),
which will be feasible at wealth w + € if the agent continues to select e. It will be feasible
even if he were to change his effort, since R = y — x. Using similar reasoning to that used

in case (a) above:

Viw+e) =V(w) = [e{ulcs +€) —ules)} + (1 = e)fules +€) —uley)
> eleu(cs+¢€) + (1 —e)u/(cr + )]
> eu'(max{cs,cr} +e). (15)
]

Proof of Proposition 11: (i) By assumption,
V(w) =eB(y) + (1 —e)B(x) — D(e) (16)

where B is right-continuous at y = y(w) and x = x(w). Then for small enough ¢ > 0, there

exist positive incremental payments Ay (e), Az (e) that solve the following two equations:

eAy+(l—e)A; = €
Bly+A4y) = Bly) = Blz+A4;) - B(2)

Moreover, Ay (e) and A,(e) both tend to 0 as € — 0+, and so does ¥(e) = B(y + Ay(e)) —
B(y). By construction, the contract y + Ay(€), z + A, (€) elicits the same effort response e

as the previous contract; hence it is feasible at wealth w + €. Therefore:
Viw+¢e) — V{(w) > ¢(e). (17)
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Since B(z+ A) — B(z) > u(c(z) + A) — u(e(2)), it follows that for z =y, x:
lim [i(e) — A (e (e(2)] = 0. (18)

Weighting inequality (18) by the probability of the corresponding outcomes and adding

across the two states, it follows that

. —_o 1l >

i () =071 2 0 (19
where 6 denotes [em +(1—- e)m}. (11) then follows from combining (17)
and (19), and part (ii) from an argument similar to that in part (i) of Proposition 9. [

Proof of Proposition 10: Suppose there is an equilibrium with a poverty trap, which
requires that w(y(0)) = 0 = w(x(0)). If u is strictly concave, a standard revealed preference
argument implies that w(.) must be nondecreasing. We also know that y* = y(0) > 2* =
x(0) is necessary for the agent to exert effort and thus satisfy PPC. Hence w(z) = 0 and
B(z) =u(z) + 6V (0) for all z € [0,y*]. So B is differentiable at z*.

If B is right-differentiable at y*, then (12) implies that =y < [e(0)gpey + (1 -
e(O))W] upon using the hypothesis that c(y*) — y* = c¢(z*) —2* = 0. Since 2 is strictly
increasing, and e less than 1 (otherwise PPC will be violated), this inequality contradicts
y* >zt

If B is not right-differentiable at y*, then note that the rate of increase of B at y* is
bounded below by u'(y*), since it is feasible for the agent to entirely consume all incremental
wealth. Now modify the proof of preceding Propositions to infer that the inequality in (9)
must be strict at y*, which will again generate a contradiction. (If R < y* — z* then note
that the reasoning employed in the proof of Proposition 8 implies that the rate of increase of
V' at zero wealth is strictly greater than «'(2*), since at least part of the incremental wealth
can be distributed to the agent in the unsuccessful state. And if R > y*—x*, the incremental
distributions A,, Ay constructed in the proof of Proposition 11 on the assumption that B
is right-continuous at y* with a slope bounded below by «'(y*), will be feasible even if B
is not right-continuous at y*. The reason is that the rate of increase of B is then even
higher, so in case it is optimal for the agent to change his effort, he would increase it. Since

R > y* — x* the increased effort cannot jeopardize PPC.) |
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Proof of Proposition 12 Note first that any feasible contract (y,z,e) with a = 1 at w
requires e > 0 and y > w. For if e = 0, APC requires B(x) > B(w), i.e., x > w. Then PPC
must be violated: w — f —x < —f < 0. And if y < w then e > 0 implies z < y < w and
APC will be violated.

LEMMA 12 In any A-equilibrium:

(i) wlg/v (w) is bounded away from 0 if either W, the set of wealth levels for which a

feasible nonnull contract exists, is bounded, or if u'(c0) > 0.

(ii) peye(w) is bounded away from 1 if W is bounded.

If (i) is false, we can construct a sequence of wealth levels w, — w (where w could
possibly be co) and corresponding nonnull contracts (yp, Tn, €,) with e, — 0. By APC and
the incentive constraint, V(wy,) = B(xy,) + enD'(en) — D(en) > B(wy,), so limy, V(wy,) =
lim, B(xy)) > lim, B(wy). At the same time, PPC implies wy, — f + ep R — (1 — ep)xy >
enlyn > 0, or lim, w, —lim,, x, > f. Then for arbitrary and small €, > 0, for n sufficiently
large we will have B(wy,) — B(xy) < n whilst w,, —x,, > f —¢. If wy, and z,, are bounded
above by w, this contradicts the fact that the rate of increase of B between x,, and w,, is
bounded below by «/(w). Or if wy, and x,, are unbounded then the rate of increase of B is

bounded below by u'(c0).

If (ii) is false we can find a sequence of wealths w, — w and corresponding feasible
contracts (Y, T, e,) in which PPC binds at every n, with e, — 1, so D'(e,) = B(yn) —
B(xy,) — oo, which requires lim,, y, = co. Since PPC binds for each n, we have w,, — f +
en[R—yn] — (1 —ep)xyn = 0. This implies that lim, w, > f— R+lim, y, = oo, contradicting
boundedness of W. This proves Lemma 12.

Now return to the proof of Proposition 12. Since u/(0co) > 0, Proposition 11 implies
that ,( " forms a submartingale in any right-continuous A-equilibrium, where ¢; denotes
the consumption of the agent at date ¢t. Hence m converges almost surely. Since w is

strictly concave, this implies that ¢; converges almost surely.
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We claim that almost surely ¢; — oo, which will imply that z; — oo, and hence that
wy — oo. (It is readily verfied that z; is bounded if and only if w; is bounded.)

Take any Z < oo and integer T > L[B(Z) — B(0)] — 1, where m denotes marginal

disutility of effort at the lower bound to effort provided by the preceding lemma. Define

the event
B(Z) ={c¢; converges tosome c"<oo and z < Z forall t}

Note that z; < Z implies existence of some W such that w; < W for all £. Using the
argument of Lemma 12, we can found bounds e,e € (0,1) for effort levels arising in any

contract corresponding to wealth in [0, W].

Next, select n € (0, (1 — §)m). Note that since u(0) = 0, continuity and concavity of u
imply that u is uniformly continuous. Hence we can find € > 0 such that |u(c) —u(d)| < n

whenever |c — | < e.

Conditional on wealth w at the beginning of date 0, define for any positive integer
T the T-step ahead possible realizations of z,¢ and w under the given A-equilibrium in
the following manner. Let n; € {s, f} denote the outcome of the project ¢ dates ahead,
and let n' denote the history of project outcomes (n¢,ny 1,...,n0) between dates 0 and
t. The contract itself specifies 2%(ng,w) = y(w) if ng = s and x(w) otherwise. Using the
equilibrium consumption strategy this enables us to work out ¢%(ng, w) = ¢(2%(ng,w)), and
the wealth at the beginning of next date: w!(ng,w) = § 1[2%(ng,w) — ®(ng, w). Proceeding
in this fashion we can find the T-step ahead realizations as functions of the history of the

T T T(anl’

outcomes of the project between 0 and T: 27 (n”, w), ! (nT, w),w w).

Define C(w, T') = {c|c = c(n',w),t < T}, the set of possible realizations of consumptions

T-steps ahead.

Then define the event

A(Z)y={e € (e,;e) forall t and lim diamC(w¢, 1) = 0}

t—o0

LEMMA 13 For any Z:
Prob|A(Z)|B(Z)] = 1. (20)
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Proof of Lemma 13. Define the event A1(Z) = {e; € (e,e) forall t}.Note that
Prob[A1(Z)|B(Z)] = 1, implying that Prob[A(Z)|B(Z)] = Prob[A(Z)|A1(Z) N B(Z)]. We
claim that this latter probability equals one. If this is false there is a positive measure of
paths for each of which the following is true. There is { > 0 and an infinite sequence of dates
such that for any date ¢ in this sequence, we can find a possible consumption c®(n* w;),
k < T steps ahead such that |c*(n* w;) — ¢*| > (. Since e; is bounded away from zero
and one, every k-step outcome history has probability bounded away from zero, and almost

surely will occur infinitely often. Then almost surely cg.; will equal c*(n”*

,wy) for an infinite
sequence of dates k 4. So there will be a positive measure of paths along which ¢, fails to

converge, contradicting the martingale convergence theorem.

LEMMA 14 For any Z:
ProblA(Z)N B(Z)] = 0. (21)

Proof of Lemma 14. The proof rests on the following claim.

Claim. Let s* (resp. f') denote t-step histories in which the project results in a success

(resp. failure) in every period. Then for any Z:

Prob[B(2T (s7,w))~BT (7, wy)) > m(T+1) forall t>t* forsome t*|A(Z)NB(Z)]
(22)

Consider any path in A(Z) N B(Z), and select t* such that diamC(w;,T) < 5 for all
t > t*. Note that along any such path, e; > e at all £; hence the effort incentive constraint
implies B(z!(s!,w;)) — B(2}(f!,w:)) > m for all . So the inequality
BET (s wi)) = BET (T wn) > m(T +1) (23)
holds for 7' = 1 for all t. We shall show that if it holds for 7' — 1 it holds for 1" as well.
Use 2% and 2°% to denote szl(sT’l,wt),zT(sT,wt) respectively. Similarly use 2%’
and 2 to denote zT’l(fol,wt),zT(fT,wt) respectively. And use 2% 25F to denote

zT(f, ST_I,wt) and zf(s,ff_l,wt) respectively.
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Next note that
V(w(z%) = V(w(z")) =

By the induction hypothesis B(2°) — B(2) > Tm. Moreover, since t > t*, we have ensured

by construction that $[u(c(2%)) — u(e(2))] < 7. Since n < (1 — §)m:

V(w(z) = V(e(z") > 5[Tm —a] > Tm
Since
V(w(z®) = meax[eB(zSS) + (1 —e)B(z"%) — D(e)]
Vw(zr)) = meax[eB(zSF) + (1 —e)B(z'f'y — D(e)]

it is evident that V (w(2%)) =V (w(2F)) > Tm implies that max{B(2°%) - B(2F"*), B(2°F) —
B(2FF)} > Tm. Since B(2°%) — B(2F%) > m and B(25F) — B(2FF) > m, it then follows
that B(25%) — B(2FF) > (T 4 1)m, establishing the Claim.

We are now in a position to prove Lemma 14. Consider any path along which consump-
tion converges to some ¢* < oo, and z is bounded above by Z. Then B(z) is bounded
above by B(Z). Recall that we selected T > = [B(Z) — B(0)] — 1. The Claim above implies
then that

BT (5" wp)) > m(T + 1) + BE"(F7 w)) >= m(T +1) + B(0) > B(Z)

i.e., that 27 (s” w;) exceeds the upper bound Z for all ¢ > t*. Since given event A(Z), a

string of T’ successive successes will almost surely occur infinitely often, the result of Lemma

14 follows.

Combining the results of Lemmas 13 and 14 it follows that Prob[B(Z)] = 0 for any Z.
If we define the event B = U2 B(k) = limy, B(k) that z is bounded while ¢; converges to a
finite limit, this implies that Prob[B] = 0. Hence if consumption converges to a finite limit,

almost surely z; — oo; hence w; — co. Proposition 12 then follows from the observation
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that it is impossible for consumption to converge to finite limit ¢* while wealth converges to
infinity. Using Proposition 8 this would require the asymptotic rate of increase of V' to be
bounded below by u/(¢*). But V is bounded above by the value function V corresponding to
the case where effort disutility function is identically zero, whose asymptotic rate of increase

equals u/(c0) < w/(c*), and we obtain a contradiction. [

Proof of Proposition 13 is analogous to that of the previous Proposition. If the result
is false, then wealth and consumption is bounded with probability one, which ensures that
#Ct) again forms a submartingale, so ¢; converges almost surely. Lemma 12 ensures that
effort is bounded away from zero and one, so all finite step histories will occur infinitely

often with probability one. [ |
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